JP2016211450A - Beach power generation system - Google Patents

Beach power generation system Download PDF

Info

Publication number
JP2016211450A
JP2016211450A JP2015096379A JP2015096379A JP2016211450A JP 2016211450 A JP2016211450 A JP 2016211450A JP 2015096379 A JP2015096379 A JP 2015096379A JP 2015096379 A JP2015096379 A JP 2015096379A JP 2016211450 A JP2016211450 A JP 2016211450A
Authority
JP
Japan
Prior art keywords
rotor
pump pipe
generator
impeller
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015096379A
Other languages
Japanese (ja)
Other versions
JP5852282B1 (en
Inventor
泰朗 横山
Yasuo Yokoyama
泰朗 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015096379A priority Critical patent/JP5852282B1/en
Application granted granted Critical
Publication of JP5852282B1 publication Critical patent/JP5852282B1/en
Publication of JP2016211450A publication Critical patent/JP2016211450A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

PROBLEM TO BE SOLVED: To provide a beach power generation system capable of inexhaustibly generating environment-preservation type electric power by means of a power generator incorporated in a rotor which is originally moved by striking reciprocating water current against blades of an impeller.SOLUTION: A beach power generation system includes: a cylindrical vessel type rotor 3 which strikes reciprocating water current against blades of an impeller 3a and is originally moved; a square plate-shaped board 2 of which the middle body part is cut out into a square plate shape to form a cut out part 2a such that outward water current passes through the upper part and return water current passes through the lower part when being moored on the sea surface on the beach; a support mechanism 4 which is restrained so as to permit vertical movement within a predetermined range of the rotor 3 inserted to the cut out part 2a and is restrained so as to permit correspondence to an unbalanced movement; forward and backward submarine plates 2b, 2c of circular-arcuate plate shape which are connected or integrated by forward or backward tilting in the sea bottom direction toward upstream of outward or return water current on the board 2; a power generator 6 incorporated in the rotor 3; a laid hole 3i of a large diameter for passing a power cable 6d which penetrates from a rotor 3 inner part toward external air through a support shaft 3h for connecting the rotor 3 rotatably; and a prescribed pressure generating machine 7 which feeds air into a forced feeding hole 7a of a small diameter parallel to the laid hole 3i.SELECTED DRAWING: Figure 1

Description

本発明は、往復水流を羽根車の翼に当てて原動するローターに内蔵の発電機が、環境保全型の電力を作り出す波打際発電装置に関する。 The present invention relates to a scalloped power generation apparatus in which a generator built in a rotor that drives a reciprocating water flow against a blade of an impeller generates environment-conserving power.

従来からの化石燃料を用いた火力発電は、環境負荷という障害が残り、原子力発電からは放射性物質の汚染除去と核廃棄物の余裕深度処分に当てる莫大な費用と永久管理という負担が残ります。また、太陽光発電や風力発電は、天候不良などによる日照不足や風速不良による回転不足など、障害解消には更なる技術革新が必要という問題を含んでいた。 Conventional thermal power generation using fossil fuels remains an obstacle to environmental impact, and nuclear power generation leaves enormous costs and permanent management burdens for decontamination of radioactive materials and deep disposal of nuclear waste. In addition, solar power generation and wind power generation include problems that further technological innovation is required to solve obstacles, such as lack of sunshine due to bad weather and rotation due to poor wind speed.

例えば、特許文献1に開示されたものでは、波浪エネルギーの上下動を回転力に変えて発電する波力発電システムが提案されている。また、特許文献2に開示されたものでは、高波やうねりの落差を回転力に変えて発電する海洋発電装置が提案されている。 For example, the one disclosed in Patent Document 1 proposes a wave power generation system that generates electric power by changing the vertical movement of wave energy into a rotational force. In addition, the one disclosed in Patent Document 2 proposes a marine power generation device that generates power by changing a drop of high waves and undulations into a rotational force.

特許第5177908号公報Japanese Patent No. 5177908 特許第4260546号公報Japanese Patent No. 4260546

上記文献には、背景技術として波浪エネルギーの海面変動を回転力に変えて発電する波力発電システムが考案されていますが、自然環境における高効率発電を安定させる問題が残ります。また、高波やうねりの落差を回転力に変えて発電する海洋発電装置では、操舵の運用に課題を残すとともに、いずれも設備設置に係る海洋利用権を確保しなくてはならないという問題を含んでいた。 Although the above document devised a wave power generation system that generates power by converting sea level fluctuations of wave energy into rotational force as background technology, the problem of stabilizing high-efficiency power generation in the natural environment remains. In addition, in ocean power generation devices that generate power by converting the head of swells and undulations into rotational force, problems remain in steering operation, and both include the problem of securing the right to use the ocean for facility installation. It was.

本発明は、このような従来の構成から生じる問題を解決しようとするものであり、海岸に打ち寄せる波のエネルギーは膨大であることから、寄せ波と引き波が持つ水流の有効活用として、往復水流を羽根車の翼に当てて原動するローターを波打ち際の海面に係留することにより、ローターに内蔵した発電機が、環境保全型の電力を無尽蔵に作りだす波打際発電装置の実現を目的とするものである。 The present invention is intended to solve the problems arising from such a conventional configuration, and since the energy of the waves that strike the coast is enormous, as an effective use of the water flow that the spilling waves and the pulling waves have, the reciprocating water flow The purpose is to realize a rippling generator that creates an inexhaustible environment-conserving power by the generator built in the rotor by mooring the rotor that drives the impeller blades to the surface of the rippling sea. It is.

また、波打際発電装置では、複数のローターを縦横列配置することは勿論、ローターに内蔵する発電機の一つは高圧電流を出力する強化構造にする。而も、ローターの所定範囲内の上下動及び不均衡な動きに対応する他、高波や津波の襲撃を回避する構造にするとともに、ボードの波乗り動作に並んだ逆振り子運動の活用により、ローターに海水の浸入を防ぐ程度に昇圧した空気を送り込む備えを設けるものである。 In addition, in the undulating power generation device, a plurality of rotors are arranged in rows and columns, and one of the generators built in the rotor has a reinforced structure that outputs a high-voltage current. In addition to responding to the vertical movement and unbalanced movement of the rotor within a predetermined range, the structure avoids the attack of high waves and tsunamis. Provision is made for sending air that has been pressurized to a level that prevents the intrusion of seawater.

そして、本発明は上記目的を達成するために往復水流を羽根車の翼に当てて原動する円筒容器形のローターと、中腹部を四角板状に切欠いた切欠き部を形成して往水流を上部に複水流を下部に通す波打ち際の海面に係留する四角板形のボードと、切欠き部に容れたローターの所定範囲内の上下動及び不均衡な動きに対応可能に係止する支持機構と、ボードには海底方向に前傾して接続又は一体化する円弧板形の前方、後方潜航板と、ローターに内蔵した発電機と、ローターを回転可能に接続する支持軸にローター内部から外気に向けて貫通する電力ケーブルを通す大口径の敷設孔及び敷設孔と平行した小口径の圧送孔に空気を送り込む所定圧発生機を備えた波打際発電装置を提供する。 In order to achieve the above object, the present invention forms a cylindrical container-shaped rotor that moves by applying a reciprocating water flow to the blades of an impeller, and a cutout portion in which a middle abdomen is cut out in a square plate shape. A square plate-shaped board moored to the sea surface when the ripening water flows through the lower part, and a support mechanism that locks the rotor in a predetermined range within the predetermined range so as to cope with an unbalanced movement. The board has an arc plate-shaped forward and rear submarine plate that is connected or integrated forwardly toward the seabed, a generator built in the rotor, and a support shaft that rotatably connects the rotor to the outside air from the inside of the rotor. There is provided a corrugated power generation apparatus including a large-diameter laying hole for passing a power cable penetrating toward and a predetermined pressure generator for sending air to a small-diameter pressure feed hole parallel to the laying hole.

また、第2の課題解決手段は、所定圧発生機が、支持軸を挟んだ前後の端末が円弧を描いて下方を向くTの字形をした筒状のポンプ管と、ポンプ管と圧送孔とを連結する少なくともローターの軸心方向に屈曲自在な筒状の管継手と、ポンプ管の円弧中央部と前方端末及び後方端末のいずれもの中間内部にそれぞれ固定して相対する相対側には流れを許し、外気側には流れを阻止する逆止め弁と、ポンプ管の円弧中央部内に係合して左右方向が伸縮自在な復帰バネ手段と、復帰バネ手段の両端に接続且つポンプ管の内面に対し、狭隘な隙間を保ち相対する静止系における姿勢を変化させない相対側には流れを許し、外気側には流れを阻止する逆止め弁を内蔵している。 Further, the second problem solving means is that the predetermined pressure generator includes a cylindrical pump pipe having a T-shape in which the front and rear terminals sandwiching the support shaft draw a circular arc and face downward, and the pump pipe and the pressure feed hole. A cylindrical pipe joint that can be bent at least in the axial direction of the rotor, and an arc central portion of the pump pipe and a middle portion of each of the front end and the rear end. Allowed on the outside air side, a check valve that blocks the flow, a return spring means that engages in the center of the arc of the pump pipe and can be expanded in the left-right direction, and is connected to both ends of the return spring means and to the inner surface of the pump pipe On the other hand, a check valve that allows flow on the relative side that does not change the posture in the stationary stationary system while maintaining a narrow gap and prevents flow on the outside air side is incorporated.

上記第1の課題解決手段による作用は次の通りである。すなわち、往復水流を羽根車の翼に当てて原動するローターを波打ち際の海面に係止したことにより、ローターに内蔵した発電機が環境保全型の電力を無尽蔵に作り出すことができる。また、高波や津波の襲撃を受けた瞬時に前方、後方潜航板が沈降作用を惹き起こすことにより、本装置全体が海面から海底に向かって潜航することができる。而も、所定圧発生機が、空気を通す圧送孔に連通したことにより、ローターに海水の浸入を防ぐ程度に昇圧した所定圧を送り込むことができる。 The operation of the first problem solving means is as follows. In other words, the rotor that moves by applying the reciprocating water flow to the blades of the impeller is locked to the sea surface at the time of undulation, so that the generator built in the rotor can produce inexhaustible power for environmental conservation. In addition, the entire front and rear submarine plates cause a subsidence action instantly after being attacked by a high wave or tsunami, so that the entire device can dive from the sea surface toward the seabed. In addition, since the predetermined pressure generator communicates with the pressure feed hole through which air passes, it is possible to feed the predetermined pressure increased to the extent that the seawater is prevented from entering the rotor.

