JP2016205784A - heat pump - Google Patents

heat pump Download PDF

Info

Publication number
JP2016205784A
JP2016205784A JP2015091911A JP2015091911A JP2016205784A JP 2016205784 A JP2016205784 A JP 2016205784A JP 2015091911 A JP2015091911 A JP 2015091911A JP 2015091911 A JP2015091911 A JP 2015091911A JP 2016205784 A JP2016205784 A JP 2016205784A
Authority
JP
Japan
Prior art keywords
medium
adsorbing
adsorption
flow path
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015091911A
Other languages
Japanese (ja)
Other versions
JP6428471B2 (en
Inventor
隆一 岩田
Ryuichi Iwata
隆一 岩田
山内 崇史
Takashi Yamauchi
崇史 山内
靖樹 廣田
Yasuki Hirota
靖樹 廣田
志満津 孝
Takashi Shimazu
孝 志満津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2015091911A priority Critical patent/JP6428471B2/en
Publication of JP2016205784A publication Critical patent/JP2016205784A/en
Application granted granted Critical
Publication of JP6428471B2 publication Critical patent/JP6428471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump in which one of adsorption materials alternately repeats desorption and adsorption, while the other adsorption material alternately repeats adsorption and desorption without using an opening/closing valve.SOLUTION: A switching device successively switches an evaporation condensation portion for producing an adsorption medium and an adsorption material for adsorbing the adsorption medium, and an evaporation condensation portion for condensing the adsorption medium and an adsorption material for desorbing the adsorption medium, while keeping states that the evaporation condensation portion for producing the adsorption medium and the adsorption material for adsorbing the adsorption medium are adjacent to each other, and the evaporation condensation portion for condensing the adsorption medium and the adsorption material for desorbing the adsorption medium are adjacent to each other, by relatively moving a flow channel member to the adsorption materials and the evaporation condensation portions 30.SELECTED DRAWING: Figure 1

Description

本発明は、ヒートポンプに関する。   The present invention relates to a heat pump.

特許文献1に記載の吸着式ヒートポンプでは、ロータを回転さることで吸着材の内部を流れる熱媒が温水と冷却水とに交互に切り替えられるようになっている。   In the adsorption heat pump described in Patent Document 1, the heat medium flowing inside the adsorbent is alternately switched between hot water and cooling water by rotating the rotor.

特願2012−127594号公報Japanese Patent Application No. 2012-127594

しかし、特許文献1の構成では、吸着材と蒸発器との間の隔壁又は吸着材と凝縮器との間の隔壁に複数の開閉弁が設けられており、この開閉弁を開閉することで、水蒸気が吸着材に供給され、又は水蒸気が凝縮器に排出されるようになっている。   However, in the configuration of Patent Document 1, a plurality of on-off valves are provided on the partition wall between the adsorbent and the evaporator or the partition wall between the adsorbent and the condenser, and by opening and closing this on-off valve, Water vapor is supplied to the adsorbent or water vapor is discharged to the condenser.

本発明は、開閉弁を用いることなく、一方の吸着材が脱着・吸着を交互に繰り返し、他方の吸着材が吸着・脱着を交互に繰り返す構成を得ることである。   The present invention is to obtain a configuration in which one adsorbent alternately repeats desorption / adsorption and the other adsorbent alternately repeats adsorption / desorption without using an on-off valve.

本発明の請求項1に係るヒートポンプは、吸着媒体が収容されている吸着空間を有する容器と、前記容器の前記吸着空間で間隔を空けて並べられ、第一熱媒との熱交換により吸着媒体を生成し、第二熱媒との熱交換により吸着媒体を凝縮する複数の蒸発凝縮部と、前記容器の前記吸着空間で、前記蒸発凝縮部の並び方向から見て夫々の前記蒸発凝縮部の隣りに夫々配置され、前記蒸発凝縮部によって生成された吸着媒体を第三熱媒との熱交換により吸着し、前記第三熱媒と比して高温の第四熱媒との熱交換により吸着媒体を脱着する複数の吸着材と、吸着媒体を生成する前記蒸発凝縮部と吸着媒体を吸着する前記吸着材とが隣り合い、かつ、吸着媒体を凝縮する前記蒸発凝縮部と吸着媒体を脱着する前記吸着材とが隣り合うように、前記第一熱媒が流れる第一流路、前記第二熱媒が流れる第二流路、前記第三熱媒が流れる第三流路、及び前記第四熱媒が流れる第四流路が形成されている流路部材と、前記流路部材を前記吸着材及び前記蒸発凝縮部に対して相対的に移動させ、吸着媒体を生成する前記蒸発凝縮部と吸着媒体を吸着する前記吸着材とが隣り合い、かつ、吸着媒体を凝縮する前記蒸発凝縮部と吸着媒体を脱着する前記吸着材とが隣り合う状態を維持しつつ、吸着媒体を生成する前記蒸発凝縮部及び吸着媒体を吸着する前記吸着材と、吸着媒体を凝縮する前記蒸発凝縮部及び吸着媒体を脱着する前記吸着材とを順次に切り替える切替装置と、を備えることを特徴とする。   The heat pump according to claim 1 of the present invention is arranged such that a container having an adsorption space in which an adsorption medium is accommodated, and the adsorption space of the container are arranged at intervals, and the adsorption medium is exchanged by heat exchange with the first heat medium. A plurality of evaporative condensing units that condense the adsorbing medium by heat exchange with the second heat medium, and in the adsorbing space of the container, Adjacent to each other and adsorbed by the heat exchange with the third heat medium, and adsorbed by the heat exchange with the fourth heat medium, which is higher in temperature than the third heat medium. A plurality of adsorbents for desorbing a medium, the evaporation condensing unit for generating the adsorbing medium, and the adsorbing material for adsorbing the adsorbing medium are adjacent to each other, and the evaporation condensing unit for condensing the adsorbing medium and the adsorbing medium are desorbed The first so that the adsorbent is adjacent. A flow path in which a first flow path through which the medium flows, a second flow path through which the second heat medium flows, a third flow path through which the third heat medium flows, and a fourth flow path through which the fourth heat medium flows are formed. A member, and the flow path member is moved relative to the adsorbent and the evaporative condensing unit, the evaporative condensing unit that generates an adsorbing medium and the adsorbent adsorbing the adsorbing medium are adjacent to each other; and The evaporative condensing unit for condensing the adsorbing medium and the adsorbing material for adsorbing the adsorbing medium, and the adsorbing medium while adsorbing the adsorbing medium and the evaporating condensing unit for generating the adsorbing medium are maintained while the adsorbing material for desorbing the adsorbing medium is maintained adjacent And a switching device for sequentially switching between the evaporative condensing part for condensing the adsorbent and the adsorbent for desorbing the adsorbing medium.

上記構成によれば、容器の吸着空間に、蒸発凝縮部が間隔を空けて並べられている。そして、蒸発凝縮部の並び方向から見て夫々の蒸発凝縮部の隣りに吸着材が夫々配置されている。   According to the said structure, the evaporative condensation part is located in the adsorption space of the container at intervals. Adsorbents are arranged next to the respective evaporative condensing units as viewed from the direction in which the evaporative condensing units are arranged.

また、流路部材には、吸着媒体を生成する蒸発凝縮部と吸着媒体を吸着する吸着材とが隣り合い、かつ、吸着媒体を凝縮する蒸発凝縮部と吸着媒体を脱着する吸着材とが隣り合うように、第一流路、第二流路、第三流路及び第四流路が形成されている。   Further, the evaporative condensing part that generates the adsorbing medium and the adsorbing material that adsorbs the adsorbing medium are adjacent to the flow path member, and the evaporating and condensing part that condenses the adsorbing medium and the adsorbing material that desorbs the adsorbing medium are adjacent to the flow path member. A first flow path, a second flow path, a third flow path, and a fourth flow path are formed to fit.

これにより、第一熱媒との熱交換により蒸発凝縮部が生成した吸着媒体を、吸着材が第三熱媒との熱交換により吸着する。さらに、吸着材が第四媒体との熱交換により脱着した吸着媒体を、蒸発凝縮部が第二熱媒との熱交換により凝縮する。   Thereby, an adsorbent adsorb | sucks the adsorption medium which the evaporative condensation part produced | generated by heat exchange with a 1st heat medium by heat exchange with a 3rd heat medium. Furthermore, the evaporative condensing unit condenses the adsorption medium from which the adsorbent has been desorbed by heat exchange with the fourth medium by heat exchange with the second heat medium.

そして、切替装置が、流路部材を吸着材及び蒸発凝縮部に対して相対的に移動させる。これにより、吸着媒体を生成する蒸発凝縮部と吸着媒体を吸着する吸着材とが隣り合い、かつ、吸着媒体を凝縮する蒸発凝縮部と吸着媒体を脱着する吸着材とが隣り合う状態を維持しつつ、吸着媒体を生成する蒸発凝縮部及び吸着媒体を吸着する吸着材と、吸着媒体を凝縮する蒸発凝縮部及び吸着媒体を脱着する吸着材とが順次に切り替えられる。   Then, the switching device moves the flow path member relative to the adsorbent and the evaporation condensing unit. As a result, the state where the evaporation condensing part that generates the adsorbing medium and the adsorbent that adsorbs the adsorbing medium are adjacent to each other, and the evaporation condensing part that condenses the adsorbing medium and the adsorbent that desorbs the adsorbing medium are maintained adjacent to each other. On the other hand, the evaporating and condensing part that generates the adsorbing medium and the adsorbing material that adsorbs the adsorbing medium, and the evaporating and condensing part that condenses the adsorbing medium and the adsorbing material that desorbs the adsorbing medium are sequentially switched.

このようにして、開閉弁を用いることなく、一方の吸着材が脱着・吸着を交互に繰り返し、他方の吸着材が吸着・脱着を交互に繰り返す構成を得ることができる。   In this way, it is possible to obtain a configuration in which one adsorbent alternately repeats desorption / adsorption and the other adsorbent alternately repeats adsorption / desorption without using an on-off valve.

本発明の請求項2に係るヒートポンプは、請求項1に記載のヒートポンプにおいて、前記蒸発凝縮部は、前記並び方向に対して交差する一方向から見て円状に間隔を空けて並べられ、前記切替装置は、前記蒸発凝縮部が前記一方向から見て並ぶ円の中心を軸として前記流路部材を前記吸着材及び前記蒸発凝縮部に対して相対的に回転させ、吸着媒体を生成する前記蒸発凝縮部及び吸着媒体を吸着する前記吸着材と、吸着媒体を凝縮する前記蒸発凝縮部及び吸着媒体を脱着する前記吸着材とを順次に切り替えることを特徴とする。   The heat pump according to a second aspect of the present invention is the heat pump according to the first aspect, wherein the evaporative condensing units are arranged at intervals in a circle when viewed from one direction intersecting the arrangement direction, The switching device rotates the flow path member relative to the adsorbent and the evaporation condensing unit around the center of a circle in which the evaporation condensing unit is lined up when viewed from the one direction to generate an adsorbing medium. The adsorbent that adsorbs the evaporation condensing unit and the adsorbing medium and the adsorbing material that desorbs the adsorbing medium and the evaporating condensing unit that condenses the adsorbing medium are sequentially switched.

上記構成によれば、蒸発凝縮部は、一方向から見て円状に間隔を空けて並べられている。そして、切替装置は、蒸発凝縮部が一方向から見て並ぶ円の中心を軸として流路部材を吸着材及び蒸発凝縮部に対して相対的に回転させる。   According to the above configuration, the evaporating and condensing units are arranged in a circle at intervals as viewed from one direction. Then, the switching device rotates the flow path member relative to the adsorbent and the evaporation condensing unit with the center of the circle where the evaporation condensing units are lined up as viewed from one direction as an axis.

