JP2016212986A - Flexible conductive film and manufacturing method of flexible conductive film - Google Patents

Flexible conductive film and manufacturing method of flexible conductive film Download PDF

Info

Publication number
JP2016212986A
JP2016212986A JP2015093063A JP2015093063A JP2016212986A JP 2016212986 A JP2016212986 A JP 2016212986A JP 2015093063 A JP2015093063 A JP 2015093063A JP 2015093063 A JP2015093063 A JP 2015093063A JP 2016212986 A JP2016212986 A JP 2016212986A
Authority
JP
Japan
Prior art keywords
elongation
conductive film
substrate
nanowire
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015093063A
Other languages
Japanese (ja)
Other versions
JP6542572B2 (en
Inventor
克昭 菅沼
Katsuaki Suganuma
克昭 菅沼
金▲てい▼ 酒
Jinting Jiu
金▲てい▼ 酒
内田 博
Hiroshi Uchida
博 内田
正彦 鳥羽
Masahiko Toba
正彦 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Osaka University NUC filed Critical Showa Denko KK
Priority to JP2015093063A priority Critical patent/JP6542572B2/en
Publication of JP2016212986A publication Critical patent/JP2016212986A/en
Application granted granted Critical
Publication of JP6542572B2 publication Critical patent/JP6542572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flexible conductive film excellent in adhesiveness of a conductive layer and a substrate and conductivity.SOLUTION: A flexible conductive film 10 has a substrate 20 and a conductive layer 30. The substrate 20 is a film-like member having light permeability, has elongation during cutting in at least one direction in a main surface of 150% or more and elongation recovery percentage when relaxed after elongating to a status with elongation of 150% of 50% or more. The conductive layer 30 is formed on one main surface of the substrate 20. The conductive layer 30 has a conductive path in any surface direction of the substrate 20 because it has a network structure formed by a nanowire 32 having conductivity. The substrate 20 fuses to at least a part of nanowire 32. Sheet resistance after 10 cycles for relaxation after elongation with 150% based on that before elongation at speed of 0.5 mm/min. is 5 or less, when the sheet resistance before initiation of an elongation test is 1.SELECTED DRAWING: Figure 1

Description

本発明は、伸長しても導電性を保持する導電フィルムに関する。   The present invention relates to a conductive film that retains conductivity even when stretched.

近年、身体に装着して利用することが想定されたウェアラブルデバイスが注目を集めており、伸縮性や柔軟性を有する基板上に透明導電膜を形成する研究が進められている。   In recent years, wearable devices that are supposed to be worn on the body are attracting attention, and research on forming a transparent conductive film on a substrate having elasticity and flexibility is underway.

たとえば、非特許文献1には、ガラス基板上で300℃、還元性ガス(5%H+95%N)雰囲気下で銅ナノワイヤにより導電層を作製した後、柔軟なフィルムを導電層の上に合成により作製し、上記ガラス基板を除去して、当該フィルムに導電層を転写する技術が記載されている。 For example, Non-Patent Document 1 discloses that after a conductive layer is made of copper nanowires on a glass substrate at 300 ° C. in a reducing gas (5% H 2 + 95% N 2 ) atmosphere, a flexible film is placed on the conductive layer. Describes a technique in which the glass substrate is removed by synthesis and the conductive layer is transferred to the film.

J.Mater.Chem.C、2014、2、1298J. et al. Mater. Chem. C, 2014, 2, 1298

従来の技術では、基材を伸長したときに、抵抗が増大したり、抵抗にばらつきが生じるといった導電性に関する課題が生じている。また、基材と導電層との密着性が十分でないことや、金属ナノワイヤを用いた導電層を作製する際の加熱プロセスによって、金属ナノワイヤにダメージが生じることに起因し、信頼性に課題を残している。   In the prior art, when the base material is stretched, there are problems relating to conductivity such that the resistance increases or the resistance varies. In addition, the adhesion between the base material and the conductive layer is insufficient, and the metal nanowire is damaged by the heating process when producing the conductive layer using the metal nanowire, leaving problems in reliability. ing.

本発明はこうした課題に鑑みてなされたものであり、その目的は、伸縮性を有する基材と基材上に設けられた導電層を有する伸縮性導電フィルムにおいて、導電層と基材との密着性および導電性の保持を両立させることができる技術の提供にある。   This invention is made | formed in view of such a subject, The objective is adhesion | attachment of a conductive layer and a base material in the elastic | stretch conductive film which has a base material which has a stretching property, and the conductive layer provided on the base material. It is in the provision of the technique which can make a maintenance of electroconductivity and electroconductivity compatible.

本発明のある態様は、伸縮性導電フィルムである。当該伸縮性導電フィルムは、主面内の少なくとも1つの方向への切断時伸びが150%以上であり、かつ伸びが150%の状態まで伸長させた後、緩和させた際の伸長回復率が50%以上であるフィルム状の基材と、前記基材の一方の主面上に形成され、導電性を有するナノワイヤで形成されたネットワーク構造を有する導電層と、を備え、前記ナノワイヤの少なくとも一部に前記基材が融着しており、0.5mm/分の速度で伸長前を基準として150%に伸長させた後、緩和させるサイクルを10回行った後のシート抵抗が伸縮試験開始前のシート抵抗を1としたときに5以下であることを特徴とする。   One embodiment of the present invention is a stretchable conductive film. The stretchable conductive film has an elongation recovery rate of 50% or more when cut in at least one direction in the main surface and when the stretch is stretched to 150% and then relaxed. % Of a film-like substrate, and a conductive layer formed on one main surface of the substrate and having a network structure formed of conductive nanowires, and at least a part of the nanowires The sheet resistance is 10% before the start of the expansion / contraction test, after the base material has been fused to 150% at a rate of 0.5 mm / min and stretched to 150% and then relaxed 10 times. When sheet resistance is 1, it is 5 or less.

上記態様の伸縮性導電フィルムにおいて、前記基材がポリウレタン、ジメチルポリシロキサンからなる群より選ばれてもよい。前記ナノワイヤが銅または銀からなる群より選ばれる1以上の金属で形成されていてもよい。上記基材の全光線透過率は80%以上であってもよい。   In the stretchable conductive film of the above aspect, the substrate may be selected from the group consisting of polyurethane and dimethylpolysiloxane. The nanowire may be formed of one or more metals selected from the group consisting of copper or silver. The total light transmittance of the substrate may be 80% or more.

本発明の他の態様は、伸縮性導電フィルムの製造方法である。当該伸縮性導電フィルムの製造方法は、フィルム状の基材であって、主面内の少なくとも1つの方向への切断時伸びが150%以上であり、かつ伸びが伸長前を基準として150%の状態まで伸長させた後、緩和させた際の伸長回復率が50%以上であるフィルム状の基材の一方の主面上に、導電性を有するナノワイヤが分散されたインクを塗布する工程と、前記金属ナノワイヤに電磁波を照射し、金属ナノワイヤの少なくとも一部に基材を融着させる工程と、を備えることを特徴とする。   Another aspect of the present invention is a method for producing a stretchable conductive film. The method for producing the stretchable conductive film is a film-like base material, wherein the elongation at the time of cutting in at least one direction in the main surface is 150% or more, and the elongation is 150% based on the pre-elongation. A step of applying an ink in which conductive nanowires are dispersed on one main surface of a film-like substrate having an elongation recovery rate of 50% or more after being stretched to a state; Irradiating the metal nanowires with electromagnetic waves, and fusing a substrate to at least a part of the metal nanowires.

上記態様の伸縮性導電フィルムの製造方法において、前記基材がポリウレタン、ジメチルポリシロキサンからなる群より選ばれる1以上の材料で形成されてもよい。前記ナノワイヤが銅または銀からなる群より選ばれる1以上の金属で形成されていてもよい。   In the method for producing a stretchable conductive film of the above aspect, the base material may be formed of one or more materials selected from the group consisting of polyurethane and dimethylpolysiloxane. The nanowire may be formed of one or more metals selected from the group consisting of copper or silver.

なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。   A combination of the above-described elements as appropriate can also be included in the scope of the invention for which patent protection is sought by this patent application.

本発明によれば、伸縮性を有する基材と基材上に設けられた導電層を有する伸縮性導電フィルムにおいて、伸縮を反復しても良好な導電層と基材との密着性および導電性保持を両立させることができる。   According to the present invention, in a stretchable conductive film having a stretchable base material and a conductive layer provided on the base material, good adhesion between the conductive layer and the base material and conductivity even when the stretch is repeated Holding can be made compatible.

