JP2016204270A - Decarbamoylsaxitoxin and method for producing analog thereof - Google Patents

Decarbamoylsaxitoxin and method for producing analog thereof Download PDF

Info

Publication number
JP2016204270A
JP2016204270A JP2015084042A JP2015084042A JP2016204270A JP 2016204270 A JP2016204270 A JP 2016204270A JP 2015084042 A JP2015084042 A JP 2015084042A JP 2015084042 A JP2015084042 A JP 2015084042A JP 2016204270 A JP2016204270 A JP 2016204270A
Authority
JP
Japan
Prior art keywords
compound
group
represented
formula
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015084042A
Other languages
Japanese (ja)
Other versions
JP6422814B2 (en
Inventor
佐藤 繁
Shigeru Sato
繁 佐藤
紗和衣 藤田
Sawae Fujita
紗和衣 藤田
美貴 森
Miki Mori
美貴 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitasato Institute
Original Assignee
Kitasato Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitasato Institute filed Critical Kitasato Institute
Priority to JP2015084042A priority Critical patent/JP6422814B2/en
Publication of JP2016204270A publication Critical patent/JP2016204270A/en
Application granted granted Critical
Publication of JP6422814B2 publication Critical patent/JP6422814B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of an intermediate compound useful for efficiently producing decarbamoylsaxitoxin and an analog thereof.SOLUTION: A method for producing a compound represented by Formula (4) comprises a step I of treating a compound represented by Formula (2) and the like under a basic condition to produce a compound represented by Formula (3) and the like and a step II of reacting the compound represented by Formula (3) and the like with a compound having an SH group to produce a compound represented by Formula (4) and the like. The compound represented by Formula (4) can be utilized as a sample compound for toxicity evaluation of shellfish. (Ris H or a hydroxyl group; Ris an amino group or the like; and Ris an univalent organic group)SELECTED DRAWING: None

Description

本発明は、デカルバモイルサキシトキシン及びその類縁体の製造方法に関する。   The present invention relates to a method for producing decarbamoyl saxitoxin and its analogs.

麻痺性貝毒は、サキシトキシン(STX)と、20を超えるその類縁体の総称である(図1参照)。毒化貝や貝毒原因プランクトンにはこれらのうちの複数の成分が含まれる。毒化貝による致死的な食中毒の発生を防ぐため、貝を食用とする各国では、検査機関によるマウス試験法、あるいはHPLC法などで貝類の毒性を監視する貝毒モニタリングが定期的に実施されている。STXは化学的に安定で毒性が強いため、合衆国食品医薬品局(FDA)から世界各地の検査機関に、STX溶液が毒分析用標準品として、配布されてきた。標準品は、マウス試験法でのマウスの感度を補正するために必須であり、また、マウス試験の代替となるHPLC法においても、STXの標準品は不可欠のものである。しかしSTXは、化学兵器禁止条約により特定化合物に指定され、現在その製造、譲渡、保管、使用が著しく制限されている。STX以外の麻痺性貝毒成分は安定性を欠くものが多いが、唯一デカルバモイルサキシトキシン(dcSTX)は、STXと同様に化学的に安定であり、STXに替わる麻痺性貝毒標準品の第1候補である。しかしdcSTXは毒化貝や有毒プランクトンにはほとんど含まれず、標準毒として供給する体制を整えるためには、他の麻痺性貝毒成分から化学的に変換して調製せざるを得ない。   Paralytic shellfish poison is a general term for saxitoxin (STX) and over 20 analogs thereof (see FIG. 1). The poisoned shellfish and shellfish poisoning plankton contain a plurality of these components. In order to prevent the occurrence of fatal food poisoning caused by poisoned shellfish, shellfish poisoning monitoring is carried out regularly in each country that uses shellfish for monitoring shellfish toxicity using mouse testing methods or HPLC methods by inspection organizations. . Because STX is chemically stable and highly toxic, STX solutions have been distributed as standard for poison analysis by the US Food and Drug Administration (FDA) to laboratories around the world. The standard is essential for correcting the sensitivity of the mouse in the mouse test method, and the STX standard is also essential in the HPLC method as an alternative to the mouse test. However, STX is designated as a specific compound by the Chemical Weapons Convention, and its production, transfer, storage and use are currently severely restricted. Many paralytic shellfish toxin components other than STX lack stability, but the only decarbamoyl saxitoxin (dcSTX) is chemically stable like STX, and is the first paralytic shellfish toxin standard that replaces STX. Is a candidate. However, dcSTX is hardly contained in poisonous shellfish and toxic plankton, and in order to prepare a system for supply as a standard poison, it must be prepared by chemical conversion from other paralytic shellfish poison components.

主な麻痺性貝毒の化学構造は図1に示す一般式で表される。位置番号を図1の一般式中に示す。
STX、dcSTX、GTX群などの麻痺性貝毒成分は塩基性水溶液中では著しく不安定で、下記式に示すように、速やかに酸化され、別の骨格構造へと分解されてしまうことが知られている。
The chemical structure of the main paralytic shellfish poison is represented by the general formula shown in FIG. The position number is shown in the general formula of FIG.
It is known that paralytic shellfish poison components such as STX, dcSTX, and GTX groups are extremely unstable in a basic aqueous solution, and are rapidly oxidized and decomposed into another skeleton structure as shown in the following formula. ing.

Figure 2016204270
Figure 2016204270

非特許文献1(Ghazarossian et al. (1976))には、STXをdcSTXに変換して、dcSTXを製造する方法が記載されている。この方法は、側鎖のカルバメートのエステル加水分解を伴うものである。   Non-Patent Document 1 (Ghazarossian et al. (1976)) describes a method for producing dcSTX by converting STX into dcSTX. This method involves ester hydrolysis of the side chain carbamate.

Figure 2016204270
Figure 2016204270

非特許文献2(Watanabe et al. (2011))には、有毒藍藻を大量培養してC−toxins (C1, C2)を分離し、既報の方法でデカルバモイルゴニオトキシン(dcGTX)2およびdcGTX3、もしくはGTX5に変換したのち、これらをさらに化学的に変換することによりdcSTXが調製する工程が提案されている(図2参照)。   Non-patent document 2 (Watanabe et al. (2011)) discloses that C-toxins (C1, C2) are isolated by mass culture of toxic cyanobacteria, and decarbamoylgoniotoxin (dcGTX) 2 and dcGTX3, Alternatively, there has been proposed a process in which dcSTX is prepared by converting these into GTX5 and then further chemically converting them (see FIG. 2).

Ghazarossian, V. E. et al. Biochem. Biophys. Res. Commun. 1976, 68, 776-780.Ghazarossian, V. E. et al. Biochem. Biophys. Res. Commun. 1976, 68, 776-780. Watanabe, R. et al. Mar. Drugs 2011, 9, 466-477.Watanabe, R. et al. Mar. Drugs 2011, 9, 466-477.

しかし、非特許文献1に記載の方法では、得られるdcSTXの収率が低く、出発原料のSTXに対しておそらく10%未満しかdcSTXが得られないという問題がある。また、STXを出発原料としなければならないため、取扱い上不都合である。
また、非特許文献2に記載の方法では、藍藻を培養する手間や、変換反応の各段階での収率が低いこと、副産物として規制化合物のSTXが生じてしまうなどの点で、必要量のdcSTXを十分量確保することは困難である。
発明者らは、天然の毒化貝に多量に含まれており、毒化貝から容易に得ることが出来るゴニオトキシン群(GTXs)をdcSTXに変換することができれば、必要量のdcSTXの確保が容易となると考えた。
本発明は上記事情に鑑みてなされたものであり、dcSTX等の化合物を高効率に製造可能な化合物の製造方法の提供と、dcSTX等の化合物を製造するために有用な中間体の製造方法の提供を課題とする。
However, the method described in Non-Patent Document 1 has a problem that the yield of dcSTX obtained is low, and dcSTX is probably less than 10% based on the starting STX. Moreover, since STX must be used as a starting material, it is inconvenient in handling.
Further, in the method described in Non-Patent Document 2, the necessary amount is reduced in terms of labor of cultivating cyanobacteria, low yields at each stage of the conversion reaction, and generation of STX as a by-product as a byproduct. It is difficult to secure a sufficient amount of dcSTX.
If the inventors can convert goniotoxin groups (GTXs) that are contained in natural poisonous shellfish in large amounts and can be easily obtained from the poisoned shellfish into dcSTX, the necessary amount of dcSTX can be easily secured. I thought.
The present invention has been made in view of the above circumstances, and provides a method for producing a compound capable of producing a compound such as dcSTX with high efficiency, and a method for producing an intermediate useful for producing a compound such as dcSTX. Offering is an issue.

上記課題を解決するため、本発明は、下記の特徴を有する化合物の製造方法を提供する。   In order to solve the above problems, the present invention provides a method for producing a compound having the following characteristics.

<1>下記一般式(2)で表される化合物又はそのイオン若しくは塩を、塩基性条件下で処理することにより下記一般式(3)で表される化合物又はそのイオン若しくは塩を得る工程Iと、
下記一般式(3)で表される化合物又はそのイオン若しくは塩と、SH基を有する化合物(S2)とを反応させることにより下記一般式(4)で表される化合物又はそのイオン若しくは塩を得る工程IIと、
を含むことを特徴とする、下記一般式(4)で表される化合物の製造方法。
<1> Step I of obtaining a compound represented by the following general formula (3) or an ion or salt thereof by treating the compound represented by the following general formula (2) or an ion or salt thereof under basic conditions. When,
A compound represented by the following general formula (4) or an ion or salt thereof is reacted with a compound (S2) having an SH group to obtain a compound represented by the following general formula (4) or an ion or salt thereof. Step II,
The manufacturing method of the compound represented by following General formula (4) characterized by including.

