JP2016211938A - Magnetic composite particle - Google Patents

Magnetic composite particle Download PDF

Info

Publication number
JP2016211938A
JP2016211938A JP2015095047A JP2015095047A JP2016211938A JP 2016211938 A JP2016211938 A JP 2016211938A JP 2015095047 A JP2015095047 A JP 2015095047A JP 2015095047 A JP2015095047 A JP 2015095047A JP 2016211938 A JP2016211938 A JP 2016211938A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic composite
composite particle
specimen
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015095047A
Other languages
Japanese (ja)
Other versions
JP6657592B2 (en
Inventor
川口 裕一
Yuichi Kawaguchi
裕一 川口
菊川 隆
Takashi Kikukawa
隆 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015095047A priority Critical patent/JP6657592B2/en
Publication of JP2016211938A publication Critical patent/JP2016211938A/en
Application granted granted Critical
Publication of JP6657592B2 publication Critical patent/JP6657592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic composite particle having high dispersion stability and high detection sensitivity.SOLUTION: A magnetic composite particle 6 includes magnetic substance particles 8 and an organic polymer material 7 enclosing the magnetic substance particles 8. The magnetic composite particle has a shape in which the ratio of the major axis to the minor axis is greater than 1. At least one of the bottom surface 15 and top surface 16 as surfaces crossing the minor axis 12 has a connectivity to an analyte higher than that of a side surface 15 as a surface crossing the major axis 13.SELECTED DRAWING: Figure 1

Description

本発明は、磁性複合粒子に関する。   The present invention relates to magnetic composite particles.

近年、様々な産業分野への応用を指向して、複合粒子に関する研究開発が盛んに行われている。例えば、高分子化合物と磁性体から構成される磁性複合粒子は多種多様な用途が期待されており、特に、医薬、診断薬など、医療・診断分野における基剤としての用途について注目が集められている。磁性複合粒子を医療・診断分野に応用する例として、磁気バイオセンサーがある。磁気バイオセンサーとは近年提案されている高感度センシング方式のひとつで、検出部の表面近傍に位置する磁性複合粒子の有無、数を検知することにより検体液中の標的物質の有無、濃度を検出する。   In recent years, research and development related to composite particles have been actively conducted for application to various industrial fields. For example, magnetic composite particles composed of a polymer compound and a magnetic material are expected to have a wide variety of uses. In particular, attention has been drawn to the use as a base in the medical / diagnosis field, such as pharmaceuticals and diagnostic agents. Yes. An example of applying magnetic composite particles to the medical / diagnosis field is a magnetic biosensor. Magnetic biosensor is one of the recently proposed high-sensitivity sensing methods that detects the presence and concentration of a target substance in a sample liquid by detecting the presence and number of magnetic composite particles located near the surface of the detection unit. To do.

図4は、従来の磁性複合粒子4を用いたバイオセンサーの測定手法の一例である。基板1にGMR素子やホール素子等からなるセンサー部2(磁気センサー)が設けられている。そして、センサー部2の上部に検体3が固定される。磁性複合粒子4は検体3に結合するように表面官能基を有しており、検体3により磁性複合粒子4がキャッチされるように固定され、固定された磁性複合粒子4からの磁束5がセンサー部2により測定されるものである。   FIG. 4 shows an example of a conventional biosensor measurement technique using magnetic composite particles 4. The substrate 1 is provided with a sensor unit 2 (magnetic sensor) made of a GMR element, a Hall element or the like. Then, the specimen 3 is fixed on the upper part of the sensor unit 2. The magnetic composite particle 4 has a surface functional group so as to bind to the specimen 3, and is fixed so that the magnetic composite particle 4 is caught by the specimen 3, and the magnetic flux 5 from the fixed magnetic composite particle 4 is detected by the sensor. Measured by the unit 2.

特許文献1には、これら磁気バイオセンサーに用いる粒子径が小さく単分散性に優れ、粒子毎の磁性体含有率が高く飽和磁化が大きく、分散安定性に優れ、非特異吸着抑制能を有する複合粒子およびその製造方法が開示されている。 Patent Document 1 discloses a composite having a small particle size and excellent monodispersibility used in these magnetic biosensors, a high magnetic substance content for each particle, a large saturation magnetization, excellent dispersion stability, and nonspecific adsorption inhibiting ability. Particles and methods for their production are disclosed.

また、特許文献2には、磁気分離性に優れ、かつ、生体関連物質との結合量が多い扁平形状の磁性ポリマー粒子およびその製造方法が開示されている。 Patent Document 2 discloses a flat-shaped magnetic polymer particle that is excellent in magnetic separation and has a large amount of binding with a biological substance and a method for producing the same.