実施の形態に係る伸縮性導電フィルムの概略を示す斜視図である。It is a perspective view which shows the outline of the stretchable conductive film which concerns on embodiment. 実施の形態に係る伸縮性導電フィルムの製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the stretchable conductive film which concerns on embodiment. パルス光の定義を説明するための図である。It is a figure for demonstrating the definition of pulsed light. 図4(A)、(B)は、それぞれ、実施例1における光照射前、光照射後での導電層の状態を示すSEM像である。4A and 4B are SEM images showing the state of the conductive layer before and after light irradiation in Example 1, respectively. 比較例2の加熱処理後の導電層の状態を示すSEM像である。10 is a SEM image showing a state of a conductive layer after heat treatment of Comparative Example 2. 伸縮性導電フィルムの導電性評価時の概略構成を示す図である。It is a figure which shows schematic structure at the time of the electroconductivity evaluation of an elastic conductive film. 実施例1,2の伸縮性導電フィルムにおける伸縮時抵抗を示す図である。It is a figure which shows the resistance at the time of expansion-contraction in the elastic conductive film of Example 1,2. 実施例3の伸縮性導電フィルムにおける伸縮時抵抗を示す図である。It is a figure which shows the resistance at the time of the expansion / contraction in the elastic conductive film of Example 3. 実施例4の伸縮性導電フィルムにおける伸縮時抵抗を示す図である。It is a figure which shows the resistance at the time of the expansion / contraction in the elastic conductive film of Example 4.

以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

図1は、実施の形態に係る伸縮性導電フィルム10の概略を示す斜視図である。伸縮性導電フィルム10は、基材20および導電層30を有する。   FIG. 1 is a perspective view showing an outline of a stretchable conductive film 10 according to an embodiment. The stretchable conductive film 10 has a base material 20 and a conductive layer 30.

基材20は、フィルム状であり、少なくとも1つの面方向において伸長前を基準として150%以上の切断時伸びを有する。ここで、フィルム状の基材は、一方の主面側から他方の主面側への全光線透過率(以下、光透過率)が80%以上であるものを用いることが好ましい。フィルム状の基材が黒色等に着色していると、後述する電磁波によるエネルギーをフィルム状基材が吸収し発熱することによりダメージを受けることがある。また、白色等に着色していると、例えば電磁波が光である場合には照射光を反射した光の一部が光源に入射することになり、光源に損傷を与える可能性がある。光透過性の高い材料を使用することにより上記問題が解決され、ウェアラブルエレクトロニクス分野や、医療センサー、光学用途へ適用することが可能な伸縮性導電フィルムとなる。また、本明細書において「伸縮性」とは、所定の程度、例えば伸長前を基準として150%(初期の長さの1.5倍)に伸長した後、緩和することによる伸長回復率が50%以上であるものをいう。一例を挙げて説明すると、伸長前の長さが5cmであり、7cmになるまで伸長した場合伸びは140%であり、この状態から緩和させて5.5cmの状態まで戻った場合伸長回復率は75%になる。基材20は、特定の面方向において伸縮性を具備していればよいが、任意の面方向に伸縮性を有することが好ましい。基材20の厚さは、上述の光透過性や伸縮性を損なわなければ特に制限されず、使用する材料にもよるが、典型的には、10〜200μmである。基材20の材料としては、JIS K6251で定義される切断時伸びが150%(初期の長さの1.5倍)以上であり、伸びが150%の状態まで伸長させた後緩和した際の伸長回復率が50%以上の材料であれば特に限定されないが、ポリウレタン(PU)、ジメチルポリシロキサン(PDMS)、ポリブタジエン系、ニトリル系、クロロプレン系の合成ゴムや天然ゴムが好適であり、これらにフィラー、顔料などの添加物を加えた複合材料としてもよい。   The base material 20 is in the form of a film, and has an elongation at the time of cutting of 150% or more with respect to before stretching in at least one plane direction. Here, it is preferable to use a film-like base material having a total light transmittance (hereinafter referred to as light transmittance) of 80% or more from one main surface side to the other main surface side. When the film-like base material is colored black or the like, the film-like base material may be damaged by absorbing energy generated by electromagnetic waves described later and generating heat. Further, when the color is white or the like, for example, when the electromagnetic wave is light, a part of the light reflected from the irradiation light enters the light source, which may damage the light source. By using a material having high light transmittance, the above problem is solved, and a stretchable conductive film that can be applied to the field of wearable electronics, medical sensors, and optical applications is obtained. In the present specification, “stretchability” means a stretch recovery rate of 50% after stretching to a predetermined degree, for example, 150% (1.5 times the initial length) before stretching, and then relaxing. % Or more. To explain with an example, the length before stretching is 5 cm, and when stretched to 7 cm, the stretch is 140%. When the stretch is relaxed from this state and returned to 5.5 cm, the stretch recovery rate is 75%. Although the base material 20 should just have the elasticity in a specific surface direction, it is preferable to have a elasticity in arbitrary surface directions. The thickness of the base material 20 is not particularly limited as long as the above light transmittance and stretchability are not impaired, and is typically 10 to 200 μm although it depends on the material used. As the material of the base material 20, the elongation at break defined by JIS K6251 is 150% (1.5 times the initial length) or more, and when it is relaxed after being stretched to a state of 150%. The material is not particularly limited as long as the material has an elongation recovery rate of 50% or more, but polyurethane (PU), dimethylpolysiloxane (PDMS), polybutadiene, nitrile, chloroprene synthetic rubber and natural rubber are suitable. It is good also as a composite material which added additives, such as a filler and a pigment.

ポリウレタンを構成するポリオール、ポリイソシアネート構造は特に限定されないが、ナノワイヤ32との密着性をより強くするために、側鎖に官能基を有している構造がより好ましい。具体的な官能基としては、水酸基、カルボキシル基、アクリロイル基、メタクリロイル基などが挙げられる。   The polyol and polyisocyanate structure constituting the polyurethane is not particularly limited, but a structure having a functional group in the side chain is more preferable in order to enhance the adhesion to the nanowire 32. Specific functional groups include a hydroxyl group, a carboxyl group, an acryloyl group, and a methacryloyl group.

導電層30は、基材20の一方の主面上に形成されている。導電層30は、導電性を有するナノワイヤ32で形成されたネットワーク構造を有することにより、基材20の任意の面方向に導電パスを持つ。ナノワイヤ32は細線状の形状を有し、中空構造を取り得る。ナノワイヤ32の平均径は、5〜200nmが好ましく、5〜100nmがより好ましく、5〜70nmがさらに好ましい。また、ナノワイヤ32の平均長さは3〜200μmが好ましく、5〜150μmがより好ましく、15〜100μmがさらに好ましい。ナノワイヤ32の平均径および平均長さは、100個のナノワイヤ32をSEMにより観察して各々求めた相加平均値である。   The conductive layer 30 is formed on one main surface of the substrate 20. The conductive layer 30 has a network structure formed of nanowires 32 having conductivity, and thus has a conductive path in an arbitrary plane direction of the substrate 20. The nanowire 32 has a thin wire shape and can take a hollow structure. The average diameter of the nanowire 32 is preferably 5 to 200 nm, more preferably 5 to 100 nm, and further preferably 5 to 70 nm. The average length of the nanowire 32 is preferably 3 to 200 μm, more preferably 5 to 150 μm, and still more preferably 15 to 100 μm. The average diameter and the average length of the nanowires 32 are arithmetic average values obtained by observing 100 nanowires 32 with an SEM.

ナノワイヤ32の材料として、金、銀、白金、銅、ニッケル、鉄、コバルト、亜鉛、ルテニウム、ロジウム、パラジウム、カドミウム、オスミウム、イリジウム、アルミニウムからなる群から選ばれる少なくとも1種および/またはこれらの金属を組み合わせた合金等が挙げられる。上述した材料の中で、導電性が高い点で銀、銅が好ましく用いられる。   The material of the nanowire 32 is at least one selected from the group consisting of gold, silver, platinum, copper, nickel, iron, cobalt, zinc, ruthenium, rhodium, palladium, cadmium, osmium, iridium, and aluminum, and / or a metal thereof. An alloy combined with these may be used. Among the materials described above, silver and copper are preferably used in terms of high conductivity.