Figure 2016204270
Figure 2016204270

[式(2)中、Rは水素原子又は水酸基を表し、Rはアミノ基、−NHSOHで表される基、又は−NHR4aで表される基(R4aは一価の有機基を表す。)を表し、Rは一価の有機基を表す。] [In Formula (2), R 1 represents a hydrogen atom or a hydroxyl group, R 4 represents an amino group, a group represented by —NHSO 3 H, or a group represented by —NHR 4a (R 4a represents a monovalent organic group) R 5 represents a monovalent organic group. ]

Figure 2016204270
Figure 2016204270

[式(3)中、R及びRは前記と同じ意味を表す。] [In Formula (3), R 1 and R 5 represent the same meaning as described above. ]

Figure 2016204270
Figure 2016204270

[式(4)中、Rは前記と同じ意味を表す。] [In formula (4), R 1 represents the same meaning as described above. ]

<2>更に、下記一般式(1)で表される化合物又はそのイオン若しくは塩と、SH基を有する化合物(S1)とを反応させて、前記一般式(2)で表される化合物又はそのイオン若しくは塩を得る工程を含む、前記<1>に記載の化合物の製造方法。 <2> Further, a compound represented by the following general formula (1) or an ion or salt thereof and a compound having a SH group (S1) are reacted to obtain a compound represented by the above general formula (2) or a compound thereof. The manufacturing method of the compound as described in said <1> including the process of obtaining an ion or a salt.

Figure 2016204270
Figure 2016204270

[式(1)中、R及びRはそれぞれ独立に水素原子、−OSOHで表される基、又は−OSO で表される基を表し(但し、R及びRの少なくとも一方は−OSOHで表される基、又は−OSO で表される基である)、R及びRは前記と同じ意味を表す。] [In Formula (1), R 2 and R 3 each independently represent a hydrogen atom, a group represented by —OSO 3 H, or a group represented by —OSO 3 (provided that R 2 and R 3 At least one is a group represented by —OSO 3 H or a group represented by —OSO 3 ), R 1 and R 4 represent the same meaning as described above. ]

<3>前記SH基を有する化合物(S1)が下記一般式(5−1)又は下記一般式(5−2)で表される化合物であり、前記一般式(2)で表される化合物が下記一般式(2−1)又は下記一般式(2−2)で表される化合物である、前記<2>に記載の化合物の製造方法。 <3> The compound (S1) having the SH group is a compound represented by the following general formula (5-1) or the following general formula (5-2), and the compound represented by the general formula (2) is The manufacturing method of the compound as described in said <2> which is a compound represented by the following general formula (2-1) or the following general formula (2-2).

Figure 2016204270
Figure 2016204270

[式(5−1)中、Rはアルキレン基を表す。] [In Formula (5-1), R 7 represents an alkylene group. ]

Figure 2016204270
Figure 2016204270

[式(5−2)中、Rはアルキレン基を表す。] [In Formula (5-2), R 8 represents an alkylene group. ]

Figure 2016204270
Figure 2016204270

[式(2−1)中、R、R、及びRは前記と同じ意味を表す。式(2−2)中、R、R、及びRは前記と同じ意味を表す。] [In Formula (2-1), R 1 , R 4 , and R 7 represent the same meaning as described above. In formula (2-2), R 1 , R 4 , and R 8 represent the same meaning as described above. ]

<4>前記一般式(2)で表される化合物を、pH9以上の条件下に置くことで、前記塩基性条件下で処理を行う、前記<1>〜<3>のいずれか一つに記載の化合物の製造方法。 <4> In any one of the above items <1> to <3>, the compound represented by the general formula (2) is treated under the basic condition by placing the compound under a pH of 9 or more. A method for producing the described compound.

<5>下記一般式(2)で表される化合物又はそのイオン若しくは塩を、塩基性条件下で処理することにより下記一般式(3)で表される化合物又はそのイオン若しくは塩を得る工程Iを含むことを特徴とする、下記一般式(3)で表される化合物の製造方法。 <5> Step I of obtaining a compound represented by the following general formula (3) or an ion or salt thereof by treating the compound represented by the following general formula (2) or an ion or salt thereof under basic conditions. The manufacturing method of the compound represented by following General formula (3) characterized by including.

Figure 2016204270
Figure 2016204270

[式(2)中、Rは水素原子又は水酸基を表し、Rはアミノ基、−NHSOHで表される基、又は−NHR4aで表される基(R4aは一価の有機基を表す。)を表し、Rは一価の有機基を表す。] [In Formula (2), R 1 represents a hydrogen atom or a hydroxyl group, R 4 represents an amino group, a group represented by —NHSO 3 H, or a group represented by —NHR 4a (R 4a represents a monovalent organic group) R 5 represents a monovalent organic group. ]

Figure 2016204270
Figure 2016204270

[式(3)中、R及びRは前記と同じ意味を表す。] [In Formula (3), R 1 and R 5 represent the same meaning as described above. ]

本発明の化合物の製造方法によれば、前記一般式(4)で表されるdcSTX等の化合物を高効率に製造可能である。また、本発明の化合物の製造方法によれば、前記一般式(4)で表されるdcSTX等の化合物を製造するために有用な中間体を高効率に製造可能である。   According to the method for producing a compound of the present invention, a compound such as dcSTX represented by the general formula (4) can be produced with high efficiency. Further, according to the method for producing a compound of the present invention, an intermediate useful for producing a compound such as dcSTX represented by the general formula (4) can be produced with high efficiency.

代表的な麻痺性貝毒成分の構造を示す図である。It is a figure which shows the structure of a typical paralytic shellfish poison component. 従来法による、dcSTXの製造方法のフローを示す図である。It is a figure which shows the flow of the manufacturing method of dcSTX by a conventional method. 実施例において製造されたME−dcSTX(及びdcSTX)の収量を示すグラフである。It is a graph which shows the yield of ME-dcSTX (and dcSTX) manufactured in the Example.

<化合物(4)の製造方法>
一般式(4)で表される化合物(「化合物(4)」と略記することがある。)は、以下に示す一実施形態の製造方法により製造することができる。
<Method for Producing Compound (4)>
The compound represented by the general formula (4) (sometimes abbreviated as “compound (4)”) can be produced by the production method of one embodiment shown below.

1.化合物(2)の製造
まず、下記一般式(1)で表される化合物(以下「化合物(1)」と略記することがある。)又はそのイオン若しくは塩と、SH基を有する化合物(S1)とを反応させて、下記一般式(2)で表される化合物(以下「化合物(2)」と略記することがある。)又はそのイオン若しくは塩を得る工程を行う。
1. Production of Compound (2) First, a compound represented by the following general formula (1) (hereinafter sometimes abbreviated as “compound (1)”) or an ion or salt thereof, and a compound having an SH group (S1) To obtain a compound represented by the following general formula (2) (hereinafter sometimes abbreviated as “compound (2)”), or an ion or salt thereof.

Figure 2016204270
Figure 2016204270

[式中、Rは水素原子又は水酸基を表し、R及びRはそれぞれ独立に水素原子、−OSOHで表される基、又は−OSO で表される基を表し(但し、R及びRの少なくとも一方は−OSOHで表される基、又は−OSO で表される基である)、Rはアミノ基、−NHSOHで表される基、又は−NHR4aで表される基(R4aは一価の有機基を表す。)を表し、Rは一価の有機基を表す。] [Wherein, R 1 represents a hydrogen atom or a hydroxyl group, and R 2 and R 3 each independently represent a hydrogen atom, a group represented by —OSO 3 H, or a group represented by —OSO 3 (provided that And at least one of R 2 and R 3 is a group represented by —OSO 3 H or a group represented by —OSO 3 ), R 4 is an amino group, a group represented by —NHSO 3 H, Alternatively, a group represented by -NHR 4a (R 4a represents a monovalent organic group) and R 5 represents a monovalent organic group. ]

4a、Rにおける一価の有機基は、それぞれ独立に、構成原子として炭素原子を含む1価の基であり、置換基を有していてもよい炭化水素基を例示できる。ここで「炭化水素基が置換基を有する」とは、炭化水素基を構成する1個以上の水素原子が、水素原子以外の基(置換基)で置換されているか、又は炭化水素基を構成する1個以上の炭素原子が、若しくは前記炭素原子がこれに結合している1個以上の水素原子と共に、これ(炭素原子又は1個以上の水素原子が結合している炭素原子)とは異なる基(置換基)で置換されていることを意味する。 The monovalent organic groups in R 4a and R 5 are each independently a monovalent group containing a carbon atom as a constituent atom, and examples thereof may include a hydrocarbon group which may have a substituent. Here, “the hydrocarbon group has a substituent” means that one or more hydrogen atoms constituting the hydrocarbon group are substituted with a group (substituent) other than a hydrogen atom, or constitute a hydrocarbon group One or more carbon atoms, or together with one or more hydrogen atoms to which the carbon atom is bonded, different from this (a carbon atom or a carbon atom to which one or more hydrogen atoms are bonded) It means being substituted with a group (substituent).

4a、Rにおける前記炭化水素基は、脂肪族炭化水素基及び芳香族炭化水素基(アリール基)のいずれでもよく、前記脂肪族炭化水素基は、飽和脂肪族炭化水素基(アルキル基)及び不飽和脂肪族炭化水素基のいずれでもよい。 The hydrocarbon group in R 4a and R 5 may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group (aryl group), and the aliphatic hydrocarbon group is a saturated aliphatic hydrocarbon group (alkyl group). And an unsaturated aliphatic hydrocarbon group.