特開2009−300239号公報Japanese Unexamined Patent Publication No. 2009-300239 特開2007−256151号公報JP 2007-256151 A

しかしながら実際には、磁性体含有率を高くすることは、複合粒子の比重が増加して分散安定性は低下するため、分散安定性とはトレードオフの関係にある。扁平形状の磁性ポリマー粒子18は、表面積が大きく分散安定性が高いが、図5の左側に示す磁性ポリマー粒子18のようにセンサー部2に対して倒立状態で検体へ結合された場合、検出感度が低くなるという課題がある。本発明は、分散安定性と検出感度の高い磁性複合粒子を提供することを目的とする。   However, in practice, increasing the magnetic substance content rate has a trade-off relationship with dispersion stability because the specific gravity of the composite particles increases and the dispersion stability decreases. The flat magnetic polymer particle 18 has a large surface area and high dispersion stability. However, when the magnetic polymer particle 18 is bound to the specimen in an inverted state with respect to the sensor unit 2 like the magnetic polymer particle 18 shown on the left side of FIG. There is a problem that becomes low. An object of the present invention is to provide magnetic composite particles having high dispersion stability and detection sensitivity.

上記目的を達成する本発明の磁性複合粒子は、磁性体粒子と前記磁性体粒子を内包する有機高分子材料とを含み、長径/短径が1より大きい形状を有し、短径と交わる表面である底面及び上面の少なくとも一方が、長径と交わる表面である側面よりも検体との結合性が高いことを特徴とする。   The magnetic composite particle of the present invention that achieves the above object includes a magnetic particle and an organic polymer material that includes the magnetic particle, and has a shape with a major axis / minor axis larger than 1, and a surface that intersects the minor axis It is characterized in that at least one of the bottom surface and the top surface is a higher binding property to the specimen than the side surface that is the surface that intersects the major axis.

本発明において、形状の「長径」とは、その形状の中心を通る断面の径のうち最大の径をいい、形状の「短径」とは、その形状の中心を通る断面の径のうち最小の径のことをいう。 In the present invention, the “major axis” of a shape refers to the largest diameter of the cross section passing through the center of the shape, and the “minor diameter” of the shape refers to the smallest of the diameters of the cross section passing through the center of the shape. This means the diameter.

磁束密度は磁性体からの距離により急速に減衰するため、磁性複合粒子が磁気センサーによって検出される場合、磁性複合粒子内の磁性体粒子は磁気センサーに近いものが磁気検出に対する寄与率が高く、磁気センサーから遠い磁性体粒子はその寄与率が低い。磁性複合粒子形状を、長径/短径が1より大きい形状にすることで、磁性複合粒子内の磁性体粒子数は同じでも磁気検出に対する寄与率を高めることができるため、磁性体粒子数を増やさなくても検出感度を向上させることができる。また、磁性複合粒子の底面または上面が選択的に検体に結合し、磁性複合粒子が倒立した状態で検体と結合することを防ぐことができるため、より確実に磁性複合粒子を検出感度の高い状態で検体と結合させることができる。従って、分散安定性と検出感度の高い磁性複合粒子を提供することができる。 Since the magnetic flux density is rapidly attenuated by the distance from the magnetic material, when the magnetic composite particles are detected by a magnetic sensor, the magnetic particles in the magnetic composite particles are close to the magnetic sensor, and the contribution ratio to the magnetic detection is high. Magnetic particles far from the magnetic sensor have a low contribution rate. By making the shape of the magnetic composite particle larger than 1 in the major axis / minor axis, the contribution to magnetic detection can be increased even if the number of magnetic particles in the magnetic composite particle is the same, so the number of magnetic particles is increased. Even without this, the detection sensitivity can be improved. In addition, the bottom or top surface of the magnetic composite particles can be selectively bonded to the specimen, and the magnetic composite particles can be prevented from binding to the specimen in an inverted state. Can be combined with the analyte. Therefore, magnetic composite particles having high dispersion stability and detection sensitivity can be provided.

さらに、本発明の磁性複合粒子は、前記磁性体粒子を内包する前記有機高分子材料は、その外形形状の長径/短径が1より大きく、前記有機高分子材料の短径と交わる表面である底面および上面の少なくとも一方に、検体との選択性結合基が付加されていることを特徴とする。 Further, in the magnetic composite particle of the present invention, the organic polymer material enclosing the magnetic particle is a surface where the major axis / minor axis of the outer shape is larger than 1 and intersects the minor axis of the organic polymer material. A selective binding group to the specimen is added to at least one of the bottom surface and the top surface.

これによれば、より簡便に分散安定性と検出感度の高い磁性複合粒子を提供することができる。 According to this, it is possible to provide magnetic composite particles with high dispersion stability and high detection sensitivity more easily.

さらに、本発明の磁性複合粒子は、前記側面は親水性であることを特徴とする。 Furthermore, the magnetic composite particle of the present invention is characterized in that the side surface is hydrophilic.

本発明において、親水性とは、純水の接触角が40°以下のことをいう。 In the present invention, “hydrophilic” means that the contact angle of pure water is 40 ° or less.