基材20の一方の主面上に形成された導電層30に後述の電磁波を照射すると、導電層を構成するナノワイヤ32がエネルギーを吸収し発熱することによりナノワイヤ近傍の基材が熔融または軟化し、ナノワイヤ32の少なくとも一部に基材20が融着またはナノワイヤ32の少なくとも一部が基材に沈み込むことにより、導電層30と基材20との密着性が確保される。   When the conductive layer 30 formed on one main surface of the substrate 20 is irradiated with an electromagnetic wave to be described later, the nanowire 32 constituting the conductive layer absorbs energy and generates heat, so that the substrate in the vicinity of the nanowire is melted or softened. The base material 20 is fused to at least a part of the nanowire 32, or at least a part of the nanowire 32 is submerged in the base material, whereby the adhesion between the conductive layer 30 and the base material 20 is ensured.

伸縮性導電フィルム10のシート抵抗は、1〜500Ω/□が好ましく、1〜200Ω/□がより好ましい。また、伸縮性導電フィルム10の一方の主面から他方の主面への光透過率は20〜95%が好ましく、40〜95%がより好ましい。さらに好ましくは、50〜95%である。   The sheet resistance of the stretchable conductive film 10 is preferably 1 to 500Ω / □, and more preferably 1 to 200Ω / □. The light transmittance from one main surface of the stretchable conductive film 10 to the other main surface is preferably 20 to 95%, and more preferably 40 to 95%. More preferably, it is 50 to 95%.

0.5mm/分の速度で伸長前を基準として150%(初期の長さの1.5倍に)に伸長させた後、緩和させるサイクルを10回行った後の伸縮性導電フィルム10のシート抵抗は伸縮試験開始前のシート抵抗を1としたときに5以下であり、4以下であることが好ましく、3以下であることがより好ましい。伸縮時抵抗試験の詳細については後述する。   The sheet of the stretchable conductive film 10 after having been stretched 10 times at a rate of 0.5 mm / min to 150% (1.5 times the initial length) before stretching and then relaxed 10 times. The resistance is 5 or less, preferably 4 or less, more preferably 3 or less, when the sheet resistance before the start of the stretch test is 1. Details of the resistance test during expansion and contraction will be described later.

以上説明した伸縮性導電フィルム10は、良好な光透過性を有するとともに、フィルムが面方向に伸縮されたり、フィルムが湾曲された場合であっても良好な導電性を保持するという特長を具備しており、様々なウェアラブルデバイスへの応用が期待される。   The stretchable conductive film 10 described above has the characteristics that it has good light transmissivity and maintains good conductivity even when the film is stretched in the surface direction or the film is curved. Therefore, application to various wearable devices is expected.

(製造方法)
図2は、実施の形態に係る伸縮性導電フィルムの製造方法を示す工程断面図である。
(Production method)
Drawing 2 is a process sectional view showing the manufacturing method of the elastic conductive film concerning an embodiment.

まず、図2(A)に示すように、上述した特性や厚さを有する基材20を用意し、台上に載置する。   First, as shown in FIG. 2A, a base material 20 having the above-described characteristics and thickness is prepared and placed on a table.

続いて、図2(B)に示すように、基材20の主面上に、ナノワイヤ32が分散されたインク(分散液)34を塗布する。インク34の塗布方法は、特に限定されないが、基材20の主面上にインク34を所望の厚さで均一に形成するプロセスとして、バーコート法、スピンコート法、スプレーコート法、ロールコート法、ダイコート法、ディップコート法、ドロップコート法等が挙げられる。また、基材20の主面上にインク34を所望の厚さでパターニングするプロセスとしてスクリーン印刷法、インクジェット印刷法、凸版印刷法、凹版印刷法、グラビア印刷法等が挙げられる。インク34の作製方法については後述する。   Subsequently, as illustrated in FIG. 2B, an ink (dispersion liquid) 34 in which the nanowires 32 are dispersed is applied on the main surface of the substrate 20. A method for applying the ink 34 is not particularly limited, but a bar coating method, a spin coating method, a spray coating method, a roll coating method may be used as a process for uniformly forming the ink 34 with a desired thickness on the main surface of the substrate 20. , Die coating method, dip coating method, drop coating method and the like. Examples of the process for patterning the ink 34 with a desired thickness on the main surface of the substrate 20 include screen printing, ink jet printing, letterpress printing, intaglio printing, and gravure printing. A method for producing the ink 34 will be described later.

金属で形成されたナノワイヤ32は、公知の製造方法で作製することができる。たとえば、銀ナノワイヤは、ポリオール(Poly−ol)法を用いて、ポリビニルピロリドン存在下で硝酸銀を還元することによって合成することができる。   The nanowire 32 formed of metal can be manufactured by a known manufacturing method. For example, silver nanowires can be synthesized by reducing silver nitrate in the presence of polyvinylpyrrolidone using a polyol (Poly-ol) method.

続いて、インク34を乾燥する。乾燥条件は、印刷法により異なるが、一例としてスプレーコート法では、室温で大気雰囲気下で5〜10分乾燥させる。インク34が乾燥した後、図2(C)に示すように、ナノワイヤ32に向けて、所定のエネルギーを有する電磁波を照射する。この際の製造条件は、加圧や加熱などの処理を要せず、大気中、室温でよい。   Subsequently, the ink 34 is dried. The drying conditions vary depending on the printing method, but as an example, in the spray coating method, drying is performed at room temperature in an air atmosphere for 5 to 10 minutes. After the ink 34 is dried, an electromagnetic wave having a predetermined energy is irradiated toward the nanowire 32 as shown in FIG. The manufacturing conditions at this time do not require treatment such as pressurization or heating, and may be in the air or at room temperature.

電磁波の照射により所定のエネルギーがナノワイヤ32に与えられると、図2(D)に示すように、ナノワイヤ32が電磁波を吸収することにより、ナノワイヤ32の温度が上昇し、交差している2本のナノワイヤ32同士が交点において、電気的および物理的に接続され、ナノワイヤ32全体がネットワーク構造となり、導電層30が形成される。また、電磁波の照射下でナノワイヤ32が生じる熱により、ナノワイヤ32の少なくとも一部が熔融または軟化した基材20に沈み込んだ後、基材20が固化することにより、ナノワイヤ32の少なくとも一部に基材20が融着し、基材20と導電層30との密着性が得られる。また、ナノワイヤ32が基材20で保護されることにより、ナノワイヤ32の酸化が抑制される。なお、酸化をより抑制するために、導電層30の形成後に、さらに基材20と同等の材料またはその原料等を用いてオーバーコートをしてもよい。   When predetermined energy is given to the nanowire 32 by the irradiation of the electromagnetic wave, the temperature of the nanowire 32 rises as the nanowire 32 absorbs the electromagnetic wave as shown in FIG. The nanowires 32 are electrically and physically connected at the intersections, and the entire nanowires 32 have a network structure, and the conductive layer 30 is formed. Moreover, after at least a part of the nanowire 32 sinks into the melted or softened base material 20 due to the heat generated by the nanowire 32 under the irradiation of electromagnetic waves, the base material 20 is solidified so that at least a part of the nanowire 32 is obtained. The base material 20 is fused, and adhesion between the base material 20 and the conductive layer 30 is obtained. Further, since the nanowire 32 is protected by the base material 20, oxidation of the nanowire 32 is suppressed. In order to further suppress oxidation, after the conductive layer 30 is formed, an overcoat may be further performed using a material equivalent to the base material 20 or a raw material thereof.

照射する電磁波はパルス光が好ましい。より具体的には、キセノン式のパルス式照射ランプを用いて、パルス幅が20マイクロ秒から50ミリ秒、より好ましくは50マイクロ秒から10ミリ秒であるパルス光を照射してナノワイヤ32相互の交点を接合することができる。ここで、接合とは、ナノワイヤ32の交点において、ナノワイヤ32の材料がパルス光照射を瞬間的に吸収し、交差部分でより効率的に内部発熱を起こすことにより、その部分が熔接されることである。この接合により、交差部分でのナノワイヤ32間の接続面積が増え表面抵抗を下げることができる。このように、パルス光を照射してナノワイヤ32の交点を接合することにより、ナノワイヤ32が網目状となった導電層30、言い換えると、導電パターンが形成される。なお、ナノワイヤ32によって形成される網目は、所望の光透過率が得られるように、十分な隙間(開口率)を有することが好ましい。   The electromagnetic wave to be irradiated is preferably pulsed light. More specifically, using a xenon-type pulse irradiation lamp, pulsed light having a pulse width of 20 to 50 milliseconds, more preferably 50 to 10 milliseconds, is irradiated between the nanowires 32. Intersection points can be joined. Here, the bonding means that at the intersection of the nanowires 32, the material of the nanowires 32 instantaneously absorbs the pulsed light irradiation, and more efficiently generates internal heat at the intersecting portion, so that the portion is welded. is there. By this bonding, the connection area between the nanowires 32 at the intersection can be increased and the surface resistance can be lowered. Thus, by irradiating pulsed light and joining the intersections of the nanowires 32, the conductive layer 30 in which the nanowires 32 are meshed, in other words, a conductive pattern is formed. The network formed by the nanowires 32 preferably has a sufficient gap (aperture ratio) so that a desired light transmittance can be obtained.