このように、流路部材を回転させることで、吸着媒体を生成する蒸発凝縮部及び吸着媒体を吸着する吸着材と、吸着媒体を凝縮する蒸発凝縮部及び吸着媒体を脱着する吸着材とを順次に切り替えることができる。   In this way, by rotating the flow path member, the evaporation condensing unit that generates the adsorbing medium and the adsorbing material that adsorbs the adsorbing medium, the evaporation condensing unit that condenses the adsorbing medium, and the adsorbing material that desorbs the adsorbing medium are sequentially provided. You can switch to

本発明の請求項3に係るヒートポンプは、請求項2に記載のヒートポンプにおいて、前記蒸発凝縮部及び前記吸着材は、矩形板状とされ、
前記蒸発凝縮部の板面及び前記吸着材の板面は、前記蒸発凝縮部が前記一方向から見て並ぶ円の周方向に向いていることを特徴とする。
The heat pump according to claim 3 of the present invention is the heat pump according to claim 2, wherein the evaporating and condensing part and the adsorbent are formed in a rectangular plate shape,
The plate surface of the evaporative condensing unit and the plate surface of the adsorbent are characterized by being directed in a circumferential direction of a circle in which the evaporating and condensing unit is arranged as viewed from the one direction.

上記構成によれば、蒸発凝縮部及び吸着材は、矩形板状とされ、蒸発凝縮部の板面及び吸着材の板面は、蒸発凝縮部が並ぶ円の周方向に向いている。   According to the above configuration, the evaporative condensing part and the adsorbent are formed in a rectangular plate shape, and the plate surface of the evaporative condensing part and the plate surface of the adsorbent are oriented in the circumferential direction of the circle in which the evaporative condensing parts are arranged.

そして、一方で、吸着材は、隣りに配置されている蒸発凝縮部が蒸発凝縮部の板面で生成して空間に放出した吸着媒体を吸着材の板面で吸着する。また、他方で、蒸発凝縮部は、隣りに配置されている吸着材が吸着材の板面で脱着して空間に放出した吸着媒体を蒸発凝縮部の板面で凝縮する。   On the other hand, the adsorbent adsorbs the adsorbing medium generated by the evaporating and condensing unit arranged adjacent to the plate of the evaporating and condensing unit and released into the space on the plate of the adsorbing material. On the other hand, the evaporative condensing unit condenses the adsorbing medium, which is adsorbed on the adsorbent disposed adjacently and released to the space, on the plate surface of the evaporative condensing unit.

このように、蒸発凝縮部及び吸着材を矩形板状とすることで、吸着材が吸着媒体を吸着する面積、吸着材が吸着媒体を脱着する面積、蒸発凝縮部が吸着媒体を生成する面積、及び蒸発凝縮部が吸着媒体を凝縮する面積を増やすことができる。   Thus, by making the evaporation condensing part and the adsorbent into a rectangular plate shape, the area where the adsorbent adsorbs the adsorbing medium, the area where the adsorbent desorbs the adsorbing medium, the area where the evaporating condensing part generates the adsorbing medium, And the area which an evaporation condensation part condenses an adsorption medium can be increased.

本発明によれば、開閉弁を用いることなく、一方の吸着材が脱着・吸着を交互に繰り返し、他方の吸着材が吸着・脱着を交互に繰り返す構成を得ることができる。   According to the present invention, it is possible to obtain a configuration in which one adsorbent alternately repeats desorption / adsorption and the other adsorbent alternately repeats adsorption / desorption without using an on-off valve.

本実施形態に係る吸着式ヒートポンプを示した斜視図である。It is the perspective view which showed the adsorption type heat pump which concerns on this embodiment. 本実施形態に係る吸着式ヒートポンプを示した側面図である。It is the side view which showed the adsorption type heat pump which concerns on this embodiment. 本実施形態に係る吸着式ヒートポンプを示した分解斜視図である。It is the disassembled perspective view which showed the adsorption type heat pump which concerns on this embodiment. 本実施形態に係る吸着式ヒートポンプを示し、図2におけるS1−S1線断面図である。The adsorption heat pump which concerns on this embodiment is shown, and it is the S1-S1 sectional view taken on the line in FIG. 本第実施形態に係る吸着式ヒートポンプを示し、図2におけるS2−S2線断面図である。The adsorption heat pump which concerns on this embodiment is shown, and it is the S2-S2 sectional view taken on the line in FIG. 本実施形態に係る吸着式ヒートポンプを示し、図2におけるS3−S3線断面図である。The adsorption heat pump which concerns on this embodiment is shown, and it is the S3-S3 sectional view taken on the line in FIG. 本実施形態に係る吸着式ヒートポンプを示し、図2におけるS4−S4線断面図である。The adsorption heat pump which concerns on this embodiment is shown, and it is the S4-S4 sectional view taken on the line in FIG. 本実施形態に係る吸着式ヒートポンプを示し、図6におけるS5−S5線断面図である。The adsorption heat pump which concerns on this embodiment is shown, and it is the S5-S5 sectional view taken on the line in FIG. 本実施形態に係る吸着式ヒートポンプを示し、図6におけるS6−S6線断面図である。The adsorption heat pump which concerns on this embodiment is shown, and it is the S6-S6 sectional view taken on the line in FIG. 本実施形態に係る吸着式ヒートポンプを示し、図7におけるS7−S7線断面図である。The adsorption heat pump which concerns on this embodiment is shown, and it is the S7-S7 sectional view taken on the line in FIG. 本実施形態に係る吸着式ヒートポンプを示し、図7におけるS8−S8線断面図である。The adsorption heat pump which concerns on this embodiment is shown, and it is the S8-S8 sectional view taken on the line in FIG. 本第実施形態に係る吸着式ヒートポンプの吸着部及び蒸発凝縮部を示した拡大斜視図である。It is the expansion perspective view which showed the adsorption | suction part and evaporation condensation part of the adsorption | suction type heat pump which concerns on the present embodiment. 本第実施形態に係る吸着式ヒートポンプの吸着部及び蒸発凝縮部を示した拡大斜視図である。It is the expansion perspective view which showed the adsorption | suction part and evaporation condensation part of the adsorption | suction type heat pump which concerns on the present embodiment. 本第実施形態に係る吸着式ヒートポンプの吸着部及び蒸発凝縮部を示した拡大斜視図である。It is the expansion perspective view which showed the adsorption | suction part and evaporation condensation part of the adsorption | suction type heat pump which concerns on the present embodiment. 本第実施形態に係る吸着式ヒートポンプを示した断面図である。It is sectional drawing which showed the adsorption type heat pump which concerns on this embodiment. 本第実施形態に係る吸着式ヒートポンプを示した断面図である。It is sectional drawing which showed the adsorption type heat pump which concerns on this embodiment. 本第実施形態に係る吸着式ヒートポンプを示した断面図である。It is sectional drawing which showed the adsorption type heat pump which concerns on this embodiment.

本発明の実施形態に係るヒートポンプの一例としての吸着式ヒートポンプの一例について図1〜図17を用いて説明する。なお、図中に示す矢印Hは装置上下方向(鉛直方向)を示し、矢印Wは装置幅方向(水平方向)を示し、矢印Dは装置奥行方向(水平方向)を示す。   An example of the adsorption heat pump as an example of the heat pump according to the embodiment of the present invention will be described with reference to FIGS. In the drawing, an arrow H indicates the vertical direction of the apparatus (vertical direction), an arrow W indicates the apparatus width direction (horizontal direction), and an arrow D indicates the depth direction of the apparatus (horizontal direction).

(全体構成)
本実施形態に係る吸着式ヒートポンプ10(以下「ヒートポンプ10」)は、図1、図2に示されるように、容器12と、水を蒸発、水蒸気(吸着媒体の一例)を凝縮する蒸発凝縮部30と、水蒸気を吸着、水蒸気を脱着する吸着部36とを備えている。さらに、ヒートポンプ10は、各熱媒が流れる流路部材の一例としての流路機構50と、切替装置90(図8参照)とを備えている。
(overall structure)
As shown in FIG. 1 and FIG. 2, the adsorption heat pump 10 (hereinafter “heat pump 10”) according to this embodiment includes a container 12 and an evaporation condensing unit that evaporates water and condenses water vapor (an example of an adsorption medium). 30 and an adsorption part 36 for adsorbing and desorbing water vapor. Furthermore, the heat pump 10 includes a flow path mechanism 50 as an example of a flow path member through which each heat medium flows, and a switching device 90 (see FIG. 8).

そして、この吸着式ヒートポンプ10は、例えば、自動車等の廃熱によって生成された後述する高温熱媒F4との熱交換より、吸着工程において後述する低温熱媒F1を冷却するようになっている。   And this adsorption type heat pump 10 cools low-temperature heat carrier F1 mentioned below in an adsorption process by heat exchange with high-temperature heat carrier F4 mentioned below generated by waste heat, such as a car, for example.

〔容器〕
容器12は、図1、図2、図8、図10に示されるように、装置奥行方向に延びる円筒状とされた本体部14と、本体部14において装置奥行方向の両端部に取り付けられた一対の蓋部16と、本体部14の軸線Cを軸線とする軸管18とを含んで構成されている。さらに、容器12は、蒸発凝縮部30及び吸着部36の両端部に配置され、容器12の内部を装置奥行方向において分離する円状の一対の分離部20を備えている。
〔container〕
As shown in FIGS. 1, 2, 8, and 10, the container 12 is attached to a cylindrical main body portion 14 extending in the apparatus depth direction and both ends of the main body portion 14 in the apparatus depth direction. A pair of lid portions 16 and an axial tube 18 having the axis C of the main body portion 14 as an axis are configured. Further, the container 12 includes a pair of circular separation parts 20 that are disposed at both ends of the evaporation condensing part 30 and the adsorption part 36 and separate the inside of the container 12 in the apparatus depth direction.

軸管18は、図2に示されるように、本体部14の内部において一対の分離部20の間に配置され、一対の分離部20には、軸管18の外径と同様の外径の貫通孔20Aが夫々形成されている。そして、この貫通孔20Aが軸管18の内部を分離部20の外部に開放している。さらに、一対の蓋部16には、装置奥行方向から見て、貫通孔20Aと同様の外径の貫通孔16Aが夫々形成されている。   As shown in FIG. 2, the shaft tube 18 is disposed between the pair of separation portions 20 inside the main body portion 14, and the pair of separation portions 20 has an outer diameter similar to the outer diameter of the shaft tube 18. Each through hole 20A is formed. The through hole 20 </ b> A opens the inside of the shaft tube 18 to the outside of the separation unit 20. Further, the pair of lid portions 16 are formed with through-holes 16A having the same outer diameter as the through-holes 20A when viewed from the depth direction of the apparatus.

そして、本体部14の内周面と、一対の分離部20と、軸管18の外周面とで囲まれた空間は、吸着空間22とされている。この吸着空間22は、真空脱気され、吸着空間22には、水蒸気が収容されている。また、装置奥行方向の一方側及び他方側には、分離部20と蓋部16との間の空間70が夫々形成されている。この空間70は、吸着空間22とは異なり大気圧とされている。   A space surrounded by the inner peripheral surface of the main body 14, the pair of separating portions 20, and the outer peripheral surface of the shaft tube 18 is an adsorption space 22. The adsorption space 22 is evacuated and contains water vapor. In addition, spaces 70 between the separation part 20 and the lid part 16 are respectively formed on one side and the other side in the apparatus depth direction. Unlike the adsorption space 22, this space 70 is at atmospheric pressure.