また、第2の課題解決手段による作用は、所定圧発生機が、ボードの波乗り動作に並んだポンプ管が逆振り子運動をすることによって、相対する静止系における姿勢を変化させない逆止め弁が対向圧迫を図ることにより、ポンプ管内に上記の所定圧を発生することができる。 The second problem solving means is that the predetermined pressure generator is opposed to a check valve that does not change the posture in the opposite stationary system when the pump pipes arranged in the surfing motion of the board perform a reverse pendulum motion. By applying the pressure, the predetermined pressure can be generated in the pump pipe.

上述したように本発明の波打際発電装置は、ローターに内蔵した発電機が環境保全型の電力を無尽蔵に作り出すことができるため、海岸の洗掘緩和と超経済的なベースロード電源を確保するものである。また、本装置全体を海面から海底に向かって潜航することができるため、致命的な損傷と破壊を避けるものである。而も、ローターに海水の浸入を防ぐ程度に昇圧した所定圧を送り込むことができるため、内蔵した発電機の安定運用を確保するものである。 As described above, the shoreline power generation device of the present invention can secure the coastal scouring mitigation and the super-economic base load power source because the generator built in the rotor can produce infinitely environmentally friendly power. To do. In addition, since the entire device can be submerged from the sea surface toward the seabed, fatal damage and destruction are avoided. In addition, since a predetermined pressure increased to prevent the intrusion of seawater into the rotor can be sent, stable operation of the built-in generator is ensured.

また、所定圧発生機は、ポンプ管内に上記の所定圧を発生することができるため、他の電力や制御装置及び圧縮機などの省力化とメンテナンスフリー効果を発揮するものである。 Moreover, since the predetermined pressure generator can generate the predetermined pressure in the pump pipe, it exerts labor saving and maintenance-free effect for other electric power, a control device, a compressor, and the like.

本発明の実施形態を示す波打際発電装置の斜視図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 同波打際発電装置のローターに組み付ける羽根車を示す斜視図。The perspective view which shows the impeller assembled | attached to the rotor of the same wave edge power generation device. 同ローターに組み付ける外転型回転子を示す斜視図。The perspective view which shows the abduction type | mold rotor assembled | attached to the same rotor. 同ローターを回転可能に接続する支持軸に組み付ける固定子を示す斜視図。The perspective view which shows the stator assembled | attached to the support shaft which connects the said rotor rotatably. 同ローターに作用する支持装置の組み付け関係を示す斜視図。The perspective view which shows the assembly | attachment relationship of the support apparatus which acts on the rotor. 同支持装置のカニ挟み機構を示す正対図とスイング機構を示す断面図。The front view which shows the crab pinching mechanism of the support apparatus, and sectional drawing which shows a swing mechanism. 同支持軸に組み付ける限度圧発生装置を示す正対図。The front view which shows the limiting pressure generator assembled | attached to the support shaft.

本発明は、本発明の趣旨の範囲内において、公知技術を付加したものも、本発明から公知技術を除いたものも、本発明の範囲に含まれる。また、本発明の範囲は、以下の具体的な実施例に限定されるものではない。 Within the scope of the gist of the present invention, the present invention includes those to which known techniques are added and those in which known techniques are excluded from the present invention. The scope of the present invention is not limited to the following specific examples.

以下、本発明の実施の形態を図1〜図7に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1においては、1は波打際発電装置で、特許請求の範囲に記載されたように「往復水流を羽根車3aの翼に当てて原動する円筒容器形のローター3と、中腹部を四角板状に切欠いた切欠き部2aを形成して往水流を上部に複水流を下部に通す波打ち際の海面に係留する四角板形のボード2と、切欠き部2aに容れたローター3の所定範囲内の上下動及び不均衡な動きに対応可能に係止する支持機構4と、ボード2には海底方向に前傾して接続又は一体化する円弧板形の前方、後方潜航板2b,2cと、ローター3に内蔵した発電機6と、ローター3を回転可能に接続する支持軸3hにローター3内部から外気に向けて貫通する電力ケーブル6dを通す大口径の敷設孔3iを備え」ている。 In FIG. 1, reference numeral 1 denotes a scalloped power generation device. As described in the claims, “a cylindrical container-shaped rotor 3 that moves by applying a reciprocating water flow to a blade of an impeller 3 a, and a middle abdomen is squared. A rectangular plate-like board 2 moored on the sea surface when forming a notch 2a that is notched in a plate shape and entraining the upstream water flow at the top and the double water flow at the bottom, and a predetermined range of the rotor 3 contained in the notch 2a A support mechanism 4 that locks in response to an up-and-down movement and an unbalanced movement, and arc-plate-shaped front and rear submersible plates 2b and 2c that are connected to or integrated with the board 2 by tilting forward toward the seabed. The generator 6 built in the rotor 3 and the support shaft 3h that rotatably connects the rotor 3 are provided with a large-diameter laying hole 3i through which the power cable 6d that penetrates from the inside of the rotor 3 toward the outside air is passed.

上記の波打際発電装置1は、往復水流を羽根車の翼に当てて原動するローター3を波打ち際の海面に係止することで、ローター3に内蔵する発電機6が環境保全型の電力を無尽蔵に作り出そうとするものである。また、高波や津波の襲撃を受けた瞬時に前方、後方潜航板2b、2cが沈降作用を惹き起こすことで、本装置1全体が海面から海底に向かって潜航させようとするものである。 In the above-described rippling generator 1, the reciprocating water flow is applied to the blades of the impeller to lock the rotor 3 that is driven, and the generator 6 built in the rotor 3 generates environmentally-conserving power. It is something that is going to be created infinitely. In addition, the entire front and rear submarine plates 2b and 2c cause a subsidence action instantly after being attacked by a high wave or a tsunami, so that the entire apparatus 1 is submerged from the sea surface toward the seabed.

図1、2においては、3aは羽根車で、銀杏葉形をした板状に形成しており、強化プラスチック(FRP)やアルミニウム青銅成形体から形成し、水流を翼に当てることができる。この羽根車3aは波打ち際の海面環境を考慮すると、強度と耐久性を向上させる必要から、外周輪から後方に出張る「つば」を設け、横から見てLの字形にしている。そして、ローター3の接線方向と交差(例えば、原動方向に直交)するとともに、前後・左右に均等隔置して段差式に接続している。尚、羽根車3aは高さが70mm、幅が70mm前後にしている。 In FIGS. 1 and 2, reference numeral 3 a denotes an impeller, which is formed in a plate shape having a ginkgo leaf shape, and is formed from a reinforced plastic (FRP) or an aluminum bronze molded body, and a water flow can be applied to the wing. In consideration of the sea surface environment at the time of undulation, the impeller 3a is provided with a "brim" that travels backward from the outer ring so that it has an L shape when viewed from the side. The rotor 3 intersects with the tangential direction of the rotor 3 (for example, orthogonal to the driving direction), and is connected in a stepped manner at equal intervals in the front-rear and left-right directions. The impeller 3a has a height of about 70 mm and a width of about 70 mm.

また、羽根車3aは、図2の左側のように、逆方向(例えば、逆時計回転方向)に腰折れする構造にすることにより、高波を受けた際の下方の引き波に当てる掻き分け能力を小さくすることで、波速力に応じた高速回転を実現している。更に、羽根車3aの翼の形状について、大半が細波を受ける海面では回転方向に膨らみを持たせている。又は、大半が大波を受ける海面では逆回転方向に膨らみを持たせている。或は、羽根車3aに代えて形状が6以上の星形(例えば、星6〜32程度)にしてもよい。 In addition, the impeller 3a has a structure in which the impeller 3a is folded in the reverse direction (for example, counterclockwise rotation direction) as shown on the left side of FIG. By doing so, high-speed rotation according to wave speed is realized. Further, with regard to the shape of the blades of the impeller 3a, most of the wings are swollen in the rotational direction on the sea surface that receives fine waves. Or most of the sea surface which receives a large wave has a bulge in the reverse rotation direction. Alternatively, instead of the impeller 3a, the shape may be 6 or more stars (for example, about 6 to 32 stars).

図3においては、3はローターで、円筒容器形に形成しており、外転板3bと淵付円板形の一側側面板3c及び他側側面板3dとで構成している。また、羽根車3aと同質材の磁性を持たない強化プラスチック(FRP)やアルミニウム青銅成形体から成形している。このローター3の形状については、地域特性や季節風などの強弱により寄せ波と引き波には大小・強弱が生じるものの、平均値を考慮すると、円筒径を300mm〜500mm前後にする他、浮体幅の形状は3組以上を内蔵する発電機6の一つが磁力増強の構成幅にしている。 In FIG. 3, reference numeral 3 denotes a rotor, which is formed in a cylindrical container shape, and is composed of an abduction plate 3b, a flanged disk-shaped one side surface plate 3c, and the other side surface plate 3d. Moreover, it shape | molds from the reinforced plastic (FRP) and aluminum bronze molded object which do not have the magnetism of the same material as the impeller 3a. Regarding the shape of this rotor 3, although the magnitude and strength of the spilling wave and the pulling wave are caused by the strength of regional characteristics and seasonal winds, considering the average value, in addition to making the cylindrical diameter around 300 mm to 500 mm, the floating body width One of the generators 6 incorporating three or more sets has a configuration width for increasing magnetic force.

また、ローター3は、強靭性と高レベルな密閉性が要求され、また、羽根車3aが接続する外転板3bは想定以上の圧力が加わるため、内部に損傷が及ばない二重構造又は三重構造にして半浮遊状態で海面に係止している。ここで、外転板3bと一側、他側側面板3c、3dの接合部から海水の浸入を防ぐ手立てを説明すると、アルミニウム青銅の場合は溶融による全接方式、FRPの場合は接合部にカーボン繊維やセラミック繊維が混在する樹脂材の固着力を利用している。 Further, the rotor 3 is required to have toughness and a high level of sealing, and the outer rotation plate 3b to which the impeller 3a is connected is subjected to a pressure higher than expected, so that the internal structure is not damaged and the triple structure or the triple structure. It is structured and locked to the sea surface in a semi-floating state. Here, how to prevent seawater from entering from the joint between the outer rotation plate 3b and the one side and other side plates 3c, 3d will be explained. In the case of aluminum bronze, the all-contact method by melting, and in the case of FRP, at the joint It uses the adhesive strength of resin materials that contain carbon fibers and ceramic fibers.