本明細書中において「パルス光」とは、光照射期間(照射時間)が数マイクロ秒から数十ミリ秒の短時間の光であり、光照射を複数回繰り返す場合は図3に示すように、第一の光照射期間(on)と第二の光照射期間(on)との間に光が照射されない期間(照射間隔(off))を有する光照射を意味する。図3ではパルス光の光強度が一定であるように示しているが、1回の光照射期間(on)内で光強度が変化してもよい。また、各パルス光の照射条件(パルス光の光強度、光照射期間(on))や照射間隔(off))を変更してもよい。上記パルス光は、キセノンフラッシュランプ等のフラッシュランプを備える光源から照射することができる。このような光源を使用して、上記導電層にパルス光を照射する。n回繰り返し照射する場合は、図3における1サイクル(on+off)をn回反復する。なお、繰り返し照射する場合には、生産性を考慮すれば次パルス光照射を行う際に、基材を室温付近まで冷却できるようにするため基材側から冷却することが好ましい。   In this specification, “pulsed light” is light in a short period of time of light irradiation (irradiation time) of several microseconds to several tens of milliseconds, and when light irradiation is repeated a plurality of times, as shown in FIG. It means light irradiation having a period (irradiation interval (off)) in which light is not irradiated between the first light irradiation period (on) and the second light irradiation period (on). Although FIG. 3 shows that the light intensity of the pulsed light is constant, the light intensity may change within one light irradiation period (on). Further, the irradiation conditions of each pulsed light (light intensity of the pulsed light, light irradiation period (on)) and irradiation interval (off) may be changed. The pulsed light can be emitted from a light source including a flash lamp such as a xenon flash lamp. Using such a light source, the conductive layer is irradiated with pulsed light. When irradiation is repeated n times, one cycle (on + off) in FIG. 3 is repeated n times. In the case of repeated irradiation, considering the productivity, it is preferable to cool from the substrate side so that the substrate can be cooled to near room temperature when the next pulse light irradiation is performed.

また、上記パルス光としては、1pm〜1mの波長範囲の電磁波を使用することができ、好ましくは10nm〜1000μmの波長範囲の電磁波(遠紫外から遠赤外まで)、さらに好ましくは100nm〜2000nmの波長範囲の電磁波を使用することができる。このような電磁波の例としては、ガンマ線、X線、紫外線、可視光線、赤外線等が挙げられる。なお、熱エネルギーへの変換を考えた場合には、あまりに波長が短い場合には、基材へのダメージが大きく好ましくない。また、波長が長すぎる場合には効率的に吸収して発熱することが出来ないので好ましくない。従って、波長の範囲としては、前述の波長の中でも特に紫外から赤外の範囲が好ましく、より好ましくは100〜3000nmの範囲の波長である。   The pulsed light may be an electromagnetic wave having a wavelength range of 1 pm to 1 m, preferably an electromagnetic wave having a wavelength range of 10 nm to 1000 μm (from far ultraviolet to far infrared), and more preferably 100 nm to 2000 nm. Electromagnetic waves in the wavelength range can be used. Examples of such electromagnetic waves include gamma rays, X-rays, ultraviolet rays, visible rays, infrared rays and the like. In consideration of conversion to thermal energy, if the wavelength is too short, damage to the substrate is not preferable because of its large damage. On the other hand, when the wavelength is too long, it is not preferable because it cannot efficiently absorb and generate heat. Accordingly, the wavelength range is preferably the ultraviolet to infrared range, more preferably the wavelength in the range of 100 to 3000 nm, among the wavelengths described above.

パルス光の1回の照射時間(on)としては、約20マイクロ秒から約10ミリ秒の範囲が好ましい。20マイクロ秒よりも短いと焼結が進まず、導電膜の性能向上の効果が低くなる。また、10ミリ秒よりも長いと基板の光劣化、熱劣化による悪影響のほうが大きくなる。パルス光の照射は単発で実施しても効果はあるが、上記の通り繰り返し実施することもできる。繰返し実施する場合、生産性を考慮すれば照射間隔(off)は20マイクロ秒から30秒、より好ましくは2000マイクロ秒から5秒の範囲とすることが好ましい。20マイクロ秒よりも短いと、連続光に近くなってしまい一回の照射後に放冷される間も無く照射されるので、基材が加熱され温度が高くなって劣化する可能性がある。また、生産性を考慮しなければ30秒より長くすることもできるが、30秒より長いと、放冷が進むのでまったく効果が無いわけはないが、繰り返し実施する効果は低減する。   The irradiation time (on) of the pulsed light is preferably in the range of about 20 microseconds to about 10 milliseconds. If it is shorter than 20 microseconds, sintering does not proceed and the effect of improving the performance of the conductive film is reduced. On the other hand, if the time is longer than 10 milliseconds, the adverse effects due to light degradation and thermal degradation of the substrate become larger. Irradiation with pulsed light is effective even if performed in a single shot, but can also be performed repeatedly as described above. In the case of repeating, considering the productivity, the irradiation interval (off) is preferably in the range of 20 microseconds to 30 seconds, more preferably 2000 microseconds to 5 seconds. If it is shorter than 20 microseconds, it becomes close to continuous light and is irradiated without being allowed to cool after one irradiation, so that the substrate may be heated and the temperature may be increased to deteriorate. Further, if productivity is not taken into consideration, it can be longer than 30 seconds. However, if it is longer than 30 seconds, it is not ineffective at all because it is allowed to cool, but the effect of repeated execution is reduced.

また、電磁波としてマイクロ波を用いることもできる。マイクロ波は、波長範囲が1m〜1mm(周波数が300MHz〜300GHz)の電磁波である。   A microwave can also be used as the electromagnetic wave. Microwaves are electromagnetic waves having a wavelength range of 1 m to 1 mm (frequency is 300 MHz to 300 GHz).

マイクロ波の照射は、導電層が形成された基材の面をマイクロ波の電気力線方向(電界の方向)と略平行に維持した状態で行う。ここで、略平行とは、基材の面とマイクロ波の電気力線方向とが平行または電気力線方向に対して30度以内の角度を維持した状態をいう。なお、上記30度以内の角度とは、基材の面に立てた法線と電気力線方向とが60度以上の角度をなしている状態をいう。これにより、基材上に形成された導電パターン形成用組成物の膜(印刷パターンまたはベタパターン)を貫通する電気力線の本数が制限され、スパークの発生を抑制できる。   The microwave irradiation is performed in a state where the surface of the base material on which the conductive layer is formed is maintained substantially parallel to the direction of the electric lines of force (the direction of the electric field). Here, “substantially parallel” refers to a state in which the surface of the substrate and the direction of the electric force lines of the microwave are parallel or maintain an angle of 30 degrees or less with respect to the direction of the electric force lines. The angle within 30 degrees refers to a state in which the normal line standing on the surface of the base material and the direction of the electric force lines form an angle of 60 degrees or more. Thereby, the number of lines of electric force passing through the film (printing pattern or solid pattern) of the conductive pattern forming composition formed on the substrate is limited, and the occurrence of sparks can be suppressed.