〔蒸発凝縮部〕
蒸発凝縮部30は、複数設けられ、図3に示されるように、矩形板状とされている。そして、蒸発凝縮部30は、蒸発凝縮部30の板面が軸管18の周方向を向くように円状に同様の間隔で並べられ、軸管18の他端側(図中右側)の部分に取り付けられている。
[Evaporation condensation section]
A plurality of the evaporating and condensing units 30 are provided, and have a rectangular plate shape as shown in FIG. The evaporative condensing unit 30 is arranged in a circular manner at a similar interval so that the plate surface of the evaporative condensing unit 30 faces the circumferential direction of the axial tube 18, and is a portion on the other end side (right side in the drawing) of the axial tube 18. Is attached.

また、蒸発凝縮部30の基端部が容器12の軸管18の外周面に取り付けられ、蒸発凝縮部30の先端部が容器12の本体部14の内周面に接触し(図5参照)、蒸発凝縮部30の装置奥行方向の他端部が容器12の分離部20に接触している(図10参照)。   Further, the proximal end portion of the evaporation condensing unit 30 is attached to the outer peripheral surface of the shaft tube 18 of the container 12, and the distal end portion of the evaporating condensing unit 30 contacts the inner peripheral surface of the main body 14 of the container 12 (see FIG. 5). The other end portion in the apparatus depth direction of the evaporation condensing unit 30 is in contact with the separation unit 20 of the container 12 (see FIG. 10).

なお、本実施形態では、蒸発凝縮部30は、20個設けられ、軸管18の外周面に18〔°〕ピッチで配置されている。   In the present embodiment, 20 evaporation condensing units 30 are provided and arranged on the outer peripheral surface of the shaft tube 18 at an 18 [°] pitch.

さらに、蒸発凝縮部30の内部には、図10、図11に示されるように、流路30Aが、蒸発凝縮部30の縁辺に沿うように形成されている。また、分離部20には、流路30Aの両端部と対向する貫通孔20Bが形成されている。これにより、流路30Aと、装置奥行方向の他端側の空間70とは連通している。なお、この流路30Aには、後述する低温熱媒F1、又は中温熱媒F2が流れるようになっている。   Furthermore, as shown in FIGS. 10 and 11, a flow path 30 </ b> A is formed in the evaporative condensing unit 30 along the edge of the evaporative condensing unit 30. Further, the separation portion 20 is formed with a through hole 20B that faces both ends of the flow path 30A. Thereby, the flow path 30A communicates with the space 70 on the other end side in the apparatus depth direction. Note that a low-temperature heat medium F1 or an intermediate-temperature heat medium F2 described later flows through the flow path 30A.

〔吸着部〕
吸着部36は、複数設けられ、図3に示されるように、矩形板状とされている。そして、吸着部36は、吸着部36の板面が軸管18の周方向を向くように同様の間隔で並べられ、軸管18の一端側(図中左側)の部分に取り付けられている。
[Suction part]
A plurality of suction portions 36 are provided, and as shown in FIG. And the adsorption | suction part 36 is arranged in the same space | interval so that the plate | board surface of the adsorption | suction part 36 may face the circumferential direction of the axial tube 18, and is attached to the part of the one end side (left side in a figure) of the axial tube 18.

具体的には、装置奥行方向から見て、吸着部36は、軸管18の周方向において蒸発凝縮部30と同様の位置に配置されており、と吸着部36の端部と蒸発凝縮部30の端部の間には、板状の断熱部28が配置されている。換言すれば、吸着部36、及び蒸発凝縮部30は、装置奥行方向(一方向の一例)から見て円状に並べられている。そして、蒸発凝縮部30の並び方向である軸管18の周方向から見て、吸着部36は、蒸発凝縮部30の隣りに配置されている。   Specifically, when viewed from the depth direction of the apparatus, the adsorption unit 36 is disposed at the same position as the evaporation condensing unit 30 in the circumferential direction of the axial tube 18, and the end of the adsorption unit 36 and the evaporation condensing unit 30. Between these end portions, a plate-like heat insulating portion 28 is disposed. In other words, the adsorption unit 36 and the evaporation condensing unit 30 are arranged in a circle when viewed from the depth direction of the apparatus (an example of one direction). The adsorption unit 36 is disposed next to the evaporation condensing unit 30 when viewed from the circumferential direction of the shaft tube 18 that is the direction in which the evaporation condensing units 30 are arranged.

そして、吸着部36の基端部が軸管18の外周面に取り付けられ、吸着部36の先端部が容器12の本体部14の内周面に接触し(図4参照)、吸着部36の装置奥行方向の一端部が容器12の分離部20に接触している(図8参照)。   And the base end part of the adsorption | suction part 36 is attached to the outer peripheral surface of the axial tube 18, the front-end | tip part of the adsorption | suction part 36 contacts the internal peripheral surface of the main-body part 14 of the container 12 (refer FIG. 4), and the adsorption | suction part 36 of FIG. One end of the apparatus in the depth direction is in contact with the separation part 20 of the container 12 (see FIG. 8).

なお、本実施形態では、吸着部36は、20個設けられ、軸管18の外周面に18〔°〕ピッチで並べられている。   In the present embodiment, 20 suction portions 36 are provided and are arranged on the outer peripheral surface of the shaft tube 18 at a pitch of 18 °.

さらに、吸着部36は、図12に示されるように、3層構造とされ、中間板38と、中間板38の表面及び裏面に積層されている吸着材40とを有している。吸着材40は、水蒸気を吸着して発熱し、水蒸気を脱着して吸熱するようになっている。この吸着材40としては、例えば、活性炭、メソポーラスシリカ、ゼオライト、シリカゲル、及び粘土鉱物等を用いることができる。なお、中間板38の板面に吸着材40を積層するために、例えば、吸着材を含む塗布液を中間板38に塗布する方法、吸着材を含む吸着材成形体を中間板38に接着する方法等が用いられる。   Further, as shown in FIG. 12, the adsorption portion 36 has a three-layer structure, and includes an intermediate plate 38 and an adsorbent 40 laminated on the front and back surfaces of the intermediate plate 38. The adsorbent 40 adsorbs water vapor to generate heat, and desorbs water vapor to absorb heat. As the adsorbent 40, for example, activated carbon, mesoporous silica, zeolite, silica gel, clay mineral, or the like can be used. In addition, in order to laminate the adsorbent 40 on the plate surface of the intermediate plate 38, for example, a method of applying an application liquid containing the adsorbent to the intermediate plate 38, or adhering the adsorbent molded body containing the adsorbent to the intermediate plate 38. A method or the like is used.

また、中間板38の内部には、図8、図9に示されるように、流路38Aが、中間板38の縁辺に沿うように形成されている。また、分離部20には、流路38Aの両端部と対向する貫通孔20Bが形成されている。これにより、流路38Aと、装置奥行方向の一端側の空間70とは連通している。なお、この流路38Aには、後述する中温熱媒F3、又は高温熱媒F4が流れるようになっている。   Further, as shown in FIGS. 8 and 9, a flow path 38 </ b> A is formed along the edge of the intermediate plate 38 inside the intermediate plate 38. Further, the separation portion 20 is formed with a through hole 20B that faces both ends of the flow path 38A. Thereby, the flow path 38A communicates with the space 70 on one end side in the apparatus depth direction. Note that an intermediate temperature heat medium F3 or a high temperature heat medium F4, which will be described later, flows through the flow path 38A.

そして、周方向において対向する、蒸発凝縮部30及び吸着部36と、蒸発凝縮部30及び吸着部36との間には、水蒸気が移動する領域42(図12参照)が形成されている。   And the area | region 42 (refer FIG. 12) to which water vapor | steam moves is formed between the evaporation condensation part 30 and the adsorption | suction part 36 which oppose in the circumferential direction, and the evaporation condensation part 30 and the adsorption | suction part 36.

〔流路機構〕
流路機構50は、図3、図8、図10に示されるように、軸管18を貫通している第一管部材52と、第一管部材52の内周面と間隔を空けて第一管部材52の内部に配置されている第二管部材54とを備えている。さらに、流路機構50は、第二管部材54の内周面と間隔を空けて第二管部材54の内部に配置されている第三管部材56と、第三管部材56の内周面と間隔を空けて第三管部材56の内部に配置されている第四管部材58とを備えている。
[Flow path mechanism]
As shown in FIGS. 3, 8, and 10, the flow path mechanism 50 includes a first pipe member 52 penetrating the shaft pipe 18 and an inner peripheral surface of the first pipe member 52 spaced apart from the first pipe member 52. And a second pipe member 54 disposed inside the one pipe member 52. Further, the flow path mechanism 50 includes a third pipe member 56 disposed inside the second pipe member 54 at a distance from the inner peripheral face of the second pipe member 54, and an inner peripheral face of the third pipe member 56. And a fourth pipe member 58 disposed inside the third pipe member 56 with a space therebetween.

また、第一管部材52、第二管部材54、第三管部材56及び第四管部材58の両端側は、図8、図10に示されるように、前述した一対の分離部20に夫々形成された貫通孔20A、及び一対の蓋部16に夫々形成された貫通孔16Aを通って蓋部16から容器12の外部に露出している。そして、一対の蓋部16の貫通孔16Aの孔縁と、第一管部材52の外周面との間には、図示せぬ軸受が設けられ、流路機構50は、軸線Cを中心に回転可能とされている(図1の矢印F参照)。さらに、貫通孔16Aの孔縁と第一管部材52の外周面との間は、図示せぬシール部材によってシールされている。   Moreover, the both ends of the 1st pipe member 52, the 2nd pipe member 54, the 3rd pipe member 56, and the 4th pipe member 58 are respectively shown in FIG. 8, FIG. It is exposed to the outside of the container 12 from the lid portion 16 through the formed through hole 20A and the through holes 16A formed in the pair of lid portions 16, respectively. A bearing (not shown) is provided between the hole edge of the through hole 16 </ b> A of the pair of lid portions 16 and the outer peripheral surface of the first pipe member 52, and the flow path mechanism 50 rotates about the axis C. It is possible (see arrow F in FIG. 1). Furthermore, the gap between the hole edge of the through hole 16A and the outer peripheral surface of the first pipe member 52 is sealed by a seal member (not shown).

また、流路機構50は、図8、図10に示されるように、第一管部材52の内部を、装置奥行方向の一端側(図中左側)の空間と、他端側(図中右側)の空間とに仕切る円状の仕切板60を備えている。また、この一対の仕切板60は、第一管部材52、第二管部材54、第三管部材56及び第四管部材58と一体的に成形されている。   Further, as shown in FIGS. 8 and 10, the flow path mechanism 50 includes a space on one end side (left side in the drawing) and the other end side (right side in the drawing) in the first tube member 52. ), A circular partition plate 60 is provided. The pair of partition plates 60 are formed integrally with the first tube member 52, the second tube member 54, the third tube member 56, and the fourth tube member 58.

そして、第四管部材58の内部が、熱媒が流れる流路80とされ、第三管部材56と第四管部材58の間が流路82とされ、第二管部材54と第三管部材56との間が流路84とされ、第一管部材52と第二管部材54との間が流路86とされている。   The inside of the fourth pipe member 58 is a flow path 80 through which the heat medium flows, and the space between the third pipe member 56 and the fourth pipe member 58 is a flow path 82, and the second pipe member 54 and the third pipe A channel 84 is formed between the member 56 and a channel 86 is formed between the first tube member 52 and the second tube member 54.