図1、4〜7においては、3hは支持軸で、ローター3を回転可能に接続しており、長尺丸棒形に形成している。剛性が高く高強度が必要なことから、耐食性・耐摩耗性も良好な高力黄銅を鋳造している。そして、一側、他側側面板3c、3dの回転心に設けた一側、他側軸受3e、3fに支承している。尚、軸受3e、3fは転がり軸受方式の油含浸シールド軸受であって、回転の円滑化を図る図示省略の転がり軸受と気密性を保持するシールド軸受を併設している。 In FIGS. 1 and 4 to 7, 3 h is a support shaft, which rotatably connects the rotor 3 and is formed in a long round bar shape. Because of its high rigidity and high strength, high-strength brass with good corrosion resistance and wear resistance is cast. And it supports to the one side and other side bearings 3e and 3f provided in the rotational center of the one side and other side surface plates 3c and 3d. The bearings 3e and 3f are rolling bearing type oil-impregnated shield bearings, which are provided with a rolling bearing (not shown) for smooth rotation and a shield bearing for maintaining airtightness.

上記の油含浸シールド軸受は、軸受材には焼結合金や成長鋳鉄などの多孔質材料に潤滑油が含浸され、作動中に発生する摩擦熱による潤滑油の熱膨張と、ローター3に海水の浸入を防ぐ程度の昇圧した空気の供給などにより、摩擦面に潤滑油が循環することで、回転の円滑化と含浸した潤滑油が漏洩することなく、高い気密性を保持する機能を有している。 In the above oil-impregnated shield bearing, the bearing material is impregnated with a lubricating material in a porous material such as sintered alloy or growth cast iron, the thermal expansion of the lubricating oil due to frictional heat generated during operation, and the rotor 3 with seawater The lubrication oil circulates on the friction surface by supplying air that has been pressurized to prevent intrusion, etc., and has a function of maintaining high airtightness without facilitating rotation and leakage of the impregnated lubricant oil. Yes.

図1においては、2はボードで、四角板形(例えば、横から見て略山形)に形成しており、多孔質の弾性ゴム成形体から形成している。そして往復水流(例えば、寄せ波と引き波)を上部と下部に通すことができる。また、外転板3bの外径と同じ高さにした中腹部を四角板状に切欠いた切欠き部2aを設けている。この切欠き部2aにローター3を原動可能に容れるとともに、ボード2の前後端に海底方向に前傾する前方、後方潜航板2b,2cが一体化している。そして、潮の満ち干に左右されないことは勿論、海底に暗礁がない波打ち際の海面に係留している。 In FIG. 1, 2 is a board, which is formed in a square plate shape (for example, a substantially mountain shape when viewed from the side), and is formed from a porous elastic rubber molded body. A reciprocating water stream (e.g., spilling waves and pulling waves) can be passed through the top and bottom. Moreover, the notch part 2a which notched the middle abdominal part made into the same height as the outer diameter of the abduction board 3b in the shape of a square plate is provided. The rotor 3 can be driven in the notch 2a, and front and rear submersible plates 2b and 2c that are inclined forward in the seabed direction are integrated with the front and rear ends of the board 2. And of course, it is moored to the sea surface at the beach where there is no reef on the bottom of the sea, not to be influenced by the tides.

上記の潜航板2b,2cは、円弧板形に形成しており、ボード2と同材質の多孔質の弾性ゴム成形体から形成している。この潜航板2b,2cは海底方向に前傾する俯角を30°〜40°にしている。作用を説明すると、沖合側から高波や津波の襲撃を受けた際に、前方潜航板2bから沈降作用を惹き起こすことができる。また、堤防側から強い返し波を後傾部に受けた際に、後方潜航板2cから沈降作用を惹き起こすことができる。 The submarine plates 2b and 2c are formed in a circular arc plate shape, and are formed from a porous elastic rubber molded body made of the same material as the board 2. These submersible plates 2b and 2c have a depression angle of 30 ° to 40 ° inclined forward in the seabed direction. Explaining the action, when a high wave or tsunami is attacked from the offshore side, a sinking action can be caused from the forward submarine plate 2b. Moreover, when a strong return wave is received from the bank side by the backward inclined portion, it is possible to cause a sinking action from the rear submarine plate 2c.

また、潜航板2b,2cは、前方の潜航板2bと海底に繋ぎとめたアンカ2f又は海岸から所定の海中に向けて伸ばした図示省略の先導棒の先端との間を曳き合うチェーン2g(例えば、アルミニウム青銅の鋳造材)を海中に張り渡す一方、後方の潜航板2cと防波堤又は波消しブロックとの間を曳き合うカテナリ吊り線2h(例えば、アルミニウム青銅の素線を撚り合わせたもの)を張線するとともに、要所に浮遊する通常のブイ2iに海中吊架させて電力ケーブル6dを点吊り又はカテナリ吊り線2hに図示省略のワイヤーにてラッシング(共掛け)している。 Further, the diving plates 2b and 2c are a chain 2g (for example, striking between the front diving plate 2b and an anchor 2f connected to the seabed or a tip of a leading rod (not shown) extending from the coast toward a predetermined sea. A cast material of aluminum bronze), and a catenary suspension line 2h (for example, twisted strands of aluminum bronze) straddling between the rear diving board 2c and the breakwater or wave breaker block. The power cable 6d is suspended in the sea by a normal buoy 2i floating at a key point and lashing (co-hung) on the catenary suspension line 2h with a wire (not shown).

上記の多孔質の弾性ゴム(例えば、バネ定数が0,49〜4,7kN/センチメートル)は、耐酸性、耐アルカリ性、耐水性、耐微生物性、耐油性、耐有機溶剤性、耐圧縮性に優れた材質で、それ自体は変形することなく、且つ長期にわたる繰り返えし圧縮にも塑性変形が小さいものである。また、水平荷重による剪断力に耐える必要があるので、その剪断弾性係数は、0,1〜0,7N/mm2に設定している。 The above-mentioned porous elastic rubber (for example, spring constant is 0,49-4,7 kN / cm) is acid resistance, alkali resistance, water resistance, microbial resistance, oil resistance, organic solvent resistance, compression resistance. It is an excellent material, and does not deform itself, and has little plastic deformation even in repeated compression over a long period of time. Moreover, since it is necessary to endure the shearing force by a horizontal load, the shear elastic modulus is set to 0, 1 to 0, 7 N / mm2.

また、多孔質の弾性ゴムは、空隙率が5%より小さいと等価減衰係数が小さくなって繰り返えし圧縮を取り除くことができなくなり、空隙率が50%より大きくなると圧縮強度が不足するため、空隙率を5〜50%の範囲において、歪を5〜15%にできるように、而も、所定の浮遊性及び強靭性を備えた空隙率に調整したものを使用している。 In addition, when the porosity is less than 5%, the porous elastic rubber has a small equivalent damping coefficient and cannot be repeatedly removed, and when the porosity exceeds 50%, the compression strength is insufficient. In addition, in the range of 5 to 50% in the porosity, the one adjusted to the porosity having a predetermined floatability and toughness is used so that the strain can be 5 to 15%.

上記の強化プラスチック(FRP)は、不飽和ポリエステル樹脂を常温・常圧でも硬化するものを使用することとし、押し出し、圧縮、射出、金型成形から適した方法で形成している。このFRPは、加工が容易且つ安価で軽量、高力、腐食しにくい等の特徴を有している。尚、脱ガラス、金属代替、軽量化などの付加価値の高い炭素繊維強化プラスチック(CFRP)を採用してもよい。 The above-mentioned reinforced plastic (FRP) is made of an unsaturated polyester resin that can be cured at room temperature and normal pressure, and is formed by a suitable method from extrusion, compression, injection, and mold forming. This FRP has features such as easy processing, low cost, light weight, high strength, and resistance to corrosion. In addition, you may employ | adopt carbon fiber reinforced plastics (CFRP) with high added value, such as glass removal, metal substitution, and weight reduction.

上記のアルミニウム青銅は、Alを5%含む動Cu合金(Fe,Mn,Niを少量含有)。朝戸順によって発明された成分のものをアームスブロンズとも言われ、展延性に富んでいる。鋳造したままのものは結晶粒が粗大化するのでFe,Mnなどが添加される。加工性もよく、強度も高く、耐食性・耐摩耗性も良好。加工材は、機械部品や船舶用部品など、鋳造材は歯車、軸受、ブッシュなどに用いられている。 The aluminum bronze is a dynamic Cu alloy containing 5% Al (containing a small amount of Fe, Mn, Ni). The component invented by Jun Asato is also called Arms bronze, and is highly extensible. As-cast, the crystal grains become coarse, so Fe, Mn, etc. are added. Good workability, high strength, good corrosion resistance and wear resistance. Processed materials are used for machine parts and marine parts, and cast materials are used for gears, bearings, bushes, and the like.

上記の高力黄銅は、6/4黄銅にMn0,5〜5%、Al0,2〜7,5%、Fe0,1〜4%を添加した合金であって、著しく強度、硬さが高く、熱間鍛造性が優れ、耐摩耗性、多色性もよい。棒材、鋳物として製造され、船舶用スクリュウ軸、ポンプ軸、橋梁用構造材などに用いられている。 The high-strength brass is an alloy in which Mn 0,5 to 5%, Al 0,2 to 7,5%, Fe 0,1 to 4% is added to 6/4 brass, and the strength and hardness are extremely high. Excellent hot forgeability, good wear resistance and multicolor. Manufactured as a bar or casting, it is used for ship screw shafts, pump shafts, bridge structural materials, and the like.

図5,6においては、4は支持機構で、ローター3の安定原動を可能にするために、切欠き部2aの両端部を接続する強化枠2d内に設けており、右側強化枠2dの支持機構4を説明すると、ローター3の所定範囲内(例えば、外転板3b外径の1/2)の上下動を可能に係止するカニ挟み機4aと、このカニ挟み機4aに組み付けたローター3の不均衡な動きに対応可能に係止する支点引き寄せ機5とで構成している。 In FIGS. 5 and 6, reference numeral 4 denotes a support mechanism, which is provided in a reinforcing frame 2d connecting both ends of the notch 2a in order to enable stable driving of the rotor 3, and supports the right reinforcing frame 2d. The mechanism 4 will be described. A crab sandwiching machine 4a that can be moved up and down within a predetermined range of the rotor 3 (for example, 1/2 of the outer diameter of the outer rotation plate 3b) and a rotor assembled to the crab sandwiching machine 4a. 3 and a fulcrum attracting machine 5 which is locked so as to be able to cope with the unbalanced movement.