(インクの作製)
図2(B)で示した工程で使用されるインク34は、上述したナノワイヤ32を所定の分散媒に分散させることで得られる。当該分散媒は、上述した基材が溶解するなどの不具合が生じないものであればよい。具体的には、スプレーコート法を例にとると、当該分散媒として、水;メタノール、エタノール、イソプロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、1−オクタノール、1−ドデカノール等の脂肪族アルコール;エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、2−メチル−1,3−プロパンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、1,8−オクタンジオール等の脂肪族ジオール;ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール等のポリアルキレングリコール;トルエン、キシレン等の芳香族炭化水素;トリ−n−ブチルアミン、ジメチルオクチルアミン、メチルジオクチルアミン等の脂肪族3級アミン等が挙げられる。これらの中でも水、エタノール、イソプロパノールが乾燥性の点で好ましい。印刷方法により、上記適する分散媒が異なっていても良い。例えば、スクリーン印刷法を用いる場合であれば、粘度がある程度高い分散媒、例えばジグリセリン、2,2,4−トリメチル−1.3−ペンタンジオールモノイソブチレート、2,2,4−トリメチル−1.3−ペンタンジオールジイソブチレート、テルピネオール、ボルニルシクロヘキサノール、ボルネオール、イソボルニルシクロヘキサノール、イソボルネオールなどを用いることができる。
(Preparation of ink)
The ink 34 used in the process shown in FIG. 2B is obtained by dispersing the nanowire 32 described above in a predetermined dispersion medium. The said dispersion medium should just be a thing which does not produce malfunctions, such as a base material melt | dissolving mentioned above. Specifically, taking a spray coating method as an example, the dispersion medium is water; aliphatic alcohols such as methanol, ethanol, isopropanol, 1-butanol, 2-butanol, isobutyl alcohol, 1-octanol, 1-dodecanol and the like. Ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,8 -Aliphatic diols such as octanediol; Polyalkylene glycols such as diethylene glycol, dipropylene glycol and triethylene glycol; Aromatic hydrocarbons such as toluene and xylene; Fats such as tri-n-butylamine, dimethyloctylamine and methyldioctylamine A tertiary amine, and the like. Among these, water, ethanol, and isopropanol are preferable in terms of drying properties. The suitable dispersion medium may differ depending on the printing method. For example, when a screen printing method is used, a dispersion medium having a relatively high viscosity, such as diglycerin, 2,2,4-trimethyl-1.3-pentanediol monoisobutyrate, 2,2,4-trimethyl- 1.3-Pentanediol diisobutyrate, terpineol, bornylcyclohexanol, borneol, isobornylcyclohexanol, isoborneol and the like can be used.

インク34中のナノワイヤ32の含有量は、ナノワイヤ32の分散性、得られる塗膜のパターン形成性、導電性および光学特性を考慮し、インク34の塗布方法や使用する分散媒によって適宜調整される。たとえば、分散媒としてイソプロパノールを用い、スプレーコート法により塗布をする場合には、インク34全体に対するナノワイヤ32の含有量は、0.0001〜10質量%が好ましく、0.002〜5質量%がより好ましく、0.003〜2質量%がさらに好ましく、0.005〜1質量%が特に好ましい。0.0001質量%より小さいとインク中のナノワイヤ32の含有量が少なすぎ、必要な導電性を発現するために必要な塗布回数が多くなる。10質量%を超えるとインク中のナノワイヤ32の分散性が低下する。   The content of the nanowire 32 in the ink 34 is appropriately adjusted depending on the coating method of the ink 34 and the dispersion medium used in consideration of the dispersibility of the nanowire 32, the pattern forming property of the obtained coating film, the conductivity, and the optical characteristics. . For example, when using isopropanol as a dispersion medium and applying by spray coating, the content of the nanowire 32 with respect to the entire ink 34 is preferably 0.0001 to 10% by mass, more preferably 0.002 to 5% by mass. Preferably, 0.003 to 2 mass% is more preferable, and 0.005 to 1 mass% is particularly preferable. When the content is less than 0.0001% by mass, the content of the nanowire 32 in the ink is too small, and the number of coatings required to develop necessary conductivity increases. When it exceeds 10 mass%, the dispersibility of the nanowire 32 in ink will fall.

以上説明した伸縮性導電フィルムの製造方法によれば、既に述べた効果の他、少なくとも以下の効果を得ることができる。   According to the manufacturing method of the stretchable conductive film described above, at least the following effects can be obtained in addition to the effects already described.

大気中、室温のような比較的マイルドな環境中で、電磁波照射によって導電層30が形成されるため、基材20に耐熱性が要求されず、ナノワイヤ32および基材20へのダメージを抑制することができる。パルス状の光照射により導電層30を形成すれば、伸縮性導電フィルムを簡便に短時間で作製することができ、伸縮性導電フィルムの製造コストを低減することができる。   Since the conductive layer 30 is formed by electromagnetic wave irradiation in a relatively mild environment such as the atmosphere and room temperature, the base material 20 is not required to have heat resistance, and damage to the nanowires 32 and the base material 20 is suppressed. be able to. If the conductive layer 30 is formed by pulsed light irradiation, the stretchable conductive film can be easily produced in a short time, and the production cost of the stretchable conductive film can be reduced.

以下、本発明の実施例を説明するが、これら実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。   Examples of the present invention will be described below. However, these examples are merely examples for suitably explaining the present invention, and do not limit the present invention.

(銅ナノワイヤの作製)
オクタデシルアミン0.648g(2.4mmol)、グルコース0.007g(0.04mmol)および塩化銅0.054g(0.4mmol)を水30mlに溶解して、オイルバス温度120℃、24時間で反応させた後、遠心分離器により生成したナノワイヤを沈降させ、水、ヘキサンおよびイソプロパノールで順次洗浄し、銅ナノワイヤを得た。得られた銅ナノワイヤを任意に100個SEM(日立ハイテク株式会社製 FE−SEM S−5200)で観察したところ、平均径は40nm、平均長さは50μmであった。
(Preparation of copper nanowires)
0.648 g (2.4 mmol) of octadecylamine, 0.007 g (0.04 mmol) of glucose and 0.054 g (0.4 mmol) of copper chloride are dissolved in 30 ml of water and reacted at an oil bath temperature of 120 ° C. for 24 hours. After that, the nanowires generated by the centrifuge were settled and washed sequentially with water, hexane and isopropanol to obtain copper nanowires. When the obtained copper nanowire was observed arbitrarily by 100 SEM (Hitachi High-Tech Co., Ltd. FE-SEM S-5200), the average diameter was 40 nm and the average length was 50 μm.

(銅ナノワイヤインクの作製)
得られた銅ナノワイヤ40mgをイソプロパノール80mlに分散させ、銅濃度0.064質量%のインクを得た。
(Preparation of copper nanowire ink)
40 mg of the obtained copper nanowire was dispersed in 80 ml of isopropanol to obtain an ink having a copper concentration of 0.064% by mass.

(実施例1)
厚さ100μmのPUフィルム(武田産業社製、Tough Grace Film:TG88−I、光透過率88.4%、切断時伸び≧500%、伸長回復率100%(カタログ値))を基材とし、当該基材上に上記インクをスプレー塗布した後、室温で10分、乾燥させた。次に、光源として、Pulse Forge 3300(Novacentrix社製)を用いて、大気中、室温で基材(PUフィルム)のインク塗布面に対して以下の条件下で光照射を行い、光透過率が70%である実施例1の伸縮性導電フィルムを作製した。ナノワイヤインクのスプレー塗布する回数により、基材(PUフィルム)に堆積する銅ナノワイヤ量を調整することにより光透過率が70%の実施例1の伸縮性導電フィルムを製造した。初期抵抗値は66.5Ω/□であった。
光照射条件:500V,50μs1回、600V,30μs1回、750V,30μs1回の合計3回の光照射を行った。
Example 1
Based on a PU film having a thickness of 100 μm (Takeda Sangyo Co., Ltd., Tow Grace Film: TG88-I, light transmittance 88.4%, elongation at break ≧ 500%, elongation recovery rate 100% (catalog value)), The ink was spray-coated on the substrate, and then dried at room temperature for 10 minutes. Next, using Pulse Forge 3300 (manufactured by Novacentrix) as a light source, the ink application surface of the base material (PU film) is irradiated with light at room temperature in the air under the following conditions, so A stretchable conductive film of Example 1 that was 70% was produced. The stretchable conductive film of Example 1 having a light transmittance of 70% was prepared by adjusting the amount of copper nanowires deposited on the base material (PU film) by the number of times the nanowire ink was sprayed. The initial resistance value was 66.5Ω / □.
Light irradiation conditions: 500 V, 50 μs once, 600 V, 30 μs once, 750 V, 30 μs once, a total of three times of light irradiation.

図4に光照射前(A)と光照射後(B)での導電層の状態(SEM写真)示す。光照射後、導電層が基材中に埋設されていることがわかる。   FIG. 4 shows the state (SEM photograph) of the conductive layer before (A) light irradiation and after (B) light irradiation. It can be seen that the conductive layer is embedded in the substrate after the light irradiation.