これによれば、検体と側面の結合性が低く、より倒立防止効果が高く、検出感度の高い磁性複合粒子を提供することができる。 According to this, it is possible to provide magnetic composite particles having a low binding property between the specimen and the side surface, a higher inversion prevention effect, and a high detection sensitivity.

本発明は、分散安定性と検出感度の高い磁性複合粒子を提供することができる。   The present invention can provide magnetic composite particles having high dispersion stability and high detection sensitivity.

図1は実施形態における磁性複合粒子の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of magnetic composite particles in the embodiment. 図2は実施形態における磁性複合粒子を用いたバイオセンサーの模式的な断面図である。FIG. 2 is a schematic cross-sectional view of a biosensor using magnetic composite particles in the embodiment. 図3は実施形態における磁性複合粒子の作製工程の一例を示す工程図である。FIG. 3 is a process diagram showing an example of a production process of magnetic composite particles in the embodiment. 図4は従来の磁性複合粒子を用いたバイオセンサーの模式図である。FIG. 4 is a schematic view of a biosensor using conventional magnetic composite particles. 図5は従来の磁性複合粒子を用いたバイオセンサーの模式図である。FIG. 5 is a schematic diagram of a biosensor using conventional magnetic composite particles.

以下、本発明を実施するための形態を説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Hereinafter, modes for carrying out the present invention will be described. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

(磁性複合粒子の基本構成)
本実施形態の磁性複合粒子6の模式図を図1に示す。磁性複合粒子6は、磁性体粒子8と磁性体粒子8を内包する有機高分子材料7とを含んで構成されている。磁性体粒子8を内包する有機高分子材料7は、その外形形状の長径/短径が1より大きい形状を有しており、磁性複合粒子6は長径/短径が1より大きい形状を有している。有機高分子材料7および磁性複合粒子6の形状は、例えば略円盤状や回転楕円体形状である。有機高分子材料7の短径と交わる表面である底面15および上面16の少なくとも一方には、検体3との選択性結合基14が付加されており、磁性複合粒子6は、短径12と交わる表面である底面15及び上面16の少なくとも一方が、長径13と交わる表面である側面17よりも検体との結合性が高くなっている。選択性結合基14は、有機高分子材料7の表面(磁性複合粒子6の側面17)に存在する表面官能基よりも検体との結合性が高い。磁性複合粒子6の側面と検体3の結合をより低減するために、磁性複合粒子6の側面17は親水性であることが好ましい。ここで、親水性とは、純水の接触角が40°以下のことをいう。
(Basic composition of magnetic composite particles)
A schematic diagram of the magnetic composite particle 6 of the present embodiment is shown in FIG. The magnetic composite particle 6 includes a magnetic particle 8 and an organic polymer material 7 containing the magnetic particle 8. The organic polymer material 7 including the magnetic particles 8 has a shape whose major axis / minor axis is larger than 1, and the magnetic composite particle 6 has a shape whose major axis / minor axis is larger than 1. ing. The shapes of the organic polymer material 7 and the magnetic composite particles 6 are, for example, a substantially disk shape or a spheroid shape. A selective binding group 14 to the specimen 3 is added to at least one of the bottom surface 15 and the top surface 16 that are surfaces intersecting the minor axis of the organic polymer material 7, and the magnetic composite particle 6 intersects the minor axis 12. At least one of the bottom surface 15 and the top surface 16 that is the surface has a higher binding property to the specimen than the side surface 17 that is the surface that intersects the major axis 13. The selective binding group 14 has a higher binding property to the specimen than the surface functional group present on the surface of the organic polymer material 7 (side surface 17 of the magnetic composite particle 6). In order to further reduce the binding between the side surface of the magnetic composite particle 6 and the specimen 3, the side surface 17 of the magnetic composite particle 6 is preferably hydrophilic. Here, hydrophilicity means that the contact angle of pure water is 40 ° or less.