なお、以後の説明では、図8、図10に示されるように、仕切板60で仕切られた流路80において、装置奥行方向の一端側の部分を流路80Aと記載し、他端側の部分を流路80Bと記載する。また、仕切板60で仕切られた流路82において、装置奥行方向の一端側の部分を流路82Aと記載し、他端側の部分を流路82Bと記載する。さらに、仕切板60で仕切られた流路84において、装置奥行方向の一端側の部分を流路84Aと記載し、他端側の部分を流路84Bと記載する。また、仕切板60で仕切られた流路86において、装置奥行方向の一端側の部分を流路86Aと記載し、他端側の部分を流路86Bと記載する。   In the following description, as shown in FIG. 8 and FIG. 10, in the flow path 80 partitioned by the partition plate 60, a portion on one end side in the apparatus depth direction is referred to as a flow path 80 </ b> A, This portion is described as a flow path 80B. Moreover, in the flow path 82 partitioned by the partition plate 60, a part on one end side in the apparatus depth direction is described as a flow path 82A, and a part on the other end side is described as a flow path 82B. Furthermore, in the flow channel 84 partitioned by the partition plate 60, a portion on one end side in the apparatus depth direction is described as a flow channel 84A, and a portion on the other end side is described as a flow channel 84B. Further, in the flow path 86 partitioned by the partition plate 60, a portion on one end side in the apparatus depth direction is described as a flow path 86A, and a portion on the other end side is described as a flow path 86B.

ここで、図6には、図2に示すS3−S3線断面図が示され、図7には、図2に示すS4−S4線断面図が示されている。   Here, FIG. 6 shows a cross-sectional view taken along line S3-S3 shown in FIG. 2, and FIG. 7 shows a cross-sectional view taken along line S4-S4 shown in FIG.

そして、流路機構50は、図3、図6に示されるように、装置奥行方向の一端側の空間70(図8参照)を第一管部材52の周方向に仕切る仕切板62を備えている。さらに、流路機構50は、図3、図7に示されるように、装置奥行方向の他端側の空間70(図10参照)を第一管部材52の周方向に仕切る仕切板63を備えている。   3 and 6, the flow path mechanism 50 includes a partition plate 62 that partitions a space 70 (see FIG. 8) on one end side in the apparatus depth direction in the circumferential direction of the first pipe member 52. Yes. Further, as shown in FIGS. 3 and 7, the flow path mechanism 50 includes a partition plate 63 that partitions the space 70 (see FIG. 10) on the other end side in the apparatus depth direction in the circumferential direction of the first pipe member 52. ing.

仕切板62は、図6に示されるように、基端部が第一管部材52の外周面に連結され、装置奥行方向から見て、第一管部材52の径方向に延びて先端部が本体部14の内周面に接触している仕切板62A、62Bを備えている。また、装置奥行方向から見て、仕切板62Aと仕切板62Bとは、軸線Cに対して点対称となるように配置されている。そして、仕切板62A、62Bは、第一管部材52と一体的に成形されている。また、仕切板62A、62Bの先端部と本体部14の内周面との間、装置奥行方向において仕切板62A、62Bの一方側の縁部と蓋部16との間、及び仕切板62A、62Bの他方側の縁部と分離部20との間は、図示せぬシール部材によってシールされている。   As shown in FIG. 6, the partition plate 62 is connected to the outer peripheral surface of the first tube member 52, extends in the radial direction of the first tube member 52, and has a distal end portion as viewed from the apparatus depth direction. Partition plates 62 </ b> A and 62 </ b> B that are in contact with the inner peripheral surface of the main body 14 are provided. Further, the partition plate 62A and the partition plate 62B are arranged so as to be point-symmetric with respect to the axis C when viewed from the apparatus depth direction. The partition plates 62A and 62B are formed integrally with the first pipe member 52. Moreover, between the front-end | tip part of partition plate 62A, 62B and the internal peripheral surface of the main-body part 14, between the edge part of the one side of partition plate 62A, 62B and the cover part 16 in an apparatus depth direction, and partition plate 62A, A gap between the other edge portion of 62B and the separation portion 20 is sealed by a seal member (not shown).

さらに、仕切板63は、図7に示されるように、基端部が第一管部材52の外周面に連結され、装置奥行方向から見て、第一管部材52の径方向に延びて先端部が本体部14の内周面に接触している仕切板63A、63Bを備えている。また、装置奥行方向から見て、仕切板63A及び仕切板63Bは、前述した仕切板62A及び仕切板62Bと第一管部材52の周方向において同様の位置に配置されている。さらに、仕切板63A、63Bの先端部と本体部14の内周面との間、装置奥行方向において仕切板63A、63Bの一方側の縁部と分離部20との間、及び仕切板63A、63Bの他方側の縁部と蓋部16との間は、図示せぬシール部材によってシールされている。   Further, as shown in FIG. 7, the partition plate 63 is connected to the outer peripheral surface of the first tube member 52 at the base end, and extends in the radial direction of the first tube member 52 when viewed from the apparatus depth direction. The partition plate 63A, 63B whose part is in contact with the inner peripheral surface of the main body part 14 is provided. Further, when viewed from the depth direction of the apparatus, the partition plate 63A and the partition plate 63B are disposed at the same positions in the circumferential direction of the partition plate 62A and the partition plate 62B and the first pipe member 52 described above. Furthermore, between the front ends of the partition plates 63A and 63B and the inner peripheral surface of the main body 14, between the edge on one side of the partition plates 63A and 63B and the separation unit 20 in the apparatus depth direction, and the partition plates 63A, A gap between the other edge of 63B and the lid portion 16 is sealed by a seal member (not shown).

また、流路機構50は、図3、図6に示されるように、装置奥行方向の一端側の空間70を第一管部材52の径方向に仕切る円環状の仕切板64を備えている。この仕切板64は、仕切板62と一体的に成形されている。さらに、装置奥行方向において仕切板64の一方側の縁部と蓋部16との間、及び仕切板64の他方側の縁部と分離部20との間は、図示せぬシール部材によってシールされている。   3 and 6, the flow path mechanism 50 includes an annular partition plate 64 that partitions the space 70 on one end side in the apparatus depth direction in the radial direction of the first pipe member 52. The partition plate 64 is formed integrally with the partition plate 62. Further, in the apparatus depth direction, a gap between one edge of the partition plate 64 and the lid portion 16 and a gap between the other edge of the partition plate 64 and the separation portion 20 are sealed by a seal member (not shown). ing.

また、流路機構50は、図3、図7に示されるように、装置奥行方向の他端側の空間70を第一管部材52の径方向に仕切る円環状の仕切板66を備えている。さらに、仕切板66は、装置奥行方向から見て仕切板64と同様の形状とされている。そして、この仕切板66は、仕切板63と一体的に成形されている。さらに、装置奥行方向において仕切板66の一方側の縁部と蓋部16との間、及び仕切板66の他方側の縁部と分離部20との間は、図示せぬシール部材によってシールされている。   3 and 7, the flow path mechanism 50 includes an annular partition plate 66 that partitions the space 70 on the other end side in the apparatus depth direction in the radial direction of the first pipe member 52. . Furthermore, the partition plate 66 has the same shape as the partition plate 64 when viewed from the apparatus depth direction. The partition plate 66 is formed integrally with the partition plate 63. Further, in the apparatus depth direction, a gap between one edge of the partition plate 66 and the lid portion 16 and a gap between the other edge of the partition plate 66 and the separation portion 20 are sealed by a seal member (not shown). ing.

なお、以後の説明では、第一管部材52と共に回転する仕切板62、63が、空間70を仕切っている場合に、図6に示されるように、第一管部材52側で、かつ、装置幅方向の一方側(図6の左方側)に位置する空間を空間70Aと記載する。また、空間70Aに対して、仕切板62を挟んで反対側の空間を空間70Bと記載する。さらに、空間70Aに対して仕切板64を挟んで反対側の空間を70Cと記載し、空間70Bに対して仕切板64を挟んで反対側の空間を70Dと記載する。   In the following description, when the partition plates 62 and 63 that rotate together with the first pipe member 52 partition the space 70, as shown in FIG. A space located on one side in the width direction (left side in FIG. 6) is referred to as a space 70A. The space on the opposite side of the space 70A across the partition plate 62 is referred to as a space 70B. Furthermore, the space on the opposite side of the space 70A with the partition plate 64 interposed therebetween is described as 70C, and the space on the opposite side of the space 70B with the partition plate 64 interposed therebetween is described as 70D.

また、図7に示されるように、装置奥行方向の他端側の空間70において、装置奥行方向から見て空間70A(図6参照)と同様の位置に配置される空間を空間70Eと記載する。さらに、装置奥行方向から見て空間70B(図6参照)と同様の位置に配置される空間を空間70Fと記載する。また、装置奥行方向から見て空間70C(図6参照)と同様の位置に配置される空間を空間70Gと記載し、空間70D(図6参照)と同様の位置に配置される空間を空間70Hと記載する。   Further, as shown in FIG. 7, in the space 70 on the other end side in the apparatus depth direction, a space arranged at the same position as the space 70A (see FIG. 6) when viewed from the apparatus depth direction is described as a space 70E. . Furthermore, a space arranged at the same position as the space 70B (see FIG. 6) when viewed from the depth direction of the apparatus is referred to as a space 70F. Further, a space arranged at the same position as the space 70C (see FIG. 6) when viewed from the depth direction of the apparatus is described as a space 70G, and a space arranged at the same position as the space 70D (see FIG. 6) is a space 70H. It describes.

さらに、流路機構50は、図6、図9に示されるように、第一管部材52の一端側の部分で、かつ、空間70Bの臨む部分に、第一管部材52と第四管部材58とを連結する連結管72Aを備えている。また、流路機構50は、図7、図11に示されるように、第一管部材52の他端側の部分で、かつ、空間70Eに臨む部分に、第一管部材52と第四管部材58とを連結する連結管72Bを備えている。そして、連結管72A、72Bは、第四管部材58の内部の流路80と、空間70B、70Eとを連通させている。   Further, as shown in FIGS. 6 and 9, the flow path mechanism 50 includes a first tube member 52 and a fourth tube member at a portion on one end side of the first tube member 52 and a portion facing the space 70 </ b> B. 72 is provided. Further, as shown in FIGS. 7 and 11, the flow path mechanism 50 includes a first pipe member 52 and a fourth pipe at a portion on the other end side of the first pipe member 52 and a portion facing the space 70 </ b> E. A connecting pipe 72B for connecting the member 58 is provided. The connecting pipes 72A and 72B communicate the flow path 80 inside the fourth pipe member 58 with the spaces 70B and 70E.

さらに、図6、図9に示されるように、第一管部材52の一端側の部分で、かつ、空間70Aに臨む部分に、第一管部材52の壁部を貫通する貫通孔52Aが形成されている。また、図7、図11に示されるように、第一管部材52の他端側の部分で、かつ、空間70Fに臨む部分に、第一管部材52の壁部を貫通する貫通孔52Bが形成されている。そして、貫通孔52A、52Bは、第一管部材52と第二管部材54との間の流路86と、空間70A、70Fとを連通させている。   Further, as shown in FIGS. 6 and 9, a through hole 52 </ b> A that penetrates the wall portion of the first pipe member 52 is formed in a portion on one end side of the first pipe member 52 and facing the space 70 </ b> A. Has been. Further, as shown in FIGS. 7 and 11, a through hole 52 </ b> B that penetrates the wall portion of the first pipe member 52 is formed in the part on the other end side of the first pipe member 52 and in the part facing the space 70 </ b> F. Is formed. The through holes 52A and 52B communicate the flow path 86 between the first pipe member 52 and the second pipe member 54 with the spaces 70A and 70F.