上記のカニ挟み機4aは、図6の左側に示す一端側を説明すると、第一右支持棒4bの一端が、対峙する外側プレート5b及び内側プレート5cが挟む間に回動可能に固定し、第一左支持棒4cの一端が、対峙する上記の挟む間に回動可能に固定し、第一右支持棒4bの他端が、第二右支持棒4dの一端に回動可能に固定し、第一左支持棒4cの他端が、第二左支持棒4eの一端に回動可能に固定し、第二右支持棒4dの他端に形成する標準ギヤを分割した左向片割り歯車4fと、左向片割り歯車4fに歯合する第二左支持棒4eの他端に形成する標準ギヤを分割した右向片割り歯車4g双方が強化枠2dに回動可能に固定している。 The above-described crab sandwiching machine 4a will be described with respect to one end shown on the left side of FIG. 6. One end of the first right support bar 4b is fixed so as to be rotatable while the opposing outer plate 5b and inner plate 5c are sandwiched between them. One end of the first left support bar 4c is fixed so as to be rotatable while the above-mentioned sandwiching is held, and the other end of the first right support bar 4b is fixed to one end of the second right support bar 4d so as to be rotatable. A left-side split gear in which the other end of the first left support bar 4c is rotatably fixed to one end of the second left support bar 4e and a standard gear formed on the other end of the second right support bar 4d is divided. 4f and a right-side split gear 4g obtained by dividing a standard gear formed at the other end of the second left support rod 4e meshing with the left-side split gear 4f are fixed to the reinforcing frame 2d so as to be rotatable. .

ここにおいて、左向片割り歯車4fの形状を説明すると、歯合範囲(例えば、歯車4fの稼働幅θ=略30°)を第二右支持棒4dの垂直方向(例えば、内向き側の壁面)に対し略180°〜略150°に形成し且つ内側面側に張出している。右向片割り歯車4gの形状は、歯合範囲(例えば、歯車4gの稼働幅θ=略30°)を第二左支持棒4eの垂直方向(例えば、内向き側の壁面)に対し略180°〜略210°に形成し且つ内側面側に張出している。 Here, the shape of the left-side split gear 4f will be described. The meshing range (for example, the operating width θ of the gear 4f = approximately 30 °) is set in the vertical direction (for example, the inward wall surface of the second right support rod 4d). ) To approximately 180 ° to approximately 150 ° and overhangs to the inner surface side. The shape of the right-side split gear 4g is such that the meshing range (for example, the operating width θ of the gear 4g = approximately 30 °) is approximately 180 with respect to the vertical direction (for example, the inward wall surface) of the second left support rod 4e. It is formed at an angle of approximately 210 ° and extends to the inner surface side.

尚、カニ挟み機4aは、ローター3に生じる上下動の精度向上を図るには、第一右支持棒4bの一端に左向片割り歯車4fと同形状の図示省略の片割り歯車を、第一左支持棒4cの一端に右向片割り歯車4gと同形状の図示省略の片割り歯車を形成し、図示省略の片割り歯車同士を歯合させる構造にしてもよい。更には、伝動効率の良い(「バックラッシュ」の小さい)歯合が求められる場合は、歯合ズレした「2段平歯車」同士或は「はす歯歯車」同士としてもよい。 In order to improve the accuracy of the vertical movement generated in the rotor 3, the crab sandwiching machine 4a is provided with a not-shown split gear of the same shape as the left-side split gear 4f at one end of the first right support bar 4b. An unillustrated split gear having the same shape as the right-side split gear 4g may be formed at one end of the left support rod 4c, and the split gears not shown may be engaged with each other. Furthermore, when meshing with good transmission efficiency (small “backlash”) is required, the two-stage spur gears or the helical gears that are misaligned may be used.

而も、左向片割り歯車4fは、強化枠2dの天端中央(下方棚の長軸方向)を切り欠いた枠溝4jを設け、この枠溝4jの左側から右側に向けて挿通する堤防側の支持ピン4hが左向片割り歯車4fの軸心に嵌入して支承するとともに、支持ピン4hに抜け落ち防止用の留リング4iが閉嵌している。また、右向片割り歯車4gは、枠溝4jの左側から右側に向けて挿通する沖合側の支持ピン4hが右向片割り歯車4gの軸心に嵌入して支承するとともに、支持ピン4hに抜け落ち防止用の他の留リング4iが閉嵌している。 In addition, the left split gear 4f is provided with a frame groove 4j in which the center of the top end of the reinforcing frame 2d (in the long axis direction of the lower shelf) is cut out, and the bank is inserted from the left side to the right side of the frame groove 4j. The support pin 4h on the side is inserted into and supported by the shaft center of the left-side split gear 4f, and a retaining ring 4i for preventing falling off is closed on the support pin 4h. Further, the right-side split gear 4g is supported by an offshore support pin 4h that is inserted from the left side to the right side of the frame groove 4j into the shaft center of the right-side split gear 4g. The other retaining ring 4i for preventing falling off is closed.

従って、図6の右側に示すように、カニ挟み機4aはローター3の上下動幅S=150mm≧羽根車3aの高さh=70mm×2強となり、羽根車3aがボード2の切り欠き部2aより突出しない範囲内を確保することで、ローター3の安定原動を可能にしている。然し、ローター3の上下動幅Sを超えた想定外(例えば、漂流物や流木廃材)の衝撃を受けた際に、衝撃を緩和する緩衝材(例えば、図示省略の弾性ゴム又は板式やコイル式の発条)を各接触部(例えば、固定バンド5aの周囲など)に取付けている。 Accordingly, as shown on the right side of FIG. 6, the crab pinching machine 4a has a vertical movement width S of the rotor 3 = 150 mm ≧ height of the impeller 3a h = 70 mm × 2 slightly, and the impeller 3a is notched on the board 2 By securing the area that does not protrude from 2a, the rotor 3 can be driven stably. However, a shock absorber (for example, an elastic rubber or a plate type or a coil type not shown) that reduces the impact when an unexpected impact exceeding the vertical movement width S of the rotor 3 (for example, drifting material or driftwood waste material) is received. Are attached to each contact portion (for example, around the fixed band 5a).

図6の右側に示す支点引き寄せ機5の一端側を説明すると、支持軸3hには固定バンド5aが接続され、この固定バンド5aを締め上げるための周囲から突出(対峙)した符号省略の沖合側、堤防側「つば」が設けられ、沖合側「つば」には直交クレビスリング5dの一端と内屈式直交クレビスリング5fの一端が回動可能に固定し、堤防側「つば」には直交クレビスリング5eの一端と図示しない内屈式直交クレビスリング5gの一端が回動可能に固定している。 The one end side of the fulcrum attracting machine 5 shown on the right side of FIG. 6 will be explained. A fixed band 5a is connected to the support shaft 3h, and an off-shore side with a code omitted that protrudes (opposite) from the periphery for tightening the fixed band 5a. An embankment-side “brim” is provided, and one end of an orthogonal clevis ring 5d and one end of an inward bending-type orthogonal clevis ring 5f are rotatably fixed to the offshore side “brim”, and an orthogonal clevis is disposed on the dike-side “brim”. One end of the ring 5e and one end of an inwardly bent orthogonal clevis ring 5g (not shown) are fixed rotatably.

また、支点引き寄せ機5は、沖合側直交クレビスリング5dの他端が外側プレート5bに回動可能に固定するとともに、沖合側内屈式直交クレビスリング5fの他端が内側プレート5cに回動可能に固定する一方、堤防側直交クレビスリング5eの他端が外側プレート5bに回動可能に固定するとともに、図示しない堤防側内屈式直交クレビスリング5gの他端が内側プレート5cに回動可能に固定している。 Further, the fulcrum attracting machine 5 has the other end of the offshore side orthogonal clevis ring 5d fixed to the outer plate 5b to be rotatable, and the other end of the offshore side inward bending type orthogonal clevis ring 5f is rotatable to the inner plate 5c. While the other end of the levee-side orthogonal clevis ring 5e is rotatably fixed to the outer plate 5b, and the other end of the dyke-side inwardly bent orthogonal clevis ring 5g is rotatable to the inner plate 5c. It is fixed.

従って、支点引き寄せ機5は、ローター3の不均衡な動きに対応可能に係止するもので、ローター3の浮体幅が大きくなるにつれ、引き寄せ度合いは縮小するが、ローター3の浮体幅を2,0mとした場合、許容寄せ幅が50mm≧ローター3の想定寄せ幅が大凡30mmとなり、許容内の支点引き寄せ幅を確保することにより、ローター3の安定原動を可能にしている。 Therefore, the fulcrum attracting machine 5 is locked so as to be able to cope with unbalanced movement of the rotor 3, and as the floating body width of the rotor 3 increases, the degree of drawing decreases, but the floating body width of the rotor 3 is reduced to 2, In the case of 0 m, the allowable moving width is 50 mm ≧ the estimated moving width of the rotor 3 is approximately 30 mm, and the stable driving of the rotor 3 is enabled by securing the allowable fulcrum pulling width.

図3,4においては、6は発電機で、外転型のローター3に内蔵しており、支持軸3hには固定子鉄心6eが接合している。この固定子鉄心6eにコイル辺をスロット形に撚り合わせた型巻コイル6cを三相巻線形に配置した巻線形固定子6fと、この巻線形固定子6fの外側を周回するローター3の内周面3gには2個以上で偶数個の永久磁石6bが異極毎に等隔固着する回転子6aで構成している。 3 and 4, reference numeral 6 denotes a generator, which is built in the outer rotation type rotor 3, and a stator core 6 e is joined to the support shaft 3 h. A wound-type stator 6f in which a coil-wound coil 6c in which coil sides are twisted into a slot shape is arranged on the stator core 6e in a three-phase winding form, and an inner circumference of the rotor 3 that circulates outside the wound-type stator 6f Two or more and even number of permanent magnets 6b are fixed to the surface 3g at equal intervals for different poles.