ここで、検体3は、例えば、結合可能なリガンドを有する受容体タンパク質、接着タンパク質、抗原または抗体などのように、タンパク質間相互作用が可能なタンパク質であり、疾患と関連するものである。そのようなものには、その存在量の増減が疾患の存在を示唆するタンパク質のように、疾患の診断に使用可能なタンパク質が含まれ、上皮増殖因子(EGF)、血小板由来増殖因子(PDGF)、脳由来増殖因子(BDGF)または血管内皮増殖因子(VEGF)などの増殖因子、フィブロネクチン、ラミニンまたはビトロネクチンなどの細胞接着因子、インスリン、ソマトスタチン、ソマトトロンビンまたは性腺刺激ホルモン放出因子などのホルモン、LDLなどのリポタンパク質、種々の腫瘍マーカーまたは抗体などが挙げられる。また、HIVまたはHBV等のウイルスや細菌あるいは癌遺伝子等のDNA/RNAを検体3とすることもできる。また、検体3は、上に例示した検体分子だけではなく、上に例示したような検体分子に結合している分子または、上に例示したような検体分子近傍に偏在している分子とすることもできる。 Here, the specimen 3 is a protein capable of protein-protein interaction, such as a receptor protein having a ligand capable of binding, an adhesion protein, an antigen or an antibody, and is associated with a disease. Such proteins include proteins that can be used to diagnose disease, such as proteins whose increase or decrease in their amount suggests the presence of a disease, such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF) Growth factors such as brain-derived growth factor (BDGF) or vascular endothelial growth factor (VEGF), cell adhesion factors such as fibronectin, laminin or vitronectin, hormones such as insulin, somatostatin, somatothrombin or gonadotropin releasing factor, LDL, etc. Lipoproteins, various tumor markers or antibodies. Alternatively, a virus such as HIV or HBV, or a DNA / RNA such as a bacterium or an oncogene can be used as the specimen 3. In addition, the sample 3 is not limited to the sample molecule exemplified above, but should be a molecule that binds to the sample molecule as exemplified above or a molecule that is unevenly distributed in the vicinity of the sample molecule as exemplified above. You can also.

(有機高分子材料)
有機高分子材料7は、公知の熱可塑性ポリマー或いは熱硬化性ポリマー或いはこれらの混合物が使用できる。熱可塑性ポリマーとしては、例えば、ポリエチレン類、ポリプロピレン類、ポリエチレンプロピレン、ポリスチレン類、ポリメチルメタクリレート、ポリビニルアルコール、ポリ塩化ビニル、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレートまたはポリナフタレンテレフタレート等のポリエステル樹脂、ナイロン6、ナイロン66、ナイロン12またはナイロン4等のポリアミド類、ポリ4メチルペンテン、アクリロニトリル−ブタジエン−スチレン共重合体、アクリル・スチレン共重合体、塩素化ポリエチレン、アリル樹脂類、エチレン−酢酸ビニル−塩化ビニル共重合体、エチレン−塩化ビニル共重合体、メタクリル−スチレン共重合体、アクリロニトリル樹脂、オレフィンビニルアルコール共重合体、石油樹脂、ポリアセタール、ポリアリルスルフォン、ポリベンゾイミダゾール、ポリブチレン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルニトリル、ポリエーテルスルフォン、ポリケトン、ポリメチルペンテン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリスルフォン、ブタジエン−スチレン樹脂、ポリウレタン、ポリ塩化ビニリデン、シリコーン樹脂、ポリ酢酸ビニル、エチレンプロピレンジエン、クロロプレン、ブタジエン、ニトリルゴム、天然ゴム、アクリロニトリルブタジエンゴムまたはブチルゴム等が挙げられる。
(Organic polymer material)
As the organic polymer material 7, a known thermoplastic polymer, thermosetting polymer, or a mixture thereof can be used. Examples of the thermoplastic polymer include polyester resins such as polyethylene, polypropylene, polyethylene propylene, polystyrene, polymethyl methacrylate, polyvinyl alcohol, polyvinyl chloride, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate or polynaphthalene terephthalate. , Polyamides such as nylon 6, nylon 66, nylon 12 or nylon 4, poly-4-methylpentene, acrylonitrile-butadiene-styrene copolymer, acrylic / styrene copolymer, chlorinated polyethylene, allyl resins, ethylene-vinyl acetate -Vinyl chloride copolymer, ethylene-vinyl chloride copolymer, methacryl-styrene copolymer, acrylonitrile resin, olefin Vinyl alcohol copolymer, petroleum resin, polyacetal, polyallyl sulfone, polybenzimidazole, polybutylene, polyether ether ketone, polyether ketone, polyether nitrile, polyether sulfone, polyketone, polymethylpentene, polyphenylene ether, polyphenylene sulfide, Examples thereof include polysulfone, butadiene-styrene resin, polyurethane, polyvinylidene chloride, silicone resin, polyvinyl acetate, ethylene propylene diene, chloroprene, butadiene, nitrile rubber, natural rubber, acrylonitrile butadiene rubber, and butyl rubber.

熱硬化性ポリマーとしては、不飽和ポリエステル系、フェノール系ポリマー、メラミン系ポリマー、ユリア系ポリマー、ジアリルフタレート系ポリマーまたはポリイミド系ポリマーなどの公知のポリマーが挙げられる。 Examples of the thermosetting polymer include known polymers such as unsaturated polyester, phenolic, melamine, urea, diallyl phthalate, and polyimide polymers.