さらに、流路機構50は、図8に示されるように、第一管部材52の一端側の部分で、かつ、空間70Cと対向する部分に、第二管部材54と仕切板64とを連結する連結管78Aを備えている。また、流路機構50は、図10に示されるように、第一管部材52の他端側の部分で、かつ、空間70Hと対向する部分に、第二管部材54と仕切板66とを連結する連結管78Bを備えている。そして、連結管78A、78Bは、第二管部材54と第三管部材56との間の流路84と、空間70C、70Hとを連通させている。   Further, as shown in FIG. 8, the flow path mechanism 50 connects the second pipe member 54 and the partition plate 64 to a part on one end side of the first pipe member 52 and a part facing the space 70 </ b> C. The connecting pipe 78A is provided. Further, as shown in FIG. 10, the flow path mechanism 50 is provided with a second pipe member 54 and a partition plate 66 at a part on the other end side of the first pipe member 52 and a part facing the space 70 </ b> H. A connecting pipe 78B to be connected is provided. The connection pipes 78A and 78B communicate the flow path 84 between the second pipe member 54 and the third pipe member 56 with the spaces 70C and 70H.

さらに、流路機構50は、図8に示されるように、第一管部材52の一端側の部分で、かつ、空間70Dと対向する部分に、第三管部材56と仕切板64とを連結する連結管76Aを備えている。また、流路機構50は、図10に示されるように、第一管部材52の他端側の部分で、かつ、空間70Gと対向する部分に、第三管部材56と仕切板66とを連結する連結管76Bを備えている。そして、連結管76A、76Bは、第三管部材56と第四管部材58との間の流路82と、空間70D、70Gとを連通させている。   Further, as shown in FIG. 8, the flow path mechanism 50 connects the third pipe member 56 and the partition plate 64 to a part on one end side of the first pipe member 52 and a part facing the space 70 </ b> D. The connecting pipe 76A is provided. Further, as shown in FIG. 10, the flow path mechanism 50 is provided with a third pipe member 56 and a partition plate 66 at a part on the other end side of the first pipe member 52 and a part facing the space 70 </ b> G. A connecting pipe 76B to be connected is provided. The connecting pipes 76A and 76B communicate the flow path 82 between the third pipe member 56 and the fourth pipe member 58 with the spaces 70D and 70G.

この構成において、低温熱媒F1(第一熱媒の一例)は、図11に示されるように、流路86Bに供給され、貫通孔52Bを通って空間70Fへ流れ込むようになっている。さらに、空間70Fへ流れ込んだ低温熱媒F1は、分離部20を挟んで空間70Fの反対側に配置されている蒸発凝縮部30の流路30Aの内部に流路30Aの一端部から流れ込むようになっている。また、流路30Aの内部に流れ込んだ低温熱媒F1は、流路30Aの他端部から流出して、空間70Hへ流れ込むようになっている。さらに、空間70Hへ流れ込んだ低温熱媒F1は、図10に示されるように、連結管78Bを通って流路84Bに流れ込み、外部に排出されるようになっている。   In this configuration, the low-temperature heat medium F1 (an example of the first heat medium) is supplied to the flow path 86B and flows into the space 70F through the through hole 52B, as shown in FIG. Further, the low-temperature heat medium F1 that has flowed into the space 70F flows from one end of the flow path 30A into the flow path 30A of the evaporation condensing section 30 that is disposed on the opposite side of the space 70F with the separation section 20 in between. It has become. The low-temperature heat medium F1 that has flowed into the flow path 30A flows out from the other end of the flow path 30A and flows into the space 70H. Furthermore, as shown in FIG. 10, the low-temperature heat medium F1 that has flowed into the space 70H flows into the flow path 84B through the connecting pipe 78B and is discharged to the outside.

また、中温熱媒F2(第二熱媒の一例)は、図11に示されるように、流路80Bに供給され、連結管72Bを通って空間70Eへ流れ込むようになっている。さらに、空間70Eへ流れ込んだ中温熱媒F2は、分離部20を挟んで空間70Eの反対側に配置されている蒸発凝縮部30の流路30Aの内部に流路30Aの一端部から流れ込むようになっている。また、流路30Aの内部に流れ込んだ中温熱媒F2は、流路30Aの他端部から流出して、空間70Gへ流れ込むようになっている。さらに、空間70Gへ流れ込んだ中温熱媒F2は、図10に示されるように、連結管76Bを通って流路82Bに流れ込み、外部に排出されるようになっている。   Further, as shown in FIG. 11, the intermediate temperature heating medium F2 (an example of the second heating medium) is supplied to the flow path 80B and flows into the space 70E through the connecting pipe 72B. Further, the intermediate temperature heating medium F2 that has flowed into the space 70E flows from one end of the flow path 30A into the flow path 30A of the evaporation condensing part 30 that is disposed on the opposite side of the space 70E across the separation part 20. It has become. Further, the medium temperature heating medium F2 that has flowed into the flow path 30A flows out from the other end of the flow path 30A and flows into the space 70G. Further, as shown in FIG. 10, the intermediate temperature heating medium F2 that has flowed into the space 70G flows into the flow path 82B through the connecting pipe 76B and is discharged to the outside.

また、中温熱媒F3(第三熱媒の一例)は、図9に示されるように、流路80Aに供給され、連結管72Aを通って空間70Bへ流れ込むようになっている。さらに、空間70Bへ流れ込んだ中温熱媒F3は、分離部20を挟んで空間70Bの反対側に配置されている吸着部36の流路38Aの内部に流路38Aの一端部から流れ込むようになっている。また、流路38Aの内部に流れ込んだ中温熱媒F3は、流路38Aの他端部から流出して、空間70Dへ流れ込むようになっている。さらに、空間70Dへ流れ込んだ中温熱媒F3は、図8に示されるように、連結管76Aを通って流路82Aに流れ込み、外部に排出されるようになっている。   Further, as shown in FIG. 9, the intermediate temperature heating medium F3 (an example of the third heating medium) is supplied to the flow path 80A and flows into the space 70B through the connecting pipe 72A. Further, the medium temperature heating medium F3 that has flowed into the space 70B flows from one end of the flow path 38A into the flow path 38A of the adsorption section 36 that is disposed on the opposite side of the space 70B across the separation section 20. ing. Further, the medium temperature heating medium F3 flowing into the flow path 38A flows out from the other end of the flow path 38A and flows into the space 70D. Furthermore, as shown in FIG. 8, the intermediate temperature heating medium F3 that has flowed into the space 70D flows into the flow path 82A through the connecting pipe 76A and is discharged to the outside.

また、高温熱媒F4(第四熱媒の一例)は、図9に示されるように、流路86Aに供給され、貫通孔52Aを通って空間70Aへ流れ込むようになっている。さらに、空間70Aへ流れ込んだ高温熱媒F4は、分離部20を挟んで空間70Aの反対側に配置されている吸着部36の流路38Aの内部に流路38Aの一端部から流れ込むようになっている。また、流路38Aの内部に流れ込んだ高温熱媒F4は、流路38Aの他端部から流出して、空間70Cへ流れ込むようになっている。さらに、空間70Cへ流れ込んだ高温熱媒F4は、図8に示されるように、連結管78Aを通って流路84Aに流れ込み、外部に排出されるようになっている。   Further, as shown in FIG. 9, the high-temperature heat medium F4 (an example of the fourth heat medium) is supplied to the flow path 86A and flows into the space 70A through the through hole 52A. Furthermore, the high-temperature heat medium F4 that has flowed into the space 70A flows from one end of the flow path 38A into the flow path 38A of the adsorption section 36 that is disposed on the opposite side of the space 70A across the separation section 20. ing. The high-temperature heat medium F4 that has flowed into the flow path 38A flows out from the other end of the flow path 38A and flows into the space 70C. Further, as shown in FIG. 8, the high-temperature heat medium F4 that has flowed into the space 70C flows into the flow path 84A through the connecting pipe 78A and is discharged to the outside.

このように、流路86B及び流路84Bは、低温熱媒F1(第一熱媒の一例)が流れる第一流路の一例とされ、流路80B及び流路82Bは、中温熱媒F2(第二熱媒の一例)が流れる第二流路の一例とされている(図10、図11参照)。また、流路80A及び流路82Aは、中温熱媒F3(第三熱媒の一例)が流れる第三流路の一例とされ、流路86A及び流路84Aは、高温熱媒F4(第四熱媒の一例)が流れる第四流路の一例とされている。   Thus, the flow path 86B and the flow path 84B are examples of the first flow path through which the low-temperature heat medium F1 (an example of the first heat medium) flows, and the flow path 80B and the flow path 82B are the medium temperature heat medium F2 (the first heat medium F2). It is an example of the second flow path through which an example of a two heat medium flows (see FIGS. 10 and 11). The flow path 80A and the flow path 82A are examples of a third flow path through which the intermediate temperature heat medium F3 (an example of the third heat medium) flows, and the flow path 86A and the flow path 84A are the high temperature heat medium F4 (the fourth heat medium F4). It is an example of a fourth flow path through which an example of a heat medium flows.

さらに、低温熱媒F1には、一例として15〔℃〕程度の水を用いることができ、中温熱媒F2、F3には、一例として40〔℃〕程度の水を用いることができ、高温熱媒F4には、一例として90〔℃〕程度の水を用いることができる。この高温熱媒F4は、例えば、自動車等の廃熱を輸送するものであり、吸着式ヒートポンプ10における利用の対象となる流体である。また、低温熱媒F1が、冷却の対象となる流体である。   Further, as an example, the low temperature heating medium F1 can use water of about 15 [° C.], and the medium temperature heating medium F2 and F3 can use water of about 40 [° C.] as an example. For example, water of about 90 [° C.] can be used for the medium F4. The high-temperature heat medium F4 is a fluid that transports waste heat of, for example, an automobile, and is a target of use in the adsorption heat pump 10. Further, the low-temperature heat medium F1 is a fluid to be cooled.

〔切替装置〕
切替装置90は、図8に示されるように、軸線Cを中心に流路機構50を連続的に回転させる駆動部材としてのモータ92を備えている。
[Switching device]
As shown in FIG. 8, the switching device 90 includes a motor 92 as a drive member that continuously rotates the flow path mechanism 50 around the axis C.

この構成において、モータ92の駆動力により、流路機構50が回転(図1の矢印F参照)することで、夫々の空間70A〜70Hも回転するようになっている。   In this configuration, the flow path mechanism 50 is rotated (see arrow F in FIG. 1) by the driving force of the motor 92, so that the spaces 70A to 70H are also rotated.

(作用)
次に、ヒートポンプ10の作用を、ヒートポンプ10の動作によって説明する。仕切板62、63は、例えば、図6、図7に示されるように、板面が装置幅方向を向いている。
(Function)
Next, the operation of the heat pump 10 will be described by the operation of the heat pump 10. For example, as shown in FIGS. 6 and 7, the partition plates 62 and 63 have plate surfaces facing the apparatus width direction.

さらに、軸線Cに対して装置幅方向の一方側(図6の左方側、図7の右方側)に配置されている吸着材40は、水蒸気を吸着した状態となっている。   Further, the adsorbent 40 disposed on one side in the apparatus width direction with respect to the axis C (the left side in FIG. 6 and the right side in FIG. 7) is in a state of adsorbing water vapor.