(実施例2)
ナノワイヤ32のスプレー塗布する回数により、光透過率を50%に変更した以外は、実施例1と同様に操作し、実施例2の伸縮性導電フィルムを作製した。初期抵抗値は16.5Ω/□であった。
(Example 2)
A stretchable conductive film of Example 2 was produced in the same manner as in Example 1 except that the light transmittance was changed to 50% depending on the number of times the nanowire 32 was sprayed. The initial resistance value was 16.5Ω / □.

(実施例3)
基材として、ダウコーニング社製SYLGARD(登録商標)184 SILICONE ELASTOMER KITを用いて2液を10(主剤):1(硬化剤)の割合で混合して、PET基板に塗布し、120℃、大気中雰囲気にて1時間加熱、硬化して得られたPDMSフィルム(光透過率92%、切断時伸び180%、厚さ100μm)上に上記インクをスプレー塗布したことを除いて、実施例1と同様な手順にて光透過率60%である実施例3の伸縮性導電フィルムを作製した。初期抵抗値は62.7Ω/□であった。
Example 3
Using SYLGARD (registered trademark) 184 SILICON ELASTOMER KIT manufactured by Dow Corning as a base material, the two liquids were mixed at a ratio of 10 (main agent): 1 (curing agent) and applied to a PET substrate at 120 ° C. in the atmosphere. Example 1 except that the ink was spray-coated on a PDMS film (light transmittance 92%, elongation at break 180%, thickness 100 μm) obtained by heating and curing in an intermediate atmosphere for 1 hour. A stretchable conductive film of Example 3 having a light transmittance of 60% was produced in the same procedure. The initial resistance value was 62.7Ω / □.

(銀ナノワイヤインクの作製)
ポリビニルピロリドンK−90((株)日本触媒社製)(0.049g)、AgNO(0.052g)およびFeCl(0.04mg)を、2−メチル−1,3−プロパンジオール(12.5ml)に溶解し、150℃で1時間加熱反応した。得られた析出物を遠心分離により単離し、析出物を乾燥して目的の銀ナノワイヤを得た。得られた銀ナノワイヤ30mg(任意の100個の銀ナノワイヤをSEM(日立ハイテク株式会社製 FE−SEM S−5200)で観察して求めた平均径90nm、平均長さ40μm)をエタノール12gに分散させ、銀濃度0.25質量%のインクを得た。
(Preparation of silver nanowire ink)
Polyvinylpyrrolidone K-90 (manufactured by Nippon Shokubai Co., Ltd.) (0.049 g), AgNO 3 (0.052 g) and FeCl 3 (0.04 mg) were mixed with 2-methyl-1,3-propanediol (12. 5 ml), and reacted by heating at 150 ° C. for 1 hour. The obtained precipitate was isolated by centrifugation, and the precipitate was dried to obtain a target silver nanowire. 30 mg of the obtained silver nanowires (an average diameter of 90 nm and an average length of 40 μm obtained by observing arbitrary 100 silver nanowires with SEM (FE-SEM S-5200 manufactured by Hitachi High-Tech Co., Ltd.)) was dispersed in 12 g of ethanol. An ink having a silver concentration of 0.25% by mass was obtained.

(実施例4)
厚さ100μmのPUフィルム(武田産業社製、Tough Grace Film:TG88−I、光透過率88.4%、伸び≧500%(カタログ値))を基材とし、当該基材上に上記銀インクをスプレー塗布した後、室温で10分、乾燥させた。次に、光源として、Pulse Forge 3300(Novacentrix社製)を用いて、大気中、室温で試料に対して実施例1と同様の条件で光照射を行い、光透過率50%である実施例4の伸縮性導電フィルムを作製した。初期抵抗値は10.0Ω/□であった。
Example 4
A PU film having a thickness of 100 μm (produced by Takeda Sangyo Co., Ltd., Tow Grace Film: TG88-I, light transmittance of 88.4%, elongation ≧ 500% (catalog value)) is used as a base material, and the silver ink is formed on the base material. After spray coating, it was dried at room temperature for 10 minutes. Next, using Pulse Forge 3300 (manufactured by Novacenttrix) as a light source, the sample was irradiated with light at room temperature in the atmosphere under the same conditions as in Example 1, and the light transmittance was 50%. A stretchable conductive film was prepared. The initial resistance value was 10.0Ω / □.

(比較例1)
(銅粒子の作製)
ポリビニルピロリドン(1.5g)、Cu(NO(1.5g)、1,3−プロパンジオール(125g)をそれぞれ量り取り、室温で溶解させた後、200℃で2時間加熱反応させた。得られた析出物を遠心分離で単離、洗浄し、エタノールに分散して球状の銅粒子を得た。得られた銅粒子の粒子径を大塚電子株式会社 ゼータ電位・粒径測定システム ELS−Z2(動的・電気泳動光散乱法)により測定し、球近似により求めたメジアン径D50(平均粒子径)は300nmであった。
(Comparative Example 1)
(Preparation of copper particles)
Polyvinylpyrrolidone (1.5 g), Cu (NO 3 ) 2 (1.5 g), and 1,3-propanediol (125 g) were weighed and dissolved at room temperature, and then reacted at 200 ° C. for 2 hours. . The obtained precipitate was isolated by centrifugation, washed, and dispersed in ethanol to obtain spherical copper particles. The particle diameter of the obtained copper particles was measured by the Otsuka Electronics Co., Ltd. zeta potential / particle size measurement system ELS-Z2 (dynamic / electrophoretic light scattering method), and the median diameter D50 (average particle size) determined by sphere approximation. Was 300 nm.

(銅粒子インクの作製)
上記銅粒子0.1gをエタノール3.92gに分散させ、銅濃度2.55質量%のインクを得た。
(Preparation of copper particle ink)
The above copper particles (0.1 g) were dispersed in ethanol (3.92 g) to obtain an ink having a copper concentration of 2.55% by mass.

銅ナノインクに代えて、銅粒子インクを用いた以外は、実施例1と同様に操作し、光透過率が70%である、比較例1の伸縮性導電フィルムを作製した。初期抵抗値は測定不能であった。   A stretchable conductive film of Comparative Example 1 having a light transmittance of 70% was produced in the same manner as in Example 1 except that copper particle ink was used instead of the copper nano ink. The initial resistance value was not measurable.

(比較例2)
光照射の代わりに、エスペック社製 小型高温チャンバーを用いて大気中100℃、30分で加熱したことを除き、実施例1と同様に操作し、光透過率が70%である比較例2の伸縮性導電フィルムを作製した。初期抵抗値は約70000Ω/□であった。図5に加熱処理後の導電層の状態(SEM写真)示す。図4(B)とは異なり導電層が基材上に露出されたままとなっており、銅ナノワイヤに基材が融着していないことがわかる。
(Comparative Example 2)
Instead of light irradiation, the same operation as in Example 1 was performed except that heating was performed in the atmosphere at 100 ° C. for 30 minutes using a small high temperature chamber manufactured by Espec Co., and Comparative Example 2 having a light transmittance of 70%. An elastic conductive film was produced. The initial resistance value was about 70000 Ω / □. FIG. 5 shows a state (SEM photograph) of the conductive layer after the heat treatment. Unlike FIG. 4B, the conductive layer remains exposed on the base material, and it can be seen that the base material is not fused to the copper nanowires.

(伸びおよび伸長回復率評価)
平面寸法2cm×4cmの基材の両端部を小型卓上試験機(島津製作所社製、EZ Test)の一対のチャックにチャック間距離が3cmとなるように基材が弛まぬように各々固定し、一方のチャックをサンプルの長手方向にチャック間距離が4.5cm(初期の長さの150%)となるまで0.5mm/分の速度で伸長(切断時伸びが150%以上であることを確認)させた後、一方のチャックを解放し緩和させた際の両端部間距離を測定し、伸長回復率を求めた。実施例1、2および4で用いたPUフィルム、実施例3で用いたPDMSフィルムについてそれぞれ5サンプルを測定し平均値を算出した。その結果、PUフィルムの伸長回復率は98%であり、PDMSフィルムの伸長回復率は93%であった。
(Elongation and elongation recovery rate evaluation)
Both ends of the base material having a planar size of 2 cm × 4 cm are fixed to a pair of chucks of a small tabletop testing machine (manufactured by Shimadzu Corporation, EZ Test) so that the distance between the chucks is 3 cm so that the base material does not loosen, One chuck is stretched in the longitudinal direction of the sample at a rate of 0.5 mm / min until the distance between chucks is 4.5 cm (150% of the initial length) (confirmed that the elongation at cutting is 150% or more) ), The distance between both ends when one of the chucks was released and relaxed was measured to obtain the elongation recovery rate. Five samples were measured for each of the PU films used in Examples 1, 2, and 4 and the PDMS film used in Example 3, and the average value was calculated. As a result, the extension recovery rate of the PU film was 98%, and the extension recovery rate of the PDMS film was 93%.