磁性複合粒子6は、水溶液中に分散される際に沈降凝集を防止するため、比重が1に近いことが好ましい。このため、有機高分子材料7は水に対して不溶であり、比重が小さいものから選択されることが好ましい。また、水溶液中において、検体3の疎水性基と有機高分子材料7の疎水性基は、疎水性相互作用により結合しやすい。磁性複合粒子6の側面と検体3の結合をより低減するためには、有機高分子材料7として親水性の表面を得やすいポリマーを使用し、有機高分子材料7の外形表面(特に、長径と交わる表面である側面)を親水性とすることが好ましい。親水性の表面を得やすいポリマーとしては、例えば、ポリビニルアルコール、ポリウレタン、ポリアミド類が挙げられる。 The magnetic composite particles 6 preferably have a specific gravity close to 1 in order to prevent sedimentation and aggregation when dispersed in an aqueous solution. For this reason, the organic polymer material 7 is preferably selected from those insoluble in water and having a small specific gravity. Further, in the aqueous solution, the hydrophobic group of the specimen 3 and the hydrophobic group of the organic polymer material 7 are likely to be bonded by a hydrophobic interaction. In order to further reduce the binding between the side surface of the magnetic composite particle 6 and the specimen 3, a polymer that easily obtains a hydrophilic surface is used as the organic polymer material 7, and the outer surface of the organic polymer material 7 (particularly, the major diameter and It is preferable to make the side surface which intersects) hydrophilic. Examples of the polymer that easily obtains a hydrophilic surface include polyvinyl alcohol, polyurethane, and polyamides.

(磁性体粒子)
磁性体粒子8は磁気センサー等で検出できる強磁性体であり、検出感度向上のため、外部磁場をかけた時の磁化(飽和磁化)が高いことが好ましく、また、分散液中での磁気凝集を低減するために、外部磁場を取り除いた時の磁化(残留磁化)が小さいことが好ましい。
(Magnetic particles)
The magnetic particle 8 is a ferromagnetic material that can be detected by a magnetic sensor or the like, and preferably has a high magnetization (saturation magnetization) when an external magnetic field is applied to improve detection sensitivity. In order to reduce this, it is preferable that the magnetization (residual magnetization) when the external magnetic field is removed is small.

このような強磁性体として、鉄、マンガン、コバルト、ニッケルまたはガドリニウム等の強磁性金属、若しくはそれらの少なくとも1つを含む合金または酸化物などが挙げられる。具体的には、鉄を主成分としコバルト、タングステン、クロム、ニッケルまたはアルミニウムなどを添加した磁石鋼、鉄と白金及び/またはネオジム及び/またはサマリウムなどとの合金、サマリウムとコバルトの合金、四三酸化鉄(Fe)、CoFeまたはγ−三二酸化鉄(γ−Fe)等の各種フェライト類などが挙げられる。また、磁性複合粒子6は水溶液中に分散されることや表面に抗体などが修飾されることから、磁性体粒子8は反応性に乏しいものが好ましく、例えば、フェライト類であり、具体的にはFe(マグネタイト)が好ましい。 Examples of such ferromagnetic materials include ferromagnetic metals such as iron, manganese, cobalt, nickel, and gadolinium, or alloys or oxides containing at least one of them. Specifically, magnetic steel containing iron as a main component and added with cobalt, tungsten, chromium, nickel or aluminum, an alloy of iron and platinum and / or neodymium and / or samarium, an alloy of samarium and cobalt, Various ferrites such as iron oxide (Fe 3 O 4 ), CoFe 2 O 4, and γ-iron sesquioxide (γ-Fe 2 O 3 ) are included. Further, since the magnetic composite particles 6 are dispersed in an aqueous solution and the surface thereof is modified with an antibody or the like, it is preferable that the magnetic particles 8 have poor reactivity, for example, ferrites. Fe 3 O 4 (magnetite) is preferred.

(バイオセンサー)
磁性複合粒子6を用いたバイオセンサーの模式図を図2に示す。基板1にGMR素子やホール素子等からなるセンサー部2(磁気センサー)が設けられている。そして、センサー部2の上部に検体3が固定される。磁性複合粒子6の底面15または上面16は検体3に結合するように選択性結合基14を有しており、検体3により磁性複合粒子6が底面15または上面16で固定され、固定された磁性複合粒子6からの磁束5がセンサー部2により測定されるものである。
(Biosensor)
A schematic diagram of a biosensor using magnetic composite particles 6 is shown in FIG. The substrate 1 is provided with a sensor unit 2 (magnetic sensor) made of a GMR element, a Hall element or the like. Then, the specimen 3 is fixed on the upper part of the sensor unit 2. The bottom surface 15 or the top surface 16 of the magnetic composite particle 6 has a selective binding group 14 so as to bind to the specimen 3, and the magnetic composite particle 6 is fixed on the bottom surface 15 or the top surface 16 by the specimen 3, and the fixed magnetism is fixed. The magnetic flux 5 from the composite particle 6 is measured by the sensor unit 2.