一方、軸線Cに対して装置幅方向の他方側(図6の右方側、図7の左方側)に配置されている吸着材40は、水蒸気を脱着した状態となっている。また、軸線Cに対して装置幅方向の他方側に配置されている蒸発凝縮部30の板面には、水(水滴)が付着している。   On the other hand, the adsorbent 40 arranged on the other side in the apparatus width direction with respect to the axis C (the right side in FIG. 6 and the left side in FIG. 7) is in a state where water vapor is desorbed. Further, water (water droplets) adheres to the plate surface of the evaporating and condensing unit 30 disposed on the other side in the apparatus width direction with respect to the axis C.

この状態で、低温熱媒F1は、図11に示されるように、流路86Bに供給され、貫通孔52Bを通って空間70Fへ流れ込む。さらに、空間70Fへ流れ込んだ低温熱媒F1は、分離部20を挟んで空間70Fの反対側に配置されている蒸発凝縮部30の流路30Aの内部に流路30Aの一端部から流れ込む。また、流路30Aの内部に流れ込んだ低温熱媒F1は、流路30Aの他端部から流出して、空間70Hへ流れ込む。さらに、空間70Hへ流れ込んだ低温熱媒F1は、図10に示されるように、連結管78Bを通って流路84Bに流れ込み、外部に排出される。   In this state, as shown in FIG. 11, the low-temperature heat medium F1 is supplied to the flow path 86B and flows into the space 70F through the through hole 52B. Furthermore, the low-temperature heat medium F1 that has flowed into the space 70F flows from one end of the flow path 30A into the flow path 30A of the evaporation condensing part 30 that is disposed on the opposite side of the space 70F with the separation part 20 in between. Further, the low-temperature heating medium F1 that has flowed into the flow path 30A flows out from the other end of the flow path 30A and flows into the space 70H. Furthermore, as shown in FIG. 10, the low-temperature heat medium F1 that has flowed into the space 70H flows into the flow path 84B through the connecting pipe 78B and is discharged to the outside.

このように、軸線Cに対して装置幅方向の他方側に配置されている蒸発凝縮部30の流路30Aには、低温熱媒F1が流れる。   Thus, the low temperature heating medium F1 flows through the flow path 30A of the evaporating and condensing unit 30 disposed on the other side in the apparatus width direction with respect to the axis C.

また、中温熱媒F3は、図9に示されるように、流路80Aに供給され、連結管72Aを通って空間70Bへ流れ込む。さらに、空間70Bへ流れ込んだ中温熱媒F3は、分離部20を挟んで空間70Bの反対側に配置されている吸着部36の流路38Aの内部に流路38Aの一端部から流れ込む。また、流路38Aの内部に流れ込んだ中温熱媒F3は、流路38Aの他端部から流出して、空間70Dへ流れ込む。さらに、空間70Dへ流れ込んだ中温熱媒F3は、図8に示されるように、連結管76Aを通って流路82Aに流れ込み、外部に排出される。   Further, as shown in FIG. 9, the intermediate temperature heating medium F3 is supplied to the flow path 80A and flows into the space 70B through the connecting pipe 72A. Further, the medium temperature heating medium F3 that has flowed into the space 70B flows from one end of the flow path 38A into the flow path 38A of the adsorption section 36 that is disposed on the opposite side of the space 70B across the separation section 20. In addition, the medium temperature heating medium F3 flowing into the flow path 38A flows out from the other end of the flow path 38A and flows into the space 70D. Furthermore, as shown in FIG. 8, the intermediate temperature heating medium F3 that has flowed into the space 70D flows into the flow path 82A through the connecting pipe 76A and is discharged to the outside.

このように、軸線Cに対して装置幅方向の他方側に配置されている吸着部36の流路38Aには、中温熱媒F3が流れる。   Thus, the intermediate temperature heating medium F3 flows through the flow path 38A of the adsorption portion 36 disposed on the other side in the apparatus width direction with respect to the axis C.

ここで、蒸発凝縮部30の流路30Aを流れる低温熱媒F1は、一例として15〔℃〕とされている。これにより、蒸発凝縮部30において水と水蒸気とが平衡状態となる平衡圧力は、一例として1.7〔kPa〕となる。   Here, the low temperature heating medium F1 flowing through the flow path 30A of the evaporating and condensing unit 30 is set to 15 [° C.] as an example. Thereby, the equilibrium pressure in which water and water vapor are in an equilibrium state in the evaporative condensing unit 30 is 1.7 [kPa] as an example.

一方、吸着部36の流路38Aを流れる中温熱媒F3は、一例として40〔℃〕とされている。これにより、吸着部36の吸着材40において水と水蒸気とが平衡状態となる平衡圧力は、一例として0.3〔kPa〕となる。   On the other hand, the intermediate temperature heating medium F3 flowing through the flow path 38A of the adsorption unit 36 is set to 40 [° C.] as an example. Thereby, the equilibrium pressure at which water and water vapor are in an equilibrium state in the adsorbent 40 of the adsorption unit 36 is, for example, 0.3 [kPa].

この平衡圧力の差により、軸線Cに対して装置幅方向の他方側に配置されている蒸発凝縮部30は、蒸発凝縮部30の板面に付着している水を、低温熱媒F1との熱交換により、蒸発させて水蒸気を生成する。さらに、軸線Cに対して装置幅方向の他方側に配置されている吸着材40は、蒸発凝縮部30によって蒸発した水蒸気を、中温熱媒F3との熱交換により吸着する(吸着工程)。   Due to the difference in the equilibrium pressure, the evaporation condensing unit 30 disposed on the other side in the apparatus width direction with respect to the axis C causes the water adhering to the plate surface of the evaporation condensing unit 30 to flow with the low-temperature heat medium F1. By heat exchange, it is evaporated to produce water vapor. Further, the adsorbent 40 disposed on the other side in the apparatus width direction with respect to the axis C adsorbs the water vapor evaporated by the evaporation condensing unit 30 by heat exchange with the intermediate temperature heat medium F3 (adsorption process).

具体的には、図13に示されるように、蒸発凝縮部30の板面で蒸発した水蒸気は、領域42を装置奥行方向に移動し、蒸発凝縮部30の隣りに配置されている吸着材40によって吸着材40の板面で吸着される。ここで、水を蒸発させる際の気化熱により、蒸発凝縮部30の流路30Aを流れる低温熱媒F1が冷却される。   Specifically, as shown in FIG. 13, the water vapor evaporated on the plate surface of the evaporative condensing unit 30 moves in the region 42 in the apparatus depth direction, and the adsorbent 40 disposed next to the evaporative condensing unit 30. Is adsorbed by the plate surface of the adsorbent 40. Here, the low-temperature heat medium F1 flowing through the flow path 30A of the evaporating and condensing unit 30 is cooled by the heat of vaporization when water is evaporated.

また、中温熱媒F2は、図11に示されるように、流路80Bに供給され、連結管72Bを通って空間70Eへ流れ込む。さらに、空間70Eへ流れ込んだ中温熱媒F2は、分離部20を挟んで空間70Eの反対側に配置されている蒸発凝縮部30の流路30Aの内部に流路30Aの一端部から流れ込む。また、流路30Aの内部に流れ込んだ中温熱媒F2は、流路30Aの他端部から流出して、空間70Gへ流れ込む。さらに、空間70Gへ流れ込んだ中温熱媒F2は、図10に示されるように、連結管76Bを通って流路82Bに流れ込み、外部に排出される。   Further, as shown in FIG. 11, the intermediate temperature heating medium F2 is supplied to the flow path 80B and flows into the space 70E through the connecting pipe 72B. Further, the medium temperature heating medium F2 that has flowed into the space 70E flows from one end of the flow path 30A into the flow path 30A of the evaporation condensing part 30 that is disposed on the opposite side of the space 70E with the separation part 20 in between. Further, the medium temperature heating medium F2 that has flowed into the flow path 30A flows out from the other end of the flow path 30A and flows into the space 70G. Furthermore, as shown in FIG. 10, the intermediate temperature heating medium F2 that has flowed into the space 70G flows into the flow path 82B through the connecting pipe 76B, and is discharged to the outside.

このように、軸線Cに対して装置幅方向の一方側に配置されている蒸発凝縮部30の流路30Aには、中温熱媒F2が流れる。   As described above, the medium-temperature heating medium F2 flows through the flow path 30A of the evaporating and condensing unit 30 disposed on one side in the apparatus width direction with respect to the axis C.

また、高温熱媒F4は、図9に示されるように、流路86Aに供給され、貫通孔52Aを通って空間70Aへ流れ込む。さらに、空間70Aへ流れ込んだ高温熱媒F4は、分離部20を挟んで空間70Aの反対側に配置されている吸着部36の流路38Aの内部に流路38Aの一端部から流れ込む。また、流路38Aの内部に流れ込んだ高温熱媒F4は、流路38Aの他端部から流出して、空間70Cへ流れ込む。さらに、空間70Cへ流れ込んだ高温熱媒F4は、図8に示されるように、連結管78Aを通って流路84Aに流れ込み、外部に排出される。   Further, as shown in FIG. 9, the high-temperature heat medium F4 is supplied to the flow path 86A and flows into the space 70A through the through hole 52A. Further, the high-temperature heat medium F4 that has flowed into the space 70A flows from one end of the flow path 38A into the flow path 38A of the adsorption section 36 that is disposed on the opposite side of the space 70A across the separation section 20. Further, the high-temperature heat medium F4 that has flowed into the flow path 38A flows out from the other end of the flow path 38A and flows into the space 70C. Furthermore, as shown in FIG. 8, the high-temperature heat medium F4 that has flowed into the space 70C flows into the flow path 84A through the connecting pipe 78A and is discharged to the outside.

このように、軸線Cに対して装置幅方向の一方側に配置されている吸着部36の流路38Aには、高温熱媒F4が流れる。   Thus, the high-temperature heating medium F4 flows through the flow path 38A of the adsorption portion 36 disposed on one side in the apparatus width direction with respect to the axis C.

ここで、蒸発凝縮部30の流路30Aを流れ中温熱媒F2は、一例として40〔℃〕とされている。これにより、蒸発凝縮部30において水と水蒸気とが平衡状態となる平衡圧力は、一例として7.2〔kPa〕となる。   Here, the intermediate temperature heating medium F2 flowing through the flow path 30A of the evaporating and condensing unit 30 is set to 40 [° C.] as an example. Thereby, the equilibrium pressure at which water and water vapor are in an equilibrium state in the evaporative condensing unit 30 is, for example, 7.2 [kPa].

一方、吸着部36の流路38Aを流れる高温熱媒F4は、一例として90〔℃〕とされている。これにより、吸着部36の吸着材40において水と水蒸気とが平衡状態となる平衡圧力は、一例として10.0〔kPa〕となる。   On the other hand, the high-temperature heat medium F4 flowing through the flow path 38A of the adsorption unit 36 is set to 90 [° C.] as an example. Thereby, the equilibrium pressure at which water and water vapor are in an equilibrium state in the adsorbent 40 of the adsorbing unit 36 is 10.0 [kPa] as an example.