4a、Rにおける前記有機基を構成する原子は、前記工程Iの反応を阻害しない範囲において、その他の基と結合していてもよい。例えば、Rにおける前記有機基を構成する原子は12位の水酸基の両方又は片方と一緒になって環を形成していてもよい。形成される前記環は単環状および多環状のいずれでもよい。 The atoms constituting the organic group in R 4a and R 5 may be bonded to other groups as long as the reaction of the step I is not inhibited. For example, the atoms constituting the organic group in R 5 may form a ring together with both or one of the 12-position hydroxyl groups. The formed ring may be either monocyclic or polycyclic.

SH基を有する化合物(S1)としては、分子内にSH基を有するものであれば特に制限されず、エタンチオール、2−プロパンチオール、1−ブタンチオール、2−ブタンチオール、アリルメルカプタン、チオ酢酸、ベンゼンチオール、1−ナフタレンチオール、2−メルカプトエタノール、N−アセチルシステイン、1,2−エタンジチオール、還元型グルタチオン等が挙げられる。   The compound having an SH group (S1) is not particularly limited as long as it has an SH group in the molecule, and is ethanethiol, 2-propanethiol, 1-butanethiol, 2-butanethiol, allyl mercaptan, thioacetic acid. , Benzenethiol, 1-naphthalenethiol, 2-mercaptoethanol, N-acetylcysteine, 1,2-ethanedithiol, reduced glutathione, and the like.

前記SH基を有する化合物(S1)は、下記一般式(5−1)で表される化合物(以下「化合物(5−1)」と略記することがある。)、又は下記一般式(5−2)で表される化合物(以下「化合物(5−2)」と略記することがある。)であることが好ましい。また、前記一般式(2)で表される化合物は、下記一般式(2−1)で表される化合物(以下「化合物(2−1)」と略記することがある。)又は下記一般式(2−2)で表される化合物(以下「化合物(2−2)」と略記することがある。)であることが好ましい。   The compound (S1) having the SH group is a compound represented by the following general formula (5-1) (hereinafter sometimes abbreviated as “compound (5-1)”), or the following general formula (5- 2) (hereinafter sometimes abbreviated as “compound (5-2)”). The compound represented by the general formula (2) is a compound represented by the following general formula (2-1) (hereinafter sometimes abbreviated as “compound (2-1)”) or the following general formula. A compound represented by (2-2) (hereinafter sometimes abbreviated as “compound (2-2)”) is preferable.

Figure 2016204270
Figure 2016204270

[式(5−1)中、Rはアルキレン基を表す。] [In Formula (5-1), R 7 represents an alkylene group. ]

Figure 2016204270
Figure 2016204270

[式(5−2)中、Rはアルキレン基を表す。] [In Formula (5-2), R 8 represents an alkylene group. ]

Figure 2016204270
Figure 2016204270

[式(2−1)中、R、R、及びRは前記と同じ意味を表す。式(2−2)中、R、R、及びRは前記と同じ意味を表す。] [In Formula (2-1), R 1 , R 4 , and R 7 represent the same meaning as described above. In formula (2-2), R 1 , R 4 , and R 8 represent the same meaning as described above. ]

、Rにおけるアルキレン基は、それぞれ独立に、置換基を有していてもよい2価の飽和炭化水素基であり、前記炭化水素基は直鎖状、分岐鎖状又は環状であってもよい。
前記アルキレン基は、炭素数が1〜20であることが好ましく、1〜10であることがより好ましく、1〜5であることが特に好ましく、前記アルキレン基としては、メチレン基、エチレン基、トリメチレン基、−CH(CH)−で表される基等が挙げられる。
化合物(5−1)としては、2−メルカプトエタノールが挙げられる。化合物(5−2)としては、1,2−エタンジチオールが挙げられる。
The alkylene groups in R 7 and R 8 are each independently a divalent saturated hydrocarbon group which may have a substituent, and the hydrocarbon group is linear, branched or cyclic, Also good.
The alkylene group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 5 carbon atoms. Examples of the alkylene group include a methylene group, an ethylene group, and trimethylene. group, -CH (CH 3) - groups represented by like.
Examples of the compound (5-1) include 2-mercaptoethanol. Examples of the compound (5-2) include 1,2-ethanedithiol.

化合物(1)のイオンとしては、化合物(1)がカチオンとなったものでもよく、化合物(1)がアニオンとなったものでもよい。
化合物(1)がカチオンとなったものとしては、化合物(1)において「−NH−」で表される基の少なくとも一つにプロトンが付加して式「―NH −」で表されるカチオン部となったものや、化合物(1)において「=NH」で表される基の少なくとも一つにプロトンが付加して式「=NH 」で表されるカチオン部となったものが挙げられる。
As an ion of the compound (1), the compound (1) may be a cation, or the compound (1) may be an anion.
The compound (1) in which the cation is converted is represented by the formula “—NH 2 + —” by adding a proton to at least one of the groups represented by “—NH—” in the compound (1). A compound having a cation moiety or a compound having a cation moiety represented by the formula “═NH 2 + ” by adding a proton to at least one group represented by “═NH” in the compound (1) Can be mentioned.

化合物(1)のイオンとしては、例えば下記一般式(1−i)で表される化合物が挙げられる。   Examples of the ion of the compound (1) include compounds represented by the following general formula (1-i).

Figure 2016204270
Figure 2016204270

[式(1−i)中、R、R、R及びRは前記と同じ意味を表す。] [In formula (1-i), R 1 , R 2 , R 3 and R 4 represent the same meaning as described above. ]

化合物(1)の塩としては、化合物(1)がカチオンとなってアニオン(無機アニオン又は有機アニオン)とともに形成された塩であってもよく、化合物(1)がアニオンとなってカチオン(無機カチオン又は有機カチオン)とともに形成された塩であってもよい。   The salt of compound (1) may be a salt formed with compound (1) as a cation and an anion (inorganic anion or organic anion), and compound (1) as a cation (inorganic cation). Or a salt formed with an organic cation).

化合物(1)がカチオンとなったものと共に化合物(1)の塩を形成する前記アニオンは、特に限定されない。
前記アニオンのうち、好ましい無機アニオンとしては、水酸化物イオン、硝酸イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、ハロゲン化物イオン等が例示できる。
前記アニオンのうち、好ましい有機アニオンとしては、カルボン酸のアニオン等が例示できる。
The said anion which forms the salt of a compound (1) with what the compound (1) became the cation is not specifically limited.
Among the anions, preferred inorganic anions include hydroxide ions, nitrate ions, sulfate ions, carbonate ions, hydrogencarbonate ions, halide ions, and the like.
Among the anions, preferred organic anions include carboxylic acid anions.

化合物(1)がアニオンとなったものと共に化合物(1)の塩を形成する前記カチオンは、特に限定されない。
前記カチオンのうち、好ましい無機カチオンとしては、水素イオン、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン等が例示できる。
The said cation which forms the salt of a compound (1) with what the compound (1) became the anion is not specifically limited.
Among the cations, preferred inorganic cations include hydrogen ions, sodium ions, potassium ions, calcium ions, magnesium ions, and the like.

化合物(2)のイオンとしては、化合物(2)がカチオンとなったものでもよく、化合物(2)がアニオンとなったものでもよい。
化合物(2)がカチオンとなったものとしては、化合物(2)において「−NH−」で表される基の少なくとも一つにプロトンが付加して式「―NH −」で表されるカチオン部となったものや、化合物(2)において「=NH」で表される基の少なくとも一つにプロトンが付加して式「=NH 」で表されるカチオン部となったものが挙げられる。
As an ion of the compound (2), the compound (2) may be a cation, or the compound (2) may be an anion.
The compound (2) becomes a cation as represented by the formula “—NH 2 + —” in which a proton is added to at least one of the groups represented by “—NH—” in the compound (2). A compound having a cation moiety or a compound having a cation moiety represented by the formula “═NH 2 + ” by adding a proton to at least one group represented by “═NH” in the compound (2). Can be mentioned.

化合物(2)のイオンとしては、例えば下記一般式(2−i)で表される化合物が挙げられる。     As an ion of a compound (2), the compound represented, for example by the following general formula (2-i) is mentioned.

Figure 2016204270
Figure 2016204270

[式(2−i)中、R、R及びRは前記と同じ意味を表す。] [In formula (2-i), R 1 , R 4 and R 5 represent the same meaning as described above. ]

化合物(2)の塩としては、化合物(2)がカチオンとなってアニオン(無機アニオン又は有機アニオン)とともに形成された塩であってもよく、化合物(2)がアニオンとなってカチオン(無機カチオン又は有機カチオン)とともに形成された塩であってもよい。   The salt of compound (2) may be a salt formed with compound (2) as a cation and an anion (inorganic or organic anion), and compound (2) as a cation (inorganic cation). Or a salt formed with an organic cation).

化合物(2)がカチオンとなったものと共に化合物(2)の塩を形成する前記アニオンは、特に限定されず、前記化合物(1)がカチオンとなったものと共に塩を形成するアニオンと同様のものが例示できる。   The anion that forms a salt of the compound (2) with the compound (2) that becomes a cation is not particularly limited, and is the same as the anion that forms a salt with the compound (1) that becomes a cation. Can be illustrated.