図2は、センサー部2の表面(センシング面)に平行な成分を有する外部磁界を磁性複合粒子6に印加した場合の模式図である。磁束密度は磁性体からの距離により急速に減衰するため、磁性複合粒子6内の磁性体粒子8はセンサー部2に近いものが磁気検出に対する寄与率が高く、センサー部2から遠い磁性体粒子8はその寄与率が低い。磁性複合粒子6が底面15または上面16で固定されることで、磁性体粒子数は同じでもセンサー部2に近い位置に磁性体粒子8が存在し、寄与率が高まるため、磁性体粒子8の数を増やさなくても検出感度を向上させることができる。また、磁性複合粒子6が側面17で検体3に固定されてしまう倒立状態では、センサー部2から遠い位置の磁性体粒子8が多くなり、検出感度が低下する。磁性複合粒子6は、底面15および上面16の少なくとも一方が、側面17よりも検体3との結合性が高くなっているので、磁性複合粒子6の底面15または上面16が選択的に検体3に結合し、磁性複合粒子6が倒立した状態で検体3と結合することを防ぐことができるため、より確実に磁性複合粒子6を検出感度の高い状態で検体と結合させることができる。 FIG. 2 is a schematic diagram when an external magnetic field having a component parallel to the surface (sensing surface) of the sensor unit 2 is applied to the magnetic composite particles 6. Since the magnetic flux density is rapidly attenuated by the distance from the magnetic material, the magnetic particles 8 in the magnetic composite particles 6 that are close to the sensor unit 2 have a high contribution rate to magnetic detection, and the magnetic particles 8 far from the sensor unit 2. Has a low contribution rate. Since the magnetic composite particles 6 are fixed on the bottom surface 15 or the top surface 16, the magnetic particles 8 exist at a position close to the sensor unit 2 even if the number of the magnetic particles is the same, and the contribution ratio is increased. Detection sensitivity can be improved without increasing the number. Further, in an inverted state where the magnetic composite particles 6 are fixed to the specimen 3 on the side surface 17, the number of magnetic particles 8 at a position far from the sensor unit 2 increases, and the detection sensitivity decreases. Since at least one of the bottom surface 15 and the top surface 16 of the magnetic composite particle 6 has a higher binding property to the sample 3 than the side surface 17, the bottom surface 15 or the top surface 16 of the magnetic composite particle 6 selectively becomes the sample 3. Since the binding can prevent the magnetic composite particle 6 from binding to the specimen 3 in an inverted state, the magnetic composite particle 6 can be more reliably bound to the specimen with high detection sensitivity.

(選択性結合基)
選択性結合基14は特に限定されないが、例えば、アルデヒド基、アミノ基などの活性な官能基である。アミノ基の導入箇所は正電荷を帯びているため、負電荷をもつ検体3と静電的相互作用により結合することができる。例えば、アミノ基の導入方法として、アミノアルキルシランによる処理、窒素雰囲気下でのプラズマ処理、アミノ基含有高分子物質のコーティングまたはポリ‐L−リジンなどのコーティングが挙げられる。
(Selective linking group)
The selective binding group 14 is not particularly limited, and is an active functional group such as an aldehyde group or an amino group. Since the amino group introduction site is positively charged, it can bind to the negatively charged specimen 3 by electrostatic interaction. For example, amino group introduction methods include treatment with aminoalkylsilane, plasma treatment under nitrogen atmosphere, coating of amino group-containing polymer material, or coating of poly-L-lysine.

(製造方法)
磁性複合粒子6の製造方法は特に制限されないが、例えば、図3に示すように、球形磁性複合粒子9を合成する合成工程と、ガラス基板11aへ球形磁性複合粒子9を塗布する塗布工程と、加熱プレス工程で作製することができる。より具体的には以下の方法で作製することができる。
(Production method)
The method for producing the magnetic composite particles 6 is not particularly limited. For example, as shown in FIG. 3, a synthesis step for synthesizing the spherical magnetic composite particles 9, an application step for applying the spherical magnetic composite particles 9 to the glass substrate 11a, It can be produced by a hot press process. More specifically, it can be produced by the following method.

(合成工程)
まず、磁性体粒子8を含有した球形磁性複合粒子9を作製する。これらは、公知の技術を使用して作製することができる。重合開始剤である過酸化ラウロイルをスチレンモノマーに溶解し、これに市販のFeを分散した分散体を作製する。次に撹拌器を付けた容器に純水とFeを分散した分散体を入れ、攪拌しながら60℃程度の温度で20時間程度重合を行ない、球形磁性微粒子9を合成する。重合した球形磁性微粒子9は磁気分離により分離精製を行なう。これにより、磁性体粒子8としてのFeを有機高分子7としてのポリスチレンが内包する球形磁性微粒子9が合成される。
(Synthesis process)
First, spherical magnetic composite particles 9 containing magnetic particles 8 are produced. These can be made using known techniques. Lauroyl peroxide as a polymerization initiator is dissolved in a styrene monomer, and a dispersion in which commercially available Fe 3 O 4 is dispersed is prepared. Next, a dispersion in which pure water and Fe 3 O 4 are dispersed is placed in a container equipped with a stirrer, and polymerization is performed at a temperature of about 60 ° C. for about 20 hours while stirring to synthesize spherical magnetic fine particles 9. The polymerized spherical magnetic fine particles 9 are separated and purified by magnetic separation. As a result, spherical magnetic fine particles 9 in which Fe 3 O 4 as the magnetic particles 8 is encapsulated with polystyrene as the organic polymer 7 are synthesized.