上記の固定子鉄心6eは、ケイ素鋼板(例えば、鉄に少量のケイ素を加えた成形体から形成したもの)を幾層にも積層して形成する。このケイ素鋼板は、磁束をよく通す強磁性で、電流に対しては鉄よりも電気抵抗が大きいため、固定子鉄心6e内に発生する渦電流と呼ばれる電流を抑えることができる。 The stator core 6e is formed by laminating several layers of silicon steel plates (for example, formed from a compact obtained by adding a small amount of silicon to iron). This silicon steel plate is ferromagnetic that allows magnetic flux to pass well, and has an electric resistance greater than that of iron for current. Therefore, current called eddy current generated in the stator core 6e can be suppressed.

上記の巻線形固定子6fは、渦電流が流れる導体にコイルを用いており、固定子鉄心6eのスロット6gに巻き上げる型巻コイル6cが同位相で発電できるように、三相巻線形に配置且つ異なった巻き数で巻き上げられ、直列に接続できる3群の巻線が結線された平衡三相回路を設けている。尚、三相巻線形に巻き上げた型巻コイル6cにはエポキシ樹脂材などが塗付して固着している。 The coil-shaped stator 6f uses a coil as a conductor through which eddy current flows, and is arranged in a three-phase coil shape so that the coil-wound coil 6c wound around the slot 6g of the stator core 6e can generate power in the same phase. A balanced three-phase circuit is provided in which three groups of windings that are wound up with different numbers of turns and can be connected in series are connected. Note that an epoxy resin material or the like is applied and fixed to the die coil 6c wound up in a three-phase winding shape.

上記の回転子6aは、ローター3の内周面3gに異極毎に等隔固着する2個以上の偶数個から成る永久磁石6bが固着しており、固着には接着部に載せたカーボン繊維やセラミック繊維が混在した樹脂材の固着力を利用している。尚、磁界(界磁磁束)を発生させるために永久磁石6bを用いましたが、ローター3に内蔵した専用の発電機6の一つからの給電を受けることで、強力な磁界磁束を作り、求める高電流型の発電機6にしている。 The rotor 6a is fixed to the inner peripheral surface 3g of the rotor 3 with two or more even-numbered permanent magnets 6b fixed at equal intervals for different poles. It uses the adhesive strength of resin materials mixed with ceramic fibers. The permanent magnet 6b is used to generate a magnetic field (field magnetic flux). By receiving power from one of the dedicated generators 6 built in the rotor 3, a strong magnetic field magnetic flux is created. The desired high current generator 6 is used.

上記の永久磁石6bは、強磁性体の一つであり、周りの磁界をゼロにしても磁化されたままでいる物質で、フェライトや、非常に強力なサマリウムコバルトの他にネオジム、鉄、ホウ素を主成分とする希土類磁石(NdFe14B)であるネオジム磁石などが代表的なものである。 The permanent magnet 6b is one of the ferromagnetic materials, and is a substance that remains magnetized even when the surrounding magnetic field is zero. In addition to ferrite and very strong samarium cobalt, neodymium, iron, and boron are used. A typical example is a neodymium magnet which is a rare earth magnet (Nd 2 Fe 14 B) as a main component.

ここで一般の三相交流発電の原理を説明すると、型巻コイル6cを120°の角度を隔てた固定子鉄心6eに配置し、その外側を周回するローター3の内周面3gに永久磁石6bが異極毎に等隔置した回転子6aが回転すると、それぞれの型巻コイル6cでは交互に向きを変える起電力(例えば、単相交流)が発生する。従い、3つの型巻コイル6cが配置される角度が120°ずれていることから、それぞれの型巻コイル6cから発生した起電力(例えば、三相交流と呼んでいる)は互いに120°の位相差が生じることになる。 Here, the principle of general three-phase alternating current power generation will be described. The coil 6c is arranged on a stator core 6e that is separated by an angle of 120 °, and the permanent magnet 6b is provided on the inner peripheral surface 3g of the rotor 3 that circulates outside. When the rotor 6a that is equally spaced for each of the different poles rotates, an electromotive force (for example, single-phase alternating current) that alternately changes direction is generated in each of the die-wound coils 6c. Accordingly, since the angle at which the three die-wound coils 6c are arranged is shifted by 120 °, the electromotive forces generated from the respective die-wound coils 6c (for example, called three-phase alternating current) are about 120 ° from each other. A phase difference will occur.

上記の巻線形固定子6fは、図4に示すように、固定子鉄心6eに三相巻線形の型巻コイル6cを配置しており、この型巻コイル6cの引き出し線6hと電力ケーブル6dの芯線6iとが接続する。そして、発生した渦電流が型巻コイル6c(三相巻線)を流れることから、敷設孔3iに通した電力ケーブル6dを介して、三相交流電流を外部に送電することができる。 As shown in FIG. 4, the above-described wound stator 6f has a three-phase wound die-wound coil 6c arranged on a stator core 6e, and a lead wire 6h of the die-wound coil 6c and a power cable 6d. The core wire 6i is connected. Then, since the generated eddy current flows through the die winding coil 6c (three-phase winding), the three-phase alternating current can be transmitted to the outside through the power cable 6d passed through the laying hole 3i.

また、巻線形固定子6fは、渦電流によって型巻コイル6cから熱が発生することから、ローター3の内周面3gに接合する集熱フイン3jが内装され、この集熱フイン3jとローター3とを接合する伝熱性の優れた図示省略のリベットを介して、ローター3の内部に発生した熱を外部(海水側)に放熱している。 Further, since the winding stator 6f generates heat from the die winding coil 6c due to the eddy current, a heat collecting fin 3j joined to the inner peripheral surface 3g of the rotor 3 is provided, and the heat collecting fin 3j and the rotor 3 are incorporated. The heat generated in the rotor 3 is radiated to the outside (seawater side) through a rivet (not shown) having excellent heat transfer properties.

上記の電力ケーブル6dは、以下図示省略のコントローラが介設され、このコントローラには出力された三相交流電流を整流器で直流に整流した後に直流とし、出力端子には所定の電圧(例えば、100(v)電圧の直流、又は、50〜60Hzの交流)を出力するインバータを有している。また、出力される電圧は波打際に打ち寄せた波の大小差やインターバルなどにより、常に変動することから、蓄電と放電を繰り返えすコンデンサーを標準実装して平滑化を図っている。 The above-described power cable 6d is provided with a controller (not shown). The controller rectifies the output three-phase alternating current into direct current using a rectifier, and turns it into direct current. The output terminal has a predetermined voltage (for example, 100 (V) a voltage direct current or an alternating current of 50 to 60 Hz). In addition, since the output voltage always fluctuates due to the difference in the wave size and the interval at the time of undulation, a capacitor that repeats storage and discharge is mounted as a standard to achieve smoothing.

すなわち、往復水流を羽根車3aの翼に当てて原動するローター3を波打ち際の海面に係止したことにより、ローター3に内蔵した発電機6が環境保全型の電力を無尽蔵に作り出すことができる。また、高波や津波の襲撃を受けた瞬時に前方、後方潜航板2b、2cが沈降作用を惹き起こすため、本装置1全体が海面から海底に向かって潜航することができる。 That is, the rotor 6 that moves by applying the reciprocating water flow to the blades of the impeller 3a is locked to the sea surface at the time of undulation, so that the generator 6 built in the rotor 3 can produce inexhaustible environmentally friendly power. In addition, since the front and rear submarine plates 2b and 2c cause subsidence instantaneously after being attacked by a high wave or tsunami, the entire device 1 can submerge from the sea surface toward the seabed.

図7においては、7は所定圧発生機で、特許請求の範囲に記載されたように「敷設孔3iと平行した小口径の圧送孔7aに空気を送り込む所定圧発生機7…一部省略…は、支持軸3hを挟んだ前後の端末が円弧を描いて下方を向くTの字形をした筒状のポンプ管7bと、ポンプ管7bと圧送孔7aとを連結する少なくともローター3の軸心方向Xに屈曲自在な筒状の管継手7iと、ポンプ管7bの円弧中央部と前方端末及び後方端末のいずれもの中間内部にそれぞれ固定して相対する相対側には流れを許し、外気側には流れを阻止する逆止め弁7c、7dと、ポンプ管7bの円弧中央部内に係合して左右方向が伸縮自在な復帰バネ手段7eと、復帰バネ手段7eの両端に接続且つポンプ管7bの内面7hに対し、狭隘な隙間を保ち相対する静止系における姿勢が変化しない相対側には流れを許し、外気側には流れを阻止する逆止め弁7f、7gを内蔵し」ている。 In FIG. 7, reference numeral 7 denotes a predetermined pressure generator. As described in the claims, “a predetermined pressure generator 7 for feeding air into a small-diameter pressure feed hole 7 a parallel to the laying hole 3 i. Is a cylindrical pump pipe 7b having a T-shape in which the front and rear terminals sandwiching the support shaft 3h form a circular arc and face downward, and at least the axial direction of the rotor 3 connecting the pump pipe 7b and the pressure feed hole 7a. X is a cylindrical pipe joint 7i that can be bent freely, and the center of the arc of the pump pipe 7b is fixed to the middle of each of the front end and the rear end. Non-return valves 7c and 7d for blocking the flow, return spring means 7e which is engaged in the center of the arc of the pump pipe 7b and can be expanded in the left-right direction, and connected to both ends of the return spring means 7e and the inner surface of the pump pipe 7b 7h, with a narrow gap Allowing flow to the relative side of attitude does not change in the system, the outdoor air is check valve 7f, a built-in 7g "to block the flow.

上記の所定圧発生機7は、空気を通す圧送孔7aに連通したことで、ローター3に海水の浸入を防ぐ程度に昇圧した所定圧を送り込ませようとするものである。また、ボード2の波乗り動作に並んだポンプ管7bが逆振り子運動をすることから、相対する静止系における姿勢を変化させない逆止め弁7f、7gが対向圧迫を図ることで、ポンプ管7b内に上記の所定圧を発生させようとするものである。 The predetermined pressure generator 7 communicates with the pressure feed hole 7a through which air passes, so that the rotor 3 is fed with a predetermined pressure that is increased to prevent the intrusion of seawater. Further, since the pump pipe 7b aligned with the wave riding operation of the board 2 performs a reverse pendulum motion, the check valves 7f and 7g that do not change the posture in the opposite stationary system are opposed to each other, and thus the pump pipe 7b enters the pump pipe 7b. The predetermined pressure is generated.