化合物(2)がアニオンとなったものと共に化合物(2)の塩を形成する前記カチオンは、特に限定されず、前記化合物(1)がアニオンとなったものと共に塩を形成するカチオンと同様のものが例示できる。   The cation forming the salt of the compound (2) together with the compound (2) becoming an anion is not particularly limited, and is the same as the cation forming a salt with the compound (1) becoming an anion. Can be illustrated.

原料物質である化合物(1)として代表されるGTX2、GTX3等のゴニオトキシン群(GTXs)は天然の毒化貝に多量に含まれており、入手可能であるという利点がある。なお、デカルバモイルゴニオトキシンであるdcGTX2やdcGTX3は、天然にはほとんど存在しない。   Goniotoxin groups (GTXs) such as GTX2 and GTX3, which are represented as the raw material compound (1), are contained in a large amount in natural poisonous shellfish and have an advantage that they are available. In addition, dcGTX2 and dcGTX3 which are decarbamoyl goniotoxins hardly exist in nature.

化合物(1)又はそのイオン若しくは塩と、SH基を有する化合物(S1)との反応は、適当な溶媒中で行うことができ、溶媒としては、水を含む溶媒が好ましい。化合物(1)又はそのイオン若しくは塩と、SH基を有する化合物(S1)との反応は、リン酸緩衝液、リン酸アンモニウム緩衝液等の生化学分野において一般に使用される緩衝液中で行うことができる。
化合物(1)又はそのイオン若しくは塩と、SH基を有する化合物(S1)との反応は、pH3〜9の範囲内で行うことが好ましく、pH6〜8の範囲内で行うことがより好ましい。
The reaction of the compound (1) or an ion or salt thereof and the compound (S1) having an SH group can be performed in a suitable solvent, and the solvent is preferably a solvent containing water. The reaction of the compound (1) or an ion or salt thereof and the compound (S1) having an SH group is performed in a buffer solution generally used in the biochemical field such as a phosphate buffer solution or an ammonium phosphate buffer solution. Can do.
The reaction between the compound (1) or an ion or salt thereof and the compound (S1) having an SH group is preferably performed within a pH range of 3 to 9, more preferably within a pH range of 6 to 8.

反応時の化合物(1)又はそのイオン若しくは塩、並びにSH基を有する化合物(S1)の総使用量は、これらの化合物の種類を考慮し、目的とする反応に応じて適宜調節すればよい。
SH基を有する化合物(S1)の総使用量は、例えば、化合物(1)中の、R及びRにおける−OSOHで表される基又は−OSO で表される基のモル数に対して、1〜100000倍モル量であることが好ましく、10〜10000モル量であることがより好ましく、100〜1000倍モル量であることが特に好ましい。
The total amount of the compound (1) or its ion or salt during the reaction and the compound (S1) having an SH group may be appropriately adjusted according to the intended reaction in consideration of the types of these compounds.
The total amount of the compound (S1) having an SH group is, for example, the mole of the group represented by —OSO 3 H or the group represented by —OSO 3 in R 2 and R 3 in the compound (1). The number is preferably 1 to 100,000 times the molar amount, more preferably 10 to 10,000 times the molar amount, and particularly preferably 100 to 1000 times the molar amount.

化合物(1)又はそのイオン若しくは塩と、SH基を有する化合物(S1)とを反応させるときの温度(反応温度)は、これら化合物の種類に応じて適宜調節すればよい。なかでも、前記反応温度は0〜100℃の範囲であることが好ましく、20〜40℃の範囲であることがより好ましい。   What is necessary is just to adjust suitably the temperature (reaction temperature) when making a compound (1) or its ion or salt react with the compound (S1) which has SH group according to the kind of these compounds. Especially, it is preferable that the said reaction temperature is the range of 0-100 degreeC, and it is more preferable that it is the range of 20-40 degreeC.

化合物(1)又はそのイオン若しくは塩と、SH基を有する化合物(S1)とを反応させる時間(反応時間)は、反応温度等、その他の条件に応じて適宜調節すればよいが、1分〜72時間であることが好ましく、6〜42時間であることがより好ましい。   The time (reaction time) for reacting the compound (1) or an ion or salt thereof with the compound (S1) having an SH group may be appropriately adjusted according to other conditions such as the reaction temperature. It is preferably 72 hours, and more preferably 6 to 42 hours.

2.化合物(3)の製造: (工程I)
次いで、下記一般式(2)で表される化合物又はそのイオン若しくは塩を、塩基性条件下で処理することにより下記一般式(3)で表される化合物(以下「化合物(3)」と略記することがある。)又はそのイオン若しくは塩を得る工程Iを行う。
2. Production of Compound (3): (Step I)
Next, the compound represented by the following general formula (2) or an ion or salt thereof is treated under basic conditions to give a compound represented by the following general formula (3) (hereinafter abbreviated as “compound (3)”). Or step I to obtain an ion or salt thereof.

Figure 2016204270
Figure 2016204270

[式中、R、R及びRは前記と同じ意味を表す。] [Wherein R 1 , R 4 and R 5 represent the same meaning as described above. ]

前記一般式(2)で表される化合物が前記一般式(2−1)で表される化合物である場合、次のようにして下記一般式(3−1)で表される化合物を得ることができる。   When the compound represented by the general formula (2) is the compound represented by the general formula (2-1), a compound represented by the following general formula (3-1) is obtained as follows. Can do.

Figure 2016204270
Figure 2016204270

[式中、R、R及びRは前記と同じ意味を表す。] [Wherein R 1 , R 4 and R 7 represent the same meaning as described above. ]

本実施形態において、工程Iは塩基性条件下で行われる。
麻痺性貝毒成分はpH8以上の塩基性条件下では著しく不安定であり、容易に酸化され分解されてしまう。したがって、麻痺性貝毒成分の製造にあたり、麻痺性貝毒成分を塩基性条件下に置くことはなされてこなかった。
しかし、発明者らは、麻痺性貝毒成分を包含する前記化合物(1)を、前記化合物(2)へと変換することにより、非常に驚くべきことに、前記化合物(2)の塩基性条件下での安定性が著しく向上することを見出した。そして、骨格部分の分解を伴うことなしに、前記化合物(2)におけるエステルのアルカリ加水分解が可能となることを見出した。
In this embodiment, step I is performed under basic conditions.
The paralytic shellfish poison component is extremely unstable under basic conditions of pH 8 or higher, and is easily oxidized and decomposed. Therefore, in producing the paralytic shellfish poison component, the paralytic shellfish poison component has not been put under basic conditions.
However, the inventors have very surprisingly converted the compound (1) containing the paralytic shellfish toxin component into the compound (2), which is very surprising that the basic conditions of the compound (2) It has been found that the stability under is significantly improved. And it discovered that the alkali hydrolysis of ester in the said compound (2) was attained without accompanying decomposition | disassembly of a frame | skeleton part.

一般に、塩基性条件下での加水分解は、酸性条件下での加水分解よりも反応効率がよい。したがって、前記化合物(1)を、前記化合物(2)へと変換することにより、これを塩基性条件下で処理することが可能となり、非特許文献1及び2で示される従来法よりも格段に高効率で、前記化合物(1)から前記化合物(3)への製造を行うことができる。   In general, hydrolysis under basic conditions is more efficient than hydrolysis under acidic conditions. Therefore, by converting the compound (1) to the compound (2), it becomes possible to treat it under basic conditions, which is far more than the conventional methods shown in Non-Patent Documents 1 and 2. The compound (1) can be produced from the compound (1) with high efficiency.

なお、このことは、前記化合物(1)のイオン若しくは塩、化合物(2)のイオン若しくは塩、及び化合物(3)のイオン若しくは塩についても、同様にあてはめることができる。   This can be similarly applied to the ion or salt of the compound (1), the ion or salt of the compound (2), and the ion or salt of the compound (3).

工程Iにおける、化合物(2)のイオン及び塩としては、前記と同様のものが例示できる。   Examples of the ion and salt of compound (2) in Step I include those described above.

化合物(3)のイオンとしては、化合物(3)がカチオンとなったものでもよく、化合物(3)がアニオンとなったものでもよい。
化合物(3)がカチオンとなったものとしては、化合物(3)において「−NH−」で表される基の少なくとも一つにプロトンが付加して式「―NH −」で表されるカチオン部となったものや、化合物(3)において「=NH」で表される基の少なくとも一つにプロトンが付加して式「=NH 」で表されるカチオン部となったものが挙げられる。
As an ion of the compound (3), the compound (3) may be a cation, or the compound (3) may be an anion.
The compound (3) becomes a cation as represented by the formula “—NH 2 + —” in which a proton is added to at least one of the groups represented by “—NH—” in the compound (3). A compound having a cation moiety or a compound having a cation moiety represented by the formula “═NH 2 + ” by adding a proton to at least one group represented by “═NH” in the compound (3) Can be mentioned.

化合物(3)のイオンとしては、例えば下記一般式(3−i)で表される化合物が挙げられる。   As an ion of a compound (3), the compound represented, for example by the following general formula (3-i) is mentioned.

Figure 2016204270
Figure 2016204270

[式(3−i)中、R、R及びRは前記と同じ意味を表す。] [In formula (3-i), R 1 , R 4 and R 5 represent the same meaning as described above. ]

化合物(3)の塩としては、化合物(3)がカチオンとなってアニオン(無機アニオン又は有機アニオン)とともに形成された塩であってもよく、化合物(3)がアニオンとなってカチオン(無機カチオン又は有機カチオン)とともに形成された塩であってもよい。   The salt of compound (3) may be a salt formed with compound (3) as a cation and an anion (inorganic or organic anion), and compound (3) as a cation (inorganic cation). Or a salt formed with an organic cation).