この平衡圧力の差により、軸線Cに対して一方側に配置されている吸着材40は、高温熱媒F4との熱交換により、吸着している水蒸気を脱着する。さらに、軸線Cに対して一方側に配置されている蒸発凝縮部30は、中温熱媒F2との熱交換により、吸着材40が脱着した水蒸気を凝縮する(脱着工程)。   Due to the difference in the equilibrium pressure, the adsorbent 40 disposed on one side with respect to the axis C desorbs the adsorbed water vapor by heat exchange with the high-temperature heat medium F4. Further, the evaporation condensing unit 30 disposed on one side with respect to the axis C condenses the water vapor from which the adsorbent 40 has been desorbed by heat exchange with the medium temperature heat medium F2 (desorption process).

具体的には、図14に示されるように、吸着材40が脱着した水蒸気は、領域42を装置奥行方向に移動し、吸着材40の隣りに配置されている蒸発凝縮部30によって凝縮される。また、凝縮されることで生成した水は、蒸発凝縮部30の板面に水滴として付着する。   Specifically, as shown in FIG. 14, the water vapor from which the adsorbent 40 has been desorbed moves in the region 42 in the depth direction of the apparatus and is condensed by the evaporation condensing unit 30 disposed next to the adsorbent 40. . Moreover, the water produced | generated by condensing adheres to the board surface of the evaporative condensation part 30 as a water droplet.

そして、図15、図16、図17に示されるように、流路機構50が、モータ92(図8参照)によって図中矢印F方向に回転する。これにより、夫々の空間70A〜70Hが回転(移動)する。そして、水蒸気を生成する蒸発凝縮部30と水蒸気を吸着する吸着材40とが隣り合い、かつ、水蒸気を凝縮する蒸発凝縮部30と水蒸気を脱着する吸着材40とが隣り合う状態を維持しつつ、吸着材40及び蒸発凝縮部30が順次に切り替えられる。   Then, as shown in FIGS. 15, 16, and 17, the flow path mechanism 50 is rotated in the direction of arrow F in the figure by the motor 92 (see FIG. 8). Thereby, each space 70A-70H rotates (moves). The evaporation condensing unit 30 that generates water vapor and the adsorbent 40 that adsorbs water vapor are adjacent to each other, and the evaporation condensing unit 30 that condenses water vapor and the adsorbent 40 that desorbs water vapor are maintained adjacent to each other. The adsorbent 40 and the evaporative condensing unit 30 are sequentially switched.

なお、モータ92の駆動力によって流路機構50が回転する回転速度は、流路機構50が一回転する間の吸着工程において、吸着材40が吸着材40と接している領域42の温度での平衡状態となり、流路機構50が一回転する間の脱着工程において、吸着材40が吸着材40と接している領域42の温度での平衡状態となるように決められている。   The rotational speed at which the flow path mechanism 50 is rotated by the driving force of the motor 92 is determined by the temperature of the region 42 where the adsorbent 40 is in contact with the adsorbent 40 during the adsorption process during which the flow path mechanism 50 rotates once. It is determined that the adsorbent 40 is in an equilibrium state at the temperature of the region 42 in contact with the adsorbent 40 in the desorption process while the flow path mechanism 50 makes one rotation.

(まとめ)
以上説明したように、装置奥行方向から見て、装置幅方向の他方側では、蒸発凝縮部30の板面で蒸発した水蒸気が、領域42を装置奥行方向に移動し、蒸発凝縮部30の隣りに配置されている吸着材40によって吸着される。一方、装置奥行方向から見て、装置幅方向の一方側では、吸着材40によって脱着された水蒸気が、領域42を移動し、吸着材40の隣りに配置されている蒸発凝縮部30によって凝縮される。また、凝縮されることで生成した水は、蒸発凝縮部30の板面に水滴として付着する。
(Summary)
As described above, when viewed from the apparatus depth direction, on the other side in the apparatus width direction, the water vapor evaporated on the plate surface of the evaporation condensing unit 30 moves in the region 42 in the apparatus depth direction and is adjacent to the evaporation condensing unit 30. It is adsorbed by the adsorbent 40 disposed in the. On the other hand, when viewed from the depth direction of the apparatus, on one side of the apparatus width direction, the water vapor desorbed by the adsorbent 40 moves through the region 42 and is condensed by the evaporation condensing unit 30 disposed next to the adsorbent 40. The Moreover, the water produced | generated by condensing adheres to the board surface of the evaporative condensation part 30 as a water droplet.

そして、流路機構50が回転することで、夫々の空間70A〜70Hが回転(移動)し、水蒸気を生成する蒸発凝縮部30と水蒸気を吸着する吸着材40とが隣り合い、かつ、水蒸気を凝縮する蒸発凝縮部30と水蒸気を脱着する吸着材40とが隣り合う状態を維持しつつ、吸着材40及び蒸発凝縮部30が順次に切り替えられる。   When the flow path mechanism 50 rotates, the spaces 70A to 70H rotate (move), the evaporative condensing unit 30 that generates water vapor and the adsorbent 40 that adsorbs water vapor are adjacent to each other, and the water vapor is absorbed. The adsorbent 40 and the evaporative condensing unit 30 are sequentially switched while maintaining the state in which the evaporating and condensing unit 30 that condenses and the adsorbing material 40 that desorbs water vapor are adjacent to each other.

このように、開閉弁を用いることなく、一方側(一方)の吸着材40が脱着・吸着を交互に繰り返し、他方側(他方)の吸着材40が吸着・脱着を交互に繰り返す構成を得ることができる。   In this way, a configuration is obtained in which the adsorbent 40 on one side repeats desorption / adsorption alternately and the adsorbent 40 on the other side (other) repeats adsorption / desorption alternately without using an on-off valve. Can do.

また、開閉弁を用いることなく、一方側(一方)の蒸発凝縮部30が凝縮・蒸発を交互に繰り返し、他方側(他方)の蒸発凝縮部30が蒸発・凝縮を交互に繰り返す構成を得ることができる。   Further, a configuration is obtained in which the evaporation condensation unit 30 on one side (one side) alternately repeats condensation and evaporation and the evaporation condensation unit 30 on the other side (other side) alternately repeats evaporation and condensation without using an on-off valve. Can do.

また、上記実施形態では、装置奥行方向において隣り合う蒸発凝縮部30と吸着部36(吸着材40)とは、装置奥行方向から見て円状に並べられている。これにより、モータ92が、流路機構50を、軸線Cを中心に回転させるだけで、蒸発凝縮部30の流路30Aを流れる熱媒、及び吸着部36の流路38Aを流れる熱媒を切り替えることができる。   Moreover, in the said embodiment, the evaporative condensation part 30 and the adsorption | suction part 36 (adsorbent 40) which adjoin in the apparatus depth direction are arranged in the circle shape seeing from the apparatus depth direction. Thereby, the motor 92 switches the heat medium flowing through the flow path 30A of the evaporative condensing unit 30 and the heat medium flowing through the flow path 38A of the adsorption unit 36 only by rotating the flow path mechanism 50 about the axis C. be able to.

また、上記実施形態では、蒸発凝縮部30及び吸着部36(吸着材40)は、矩形板状とされている。そして、吸着工程においては、蒸発凝縮部30によって蒸発凝縮部30の板面で蒸発した水蒸気が、領域42を装置奥行方向に移動し、隣りに配置されている吸着材40によって吸着材40の板面で吸着される。また、脱着工程においては、吸着材40によって吸着材40の板面で脱着した水蒸気が、領域42を装置奥行方向に移動し、隣りに配置されている蒸発凝縮部30によって蒸発凝縮部30の板面で凝縮される。そして、凝縮されることで生成した水が、蒸発凝縮部30の板面に水滴として付着する。このように、蒸発凝縮部30及び吸着部36を矩形板状とすることで、例えば、蒸発凝縮部及び吸着材が、パイプ状とされている場合と比して、吸着材40において水蒸気を吸着する面積、及び水蒸気を脱着する面積を増やすことができる。さらに、蒸発凝縮部30において水蒸気を生成する面積、及び水蒸気を凝縮する面積を増やすことができる。   Moreover, in the said embodiment, the evaporation condensation part 30 and the adsorption | suction part 36 (adsorbent 40) are made into the rectangular plate shape. In the adsorption step, the water vapor evaporated on the plate surface of the evaporative condensing unit 30 by the evaporating / condensing unit 30 moves in the region 42 in the depth direction of the apparatus, and the adsorbent 40 disposed next to the adsorbent 40 plate. Adsorbed on the surface. Further, in the desorption process, the water vapor desorbed on the plate surface of the adsorbent 40 by the adsorbent 40 moves in the region 42 in the depth direction of the apparatus, and the plate of the evaporation condensing unit 30 is disposed by the evaporating / condensing unit 30 disposed adjacent thereto. Condensed on the surface. And the water produced | generated by being condensed adheres to the plate | board surface of the evaporative condensation part 30 as a water droplet. Thus, by making the evaporative condensing part 30 and the adsorbing part 36 into a rectangular plate shape, for example, the adsorbing material 40 adsorbs water vapor as compared with the case where the evaporating condensing part and the adsorbing material are pipe-shaped. And the area where water vapor is desorbed can be increased. Furthermore, the area which produces | generates water vapor | steam in the evaporative condensation part 30, and the area which condenses water vapor | steam can be increased.

なお、本発明を特定の実施形態について詳細に説明したが、本発明は係る実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態をとることが可能であることは当業者にとって明らかである。例えば、上記実施形態では、流路機構50を回転させたが、蒸発凝縮部30及び吸着部36を回転させてもよく、流路機構50と、蒸発凝縮部30及び吸着部36とを相対的に回転(移動)させればよい。   Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments can be taken within the scope of the present invention. This will be apparent to those skilled in the art. For example, in the above-described embodiment, the flow path mechanism 50 is rotated. However, the evaporation condensing unit 30 and the adsorption unit 36 may be rotated, and the flow path mechanism 50 and the evaporation condensing unit 30 and the adsorption unit 36 are relatively relative to each other. It is only necessary to rotate (move).

また、上記実施形態では、特に説明しなかったが、蒸発凝縮部30の板面に水を保持する多孔質体等を設けてもよい。   Moreover, although not specifically described in the above embodiment, a porous body or the like for holding water may be provided on the plate surface of the evaporative condensing unit 30.

また、上記実施形態では、吸着媒体として水蒸気を用いたが、アンモニアを気化させて吸着媒体としてもよい。   Moreover, in the said embodiment, although water vapor | steam was used as an adsorption medium, it is good also as vaporizing ammonia and making it an adsorption medium.

また、上記実施形態では、蒸発凝縮部30から冷熱を取り出す場合を例にとって説明したが、蒸発凝縮部30から温熱を取り出してもよい。   Moreover, in the said embodiment, although the case where cold heat was taken out from the evaporative condensation part 30 was demonstrated as an example, you may take out warm heat from the evaporative condensation part 30. FIG.

また、上記実施形態では、流路機構50を連続的に回転させたが、間欠的に回転させてもよい。   Moreover, in the said embodiment, although the flow-path mechanism 50 was rotated continuously, you may rotate intermittently.

また、上記実施形態では、特に説明しなかったが、吸着材40による水蒸気の吸着については、化学吸着であってもよく、物理吸着であってもよい。また、吸着反応に代えて同様の効果を生じる化学反応等であってもよい。   Although not specifically described in the above embodiment, the adsorption of water vapor by the adsorbent 40 may be chemical adsorption or physical adsorption. Moreover, it may be a chemical reaction that produces the same effect instead of the adsorption reaction.

また、上記実施形態では、特に説明しなかったが、流路機構50を、吸着材側の流路機構と蒸発凝縮部の流路機構と分けてもよい。この場合には、夫々の流路機構を同期して回転させる必要がある。   Further, although not particularly described in the above embodiment, the flow path mechanism 50 may be divided into a flow path mechanism on the adsorbent side and a flow path mechanism of the evaporation condensing unit. In this case, it is necessary to rotate each flow path mechanism synchronously.