(塗布工程)
合成工程で作製した球形磁性複合粒子9をエタノールに分散し、選択性結合基14の導入処理を施した平坦なガラス基板11aへ塗布、乾燥して球形磁性複合粒子9の単層を形成する。
(Coating process)
The spherical magnetic composite particles 9 produced in the synthesis step are dispersed in ethanol, applied to a flat glass substrate 11a on which the selective bonding group 14 has been introduced, and dried to form a single layer of the spherical magnetic composite particles 9.

(加熱プレス工程)
球形磁性複合粒子9を塗布したガラス基板11aに、選択性結合基14の導入処理を施したガラス基板11bを重ね合わせ、ポリスチレンの軟化点温度である100℃まで加熱してプレスを行なうことで、底面15および上面16に選択性結合基14が転写された磁性複合粒子6を形成できる。このように、有機高分子材料7の底面15および上面16の少なくとも一方に検体との選択性結合基14が付加されている磁性複合粒子6は、簡便な方法により製造することができる。
(Hot press process)
By superposing the glass substrate 11b on which the selective bonding group 14 has been introduced on the glass substrate 11a on which the spherical magnetic composite particles 9 have been applied, and heating to 100 ° C., which is the softening point temperature of polystyrene, The magnetic composite particle 6 having the selective binding group 14 transferred to the bottom surface 15 and the top surface 16 can be formed. Thus, the magnetic composite particle 6 in which the selective binding group 14 to the specimen is added to at least one of the bottom surface 15 and the top surface 16 of the organic polymer material 7 can be produced by a simple method.

以上説明した磁性複合粒子6は適宜変更することが可能である。例えば、上述した磁性複合粒子6は、有機高分子材料7の底面15および上面16の少なくとも一方に、検体との選択性結合基14が付加されているものであるが、有機高分子材料の底面および上面の少なくとも一方を物理的に加工して表面状態を変化させることで、選択性結合基14を付加することなく、磁性複合粒子の底面及び上面の少なくとも一方が側面よりも検体との結合性が高くなるようにしてもよい。 The magnetic composite particles 6 described above can be changed as appropriate. For example, in the magnetic composite particle 6 described above, the selective binding group 14 to the specimen is added to at least one of the bottom surface 15 and the top surface 16 of the organic polymer material 7. By physically processing at least one of the top surface and the top surface, the surface state is changed, so that at least one of the bottom surface and the top surface of the magnetic composite particle binds to the specimen rather than the side surface without adding the selective binding group 14. May be made higher.

1 基板
2 センサー部
3 検体
4 磁性複合粒子
5 磁束
6 磁性複合粒子
7 有機高分子材料
8 磁性体粒子
9 球形磁性複合粒子
11a ガラス基板
11b ガラス基板
12 短径
13 長径
14 選択性結合基
15 底面
16 上面
17 側面
18 磁性ポリマー粒子
DESCRIPTION OF SYMBOLS 1 Substrate 2 Sensor part 3 Specimen 4 Magnetic composite particle 5 Magnetic flux 6 Magnetic composite particle 7 Organic polymer material 8 Magnetic body particle 9 Spherical magnetic composite particle 11a Glass substrate 11b Glass substrate 12 Minor axis 13 Major axis 14 Selective binding group 15 Bottom surface 16 Top surface 17 Side surface 18 Magnetic polymer particles

Claims (3)

磁性体粒子と前記磁性体粒子を内包する有機高分子材料とを含み、長径/短径が1より大きい形状を有し、
短径と交わる表面である底面及び上面の少なくとも一方が、長径と交わる表面である側面よりも検体との結合性が高いことを特徴とする磁性複合粒子。
Including a magnetic particle and an organic polymer material enclosing the magnetic particle, wherein the major axis / minor axis has a shape larger than 1.
A magnetic composite particle, wherein at least one of a bottom surface and a top surface, which are surfaces intersecting with a minor axis, has a higher binding property to a specimen than a side surface, which is a surface intersecting with a major axis.
前記磁性体粒子を内包する前記有機高分子材料は、その外形形状の長径/短径が1より大きく、
前記有機高分子材料の短径と交わる表面である底面および上面の少なくとも一方に、検体との選択性結合基が付加されていることを特徴とする請求項1に記載の磁性複合粒子。
The organic polymer material containing the magnetic particles has a major axis / minor axis greater than 1 in its outer shape,
2. The magnetic composite particle according to claim 1, wherein a selective binding group to a specimen is added to at least one of a bottom surface and an upper surface, which are surfaces intersecting with the minor axis of the organic polymer material.
前記側面は親水性であることを特徴とする請求項1または2に記載の磁性複合粒子。   The magnetic composite particle according to claim 1, wherein the side surface is hydrophilic.
JP2015095047A 2015-05-07 2015-05-07 Magnetic composite particles Active JP6657592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015095047A JP6657592B2 (en) 2015-05-07 2015-05-07 Magnetic composite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015095047A JP6657592B2 (en) 2015-05-07 2015-05-07 Magnetic composite particles