化合物(3)がカチオンとなったものと共に化合物(3)の塩を形成する前記アニオンは、特に限定されない。
前記アニオンのうち、好ましい無機アニオンとしては、水酸化物イオン、硝酸イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、ハロゲン化物イオン等が例示できる。
前記アニオンのうち、好ましい有機アニオンとしては、カルボン酸のアニオン等が例示できる。
The said anion which forms the salt of a compound (3) with what the compound (3) became the cation is not specifically limited.
Among the anions, preferred inorganic anions include hydroxide ions, nitrate ions, sulfate ions, carbonate ions, hydrogencarbonate ions, halide ions, and the like.
Among the anions, preferred organic anions include carboxylic acid anions.

化合物(3)がアニオンとなったものと共に化合物(3)の塩を形成する前記カチオンは、特に限定されない。
前記カチオンのうち、好ましい無機カチオンとしては、水素イオン、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン等が例示できる。
The said cation which forms the salt of a compound (3) with what the compound (3) became the anion is not specifically limited.
Among the cations, preferred inorganic cations include hydrogen ions, sodium ions, potassium ions, calcium ions, magnesium ions, and the like.

工程Iにおける反応時の化合物(2)の反応は、適当な溶媒中で行うことができ、溶媒としては、水を含む溶媒が好ましい。工程Iにおける反応時の化合物(2)の反応は、リン酸緩衝液、リン酸アンモニウム緩衝液等の生化学分野において一般に使用される緩衝液中で行うことができる。   The reaction of compound (2) during the reaction in Step I can be carried out in a suitable solvent, and the solvent preferably contains water. The reaction of compound (2) during the reaction in Step I can be performed in a buffer solution generally used in the biochemical field such as a phosphate buffer solution and an ammonium phosphate buffer solution.

工程Iにおける反応時の化合物(2)又はそのイオン若しくは塩の総使用量は、これらの化合物の種類を考慮し、目的とする反応に応じて適宜調節すればよい。   The total amount of compound (2) or its ion or salt used in the reaction in Step I may be appropriately adjusted according to the intended reaction in consideration of the type of these compounds.

化合物(2)又はそのイオン若しくは塩を、塩基性条件下で処理するにあたり、前記化合物(2)又はそのイオン若しくは塩を反応させる塩基性条件は、反応温度等、その他の条件に応じて適宜調節すればよい。塩基性条件とは、エステルの加水分解が進行可能な塩基性条件であり、前記塩基性条件は、エステルの加水分解を効率よく進行させるとの観点から、pH9以上とすることが好ましく、pH9以上pH13以下とすることがより好ましく、pH11以上pH12以下とすることがさらに好ましい。特にpHが11以上であれば、目的物の収率の顕著な低下を伴わずに、短時間に高収率に化合物(3)又はそのイオン若しくは塩を得ることができる。   When the compound (2) or its ion or salt is treated under basic conditions, the basic condition for reacting the compound (2) or its ion or salt is appropriately adjusted according to other conditions such as the reaction temperature. do it. The basic conditions are basic conditions under which ester hydrolysis can proceed, and the basic conditions are preferably set to pH 9 or more from the viewpoint of efficiently proceeding with hydrolysis of the ester, and pH 9 or more. The pH is more preferably 13 or less, and further preferably pH 11 or more and pH 12 or less. In particular, when the pH is 11 or more, the compound (3) or an ion or salt thereof can be obtained in a high yield in a short time without significantly reducing the yield of the target product.

化合物(2)又はそのイオン若しくは塩を、塩基性条件下で処理するにあたり、前記化合物(2)又はそのイオン若しくは塩を塩基性条件下に置く時間(反応時間)は、反応温度等、その他の条件に応じて適宜調節すればよいが、1分〜24時間であることが好ましく、5分〜1時間であることがより好ましく、7〜15分であることがさらに好ましい。   When the compound (2) or its ion or salt is treated under basic conditions, the time (reaction time) for placing the compound (2) or its ion or salt under basic conditions is the reaction temperature or other conditions. What is necessary is just to adjust suitably according to conditions, However, It is preferable that it is 1 minute-24 hours, It is more preferable that it is 5 minutes-1 hour, It is further more preferable that it is 7-15 minutes.

塩基性条件下とは、塩基性条件を達成可能な適当な塩基の存在下であってもよく、塩基としては、例えば、水酸化ナトリウム、炭酸ナトリウムが挙げられ、これらに制限されない。   The basic condition may be in the presence of a suitable base capable of achieving the basic condition. Examples of the base include, but are not limited to, sodium hydroxide and sodium carbonate.

化合物(2)又はそのイオン若しくは塩を、塩基性条件下で処理するときの温度(反応温度)は、これら化合物の種類に応じて適宜調節すればよい。なかでも、前記反応温度は50〜100℃の範囲であることが好ましく、95〜100℃の範囲であることがより好ましい。   What is necessary is just to adjust suitably the temperature (reaction temperature) when processing a compound (2) or its ion or salt on basic conditions according to the kind of these compounds. Especially, it is preferable that the said reaction temperature is the range of 50-100 degreeC, and it is more preferable that it is the range of 95-100 degreeC.

3.化合物(4)の製造: (工程II)
続いて、化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)とを反応させることにより下記一般式(4)で表される化合物(以下「化合物(4)」と略記することがある。)又はそのイオン若しくは塩を得る工程IIを行う。
3. Production of Compound (4): (Step II)
Subsequently, a compound represented by the following general formula (4) (hereinafter abbreviated as “compound (4)”) by reacting the compound (3) or an ion or salt thereof with the compound (S2) having an SH group. Or step II to obtain an ion or salt thereof.

Figure 2016204270
Figure 2016204270

[式中、Rは前記と同じ意味を表し、Rは一価の有機基を表す。] [Wherein, R 1 represents the same meaning as described above, and R 6 represents a monovalent organic group. ]

SH基を有する化合物(S2)のRは、SH基を有する化合物(S1)のRと同じ意味を表し、前記Rと前記Rはそれぞれ互いに同一であってもよく、互いに異なっていてもよい。
SH基を有する化合物(S2)としては、前記SH基を有する化合物(S1)と同様のものが例示できる。
R 6 of the compound (S2) having an SH group represents the same meaning as R 5 of the compound (S1) having an SH group, and the R 5 and the R 6 may be the same as or different from each other. May be.
Examples of the compound (S2) having an SH group include the same compounds as the compound (S1) having an SH group.

化合物(3)と、SH基を有する化合物(S2)とを反応させることにより、式(3)における−S−R基中のS原子とSH−R(S2)中のS原子とがジスルフィド結合を形成してR−S−S−Rで表される化合物(S3)となり、化合物(4)が得られる。 By reacting the compound (3) with the compound (S2) having an SH group, the S atom in the —S—R 5 group in the formula (3) and the S atom in the SH—R 6 (S2) A disulfide bond is formed to become a compound (S3) represented by R 5 —S—S—R 6 , thereby obtaining a compound (4).

なお、このことは、前記化合物(3)のイオン若しくは塩、及び化合物(4)のイオン若しくは塩についても、同様にあてはめることができる。   This can be similarly applied to the ion or salt of the compound (3) and the ion or salt of the compound (4).

化合物(4)のイオンとしては、化合物(4)がカチオンとなったものでもよく、化合物(4)がアニオンとなったものでもよい。
化合物(4)がカチオンとなったものとしては、化合物(4)において「−NH−」で表される基の少なくとも一つにプロトンが付加して式「―NH −」で表されるカチオン部となったものや、化合物(4)において「=NH」で表される基の少なくとも一つにプロトンが付加して式「=NH 」で表されるカチオン部となったものが挙げられる。
As an ion of the compound (4), the compound (4) may be a cation, or the compound (4) may be an anion.
The compound (4) becomes a cation as represented by the formula “—NH 2 + —” in which a proton is added to at least one of the groups represented by “—NH—” in the compound (4). A compound having a cation moiety or a compound having a cation moiety represented by the formula “═NH 2 + ” by adding a proton to at least one group represented by “═NH” in the compound (4) Can be mentioned.

化合物(4)のイオンとしては、例えば下記一般式(4−i)で表される化合物が挙げられる。   Examples of the ion of the compound (4) include compounds represented by the following general formula (4-i).

Figure 2016204270
Figure 2016204270

[式(4−i)中、Rは前記と同じ意味を表す。] [In formula (4-i), R 1 represents the same meaning as described above. ]

化合物(4)の塩としては、化合物(4)がカチオンとなってアニオン(無機アニオン又は有機アニオン)とともに形成された塩であってもよく、化合物(4)がアニオンとなってカチオン(無機カチオン又は有機カチオン)とともに形成された塩であってもよい。   The salt of compound (4) may be a salt formed with compound (4) as a cation and an anion (inorganic or organic anion), and compound (4) as a cation (inorganic cation). Or a salt formed with an organic cation).

化合物(4)がカチオンとなったものと共に化合物(4)の塩を形成する前記アニオンは、特に限定されない。
前記アニオンのうち、好ましい無機アニオンとしては、水酸化物イオン、硝酸イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、ハロゲン化物イオン等が例示できる。
前記アニオンのうち、好ましい有機アニオンとしては、カルボン酸のアニオン等が例示できる。
The said anion which forms the salt of a compound (4) with what the compound (4) became a cation is not specifically limited.
Among the anions, preferred inorganic anions include hydroxide ions, nitrate ions, sulfate ions, carbonate ions, hydrogencarbonate ions, halide ions, and the like.
Among the anions, preferred organic anions include carboxylic acid anions.