(光透過率評価)
各実施例、比較例の伸縮性導電フィルムの光透過率を日本電色工業製 濁度計NDH2000(JIS−K7136)を用いて、PUフィルム(武田産業社製、Tough Grace Film:TG88−I)を計測した。その結果、実施例1〜4、比較例の透過率は、それぞれ50−70%であった。
(Light transmittance evaluation)
Using the turbidimeter NDH2000 (JIS-K7136) manufactured by Nippon Denshoku Industries Co., Ltd., the PU film (Take Grace Film Co., Ltd., Tow Grace Film: TG88-I) Was measured. As a result, the transmittance | permeability of Examples 1-4 and the comparative example was 50-70%, respectively.

(基材密着性評価)
各実施例、比較例の伸縮性導電フィルムの導電層形成面に粘着テープ(3M社製Scotchメンディグテープ810、3cm×3cm)を貼り付けた後、引き剥がし試験を実施した。その結果、実施例1〜4では、導電層が基材側に残存したが、比較例1,2では、導電層が粘着テープ側に貼り付いた。
(Base material adhesion evaluation)
An adhesive tape (Scotch Mending Tape 810, 3 cm × 3 cm) manufactured by 3M was applied to the conductive layer forming surface of the stretchable conductive film of each Example and Comparative Example, and then a peeling test was performed. As a result, in Examples 1 to 4, the conductive layer remained on the substrate side, but in Comparative Examples 1 and 2, the conductive layer adhered to the adhesive tape side.

(抵抗評価)
各実施例、比較例の伸縮性導電フィルムについて、小型卓上試験機(島津製作所社製、EZ Test)を用いて伸縮時の抵抗を評価した。
(Resistance evaluation)
About the elastic conductive film of each Example and a comparative example, the resistance at the time of expansion / contraction was evaluated using the small desktop testing machine (Shimadzu Corp. make, EZ Test).

<伸縮条件>
各実施例、比較例において最大伸長時の伸びを伸長前を基準に110%〜160%とし、伸長および収縮速度0.5mm/分に設定し、を10サイクル伸縮させ、サイクルごとの抵抗を測定した。
<Extension condition>
In each Example and Comparative Example, the elongation at the maximum elongation was 110% to 160% based on the pre-extension, the elongation and contraction speed was set to 0.5 mm / min, and the cycle was expanded and contracted for 10 cycles, and the resistance per cycle was measured. did.

評価に使用したサンプル形状を図6に示す。抵抗測定は、導電層が形成された平面寸法2cm×4cmの基材の長手方向両端の導電層上に蒸着法により3cmの間隔で一対の平面寸法2cm×0.5cmの白金電極を具備させた状態で行った。小型卓上試験機の一対のチャックにチャック間距離が3cmとなるように基材が弛まぬように各々白金電極部を固定し、一方のチャックをサンプルの長手方向にチャック間距離が所定の伸びに対応する位置(例えば、伸びが140%の場合にはチャック間距離が4.2cm)まで移動(サンプルを伸長)させた後元の位置まで戻す操作を10回反復した。この一連の動作を両白金電極部にケースレー社製 2110 デジタル・マルチメータの抵抗測定用端子を接続させた状態で行い、電極間の抵抗値を測定した。   The sample shape used for evaluation is shown in FIG. In the resistance measurement, a pair of platinum electrodes having a plane size of 2 cm × 0.5 cm were provided at intervals of 3 cm on the conductive layers at both ends in the longitudinal direction of the substrate having a plane size of 2 cm × 4 cm on which the conductive layer was formed. Went in state. Each platinum electrode part is fixed to a pair of chucks of a small tabletop testing machine so that the distance between chucks is 3 cm so that the base material does not loosen, and one chuck is set to a predetermined extension in the longitudinal direction of the sample. The operation of moving to a corresponding position (for example, the distance between chucks is 4.2 cm when the elongation is 140%) (extending the sample) and then returning to the original position was repeated 10 times. This series of operations was performed with both platinum electrode portions connected to resistance measuring terminals of Keithley 2110 digital multimeter, and the resistance value between the electrodes was measured.

図7に実施例1のPU伸縮性導電フィルムにおける伸び120%および140%時抵抗、実施例2のPU伸縮性導電フィルムにおける伸び120%、140%および150%時抵抗を、図8に実施例3のPDMS伸縮性導電フィルムにおける伸び110%、120%、140%および150%時抵抗を、図9に実施例4の伸縮性導電フィルムにおける伸び160%時抵抗を各々示す。   FIG. 7 shows the resistance at 120% and 140% elongation in the PU stretch conductive film of Example 1, the resistance at 120%, 140% and 150% elongation in the PU stretch conductive film of Example 2, and FIG. 3 shows the resistance at 110%, 120%, 140% and 150% elongation in the PDMS stretchable conductive film, and FIG. 9 shows the resistance at 160% elongation in the stretchable conductive film of Example 4, respectively.

図7に示すように、PUフィルムでは伸び120%時の抵抗値は、1.5以下であり、伸び140%時の抵抗値は、4以下であり、伸び150%であっても、5以下であることが分かる。   As shown in FIG. 7, in the PU film, the resistance value at 120% elongation is 1.5 or less, the resistance value at 140% elongation is 4 or less, and even if the elongation is 150%, 5 or less. It turns out that it is.

図8に示すように、PDMSフィルムは伸び110%時の抵抗値変化が1.2程度であり、伸び120%時の抵抗値変化が1.5程度であり、伸び140%時の抵抗値変化が4程度であり、伸び150%であっても、5以下であることが分かる。図9に示すように、銀ナノワイヤインクを用いた場合は伸び160%時の抵抗値変化が1.5以下であることが分かる。比較例1では、作製した試料では導電性が得られなかった。比較例2では、抵抗値変化は小さいが、初期の抵抗値が実施例1〜4の初期抵抗値と比べて、1000倍以上であった。   As shown in FIG. 8, the PDMS film has a resistance value change of about 1.2 when the elongation is 110%, a resistance value change of about 1.5 when the elongation is 120%, and a resistance value change when the elongation is 140%. Is about 4, and it can be seen that even if the elongation is 150%, it is 5 or less. As shown in FIG. 9, it can be seen that when the silver nanowire ink is used, the resistance value change at an elongation of 160% is 1.5 or less. In Comparative Example 1, conductivity was not obtained with the prepared sample. In Comparative Example 2, although the resistance value change was small, the initial resistance value was 1000 times or more compared to the initial resistance values of Examples 1 to 4.

本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. Embodiments to which such modifications are added Can also be included in the scope of the present invention.

10 伸縮性導電フィルム、20 基材、30 導電層、32 ナノワイヤ、34 インク 10 stretchable conductive film, 20 substrate, 30 conductive layer, 32 nanowire, 34 ink

Claims (7)