Publications (2)

Publication Number Publication Date
JP2016211938A true JP2016211938A (en) 2016-12-15
JP6657592B2 JP6657592B2 (en) 2020-03-04

Family

ID=57550091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015095047A Active JP6657592B2 (en) 2015-05-07 2015-05-07 Magnetic composite particles

Country Status (1)

Country Link
JP (1) JP6657592B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873102A (en) * 1988-03-14 1989-10-10 Manchium Chang Magnetic particles
JP2004317421A (en) * 2003-04-18 2004-11-11 Nisshinbo Ind Inc Element to which biologically active substance is fixed
JP2005134351A (en) * 2003-10-31 2005-05-26 Wako Pure Chem Ind Ltd Immunological measuring method using magnetic substance
JP2007256151A (en) * 2006-03-24 2007-10-04 Jsr Corp Magnetic polymer particles for diagnostic drug, and manufacturing method therefor
JP2009300239A (en) * 2008-06-12 2009-12-24 Canon Inc Composite particle, method for manufacturing the same, dispersion, magnetic biosensing device and magnetic biosensing method
JP2011095052A (en) * 2009-10-28 2011-05-12 Univ Of Tokyo Disease marker of infectious disease

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873102A (en) * 1988-03-14 1989-10-10 Manchium Chang Magnetic particles
JP2004317421A (en) * 2003-04-18 2004-11-11 Nisshinbo Ind Inc Element to which biologically active substance is fixed
JP2005134351A (en) * 2003-10-31 2005-05-26 Wako Pure Chem Ind Ltd Immunological measuring method using magnetic substance
JP2007256151A (en) * 2006-03-24 2007-10-04 Jsr Corp Magnetic polymer particles for diagnostic drug, and manufacturing method therefor
JP2009300239A (en) * 2008-06-12 2009-12-24 Canon Inc Composite particle, method for manufacturing the same, dispersion, magnetic biosensing device and magnetic biosensing method
JP2011095052A (en) * 2009-10-28 2011-05-12 Univ Of Tokyo Disease marker of infectious disease

Also Published As

Publication number Publication date
JP6657592B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
Jamshaid et al. Magnetic particles: From preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications
Gloag et al. Advances in the application of magnetic nanoparticles for sensing
Huang et al. Magnetic nanomaterials for magnetic bioanalysis
Li et al. Synthesis and applications of functionalized magnetic materials in sample preparation
Sandhu et al. Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics
Xiao et al. Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances
Plouffe et al. Fundamentals and application of magnetic particles in cell isolation and enrichment: a review
Rocha-Santos Sensors and biosensors based on magnetic nanoparticles
JP4607875B2 (en) Use of magnetic particles to determine binding between bioactive molecules
Pan et al. Magnetic nanoparticles for the manipulation of proteins and cells
Frenea-Robin et al. Basic principles and recent advances in magnetic cell separation
Beveridge et al. The use of magnetic nanoparticles in analytical chemistry
Wen et al. Efficient enrichment and analyses of bacteria at ultralow concentration with quick-response magnetic nanospheres
Ma et al. Applications of magnetic materials separation in biological nanomedicine
Muluneh et al. Microchip-based detection of magnetically labeled cancer biomarkers
Fu et al. Protein‐functionalized synthetic antiferromagnetic nanoparticles for biomolecule detection and magnetic manipulation
Zhu et al. Magnetic‐nanoparticle‐based immunoassays‐on‐chip: materials synthesis, surface functionalization, and cancer cell screening
JP2009300239A (en) Composite particle, method for manufacturing the same, dispersion, magnetic biosensing device and magnetic biosensing method
Urusov et al. Application of magnetic nanoparticles in immunoassay
Slimani et al. Magnetic nanosensors and their potential applications
JP2009020097A (en) Method for biochemical analysis
Galkin et al. Modern magnetic immunoassay: Biophysical and biochemical aspects
Wibowo et al. Prospect of core-shell Fe3O4@ Ag label integrated with spin-valve giant magnetoresistance for future point-of-care biosensor
K Kouassi Magnetic and gold-coated magnetic iron oxide nanoparticles as detection tools: preparation, characterization, and biosensing applications
Reymond et al. Fabrication and characterization of tosyl‐activated magnetic and nonmagnetic monodisperse microspheres for use in microfluic‐based ferritin immunoassay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6657592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150