化合物(4)がアニオンとなったものと共に化合物(4)の塩を形成する前記カチオンは、特に限定されない。
前記カチオンのうち、好ましい無機カチオンとしては、水素イオン、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン等が例示できる。
The said cation which forms the salt of a compound (4) with what the compound (4) became an anion is not specifically limited.
Among the cations, preferred inorganic cations include hydrogen ions, sodium ions, potassium ions, calcium ions, magnesium ions, and the like.

化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)との反応は、適当な溶媒中で行うことができ、溶媒としては、水を含む溶媒が好ましい。化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)との反応は、リン酸緩衝液リン酸アンモニウム緩衝液等の生化学分野において一般に使用される緩衝液中で行うことができる。
化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)との反応は、pH5〜8の範囲内で行うことが好ましく、pH7〜7.5の範囲内で行うことがより好ましい。
The reaction of the compound (3) or an ion or salt thereof and the compound (S2) having an SH group can be carried out in an appropriate solvent, and the solvent is preferably a solvent containing water. The reaction of the compound (3) or an ion or salt thereof and the compound (S2) having an SH group may be carried out in a buffer solution generally used in the biochemical field such as a phosphate buffer ammonium phosphate buffer. it can.
The reaction between the compound (3) or an ion or salt thereof and the compound (S2) having an SH group is preferably performed within a pH range of 5 to 8, more preferably within a pH range of 7 to 7.5. .

反応時の化合物(3)又はそのイオン若しくは塩、並びにSH基を有する化合物(S2)の総使用量は、これらの化合物の種類を考慮し、目的とする反応に応じて適宜調節すればよい。
SH基を有する化合物(S2)の総使用量は、例えば、化合物(3)中の、−S−Rで表される基のモル数に対して、過剰に使用することが好ましく、10〜100000倍モル量であることが好ましく、100〜100000倍モル量であることがより好ましく、1000〜10000倍モル量であることが特に好ましい。
The total amount of the compound (3) or its ion or salt at the time of reaction and the compound (S2) having an SH group may be appropriately adjusted according to the intended reaction in consideration of the types of these compounds.
The total amount of the compound (S2) having an SH group is preferably used in excess, for example, relative to the number of moles of the group represented by —S—R 5 in the compound (3). The molar amount is preferably 100,000 times, more preferably 100 to 100,000 times, and particularly preferably 1,000 to 10,000 times.

化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)とを反応させるときの温度(反応温度)は、これら化合物の種類に応じて適宜調節すればよい。なかでも、前記反応温度は30〜100℃の範囲であることが好ましく、90〜100℃の範囲であることがより好ましい。   What is necessary is just to adjust suitably the temperature (reaction temperature) when making a compound (3) or its ion or salt react with the compound (S2) which has SH group according to the kind of these compounds. Especially, it is preferable that the said reaction temperature is the range of 30-100 degreeC, and it is more preferable that it is the range of 90-100 degreeC.

化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)とを反応させる時間(反応時間)は、反応温度等、その他の条件に応じて適宜調節すればよいが、1分〜1時間であることが好ましく、3〜10分であることがより好ましい。   The time (reaction time) for reacting the compound (3) or an ion or salt thereof with the compound (S2) having an SH group may be appropriately adjusted according to other conditions such as the reaction temperature, but from 1 minute to One hour is preferable, and 3 to 10 minutes is more preferable.

以上で説明した本実施形態の化合物(4)の製造方法において、生成物の存在及び構造は、NMR、IR、マス等の解析により得られたスペクトルの測定や、元素分析等によって確認可能である。また、必要に応じて、生成物を精製してもよく、精製方法としては、蒸留、抽出、再結晶、カラムクロマトグラフィー等によって生成可能である。   In the production method of the compound (4) of the present embodiment described above, the presence and structure of the product can be confirmed by measurement of a spectrum obtained by analysis of NMR, IR, mass, etc., elemental analysis, or the like. . Further, the product may be purified as necessary, and the purification method can be produced by distillation, extraction, recrystallization, column chromatography or the like.

本実施形態の化合物(4)の製造方法によれば、貝類の毒性を監視する際に使用される標品化合物として使用可能な前記化合物(4)を、高効率に製造することが可能である。   According to the manufacturing method of the compound (4) of this embodiment, it is possible to manufacture the said compound (4) which can be used as a sample compound used when monitoring the toxicity of shellfish with high efficiency. .

<化合物(3)の製造方法>
一般式(3)で表される化合物(「化合物(3)」と略記することがある。)は、以下に示す一実施形態の製造方法により製造することができる。
<Method for Producing Compound (3)>
The compound represented by the general formula (3) (sometimes abbreviated as “compound (3)”) can be produced by the production method of one embodiment shown below.

下記一般式(2)で表される化合物又はそのイオン若しくは塩を、塩基性条件下で処理することにより下記一般式(3)で表される化合物又はそのイオン若しくは塩を得る工程Iを行う。   Step I of obtaining a compound represented by the following general formula (3) or an ion or salt thereof by treating the compound represented by the following general formula (2) or an ion or salt thereof under basic conditions is performed.

Figure 2016204270
Figure 2016204270

[式中、R、R、及びRは前記と同じ意味を表す。] [Wherein, R 1 , R 4 and R 5 represent the same meaning as described above. ]

本実施形態における、工程Iについては、前記<化合物(4)の製造方法>において説明した前記工程Iの方法により行うことができるため、説明を省略する。   Step I in the present embodiment can be performed by the method of Step I described in the above <Method for producing compound (4)>, and thus description thereof is omitted.

本実施形態の化合物(3)の製造方法によれば、貝類の毒性の監視に使用される標品化合物として使用可能な前記化合物(4)を製造するための、中間体として有用な化合物(3)を、高効率に製造することが可能である。   According to the production method of the compound (3) of the present embodiment, the compound (3) useful as an intermediate for producing the compound (4) usable as a standard compound used for monitoring the toxicity of shellfish. ) Can be manufactured with high efficiency.

次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to a following example.

<1> 試料(出発物質)
出発物質には、毒化ホタテガイ抽出液から、活性炭、Bio−Gel−P−2およびBio−Rex 70各カラムクロマトグラフィーを用いて単離したゴニオトキシン2+3(GTX2+3) (GTX2とGTX3との混合物)を使用した。以下、試薬には、特に断りがない限り和光純薬製の特級を使用した。
<1> Sample (starting material)
The starting material was goniotoxin 2 + 3 (GTX2 + 3) (mixture of GTX2 and GTX3) isolated from a poisoned scallop extract using activated carbon, Bio-Gel-P-2 and Bio-Rex 70 column chromatography. used. Hereinafter, special grades manufactured by Wako Pure Chemical Industries, Ltd. were used unless otherwise specified.

<2> 毒の分析
麻痺性貝毒の検出には文献(Oshima Y (1995) Post-column derivatization HPLC methods for paralytic shellfish poisons. In: Hallegraeff GM, Anderson, DM, Cembella AD (eds) Manual on harmful marine microalgae. IOC (Intergovnt Oceanogr Comm) Manuals and Guides No 33, UNESCO, Rome, p 81-94)に記載のHPLC蛍光法を一部改変して使用した。検出に用いたHPLC蛍光分析装置の構成を下記に示す。
<2> Poison analysis Literature (Oshima Y (1995) Post-column derivatization HPLC methods for paralytic shellfish poisons. In: Hallegraeff GM, Anderson, DM, Cembella AD (eds) Manual on harmful marine microalgae. The HPLC fluorescence method described in IOC (Intergovnt Oceanogr Comm) Manuals and Guides No 33, UNESCO, Rome, p 81-94) was partially modified and used. The configuration of the HPLC fluorescence analyzer used for detection is shown below.

(装置構成)
移動相用ポンプ:PU−2080 (Jasco)
反応液用ポンプ:PU−1580 (Jasco)
中和液用ポンプ:PU−2080 (Jasco)
蛍光検出計:FP−1520S (Jasco)
反応ヒーター:2329 (Unity)、湯浴65℃
反応コイル:テフロン(登録商標) i.d.0.5 mm x 10m
HPLCカラム: Wakosil−II 5C18HG, 4.6 x 150mm (Wako)
移動相(GTX群用):2mM 1−ヘプタンスルホン酸ナトリウム/10mM リン酸アンモニウム (pH 7.1):アセトニトリル (HPLC用、Wako) = 100:1、流速0,8mL/min 水産庁貝毒安全対策事業配布標準品(GTX1:3.01μM、GTX2 :1.02μM、GTX3: 0.38μM、GTX4: 1.16μMの混合液)を比較標準として使用
移動相(STX群用):2mM 1−ヘプタンスルホン酸ナトリウム/30mM リン酸アンモニウム (pH 7.1):アセトニトリル (HPLC用、Wako) = 100:5、流速0.8mL/min 水産庁貝毒安全対策事業配布標準品(dcSTX: 2.0μM、neoSTX: 1.51μMの混合液)を比較標準として使用
反応液:7mM 過ヨウ素酸/50mM リン酸カリウム (pH 9.0)、流速0.4mL/min
中和液:0.5M酢酸、流速 0.4 mL/min
(Device configuration)
Mobile phase pump: PU-2080 (Jasco)
Reaction liquid pump: PU-1580 (Jasco)
Neutralizing liquid pump: PU-2080 (Jasco)
Fluorescence detector: FP-1520S (Jasco)
Reaction heater: 2329 (Unity), hot water bath 65 ° C
Reaction coil: Teflon (registered trademark) i. d. 0.5 mm x 10 m
HPLC column: Wakosil-II 5C18HG, 4.6 x 150 mm (Wako)
Mobile phase (for GTX group): 2 mM sodium 1-heptanesulfonate / 10 mM ammonium phosphate (pH 7.1): acetonitrile (for HPLC, Wako) = 100: 1, flow rate 0,8 mL / min Business distribution standard (GTX1: 3.01 μM, GTX2: 1.02 μM, GTX3: 0.38 μM, GTX4: 1.16 μM mixed solution) used as a reference standard Mobile phase (for STX group): 2 mM 1-heptanesulfone Sodium acid / 30 mM ammonium phosphate (pH 7.1): acetonitrile (for HPLC, Wako) = 100: 5, flow rate 0.8 mL / min Fisheries Agency shellfish poison safety measures business distribution standard product (dcSTX: 2.0 μM, neoSTX: Reaction mixture: 7 mM Periodic acid / 5 0 mM potassium phosphate (pH 9.0), flow rate 0.4 mL / min
Neutralizing solution: 0.5M acetic acid, flow rate 0.4 mL / min