図7においては、7aは圧送孔で、支持軸3hに設けられており、ローター3の内部に外気を通す目的であって、電力ケーブル6dを通す敷設孔3iと一定の距離を保って開孔している。この圧送孔7aはローター3の内部にある一端口が、ローター3の空き空間に向けて開口し、外気側にある他端口が、支持軸3hに接続する固定バンド5aの周囲から上方に突出した符号省略の対峙する「つば」の間から天空に向けて開口している。そして、他端口に所定圧発生機7が連通している。 In FIG. 7, 7a is a pressure feed hole provided on the support shaft 3h for the purpose of passing outside air through the rotor 3, and is opened with a certain distance from the laying hole 3i through which the power cable 6d is passed. doing. This pumping hole 7a has one end opening inside the rotor 3 that opens toward the empty space of the rotor 3, and the other end opening on the outside air projects upward from the periphery of the fixed band 5a connected to the support shaft 3h. An opening is made from the space between the confronting “collars” with the reference numerals omitted toward the sky. A predetermined pressure generator 7 communicates with the other end port.

上記のポンプ管7bは、支持軸3hを挟んだ前後の端末が円弧を描いて下方を向くTの字形をした筒状に形成しており、ポンプ管7bの立ち上り管口と圧送孔7aの一端口とを連結する円筒形の管継手7iを設けている。このポンプ管7bは強化プラスチック(FRP)やステンレス鋼(特殊用途鋼の高合金系)の非透磁部材を使用している。尚、ポンプ管7bの※円弧半径R=ポンプ管7bの立ち上り部+管継手7i+支持軸3hの半径にしている。 The pump pipe 7b is formed in a cylindrical shape having a T-shape in which the front and rear terminals sandwiching the support shaft 3h draw a circular arc and face downward, and the pump pipe 7b has a rising pipe opening and a pressure feed hole 7a. A cylindrical pipe joint 7i that connects the end opening is provided. The pump pipe 7b uses a non-permeable member made of reinforced plastic (FRP) or stainless steel (a high alloy type of special purpose steel). Note that the arc radius R of the pump pipe 7b = the radius of the rising part of the pump pipe 7b + the pipe joint 7i + the support shaft 3h.

また、ポンプ管7bは、ボード2の波乗り動作に並んだ逆振り子運動や左右振れ運動が加わることから、ポンプ管7bを固定する必要から、外側プレート5bの外側面に2段付けの管固定金具7jを締付けることで立ち上り管部を固定している。尚、更なる強い揺れや振りに対応するため、ポンプ管7bの円弧内面と外側プレート5bを図示省略の固定板で接続してもよい。 Further, since the pump pipe 7b is subjected to a reverse pendulum movement and a left / right swing movement aligned with the wave riding operation of the board 2, it is necessary to fix the pump pipe 7b, so that the two-stage pipe fixing bracket is provided on the outer surface of the outer plate 5b. The rising pipe portion is fixed by tightening 7j. In order to cope with further strong shaking and swinging, the arc inner surface of the pump pipe 7b and the outer plate 5b may be connected by a fixing plate (not shown).

而も、ポンプ管7bは、円弧中央部と前方端末及び後方端末のいずれもの中間内部にそれぞれ固定して相対する逆止め弁7c、7dを設けるとともに、ポンプ管7bの円弧中央部内に係合して左右方向が伸縮自在なコイル式の復帰バネ手段7eを設け、復帰バネ手段7eの両端に接続してポンプ管7bの内面7hに対し、狭隘な隙間を保ち相対する静止系における姿勢を変化させない逆止め弁7f、7gを内蔵している。 In addition, the pump pipe 7b is provided with check valves 7c and 7d which are fixed and opposed to each other inside the center of the arc and the front terminal and the rear terminal, respectively, and engages in the arc center of the pump pipe 7b. A coil-type return spring means 7e that can expand and contract in the left-right direction is connected to both ends of the return spring means 7e so as to maintain a narrow gap with respect to the inner surface 7h of the pump pipe 7b so as not to change the posture in the stationary stationary system. Built-in check valves 7f and 7g.

上記の管継手7iは、少なくともローター3の軸心方向Xに屈曲自在で筒状に形成しており、多孔質の弾性ゴム成形体から形成している。この管継手7iは内部拡張する図示省略のコイル状のバネ鋼が内部に接着する構造にして、何度となく繰り返す屈曲に対応する柔軟性と耐久性を兼ね備え、水深10m程度の水圧に耐える耐圧性を有している。 The pipe joint 7i is formed in a cylindrical shape that can be bent at least in the axial direction X of the rotor 3, and is formed of a porous elastic rubber molded body. This pipe joint 7i has a structure in which an unillustrated coiled spring steel is bonded to the inside, has flexibility and durability corresponding to repeated bending repeatedly, and withstands water pressure of about 10 m in depth. It has sex.

図7においては、7c、7dは固定型の逆止め弁で、円筒形(例えば、縦割体を一体化)に形成しており、縦割体内に球体形のバルブを内蔵している。この逆止め弁7c、7dは特殊用途鋼(オーステナイト系)のステンレス鋼が用いられ、ポンプ管7bの円弧中央部と前方端末及び後方端末のいずれもの中間内部にそれぞれ固定(例えば、外部からプレスしたポンプ管7bに逆止め弁が接着)して相対(例えば、弁座面同士が向き合い)している。 In FIG. 7, 7c and 7d are fixed check valves, which are formed in a cylindrical shape (for example, a vertically split body is integrated), and a spherical valve is built in the vertically split body. The check valves 7c and 7d are made of special-purpose steel (austenitic) stainless steel, and are fixed to the center of the arc of the pump pipe 7b and the middle of the front terminal and the rear terminal (for example, pressed from the outside). A check valve is bonded to the pump pipe 7b and is opposed (for example, the valve seat surfaces face each other).

上記の逆止め弁7c、7dは、一端面に外気を取り込む一つの開孔を持ち、他端面に吸気を通す多数の細孔を持ち、多数の細孔と一つの開孔との間に所定の移動を可能にするとともに、一つの開孔だけを閉塞するバルブを内蔵している。これにより、相対側にだけ空気の流れを許し、外気側には空気の流れを阻止することができる。 Each of the check valves 7c and 7d has one opening for taking in outside air at one end face, and a large number of pores through which intake air is passed at the other end face, and a predetermined interval between the many openings and one opening. And a valve that closes only one opening is incorporated. Thereby, the flow of air can be allowed only on the relative side, and the flow of air can be prevented on the outside air side.

上記の復帰バネ手段7eは、コイル状に曲げられており、1本のばね鋼(例えば。特殊用途鋼の炭素鋼系)が用いられ、所定の復帰力を有している。この復帰バネ手段7eはポンプ管7bの円弧中央部内に係合して左右方向が伸縮自在に設けている。また、復帰バネ手段7eの両端に所定の質量を有して相対する静止系における姿勢を変化しない逆止め弁7f、7gがそれぞれ接続している。 The return spring means 7e is bent in a coil shape, uses a single spring steel (for example, a carbon steel system of special purpose steel), and has a predetermined return force. The return spring means 7e engages in the center of the arc of the pump pipe 7b and is provided so that it can expand and contract in the left-right direction. Further, check valves 7f and 7g having a predetermined mass and not changing the posture in the opposite stationary system are connected to both ends of the return spring means 7e, respectively.

図7においては、7f、7gは逆止め弁で、所定の質量を有しており、ボード2の波乗り動作に並んだポンプ管7bが逆振り子運動をすることにより、ポンプ管7bに吸気した外気に対して質量分を対向圧迫することができる。尚、この逆止め弁7f、7gは固定した逆止め弁7c、7dと外形の形状が異なってもよい。また、構成する無符号品についても他の部材や部品及び同一の機能を有する構造のものについて、その説明を省略する。 In FIG. 7, reference numerals 7f and 7g are check valves, which have a predetermined mass, and the outside air sucked into the pump pipe 7b when the pump pipe 7b aligned with the wave riding operation of the board 2 performs a reverse pendulum motion. On the other hand, it is possible to oppose the mass. The check valves 7f and 7g may have different external shapes from the fixed check valves 7c and 7d. In addition, the description of the unsigned product to be configured is omitted for other members and parts and structures having the same function.

上記の逆止め弁7f、7gは、逆止め弁7c、7dが吸気した外気に対し、静止系における姿勢を変化させない逆止め弁7f、7gが、相対側にだけ空気の流れを許し、外気側には空気の流れを阻止することから、所定の質量分に達するまで対向圧迫を図る(例えば、管内に圧縮作用が生じる)ことにより、ポンプ管7b内に海水の浸入を防ぐ程度に昇圧した空気である所定圧を発生することができる。 The check valves 7f and 7g described above do not change the posture in the stationary system with respect to the outside air taken in by the check valves 7c and 7d. Since the air flow is blocked, the air pressure is increased to prevent the intrusion of seawater into the pump pipe 7b by optimizing the pressure until a predetermined mass is reached (for example, a compression action is generated in the pipe). A predetermined pressure can be generated.

上記のステンレス鋼は、クロム(Cr)を12〜26%、Ni6〜22%を含有し、さらにMo,Cu,Ti,Nbを添加することがあるFe−Cr−Ni係合金で、高温のオーステナイト組織が室温までもち来された鋼種である。18−8鋼と18−8Mo鋼が代表的なものである。酸化還元環境中での耐食性が優れ、非磁性という特徴を有している。 The above stainless steel is Fe-Cr-Ni engagement gold containing 12-26% chromium (Cr), 6-22% Ni, and further containing Mo, Cu, Ti, Nb, and is a high temperature austenite. It is a steel grade whose structure is brought to room temperature. 18-8 steel and 18-8Mo steel are representative. It has excellent corrosion resistance in a redox environment and is non-magnetic.