主面内の少なくとも1つの方向への切断時伸びが150%以上であり、かつ伸びが150%の状態まで伸長させた後、緩和させた際の伸長回復率が50%以上であるフィルム状の基材と、
前記基材の一方の主面上に形成され、導電性を有するナノワイヤで形成されたネットワーク構造を有する導電層と、
を備え、
前記ナノワイヤの少なくとも一部に前記基材が融着しており、0.5mm/分の速度で伸長前を基準として150%に伸長させた後、緩和させるサイクルを10回行った後のシート抵抗が伸縮試験開始前のシート抵抗を1としたときに5以下であることを特徴とする伸縮性導電フィルム。
The film has an elongation at break in at least one direction in the main surface of 150% or more and an elongation recovery rate of 50% or more when relaxed after being stretched to a state where the elongation is 150%. A substrate;
A conductive layer formed on one main surface of the substrate and having a network structure formed of conductive nanowires;
With
The base material is fused to at least a part of the nanowire, and the sheet resistance after 10 cycles of relaxation after stretching to 150% at a rate of 0.5 mm / min. Is 5 or less when the sheet resistance before starting the stretch test is 1, a stretchable conductive film.
前記基材がポリウレタン、ジメチルポリシロキサンからなる群より選ばれる1以上の材料からなる請求項1に記載の伸縮性導電フィルム。   The stretchable conductive film according to claim 1, wherein the substrate is made of one or more materials selected from the group consisting of polyurethane and dimethylpolysiloxane. 前記ナノワイヤが銅または銀からなる群より選ばれる1以上の金属で形成されている請求項1または2に記載の伸縮性導電フィルム。   The stretchable conductive film according to claim 1 or 2, wherein the nanowire is formed of one or more metals selected from the group consisting of copper or silver. 前記基材の全光線透過率が80%以上である請求項1乃至3のいずれかに記載の伸縮性導電フィルム。   The stretchable conductive film according to any one of claims 1 to 3, wherein the substrate has a total light transmittance of 80% or more. 主面内の少なくとも1つの方向への切断時伸びが150%以上であり、かつ伸びが伸長前を基準として150%の状態まで伸長させた後、緩和させた際の伸長回復率が50%以上であるフィルム状の基材の一方の主面上に、導電性を有するナノワイヤが分散されたインクを塗布する工程と、
前記金属ナノワイヤに電磁波を照射し、金属ナノワイヤの少なくとも一部に基材を融着させる工程と、
を備えることを特徴とする伸縮性導電フィルムの製造方法。
The elongation at the time of cutting in at least one direction in the main surface is 150% or more, and the elongation recovery rate is 50% or more when the elongation is reduced to 150% based on the pre-elongation condition and then relaxed. A step of applying an ink in which nanowires having conductivity are dispersed on one main surface of the film-like substrate,
Irradiating the metal nanowires with electromagnetic waves, and fusing a substrate to at least a part of the metal nanowires;
A method for producing a stretchable conductive film, comprising:
前記基材がポリウレタン、ジメチルポリシロキサンからなる群より選ばれる1以上の材料からなる請求項5に記載の伸縮性導電フィルムの製造方法。   The method for producing a stretchable conductive film according to claim 5, wherein the base material is made of one or more materials selected from the group consisting of polyurethane and dimethylpolysiloxane. 前記ナノワイヤが銅または銀からなる群より選ばれる1以上の金属で形成されている請求項5または6に記載の伸縮性導電フィルムの製造方法。   The method for producing a stretchable conductive film according to claim 5 or 6, wherein the nanowire is formed of one or more metals selected from the group consisting of copper or silver.
JP2015093063A 2015-04-30 2015-04-30 Stretchable conductive film and method of producing stretchable conductive film Active JP6542572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015093063A JP6542572B2 (en) 2015-04-30 2015-04-30 Stretchable conductive film and method of producing stretchable conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015093063A JP6542572B2 (en) 2015-04-30 2015-04-30 Stretchable conductive film and method of producing stretchable conductive film

Publications (2)

Publication Number Publication Date
JP2016212986A true JP2016212986A (en) 2016-12-15
JP6542572B2 JP6542572B2 (en) 2019-07-10

Family

ID=57551452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015093063A Active JP6542572B2 (en) 2015-04-30 2015-04-30 Stretchable conductive film and method of producing stretchable conductive film

Country Status (1)

Country Link
JP (1) JP6542572B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154726A1 (en) * 2016-03-08 2017-09-14 東洋紡株式会社 Stretchable conductor sheet, stretchable conductor sheet having adhesiveness, and method for forming wiring line formed of stretchable conductor on fabric
WO2018139483A1 (en) 2017-01-25 2018-08-02 国立研究開発法人産業技術総合研究所 Stretchable raised fiber electrode and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173226A (en) * 2005-11-28 2007-07-05 Osaka Univ Rubber material and manufacturing method of the same
US20100028633A1 (en) * 2007-01-18 2010-02-04 Arizona Board of Regents, a bodycorporate acting f Flexible Transparent Electrodes Via Nanowires and Sacrificial Conductive Layer
JP2012138260A (en) * 2010-12-27 2012-07-19 Tokai Rubber Ind Ltd Conductive film and method of forming the same, transducer using conductive film, flexible wiring board, and electromagnetic wave shield
JP2012527071A (en) * 2009-05-14 2012-11-01 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ Transparent conductive composite film
WO2014133890A2 (en) * 2013-02-26 2014-09-04 C3Nano Inc. Fused metal nanostructured networks, fusing solutions with reducing agents and methods for forming metal networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173226A (en) * 2005-11-28 2007-07-05 Osaka Univ Rubber material and manufacturing method of the same
US20100028633A1 (en) * 2007-01-18 2010-02-04 Arizona Board of Regents, a bodycorporate acting f Flexible Transparent Electrodes Via Nanowires and Sacrificial Conductive Layer
JP2012527071A (en) * 2009-05-14 2012-11-01 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ Transparent conductive composite film
JP2012138260A (en) * 2010-12-27 2012-07-19 Tokai Rubber Ind Ltd Conductive film and method of forming the same, transducer using conductive film, flexible wiring board, and electromagnetic wave shield
WO2014133890A2 (en) * 2013-02-26 2014-09-04 C3Nano Inc. Fused metal nanostructured networks, fusing solutions with reducing agents and methods for forming metal networks

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154726A1 (en) * 2016-03-08 2017-09-14 東洋紡株式会社 Stretchable conductor sheet, stretchable conductor sheet having adhesiveness, and method for forming wiring line formed of stretchable conductor on fabric
WO2018139483A1 (en) 2017-01-25 2018-08-02 国立研究開発法人産業技術総合研究所 Stretchable raised fiber electrode and manufacturing method therefor
CN110198666A (en) * 2017-01-25 2019-09-03 国立研究开发法人产业技术综合研究所 Retractility fluffing electrode and its manufacturing method
KR20190120171A (en) 2017-01-25 2019-10-23 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Flexible brushed electrode and manufacturing method thereof
JPWO2018139483A1 (en) * 2017-01-25 2019-11-14 国立研究開発法人産業技術総合研究所 Elastic brushed electrode and method for producing the same
CN110198666B (en) * 2017-01-25 2022-04-15 国立研究开发法人产业技术综合研究所 Stretchable napping electrode and method for manufacturing same
US11723573B2 (en) 2017-01-25 2023-08-15 National Institute Of Advanced Industrial Science And Technology Stretchable raised electrode and method of manufacturing thereof

Also Published As

Publication number Publication date
JP6542572B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
KR101935272B1 (en) Electrically conductive composition for thin film printing, and method for forming thin film conductive pattern
Li et al. Selectively plated stretchable liquid metal wires for transparent electronics
US20240029916A1 (en) Stretchable Interconnects for Flexible Electronic Surfaces
Bai et al. Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors
JP5706998B2 (en) Transparent conductive ink and transparent conductive pattern forming method
Song et al. Photoenhanced patterning of metal nanowire networks for fabrication of ultraflexible transparent devices
Nair et al. Direct writing of silver nanowire-based ink for flexible transparent capacitive touch pad
TWI804462B (en) Substrate having metal nanowire layer formed thereon and production method thereof
Araki et al. Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques
JP6407014B2 (en) Conductive composition for thin film printing and method for forming thin film conductive pattern
TW201008869A (en) Treatment of whiskers
KR20140048211A (en) Conductive laminate body, patterned conductive laminate body and touch panel using same
JP6542572B2 (en) Stretchable conductive film and method of producing stretchable conductive film
Liu et al. Patterning sub-30 µm liquid metal wires on PDMS substrates via stencil lithography and pre-stretching
JP2018048324A (en) Emulsion for preparing transparent conductive coating
JP2014208469A (en) Substrate for forming transparent conductive pattern, substrate with transparent conductive pattern formed therein, and method for manufacturing substrate with transparent conductive pattern formed therein
Nam et al. Intense pulse light sintering of an Ag microparticle-based, highly stretchable, and conductive electrode
Tetik et al. Highly conductive laser-induced graphene through the deposition of liquid metal particles for flexible electronics
JP6245599B2 (en) Laminated body and method for producing the same
KR20150142950A (en) Film capable of self-healing for electrical conductivy using light, fabrication method for the same, and application for the same
Kozhina et al. A thin-film polymer heating element with a continuous silver nanowires network embedded inside
JP5979929B2 (en) Infrared transparent type transparent conductive laminate
Kang et al. Hybrid patterning of metal nanowire/polymer composites based on selective photocuring-and-transfer and kirigami cutting techniques for stretchable circuit application
Hwang et al. Near-infrared nanosecond pulsed laser ablation of silver nanowire in aqueous media for low-power and low-debris laser processing
JP6293212B2 (en) Metal network conductor layer laminate for infrared transmission type transparent conductive laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190613

R150 Certificate of patent or registration of utility model

Ref document number: 6542572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350