<3> ME−STXの合成
凍結乾燥したGTX2+3 (約40μmol)を、50mLの0.05Mリン酸アンモニウム緩衝液(pH 7.2)に溶解した。これに200μLの2−メルカプトエタノール(ME, Wako 1級)を添加混合して、20℃付近の室温で1晩静置した。これを水で充てんしたBio−Gel P−2(Bio−Rad, fine)のカラム(2.5 × 15cm)に添加した後、カラムを水300mLで洗浄後、0.1M酢酸で溶出する成分を10mLずつ分取した。各画分をHPLC蛍光法で分析し、GTX2およびGTX3がカラムから溶出したのを確認後、0.5M酢酸300mLを流しME−STX結合体を溶出させて凍結乾燥したところ、12.6mgの黄色粉末を得た。
ME−STX結合体は、GTX2にMEを作用させてSTXに還元される一連の反応の中間体であるが、上記の条件下では最終産物であるSTXは生じず、60%程度の収率でME−STXを回収することができた。
<3> Synthesis of ME-STX Lyophilized GTX2 + 3 (about 40 μmol) was dissolved in 50 mL of 0.05 M ammonium phosphate buffer (pH 7.2). To this, 200 μL of 2-mercaptoethanol (ME, Wako grade 1) was added and mixed, and allowed to stand at room temperature near 20 ° C. overnight. This was added to a column (2.5 × 15 cm) of Bio-Gel P-2 (Bio-Rad, fine) filled with water, and then the column was washed with 300 mL of water and then eluted with 0.1 M acetic acid. 10 mL each was collected. Each fraction was analyzed by HPLC fluorescence method, and after confirming that GTX2 and GTX3 were eluted from the column, 300 mL of 0.5 M acetic acid was poured to elute the ME-STX conjugate and lyophilized to obtain 12.6 mg of yellow A powder was obtained.
The ME-STX conjugate is an intermediate of a series of reactions that are reduced to STX by allowing ME to act on GTX2, but the final product STX does not occur under the above conditions, with a yield of about 60%. ME-STX could be recovered.

<4> ME−dcSTXの合成
凍結乾燥したME−STX2μmolをそれぞれ、0.05M重炭酸ナトリウムに0.05M炭酸ナトリウムまたは0.05M水酸化ナトリウムを加えて作製したpH9.5〜11.5の水溶液1mLに溶解し、沸騰浴中で5ないし10分加熱した後、濃塩酸10μLを添加して反応を停止した。冷却後、下記の手順で生じたME−dcSTXを定量した。
<4> Synthesis of ME-dcSTX 2 μmol of freeze-dried ME-STX was prepared by adding 0.05 M sodium carbonate or 0.05 M sodium hydroxide to 0.05 M sodium bicarbonate, respectively, and a pH 9.5 to 11.5 aqueous solution. After dissolving in 1 mL and heating in a boiling bath for 5-10 minutes, 10 μL of concentrated hydrochloric acid was added to stop the reaction. After cooling, ME-dcSTX produced by the following procedure was quantified.

<5> ME−dcSTXの定量、及びdcSTXの合成
上記<4>において、ME−STXを塩基性条件下で加温処理して得られた各溶液(煮沸前に2000μMのME−STXを含む) 5μLを、995μLの0.1Mリン酸アンモニウム緩衝液(pH7.2):2−メルカプトエタノール(Wako1級)(9:1 v/v)と混合し、沸騰浴中で5分間加温した後、上述のSTX群分析用HPLC蛍光法で生じたdcSTX量を測定した。チオール(RSH)とSTXの11位での結合体(RS−STX)は、過剰量のチオールで処理するとSTXとなる。上記の条件ではこの変換は定量的に進行することが知られている。
<5> Quantification of ME-dcSTX and synthesis of dcSTX In the above <4>, each solution obtained by heating ME-STX under basic conditions (including 2000 μM ME-STX before boiling) 5 μL was mixed with 995 μL of 0.1 M ammonium phosphate buffer (pH 7.2): 2-mercaptoethanol (Wako grade 1) (9: 1 v / v) and heated in a boiling bath for 5 minutes. The amount of dcSTX produced by the HPLC fluorescence method for STX group analysis described above was measured. A conjugate of thiol (RSH) and STX at position 11 (RS-STX) becomes STX when treated with an excess amount of thiol. Under the above conditions, this conversion is known to proceed quantitatively.

Figure 2016204270
Figure 2016204270

結果を図3に示す。図3は沸騰浴中で5分加熱後、又は10分間加熱後のME−dcSTXの収率を継時的に示したグラフである。図3に示す結果から、係る方法によりdcSTXが高収率に得られることが明らかとなった。また、ME−STXの処理pHの上昇に伴いdcSTXの収率が向上することが明らかとなった。特に、pH11又はpH11.5の条件下では、ME−STX添加量までME−dcSTXが生成しており、反応系中のME−STXのほとんどが、ME−dcSTXへと変換されたことが明らかとなった。   The results are shown in FIG. FIG. 3 is a graph showing the yield of ME-dcSTX over time after heating in a boiling bath for 5 minutes or after heating for 10 minutes. From the results shown in FIG. 3, it was revealed that dcSTX can be obtained in a high yield by this method. Moreover, it became clear that the yield of dcSTX improved with the raise of the process pH of ME-STX. In particular, under conditions of pH 11 or pH 11.5, ME-dcSTX was produced up to the amount of ME-STX added, and it was clear that most of ME-STX in the reaction system was converted to ME-dcSTX. became.

本発明によれば、貝類の毒性を監視する貝毒モニタリングのために実施され、マウス試験法、HPLC法などで使用可能な標品化合物を、高効率に製造可能とすることができ、毒化貝による食中毒の発生防止に資する。   ADVANTAGE OF THE INVENTION According to this invention, it can carry out for the shellfish poison monitoring which monitors the toxicity of shellfish, can make the sample compound which can be used by a mouse | mouth test method, a HPLC method, etc. highly efficient, and can make poisonous shellfish Contributes to the prevention of food poisoning caused by

Claims (5)