また、上記実施形態では、特に説明しなかったが、吸着部36の板面と、蒸発凝縮部30の板面とが同一面上に存在してもよく、吸着部36の板面と、蒸発凝縮部30の板面とに段差が生じていてもよい。装置奥行方向において隣り合う吸着部36と蒸発凝縮部30とが直接又は間接的に連結されていればよい。   Although not particularly described in the above embodiment, the plate surface of the adsorption unit 36 and the plate surface of the evaporation condensing unit 30 may exist on the same plane. There may be a step between the plate surface of the condensing unit 30. The adsorbing part 36 and the evaporative condensing part 30 that are adjacent in the apparatus depth direction may be connected directly or indirectly.

また、上記実施形態では、軸管18の周方向から見て、吸着部36と蒸発凝縮部30とは、装置奥行方向に隣り合っていたが、吸着部36と蒸発凝縮部30とが軸管18の径方向等の他の方向に隣り合っていてもよい。   Moreover, in the said embodiment, although the adsorption | suction part 36 and the evaporative condensation part 30 were adjacent to the apparatus depth direction seeing from the circumferential direction of the axial tube 18, the adsorption | suction part 36 and the evaporative condensation part 30 are axial tubes. You may be adjacent to other directions, such as 18 radial directions.

10 ヒートポンプ(ヒートポンプの一例)
12 容器
22 吸着空間
30 蒸発凝縮部
40 吸着材
50 流路機構(流路部材の一例)
80A 流路(第三流路の一例)
80B 流路(第二流路の一例)
82A 流路(第三流路の一例)
82B 流路(第二流路の一例)
84A 流路(第四流路の一例)
84B 流路(第一流路の一例)
86A 流路(第四流路の一例)
86B 流路(第一流路の一例)
90 切替装置
F1 低温熱媒
F2 中温熱媒
F3 中温熱媒
F4 高温熱媒
10 Heat pump (an example of a heat pump)
12 Container 22 Adsorption space 30 Evaporation condensing part 40 Adsorbent 50 Channel mechanism (an example of channel member)
80A channel (example of third channel)
80B channel (example of second channel)
82A channel (example of third channel)
82B channel (example of second channel)
84A channel (example of fourth channel)
84B channel (example of first channel)
86A channel (example of fourth channel)
86B channel (example of first channel)
90 Switching device F1 Low temperature heating medium F2 Medium temperature heating medium F3 Medium temperature heating medium F4 High temperature heating medium

Claims (3)

吸着媒体が収容されている吸着空間を有する容器と、
前記容器の前記吸着空間で間隔を空けて並べられ、第一熱媒との熱交換により吸着媒体を生成し、第二熱媒との熱交換により吸着媒体を凝縮する複数の蒸発凝縮部と、
前記容器の前記吸着空間で、前記蒸発凝縮部の並び方向から見て夫々の前記蒸発凝縮部の隣りに夫々配置され、前記蒸発凝縮部によって生成された吸着媒体を第三熱媒との熱交換により吸着し、前記第三熱媒と比して高温の第四熱媒との熱交換により吸着媒体を脱着する複数の吸着材と、
吸着媒体を生成する前記蒸発凝縮部と吸着媒体を吸着する前記吸着材とが隣り合い、かつ、吸着媒体を凝縮する前記蒸発凝縮部と吸着媒体を脱着する前記吸着材とが隣り合うように、前記第一熱媒が流れる第一流路、前記第二熱媒が流れる第二流路、前記第三熱媒が流れる第三流路、及び前記第四熱媒が流れる第四流路が形成されている流路部材と、
前記流路部材を前記吸着材及び前記蒸発凝縮部に対して相対的に移動させ、吸着媒体を生成する前記蒸発凝縮部と吸着媒体を吸着する前記吸着材とが隣り合い、かつ、吸着媒体を凝縮する前記蒸発凝縮部と吸着媒体を脱着する前記吸着材とが隣り合う状態を維持しつつ、吸着媒体を生成する前記蒸発凝縮部及び吸着媒体を吸着する前記吸着材と、吸着媒体を凝縮する前記蒸発凝縮部及び吸着媒体を脱着する前記吸着材とを順次に切り替える切替装置と、
を備えるヒートポンプ。
A container having an adsorption space in which an adsorption medium is accommodated;
A plurality of evaporation condensing units arranged at intervals in the adsorption space of the container, generating an adsorption medium by heat exchange with the first heat medium, and condensing the adsorption medium by heat exchange with the second heat medium;
In the adsorption space of the vessel, heat exchange is performed between the adsorption medium generated by the evaporation condensing unit and the third heat medium, which is arranged next to each of the evaporation condensing units as viewed from the arrangement direction of the evaporation condensing units. A plurality of adsorbents that are adsorbed by, and desorb the adsorption medium by heat exchange with a fourth heat medium having a temperature higher than that of the third heat medium;
The evaporative condensing part for generating the adsorbing medium and the adsorbing material for adsorbing the adsorbing medium are adjacent to each other, and the evaporating condensing part for condensing the adsorbing medium and the adsorbing material for desorbing the adsorbing medium are adjacent to each other. A first channel through which the first heating medium flows, a second channel through which the second heating medium flows, a third channel through which the third heating medium flows, and a fourth channel through which the fourth heating medium flows are formed. A flow path member,
The flow path member is moved relative to the adsorbent and the evaporative condensing part, the evaporative condensing part for generating the adsorbing medium and the adsorbent adsorbing the adsorbing medium are adjacent to each other, and the adsorbing medium is The evaporation condensing part for generating the adsorbing medium, the adsorbing material for adsorbing the adsorbing medium, and the adsorbing medium are condensed while maintaining the state in which the evaporation condensing part for condensing and the adsorbing material for desorbing the adsorbing medium are adjacent to each other. A switching device for sequentially switching the evaporating and condensing unit and the adsorbent for desorbing the adsorbing medium;
A heat pump comprising:
前記蒸発凝縮部は、前記並び方向に対して交差する一方向から見て円状に間隔を空けて並べられ、
前記切替装置は、前記蒸発凝縮部が前記一方向から見て並ぶ円の中心を軸として前記流路部材を前記吸着材及び前記蒸発凝縮部に対して相対的に回転させ、吸着媒体を生成する前記蒸発凝縮部及び吸着媒体を吸着する前記吸着材と、吸着媒体を凝縮する前記蒸発凝縮部及び吸着媒体を脱着する前記吸着材とを順次に切り替える請求項1に記載のヒートポンプ。
The evaporative condensing units are arranged at intervals in a circle as seen from one direction intersecting the arrangement direction,
The switching device rotates the flow path member relative to the adsorbent and the evaporation condensing unit around the center of a circle in which the evaporation condensing unit is viewed from the one direction to generate an adsorbing medium. The heat pump according to claim 1, wherein the adsorbent that adsorbs the evaporation condensing unit and the adsorbing medium and the adsorbing material that desorbs the adsorbing medium and the evaporating condensing unit that condenses the adsorbing medium are sequentially switched.
前記蒸発凝縮部及び前記吸着材は、矩形板状とされ、
前記蒸発凝縮部の板面及び前記吸着材の板面は、前記蒸発凝縮部が前記一方向から見て並ぶ円の周方向に向いている請求項2に記載のヒートポンプ。
The evaporative condensing part and the adsorbent are rectangular plates,
3. The heat pump according to claim 2, wherein a plate surface of the evaporative condensing unit and a plate surface of the adsorbent are oriented in a circumferential direction of a circle in which the evaporative condensing unit is arranged as viewed from the one direction.
JP2015091911A 2015-04-28 2015-04-28 heat pump Active JP6428471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015091911A JP6428471B2 (en) 2015-04-28 2015-04-28 heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015091911A JP6428471B2 (en) 2015-04-28 2015-04-28 heat pump

Publications (2)

Publication Number Publication Date
JP2016205784A true JP2016205784A (en) 2016-12-08
JP6428471B2 JP6428471B2 (en) 2018-11-28

Family

ID=57489483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015091911A Active JP6428471B2 (en) 2015-04-28 2015-04-28 heat pump

Country Status (1)

Country Link
JP (1) JP6428471B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7050446B2 (en) 2017-09-25 2022-04-08 日本電産サンキョー株式会社 Rotation transmission mechanism and damper device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121432A (en) * 1977-03-24 1978-10-24 Institute Of Gas Technology Solid adsorption air conditioning apparatus and method
JPH02208461A (en) * 1989-02-06 1990-08-20 Technol Res Assoc Super Heat Pump Energ Accum Syst Rotary chemical heat pump
CN1664478A (en) * 2005-03-25 2005-09-07 北京工业大学 Rotating wheel solid adsorption refrigerating plant
JP2012127594A (en) * 2010-12-16 2012-07-05 Fujitsu Ltd Adsorption heat pump
US20120198881A1 (en) * 2009-08-07 2012-08-09 Roland Burk Rotating valve and heat pump
JP2014185777A (en) * 2013-03-21 2014-10-02 Toyota Central R&D Labs Inc Adsorption type heat pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121432A (en) * 1977-03-24 1978-10-24 Institute Of Gas Technology Solid adsorption air conditioning apparatus and method
JPH02208461A (en) * 1989-02-06 1990-08-20 Technol Res Assoc Super Heat Pump Energ Accum Syst Rotary chemical heat pump
CN1664478A (en) * 2005-03-25 2005-09-07 北京工业大学 Rotating wheel solid adsorption refrigerating plant
US20120198881A1 (en) * 2009-08-07 2012-08-09 Roland Burk Rotating valve and heat pump
JP2012127594A (en) * 2010-12-16 2012-07-05 Fujitsu Ltd Adsorption heat pump
JP2014185777A (en) * 2013-03-21 2014-10-02 Toyota Central R&D Labs Inc Adsorption type heat pump

Also Published As

Publication number Publication date
JP6428471B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP5290776B2 (en) Absorption refrigeration system
KR20130064936A (en) Heat exchanger for vehicle
JP6142895B2 (en) heat pump
JP6428471B2 (en) heat pump
JP6432462B2 (en) Absorption heat pump device
JP5838985B2 (en) Adsorption heat pump
JP2012127594A (en) Adsorption heat pump
US10082321B2 (en) Adsorption heat pump system and cooling generation method
JP2009121710A (en) Adsorption type heat pump device
JP6428455B2 (en) Adsorption device, adsorption heat pump
JP6428449B2 (en) Adsorption device, adsorption heat pump
JPH0758147B2 (en) Rotational module type adsorption heat pump using thermosiphon
JP2023500920A (en) Adsorption chiller or heat pump with distribution of refrigerant in the liquid phase and method for operating the adsorption chiller or heat pump
JP4074399B2 (en) Operation method of adsorption refrigeration system
US10386100B2 (en) Adsorption system heat exchanger
JP6458640B2 (en) Adsorption heat pump
WO2020055331A1 (en) Adsorption chiller
JP6402645B2 (en) HEAT PUMP AND CRYSTAL GENERATION METHOD
JPH0658643A (en) Adsorptive type freezer
JPH05322364A (en) Adsorption type heat pump
JP6515453B2 (en) Adsorption type heat pump system and cold heat generation method
JP2023137794A (en) Rotary adsorption device
JP6714866B2 (en) Adsorber
JP6980337B2 (en) Air conditioner for vehicles with adsorption refrigeration system and adsorption refrigeration system
JP2017003241A (en) Adsorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6428471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150