上記のばね鋼は、炭素を0,5〜1,0%含有する中高炭素鋼と、これにSi−Mn,Mn−Cr,Cr−V,Mn−Cr−B,Si−Cr,Cr−Moなどを添加した合金鋼の計9種類がJISで規定されている。ばねの製造工程には、素材―熱間・冷却成形―焼入れ・焼もどし、素材―パテンティング処理―冷間加工・素材―焼入れ・焼もどし―冷間成形などがある。ばねでは疲労強度が最も重要なので、表面に圧縮残留応力を作り疲労破壊の発生伝搬を抑えるショートピーニングを行っている。 The above spring steel includes medium-high carbon steel containing 0.5 to 10% of carbon, Si-Mn, Mn-Cr, Cr-V, Mn-Cr-B, Si-Cr, Cr-Mo. A total of nine types of alloy steels to which etc. are added are defined by JIS. The spring manufacturing process includes materials-hot / cool forming-quenching / tempering, materials-patenting treatment-cold processing / materials-quenching / tempering-cold forming, and the like. Fatigue strength is the most important factor in springs, so short peening is performed to create a compressive residual stress on the surface and suppress the occurrence of fatigue failure.

ここで、所定圧発生機7の動作を詳述すると、ポンプ管7bの沖合側への逆振り子運動により、沖合側の固定型の逆止め弁7cと静止系における姿勢を変化させない逆止め弁7fとの間が伸長し、減圧が生じた空間に固定型の逆止め弁7cから外気が取り込まれる。継いて、ポンプ管7bの堤防側への逆振り子運動により、固定型の逆止弁7cと静止系における姿勢を変化させない逆止め弁7fとの間が近接し、固定型の逆止弁7cが取り込んだ吸気を静止系における姿勢を変化させない逆止め弁7fが圧迫しつつ、ポンプ管7bの円弧中央部内に所定圧を送り込むことができる。従って、逆止め弁7fは質量分に達するまで圧迫を繰り返すことができる。 Here, the operation of the predetermined pressure generator 7 will be described in detail. The offshore side fixed check valve 7c and the check valve 7f that does not change the posture in the stationary system due to the reverse pendulum movement of the pump pipe 7b to the offshore side. The outside air is taken in from the fixed check valve 7c into the space where the pressure is reduced. Subsequently, due to the reverse pendulum movement of the pump pipe 7b toward the bank, the fixed check valve 7c and the check valve 7f that does not change the posture in the stationary system are close to each other, and the fixed check valve 7c is A predetermined pressure can be fed into the center of the arc of the pump pipe 7b while the check valve 7f, which does not change the posture in the stationary system, compresses the taken-in intake air. Therefore, the check valve 7f can repeat the compression until the mass is reached.

すなわち、所定圧発生機7は、空気を通す圧送孔7aに連通したことにより、ローター3に海水の浸入を防ぐ程度に昇圧した所定圧を送り込むことができる。また、ボード2の波乗り動作に並んだポンプ管7bが逆振り子運動をすることによって、相対する静止系における姿勢を変化させない逆止め弁7f、7gが対向圧迫を図ることにより、ポンプ管7b内に上記の所定圧を発生することができる。 That is, the predetermined pressure generator 7 is able to send a predetermined pressure that is increased to an extent that prevents the intrusion of seawater into the rotor 3 by communicating with the pressure feed hole 7a through which air passes. Further, the check pipes 7f and 7g that do not change the posture in the opposite stationary system are opposed to each other by the counter-pendulum movement of the pump pipes 7b arranged in the wave riding operation of the board 2, so that the counter pipes are pressed in the pump pipe 7b. The predetermined pressure can be generated.

以下、上記構成の動作を説明する。すなわち、往復水流を羽根車3aの翼に当てて原動するローター3を波打ち際の海面に係止したことにより、ローター3に内蔵した発電機6が環境保全型の電力を無尽蔵に作り出すことができる。また、高波や津波の襲撃を受けた瞬時に前方、後方潜航板2b、2cが沈降作用を惹き起こすことにより、本装置1全体が海面から海底に向かって潜航することができる。 The operation of the above configuration will be described below. That is, the rotor 6 that moves by applying the reciprocating water flow to the blades of the impeller 3a is locked to the sea surface at the time of undulation, so that the generator 6 built in the rotor 3 can produce inexhaustible environmentally friendly power. In addition, the front and rear submarine plates 2b and 2c cause subsidence instantaneously upon receiving a high wave or tsunami attack, so that the entire device 1 can submerge from the sea surface toward the seabed.

而も、所定圧発生機7は、空気を通す圧送孔7aに連通したことにより、ローター3に海水の浸入を防ぐ程度に昇圧した所定圧を送り込むことができる。また、ボード2の波乗り動作に並んだポンプ管7bが逆振り子運動をすることによって、相対する静止系における姿勢を変化させない逆止め弁7f、7が対向圧迫を図ることにより、ポンプ管7b内に上記の所定圧を発生することができる。 In addition, the predetermined pressure generator 7 is capable of feeding a predetermined pressure that is increased to a level that prevents the intrusion of seawater into the rotor 3 by communicating with the pressure feed hole 7a through which air passes. Further, when the pump pipe 7b arranged in the wave riding operation of the board 2 performs a reverse pendulum motion, the non-return valves 7f and 7 that do not change the posture in the opposed stationary system are opposed to each other, and thereby the pump pipe 7b enters the pump pipe 7b. The predetermined pressure can be generated.

1……波打際発電装置
2……ボード
2a…切り欠き部
2b、2c…前、後方潜航板
2d…強化枠
2e…引留めリング
2f…アンカ
2g…チェーン
2h…カテナリ吊り線
2i…ブイ
3……ローター
3a…羽根車
3b…外転板
3c、3d…一側、他側側面板
3e、3f…一側、他側軸受
3g…ローターの内周面
3h…支持軸
3i…敷設孔
3j…集熱フイン
4……支持機構
4a…カニ挟み機
4b…第一右支持棒
4c…第一左支持棒
4d…第二右支持棒
4e…第二左支持棒
4f,4g…左向、右向片割り歯車
4h…支持ピン
4i…留リング
4j…枠溝
5……支点引き寄せ機
5a…固定バンド
5b、5c…外・内側プレート
5d、5e…沖合側、堤防側直交クレビスリング
5f、5g…沖合側、堤防側内屈式直交クレビスリング
6……発電機
6a…回転子
6b…永久磁石
6c…型巻コイル
6d…電力ケーブル
6e…固定子鉄心
6f…巻線形固定子
6g…スロット
6h…引き出し線
6i…ケーブル芯線
7……所定圧発生機
7a…圧送孔
7b…ポンプ管
7c、7d…固定型の逆止め弁
7e…復帰バネ手段
7f、7g…静止型の逆止め弁
7h…ポンプ管の内面
7i…管継手
7j…管固定金具
θ……片割り歯車の稼働幅
S……ローターの上下動幅
X……の軸心方向


DESCRIPTION OF SYMBOLS 1 ... Wave generator 2 ... Board 2a ... Notch part 2b, 2c ... Front, back submersible board 2d ... Reinforcement frame 2e ... Retaining ring 2f ... Anchor 2g ... Chain 2h ... Catenary suspension line 2i ... Buoy 3 ... rotor 3a ... impeller 3b ... abduction plates 3c, 3d ... one side, other side plate 3e, 3f ... one side, other side bearing 3g ... rotor inner peripheral surface 3h ... support shaft 3i ... laying hole 3j ... Heat collecting fin 4 ... support mechanism 4a ... crab sandwiching machine 4b ... first right support bar 4c ... first left support bar 4d ... second right support bar 4e ... second left support bars 4f, 4g ... left, right Split gear 4h ... support pin 4i ... retaining ring 4j ... frame groove 5 ... fulcrum attracting machine 5a ... fixed band 5b, 5c ... outer / inner plate 5d, 5e ... offshore side, levee side orthogonal clevis ring 5f, 5g ... offshore Side, dike side inward bending type orthogonal clevis ring 6 ... generator 6a ... rotation 6b ... Permanent magnet 6c ... Mold winding coil 6d ... Power cable 6e ... Stator core 6f ... Winding stator 6g ... Slot 6h ... Lead wire 6i ... Cable core wire 7 ... Predetermined pressure generator 7a ... Pressure feed hole 7b ... Pump tube 7c, 7d ... fixed type check valve 7e ... return spring means 7f, 7g ... stationary type check valve 7h ... inner surface of pump pipe 7i ... pipe joint 7j ... pipe fixing bracket θ ... operating width S of split gear …… Axis direction of rotor vertical movement width X ……


また、波打際発電装置では、複数のローターを縦横列配置することは勿論、ローターに内蔵する発電機の一つは高圧電流を出力する強化構造にする。而も、ローターの所定範囲内の上下動を可能に係止及び不均衡な動きに対応可能に係止する他、高波や津波の襲撃を回避する構造にするとともに、ボードの波乗り動作に並んだ逆振り子運動の活用により、ローターに海水の浸入を防ぐ程度に昇圧した空気を送り込む備えを設けるものである。 In addition, in the undulating power generation device, a plurality of rotors are arranged in rows and columns, and one of the generators built in the rotor has a reinforced structure that outputs a high-voltage current. In addition to being able to lock the rotor up and down within a predetermined range and locking it to cope with unbalanced movements, it has a structure that avoids the attack of high waves and tsunamis, and it is lined up with surfing movement of the board By utilizing the reverse pendulum motion, provision is made for sending air that has been increased in pressure to prevent the intrusion of seawater into the rotor.

そして、本発明は上記目的を達成するために往復水流を羽根車の翼に当てて原動する円筒容器形のローターと、中腹部を四角板状に切欠いた切欠き部を形成して往水流を上部に水流を下部に通す波打ち際の海面に係留する四角板形のボードと、切欠き部に容れたローターの所定範囲内の上下動を可能に係止及び不均衡な動きに対応可能に係止する支持機構と、ボードには往、復水流の上流に向けて海底方向に前、後傾して接続又は一体化する円弧板形の前方、後方潜航板と、ローターに内蔵した発電機と、ローターを回転可能に接続する支持軸にローター内部から外気に向けて貫通する電力ケーブルを通す大口径の敷設孔及び敷設孔と平行した小口径の圧送孔に空気を送り込む所定圧発生機を備えた波打際発電装置を提供する。 In order to achieve the above object, the present invention forms a cylindrical container-shaped rotor that moves by applying a reciprocating water flow to the blades of an impeller, and a cutout portion in which a middle abdomen is cut out in a square plate shape. A square plate board moored on the sea surface when the condensate flows through the lower part and the rotor contained in the notch can move up and down within a predetermined range, and can be engaged and deal with unbalanced movements. a support mechanism for stopping, the board forward, before the seabed direction toward the upstream of the condensate water flow, in front of the arc plate shape for connecting or integrally inclined backward, and the rear submerged plate, a generator incorporating the rotor A large-diameter laying hole for passing a power cable penetrating from the inside of the rotor toward the outside air to a support shaft that rotatably connects the rotor, and a predetermined pressure generator for sending air to a small-diameter pressure-feeding hole parallel to the laying hole A shoreline power generator is provided.

図1においては、1は波打際発電装置で、特許請求の範囲に記載されたように「往復水流を羽根車3aの翼に当てて原動する円筒容器形のローター3と、中腹部を四角板状に切欠いた切欠き部2aを形成して往水流を上部に水流を下部に通す波打ち際の海面に係留する四角板形のボード2と、切欠き部2aに容れたローター3の所定範囲内の上下動を可能に係止及び不均衡な動きに対応可能に係止する支持機構4と、ボード2には往、復水流の上流に向けて海底方向に前、後傾して接続又は一体化する円弧板形の前方、後方潜航板2b,2cと、ローター3に内蔵した発電機6と、ローター3を回転可能に接続する支持軸3hにローター3内部から外気に向けて貫通する電力ケーブル6dを通す大口径の敷設孔3iを備え」ている。 In FIG. 1, reference numeral 1 denotes a scalloped power generation device. As described in the claims, “a cylindrical container-shaped rotor 3 that moves by applying a reciprocating water flow to a blade of an impeller 3 a, and a middle abdomen is squared. A rectangular plate-like board 2 moored on the sea surface at the time of undulation that forms a notch 2a that is notched in a plate shape and passes the forward water flow to the upper part and the condensate flow to the lower part, and a predetermined range of the rotor 3 contained in the notch part 2a a support mechanism 4 to enable locking corresponding enable locking and unbalanced movement the vertical movement of the inner, the board 2 forward, before the seabed direction toward the upstream of the condensate water flow, connected to the rearward tilting or Electric power penetrating from the inside of the rotor 3 toward the outside air through the arcuate plate-shaped front and rear submarine plates 2b and 2c, the generator 6 built in the rotor 3, and the support shaft 3h that rotatably connects the rotor 3 It has a large-diameter laying hole 3i through which the cable 6d passes.

図1においては、2はボードで、四角板形(例えば、横から見て略山形)に形成しており、多孔質の弾性ゴム成形体から形成している。そして往復水流(例えば、寄せ波と引き波)を上部と下部に通すことができる。また、外転板3bの外径と同じ高さにした中腹部を四角板状に切欠いた切欠き部2aを設けている。この切欠き部2aにローター3を原動可能に容れるとともに、ボード2には往、復水流の上流に向けて海底方向に前、後傾する前方、後方潜航板2b,2cが一体化している。そして、潮の満ち干に左右されないことは勿論、海底に暗礁がない波打ち際の海面に係留している。 In FIG. 1, 2 is a board, which is formed in a square plate shape (for example, a substantially mountain shape when viewed from the side), and is formed from a porous elastic rubber molded body. A reciprocating water stream (e.g., spilling waves and pulling waves) can be passed through the top and bottom. Moreover, the notch part 2a which notched the middle abdominal part made into the same height as the outer diameter of the abduction board 3b in the shape of a square plate is provided. Together accommodate the rotor 3 to be prime to the notch 2a, the board 2 forward, before the seabed direction toward the upstream of the condensate water flow, forward tilted backward, the rear submerged plate 2b, 2c are integrated. And of course, it is moored to the sea surface at the beach where there is no reef on the bottom of the sea, not to be influenced by the tides.

上記の潜航板2b,2cは、円弧板形に形成しており、ボード2と同材質の多孔質の弾性ゴム成形体から形成している。この潜航板2b,2cは往、復水流の上流に向けて海底方向に前、後傾する俯角を30°〜40°にしている。作用を説明すると、沖合側から高波や津波の襲撃を受けた際に、前方潜航板2bから沈降作用を惹き起こすことができる。また、堤防側から強い返し波を後傾部に受けた際に、後方潜航板2cから沈降作用を惹き起こすことができる。 The submarine plates 2b and 2c are formed in a circular arc plate shape, and are formed from a porous elastic rubber molded body made of the same material as the board 2. The dive plate 2b, 2c is forward, before the seabed direction toward the upstream of the condensate water flow, and the depression angle of tilted backward to 30 ° to 40 °. Explaining the action, when a high wave or tsunami is attacked from the offshore side, a sinking action can be caused from the forward submarine plate 2b. Moreover, when a strong return wave is received from the bank side by the backward inclined portion, it is possible to cause a sinking action from the rear submarine plate 2c.

Claims (2)

往復水流を羽根車の翼に当てて原動する円筒容器形のローターと、中腹部を四角板状に切欠いた切欠き部を形成して往水流を上部に複水流を下部に通す波打ち際の海面に係留する四角板形のボードと、前記切欠き部に容れた前記ローターの所定範囲内の上下動及び不均衡な動きに対応可能に係止する支持機構と、前記ボードには海底方向に前傾して接続又は一体化する円弧板形の前方、後方潜航板と、前記ローターに内蔵した発電機と、前記ローターを回転可能に接続する支持軸に前記ローター内部から外気に向けて貫通する電力ケーブルを通す大口径の敷設孔及び前記敷設孔と平行した小口径の圧送孔に空気を送り込む所定圧発生機を備えたことを特徴とする波打際発電装置。 A cylindrical container-shaped rotor that drives the reciprocating water flow against the blades of the impeller and a notch with a square plate cut out in the middle of the abdomen. A square plate-shaped board to be moored, a support mechanism for locking the rotor in a predetermined range within the predetermined range so as to be able to cope with vertical movement and unbalanced movement, and the board tilted forward in the seabed direction. Arc-shaped front and rear submarine plates connected to or integrated with each other, a generator built in the rotor, and a power cable penetrating from the inside of the rotor toward the outside air to a support shaft that rotatably connects the rotor A corrugated power generation apparatus comprising: a large-diameter laying hole for passing air and a predetermined pressure generator for sending air into a small-diameter pressure feed hole parallel to the laying hole. 前記所定圧発生機は、前記支持軸を挟んだ前後の端末が円弧を描いて下方を向くTの字形をした筒状のポンプ管と、前記ポンプ管と前記圧送孔とを連結する少なくとも前記ローターの軸心方向に屈曲自在な筒状の管継手と、前記ポンプ管の円弧中央部と前方端末及び後方端末のいずれもの中間内部にそれぞれ固定して相対する相対側には流れを許し、外気側には流れを阻止する逆止め弁と、前記ポンプ管の円弧中央部内に係合して左右方向が伸縮自在な復帰バネ手段と、前記復帰バネ手段の両端に接続且つ前記ポンプ管の内面に対し、狭隘な隙間を保ち相対する静止系における姿勢を変化させない相対側には流れを許し、外気側には流れを阻止する逆止め弁を内蔵したことを特徴とする請求項1に記載の波打際発電装置。


The predetermined pressure generator includes a cylindrical pump pipe having a T-shape in which the front and rear ends sandwiching the support shaft draw a circular arc and face downward, and at least the rotor connecting the pump pipe and the pressure feed hole. A tubular pipe joint that can be bent in the axial direction of the pump pipe, and the center of the arc of the pump pipe and the middle inside of each of the front terminal and the rear terminal are fixed to each other and allowed to flow on the opposite side, and the outside air side Includes a check valve for blocking the flow, a return spring means that engages in the center of the arc of the pump pipe and can be expanded in the left-right direction, and is connected to both ends of the return spring means and to the inner surface of the pump pipe. 2. A undulation according to claim 1, further comprising a check valve for allowing flow on a relative side which does not change a posture in a stationary stationary system while maintaining a narrow gap, and for preventing flow on the outside air side. Power generator.


JP2015096379A 2015-05-11 2015-05-11 Coastal power generator Active JP5852282B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015096379A JP5852282B1 (en) 2015-05-11 2015-05-11 Coastal power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096379A JP5852282B1 (en) 2015-05-11 2015-05-11 Coastal power generator

Publications (2)

Publication Number Publication Date
JP5852282B1 JP5852282B1 (en) 2016-02-03
JP2016211450A true JP2016211450A (en) 2016-12-15

Family

ID=55238020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015096379A Active JP5852282B1 (en) 2015-05-11 2015-05-11 Coastal power generator

Country Status (1)

Country Link
JP (1) JP5852282B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685569A (en) * 1979-12-14 1981-07-11 Ohbayashigumi Ltd Wave power electricity generator
JP2003307172A (en) * 2002-04-15 2003-10-31 Takamasa Iwameji Wave force power machine

Also Published As

Publication number Publication date
JP5852282B1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
US10047717B1 (en) Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof
US6791205B2 (en) Reciprocating generator wave power buoy
US10011910B2 (en) Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof
US9624900B2 (en) Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof
US8963358B2 (en) Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof
Rhinefrank et al. Novel ocean energy permanent magnet linear generator buoy
CN101529086B (en) Submerged hydroelectric turbines having buoyancy chambers
EP2461466B1 (en) Power generator with magnetic transmission gear
CN101646861B (en) A wave power unit, a buoy, use of a wave power unit and a method for producing electric energy
US8772986B2 (en) System for converting tidal wave energy into electric energy
US20140353971A1 (en) Magnetic bearings and related systems and methods
KR101883751B1 (en) Subsystems for A Water Current Power Generation System
JP5926428B2 (en) Power generation system and reciprocating mechanism for power generation system
JP2017516949A (en) Hydroelectric turbine, stationary structure, and associated assembly method
US20190085817A1 (en) Energy conversion device
JP5852282B1 (en) Coastal power generator
CN108138741B (en) Hydroelectric energy system, related components and methods
US8736095B2 (en) Elongated hydropower generation employing linear electric generation
CN106884756A (en) Seawater waves currents comprehensively utilize generating set
JP2008092684A (en) Wave power motor
TW201014968A (en) Direct-type wave power generation device
KR20170114264A (en) The buoy, and the wave power generator using a buoy motion caused by ocean waves, and the operation and maintenance methods of wave power generator and buoy, and wave energy farm
KR20100123271A (en) Floating body connection wave power generator
CN202690313U (en) Wave power generation device with bidirectional driving gear accelerator
WO2016024520A1 (en) Power generation system and reciprocating motion mechanism for power generation system

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150511

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5852282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250