下記一般式(2)で表される化合物又はそのイオン若しくは塩を、塩基性条件下で処理することにより下記一般式(3)で表される化合物又はそのイオン若しくは塩を得る工程Iと、
下記一般式(3)で表される化合物又はそのイオン若しくは塩と、SH基を有する化合物(S2)とを反応させることにより下記一般式(4)で表される化合物又はそのイオン若しくは塩を得る工程IIと、
を含むことを特徴とする、下記一般式(4)で表される化合物の製造方法。
Figure 2016204270
[式(2)中、Rは水素原子又は水酸基を表し、Rはアミノ基、−NHSOHで表される基、又は−NHR4aで表される基(R4aは一価の有機基を表す。)を表し、Rは一価の有機基を表す。]
Figure 2016204270
[式(3)中、R及びRは前記と同じ意味を表す。]
Figure 2016204270
[式(4)中、Rは前記と同じ意味を表す。]
Step I of obtaining a compound represented by the following general formula (3) or an ion or salt thereof by treating the compound represented by the following general formula (2) or an ion or salt thereof under basic conditions;
A compound represented by the following general formula (4) or an ion or salt thereof is reacted with a compound (S2) having an SH group to obtain a compound represented by the following general formula (4) or an ion or salt thereof. Step II,
The manufacturing method of the compound represented by following General formula (4) characterized by including.
Figure 2016204270
[In Formula (2), R 1 represents a hydrogen atom or a hydroxyl group, R 4 represents an amino group, a group represented by —NHSO 3 H, or a group represented by —NHR 4a (R 4a represents a monovalent organic group) R 5 represents a monovalent organic group. ]
Figure 2016204270
[In Formula (3), R 1 and R 5 represent the same meaning as described above. ]
Figure 2016204270
[In formula (4), R 1 represents the same meaning as described above. ]
更に、下記一般式(1)で表される化合物又はそのイオン若しくは塩と、SH基を有する化合物(S1)とを反応させて、前記一般式(2)で表される化合物又はそのイオン若しくは塩を得る工程を含む、請求項1に記載の化合物の製造方法。
Figure 2016204270
[式(1)中、R及びRはそれぞれ独立に水素原子、−OSOHで表される基、又は−OSO で表される基を表し(但し、R及びRの少なくとも一方は−OSOHで表される基、又は−OSO で表される基である)、R及びRは前記と同じ意味を表す。]
Further, a compound represented by the following general formula (1) or an ion or salt thereof and a compound having an SH group (S1) are reacted to give the compound represented by the general formula (2) or an ion or salt thereof. The manufacturing method of the compound of Claim 1 including the process of obtaining.
Figure 2016204270
[In Formula (1), R 2 and R 3 each independently represent a hydrogen atom, a group represented by —OSO 3 H, or a group represented by —OSO 3 (provided that R 2 and R 3 At least one is a group represented by —OSO 3 H or a group represented by —OSO 3 ), R 1 and R 4 represent the same meaning as described above. ]
前記SH基を有する化合物(S1)が下記一般式(5−1)又は下記一般式(5−2)で表される化合物であり、前記一般式(2)で表される化合物が下記一般式(2−1)又は下記一般式(2−2)で表される化合物である、請求項2に記載の化合物の製造方法。
Figure 2016204270
[式(5−1)中、Rはアルキレン基を表す。]
Figure 2016204270
[式(5−2)中、Rはアルキレン基を表す。]
Figure 2016204270
[式(2−1)中、R、R、及びRは前記と同じ意味を表す。式(2−2)中、R、R、及びRは前記と同じ意味を表す。]
The compound (S1) having the SH group is a compound represented by the following general formula (5-1) or the following general formula (5-2), and the compound represented by the general formula (2) is represented by the following general formula. The manufacturing method of the compound of Claim 2 which is a compound represented by (2-1) or the following general formula (2-2).
Figure 2016204270
[In Formula (5-1), R 7 represents an alkylene group. ]
Figure 2016204270
[In Formula (5-2), R 8 represents an alkylene group. ]
Figure 2016204270
[In Formula (2-1), R 1 , R 4 , and R 7 represent the same meaning as described above. In formula (2-2), R 1 , R 4 , and R 8 represent the same meaning as described above. ]
前記一般式(2)で表される化合物を、pH9以上の条件下に置くことで、前記塩基性条件下で処理を行う、請求項1〜3のいずれか一項に記載の化合物の製造方法。   The manufacturing method of the compound as described in any one of Claims 1-3 which processes on the said basic conditions by putting the compound represented by the said General formula (2) on the conditions of pH9 or more. . 下記一般式(2)で表される化合物又はそのイオン若しくは塩を、塩基性条件下で処理することにより下記一般式(3)で表される化合物又はそのイオン若しくは塩を得る工程Iを含むことを特徴とする、下記一般式(3)で表される化合物の製造方法。
Figure 2016204270
[式(2)中、Rは水素原子又は水酸基を表し、Rはアミノ基、−NHSOHで表される基、又は−NHR4aで表される基(R4aは一価の有機基を表す。)を表し、Rは一価の有機基を表す。]
Figure 2016204270
[式(3)中、R及びRは前記と同じ意味を表す。]
Including a step I of obtaining a compound represented by the following general formula (3) or an ion or salt thereof by treating the compound represented by the following general formula (2) or an ion or salt thereof under basic conditions; The manufacturing method of the compound represented by following General formula (3) characterized by these.
Figure 2016204270
[In Formula (2), R 1 represents a hydrogen atom or a hydroxyl group, R 4 represents an amino group, a group represented by —NHSO 3 H, or a group represented by —NHR 4a (R 4a represents a monovalent organic group) R 5 represents a monovalent organic group. ]
Figure 2016204270
[In Formula (3), R 1 and R 5 represent the same meaning as described above. ]
JP2015084042A 2015-04-16 2015-04-16 Method for producing decarbamoyl saxitoxin and its analogs Expired - Fee Related JP6422814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015084042A JP6422814B2 (en) 2015-04-16 2015-04-16 Method for producing decarbamoyl saxitoxin and its analogs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015084042A JP6422814B2 (en) 2015-04-16 2015-04-16 Method for producing decarbamoyl saxitoxin and its analogs

Publications (2)

Publication Number Publication Date
JP2016204270A true JP2016204270A (en) 2016-12-08
JP6422814B2 JP6422814B2 (en) 2018-11-14

Family

ID=57488699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084042A Expired - Fee Related JP6422814B2 (en) 2015-04-16 2015-04-16 Method for producing decarbamoyl saxitoxin and its analogs

Country Status (1)

Country Link
JP (1) JP6422814B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058949A1 (en) * 2018-09-21 2020-03-26 The Cawthron Institute Trust Board Preparative scale conversion of gonyautoxins to neosaxitoxin
KR20230165776A (en) 2021-04-02 2023-12-05 구미아이 가가쿠 고교 가부시키가이샤 Heterocyclic compounds and their uses
US12018034B2 (en) 2018-09-21 2024-06-25 The Cawthron Institute Trust Board Semisynthetic methods of preparing GTX1,4 and neosaxitoxin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292880A (en) * 1998-04-03 1999-10-26 Itoham Foods Inc New saxitoxin derivative and its production
JP2003012699A (en) * 2001-07-04 2003-01-15 Japan Science & Technology Corp Method for manufacturing anti-paralytic shellfish poison antibody, new antibody, elisa measuring kit using the antibody, and system-labeling poison standard sample prepared by the manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292880A (en) * 1998-04-03 1999-10-26 Itoham Foods Inc New saxitoxin derivative and its production
JP2003012699A (en) * 2001-07-04 2003-01-15 Japan Science & Technology Corp Method for manufacturing anti-paralytic shellfish poison antibody, new antibody, elisa measuring kit using the antibody, and system-labeling poison standard sample prepared by the manufacturing method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 10, JPN6018032838, 2000, pages 1787 - 1789 *
BIOORGANIC CHEMISTRY, vol. 10, JPN6018032837, 1981, pages 412 - 428 *
J. AM. CHEM. SOC., vol. 114(18), JPN6018032835, 1992, pages 7001 - 7006 *
PURE APPL. CHEM., vol. 84(6), JPN6018032834, 2012, pages 1445 - 1453 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058949A1 (en) * 2018-09-21 2020-03-26 The Cawthron Institute Trust Board Preparative scale conversion of gonyautoxins to neosaxitoxin
US10822344B2 (en) 2018-09-21 2020-11-03 The Cawthron Institute Trust Board Preparative scale conversion of gonyautoxins to neosaxitoxin
US11028094B2 (en) 2018-09-21 2021-06-08 The Cawthron Institute Trust Board Preparative scale conversion of gonyautoxins to neosaxitoxin
US12018034B2 (en) 2018-09-21 2024-06-25 The Cawthron Institute Trust Board Semisynthetic methods of preparing GTX1,4 and neosaxitoxin
KR20230165776A (en) 2021-04-02 2023-12-05 구미아이 가가쿠 고교 가부시키가이샤 Heterocyclic compounds and their uses

Also Published As

Publication number Publication date
JP6422814B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
Abrams et al. TRANSFORMATION OF INOSINIC ACID TO ADENYLIC AND GUANYLIC ACIDS IN A SOLUBLE ENZYME SYSTEM1
Gu et al. Synthesis of chiral γ-aminophosphonates through the organocatalytic hydrophosphonylation of azadienes with phosphites
CA2863994C (en) Methods of producing sulfilimine compounds
JP6422814B2 (en) Method for producing decarbamoyl saxitoxin and its analogs
US20120136159A1 (en) The method of synthesizing ergothioneine and analogs
Lucas et al. Molecular determinants for selective C 25-hydroxylation of vitamins D 2 and D 3 by fungal peroxygenases
CN103304437A (en) Method for synthesizing oseltamivir phosphate without using nitrine
Satheeshkumar et al. Reactivity of selenocystine and tellurocystine: structure and antioxidant activity of the derivatives
Takeda et al. Second-order asymmetric transformation and its application for the practical synthesis of α-amino acids
Brown et al. Improved access to linear tetrameric hydroxamic acids with potential as radiochemical ligands for zirconium (IV)-89 PET imaging
Spork et al. Analogues of muraymycin nucleoside antibiotics with epimeric uridine-derived core structures
Li et al. Acyl fluorides as direct precursors to fluoride ketyl radicals: reductive deuteration using SmI 2 and D 2 O
CN113735751B (en) Method for preparing aryl isothiourea
Gugkaeva et al. A general asymmetric synthesis of artificial aliphatic and perfluoroalkylated α-amino acids by Luche's cross-electrophile coupling reaction
CN104130195A (en) Synthetic method for carbendazim hapten
Adamovich et al. New Method of Synthesis of Biologically Active Get (aryl) chalcogenylacetates of Tris (2-hydroxyethyl) ammonium
WO2005077863A1 (en) METHOD FOR ESTABLISHING CC BONDS BETWEEN ELECTROPHILIC SUBSTRATES AND π - NUCLEOPHILES IN NEUTRAL TO ALKALINE AQUEOUS OR ALCOHOLIC SOLVENTS WITHOUT USING A LEWIS OR BRONSTED ACID
Zyuzin Azido derivatives of geminal bis (alkoxy-NNO-azoxy) compounds
RU2551682C1 (en) Method of producing 1-adamantyl isothiocyanate
Alekseeva et al. p-tert-Butylcalix [4] arenes containing azacrown ether substituents at the lower rim as potential polytopic receptors
RU2488577C1 (en) Method of producing 3-amino-1-adamantanol and acid addition salts thereof
Sanz-Vidal et al. Unexpected metal-free synthesis of trifluoromethyl arenes via tandem coupling of dicyanoalkenes and conjugated fluorinated sulfinyl imines
JP2018162218A (en) Novel cyclic urea derivative-hydrotribromide
Ibba Hydrogen bonding phase-transfer catalysis: a new approach to asymmetric fluorination
RU2660649C1 (en) Method for the preparation of salts of betulin 3,28-diphosphate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R150 Certificate of patent or registration of utility model

Ref document number: 6422814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees