JP2016203833A - Power transmission device for hybrid vehicle - Google Patents

Power transmission device for hybrid vehicle Download PDF

Info

Publication number
JP2016203833A
JP2016203833A JP2015088824A JP2015088824A JP2016203833A JP 2016203833 A JP2016203833 A JP 2016203833A JP 2015088824 A JP2015088824 A JP 2015088824A JP 2015088824 A JP2015088824 A JP 2015088824A JP 2016203833 A JP2016203833 A JP 2016203833A
Authority
JP
Japan
Prior art keywords
power
battery
transmission unit
motor generator
transmission portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015088824A
Other languages
Japanese (ja)
Other versions
JP2016203833A5 (en
Inventor
吉川 雅人
Masahito Yoshikawa
雅人 吉川
敬朗 田中
Yoshiaki Tanaka
敬朗 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015088824A priority Critical patent/JP2016203833A/en
Publication of JP2016203833A publication Critical patent/JP2016203833A/en
Publication of JP2016203833A5 publication Critical patent/JP2016203833A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow balance between speed-change control of a mechanical stage transmission portion and rotation-speed control of an electric non-stage transmission portion to be secured regardless of torque restriction for a motor generator by charge/discharge allowance amounts of a battery.SOLUTION: Oil pressure of a clutch C and a brake B at the time of speed change of a mechanical stage transmission portion 14 is corrected according to charge/discharge allowance amounts of a battery 24, and consumption power (inertial power at the speed change, clutch loss, driving power and the like) in the mechanical stage transmission portion 14 is increased and decreased, so that income/outgo balance between input power and the consumption power can be secured regardless of torque restriction for the input power (engine power and battery power) from an electrical non-stage transmission portion 12 accompanying torque restriction for motor generators MG1 and MG2. This allows rotation speed control for the electric non-stage transmission portion 12 relative to speed change of the mechanical stage transmission portion 14 to be performed with good balance in a condition nearly equal to an original setting regardless of restriction on the charge/discharge of the battery 24.SELECTED DRAWING: Figure 1

Description

本発明はハイブリッド車用動力伝達装置に係り、特に、電気式無段変速部および機械式有段変速部を直列に備えているハイブリッド車用動力伝達装置の改良に関するものである。   The present invention relates to a hybrid vehicle power transmission device, and more particularly to an improvement in a hybrid vehicle power transmission device including an electric continuously variable transmission unit and a mechanical stepped transmission unit in series.

(a) エンジンに連結された差動入力要素、第1モータジェネレータに連結された差動制御要素、および第2モータジェネレータに連結された差動出力要素が、差動回転可能な差動歯車機構を有する電気式無段変速部と、(b) 前記第1モータジェネレータおよび前記第2モータジェネレータに電気的に接続された充放電可能なバッテリーと、(c) 前記電気式無段変速部の前記差動出力要素と駆動輪との間に直列に配設されるとともに、係合圧を制御可能な摩擦係合装置によって複数のギヤ段が成立させられる機械式有段変速部と、を有するハイブリッド車用動力伝達装置が知られている(特許文献1参照)。   (a) A differential gear mechanism in which a differential input element coupled to an engine, a differential control element coupled to a first motor generator, and a differential output element coupled to a second motor generator are differentially rotatable. (B) a chargeable / dischargeable battery electrically connected to the first motor generator and the second motor generator; and (c) the electric continuously variable transmission unit. A hybrid having a mechanical stepped transmission portion that is arranged in series between the differential output element and the drive wheel and that has a plurality of gear stages established by a friction engagement device capable of controlling the engagement pressure. A vehicle power transmission device is known (see Patent Document 1).

特開2010−76544号公報JP 2010-76544 A

ところで、このようなハイブリッド車用動力伝達装置においては、機械式有段変速部の変速時に、その変速に対応して差動出力要素の回転速度が変化することから、機械式有段変速部の変速制御に合わせて電気式無段変速部の各部の回転速度制御を行う必要があり、第1モータジェネレータおよび第2モータジェネレータの力行トルクや回生トルク(発電トルクとも言う)を制御している。しかしながら、バッテリーの充放電許容量によってそれ等の第1モータジェネレータおよび第2モータジェネレータの力行トルクや回生トルクが制限されると、電気式無段変速部の回転速度制御を適切に行うことができなくなり、機械式有段変速部の変速制御とのバランスが崩れて、エンジン回転速度が低下して変速後の駆動力性能が悪化したり、機械式有段変速部の変速時間が長くなったり変速ショックが発生したりする問題があった。   By the way, in such a hybrid vehicle power transmission device, when the mechanical stepped transmission unit shifts, the rotational speed of the differential output element changes corresponding to the shift. It is necessary to control the rotational speed of each part of the electric continuously variable transmission unit in accordance with the shift control, and the power running torque and regenerative torque (also referred to as power generation torque) of the first motor generator and the second motor generator are controlled. However, if the power running torque and regenerative torque of the first motor generator and the second motor generator are limited by the charge / discharge allowable amount of the battery, the rotational speed control of the electric continuously variable transmission can be appropriately performed. The balance with the shift control of the mechanical stepped transmission section is lost, the engine rotation speed decreases and the driving force performance after the shift deteriorates, the shift time of the mechanical stepped transmission section increases, There was a problem of shock.

本発明は以上の事情を背景として為されたもので、その目的とするところは、バッテリーの充放電許容量による第1モータジェネレータおよび第2モータジェネレータのトルク制限に拘らず、機械式有段変速部の変速制御と電気式無段変速部の回転速度制御とのバランスが確保されるようにすることにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is to provide a mechanical step-variable transmission regardless of the torque limitation of the first motor generator and the second motor generator due to the charge / discharge allowable amount of the battery. It is intended to ensure a balance between the shift control of the part and the rotational speed control of the electric continuously variable transmission part.

かかる目的を達成するために、本発明は、(a) エンジンに連結された差動入力要素、第1モータジェネレータに連結された差動制御要素、および第2モータジェネレータに連結された差動出力要素が、差動回転可能な差動歯車機構を有する電気式無段変速部と、(b) 前記第1モータジェネレータおよび前記第2モータジェネレータに電気的に接続された充放電可能なバッテリーと、(c) 前記電気式無段変速部の前記差動出力要素と駆動輪との間に直列に配設されるとともに、係合圧を制御可能な摩擦係合装置によって複数のギヤ段が成立させられる機械式有段変速部と、を有するハイブリッド車用動力伝達装置において、(d) 前記バッテリーの充放電許容量に応じて前記機械式有段変速部の変速時における前記摩擦係合装置の係合圧が補正されることを特徴とする。   To achieve this object, the present invention provides: (a) a differential input element coupled to an engine, a differential control element coupled to a first motor generator, and a differential output coupled to a second motor generator. An electric continuously variable transmission unit having a differential gear mechanism capable of differential rotation; and (b) a chargeable / dischargeable battery electrically connected to the first motor generator and the second motor generator; (c) A plurality of gear stages are established by a friction engagement device that is arranged in series between the differential output element of the electric continuously variable transmission unit and the drive wheel and that can control the engagement pressure. A power transmission device for a hybrid vehicle comprising: (d) engagement of the friction engagement device at the time of shifting of the mechanical stepped transmission unit according to a charge / discharge allowable amount of the battery. The resultant pressure is corrected It is characterized by.

このようなハイブリッド車用動力伝達装置によれば、バッテリーの充放電許容量に応じて機械式有段変速部の変速時における摩擦係合装置の係合圧が補正され、その機械式有段変速部における消費パワー(変速時イナーシャパワー、クラッチ損失、駆動パワー等)が増減させられるため、第1モータジェネレータおよび第2モータジェネレータのトルク制限に伴う電気式無段変速部からの入力パワー(エンジンパワーおよびバッテリーパワー)の制限に拘らず、その入力パワーと消費パワーとの収支バランスを確保することができる。これにより、バッテリーの充放電の制限に拘らず、機械式有段変速部の変速に対する電気式無段変速部の回転速度制御が当初の設定に近い状態でバランス良く行われるようになり、エンジン回転速度が低下したり機械式有段変速部の変速時間が長くなったり変速ショックが発生したりすることが抑制される。   According to such a hybrid vehicle power transmission device, the engagement pressure of the friction engagement device at the time of shifting of the mechanical stepped transmission unit is corrected according to the charge / discharge allowable amount of the battery, and the mechanical stepped transmission is corrected. Power consumption (shifting inertia power, clutch loss, driving power, etc.) in the engine section is increased or decreased, so that the input power (engine power) from the electric continuously variable transmission section associated with torque limitation of the first motor generator and the second motor generator Regardless of restrictions on battery power), a balance between the input power and the power consumption can be ensured. This makes it possible to control the rotational speed of the electric continuously variable transmission with respect to the shift of the mechanical stepped transmission in a well-balanced state close to the initial setting regardless of the charging / discharging of the battery, and the engine rotation It is possible to suppress a decrease in speed, a shift time of the mechanical stepped transmission unit, and a shift shock.

本発明が適用されたハイブリッド車用動力伝達装置の概略構成図で、制御系統の要部を併せて示した図である。1 is a schematic configuration diagram of a power transmission device for a hybrid vehicle to which the present invention is applied, and is a diagram that also shows a main part of a control system. FIG. 図1の電気式無段変速部の各回転要素の相対回転速度を説明する共線図である。It is a collinear diagram explaining the relative rotational speed of each rotating element of the electric continuously variable transmission unit of FIG. 図1の機械式有段変速部の複数のギヤ段とそのギヤ段を成立させるための摩擦係合装置を説明する作動表である。2 is an operation table for explaining a plurality of gear stages of the mechanical stepped transmission unit of FIG. 1 and a friction engagement device for establishing the gear stages. 図1の変速時油圧制御部の作動を具体的に説明するフローチャートである。2 is a flowchart for specifically explaining the operation of a shift hydraulic control unit in FIG. 1. 図4のステップS3で放電許容量Wout に応じて算出される油圧補正量を説明する図である。FIG. 5 is a diagram for explaining a hydraulic pressure correction amount calculated in accordance with a discharge allowable amount Wout in step S3 of FIG. 図4のステップS3で充電許容量Winに応じて算出される油圧補正量を説明する図である。FIG. 5 is a diagram for explaining a hydraulic pressure correction amount calculated in accordance with a charge allowable amount Win in step S3 of FIG. アップシフトの際にバッテリーの放電制限により図4のフローチャートに従って油圧が減圧補正された場合の各部の作動状態の変化を示すタイムチャートの一例である。FIG. 5 is an example of a time chart showing changes in the operating state of each part when the oil pressure is corrected in accordance with the flowchart of FIG. 4 due to battery discharge limitation during upshifting. アップシフトの際にバッテリーの充電制限により図4のフローチャートに従って油圧が増圧補正された場合の各部の作動状態の変化を示すタイムチャートの一例である。FIG. 5 is an example of a time chart showing changes in the operating state of each part when the oil pressure is corrected to increase in accordance with the flowchart of FIG.

本発明は、例えばバッテリーの放電許容量が少ない場合は、機械式有段変速部の変速時における摩擦係合装置の係合圧が減圧補正されるように実施される。また、バッテリーの充電許容量が少ない場合は、機械式有段変速部の変速時における摩擦係合装置の係合圧が増圧補正されるように実施される。これ等の減圧補正および増圧補正の両方を実施することが望ましいが、何れか一方を実施するだけでも良い。機械式有段変速部の摩擦係合装置としては、油圧によって係合させられる油圧式摩擦係合装置が適当であるが、電磁式等の他の摩擦係合装置を採用することもできる。   For example, when the discharge allowable amount of the battery is small, the present invention is implemented so that the engagement pressure of the friction engagement device at the time of shifting of the mechanical stepped transmission unit is corrected to be reduced. Further, when the battery charge allowable amount is small, the engagement pressure of the friction engagement device at the time of shifting of the mechanical stepped transmission unit is corrected to be increased. Although it is desirable to perform both the pressure reduction correction and the pressure increase correction, it is possible to perform only one of them. As the friction engagement device of the mechanical stepped transmission unit, a hydraulic friction engagement device engaged by hydraulic pressure is suitable, but other friction engagement devices such as an electromagnetic type can also be adopted.

機械式有段変速部は、単一または複数の摩擦係合装置の係合、開放によってアップシフトやダウンシフト、或いは動力伝達が遮断されるニュートラル状態と動力伝達状態との切換等が行われるもので、ニュートラル状態もギヤ段の一態様である。この機械式有段変速部の変速は、単一の摩擦係合装置の係合または開放、或いは複数の摩擦係合装置の係合および開放等によって実行されるもので、その変速時には係合、開放の何れの場合も係合圧を徐々に変化させたり一気に変化させたりする係合圧制御が行われる。変速時の係合圧の補正は、係合側摩擦係合装置、開放側摩擦係合装置の両方で実施することもできるが、係合側、開放側の何れか一方で実施するだけでも良く、アップ・ダウンやパワーON・OFF(駆動、被駆動)などの変速の種類等に応じて適宜定められる。変速時の係合圧制御では、油圧などの係合圧の大きさやその係合圧の変化パターン、変化タイミング、変化勾配などが定められ、係合圧の補正としては、係合圧の大きさを変更する増圧補正や減圧補正が適当であるが、係合圧の変化勾配や変化タイミング等を変更するものでも良い。   The mechanical stepped transmission unit performs upshifting or downshifting by engagement or release of one or more friction engagement devices, or switching between a neutral state where power transmission is interrupted and a power transmission state, etc. The neutral state is also an aspect of the gear stage. The shift of the mechanical stepped transmission unit is executed by engagement or release of a single friction engagement device or engagement and release of a plurality of friction engagement devices. In any case of opening, the engagement pressure is controlled so that the engagement pressure is gradually changed or changed at once. Correction of the engagement pressure at the time of shifting can be performed by both the engagement side frictional engagement device and the release side frictional engagement device, but it may be performed only on either the engagement side or the release side. The speed is appropriately determined according to the type of shift such as up / down and power ON / OFF (driving, driven). In the engagement pressure control at the time of shifting, the magnitude of the engagement pressure such as the hydraulic pressure, the change pattern of the engagement pressure, the change timing, the change gradient, etc. are determined, and the correction of the engagement pressure includes the magnitude of the engagement pressure. The pressure increase correction and the pressure reduction correction for changing the pressure are appropriate, but the change gradient or change timing of the engagement pressure may be changed.

以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明が適用されたハイブリッド車用動力伝達装置(以下、単に動力伝達装置という)10の概略構成図で、制御系統の要部を併せて示した図である。この動力伝達装置10は、電気式無段変速部12および機械式有段変速部14を直列に備えており、電気式無段変速部12は差動歯車機構としてシングルピニオン型の第1遊星歯車装置16を備えている。第1遊星歯車装置16は、エンジン18に連結されたキャリアCA1、第1モータジェネレータMG1に連結されたサンギヤS1、および中間伝達部材20に連結されたリングギヤR1とを差動回転可能に有し、中間伝達部材20には第2モータジェネレータMG2が連結されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a hybrid vehicle power transmission device (hereinafter simply referred to as a power transmission device) 10 to which the present invention is applied, and also shows a main part of a control system. This power transmission device 10 includes an electric continuously variable transmission unit 12 and a mechanical stepped transmission unit 14 in series, and the electric continuously variable transmission unit 12 is a single pinion type first planetary gear as a differential gear mechanism. A device 16 is provided. The first planetary gear device 16 has a carrier CA1 connected to the engine 18, a sun gear S1 connected to the first motor generator MG1, and a ring gear R1 connected to the intermediate transmission member 20 so as to be differentially rotatable, The intermediate transmission member 20 is connected to the second motor generator MG2.

図2は、電気式無段変速部12の3つの回転要素S1、CA1、R1の回転速度を直線で結ぶことができる共線図で、サンギヤS1の回転速度NMG1は第1モータジェネレータMG1の回転速度(MG1回転速度)、キャリアCA1の回転速度NEはエンジン18の回転速度(エンジン回転速度)、リングギヤR1の回転速度NMG2は第2モータジェネレータMG2の回転速度(MG2回転速度)であり、第1モータジェネレータMG1および第2モータジェネレータMG2の回生トルク制御や力行トルク制御により、差動入力回転速度であるエンジン回転速度NEに対して差動出力回転速度であるMG2回転速度NMG2を連続的に無段階で変更できる。第1モータジェネレータMG1および第2モータジェネレータMG2は、インバータ22を介して充放電可能なバッテリー24に電気的に接続されており、回生トルク制御で得られた電気エネルギーでバッテリー24が充電されるとともに、バッテリー24から供給された電気エネルギー(放電)で力行トルクが発生させられる。キャリアCA1は差動入力要素に相当し、サンギヤS1は差動制御要素に相当し、リングギヤR1は差動出力要素に相当する。なお、本実施例ではエンジン18、第1モータジェネレータMG1、第2モータジェネレータMG2が、それぞれキャリアCA1、サンギヤS1、リングギヤR1に直接連結されているが、変速歯車やクラッチ等を介在させても良い。   FIG. 2 is a collinear diagram in which the rotation speeds of the three rotation elements S1, CA1, and R1 of the electric continuously variable transmission unit 12 can be connected by a straight line. The rotation speed NMG1 of the sun gear S1 is the rotation of the first motor generator MG1. The speed (MG1 rotational speed), the rotational speed NE of the carrier CA1 is the rotational speed of the engine 18 (engine rotational speed), the rotational speed NMG2 of the ring gear R1 is the rotational speed of the second motor generator MG2 (MG2 rotational speed), By the regenerative torque control and power running torque control of the motor generator MG1 and the second motor generator MG2, the MG2 rotational speed NMG2 that is the differential output rotational speed is continuously stepless with respect to the engine rotational speed NE that is the differential input rotational speed. Can be changed. The first motor generator MG1 and the second motor generator MG2 are electrically connected to a chargeable / dischargeable battery 24 via an inverter 22, and the battery 24 is charged with electric energy obtained by regenerative torque control. The power running torque is generated by the electric energy (discharge) supplied from the battery 24. The carrier CA1 corresponds to a differential input element, the sun gear S1 corresponds to a differential control element, and the ring gear R1 corresponds to a differential output element. In this embodiment, the engine 18, the first motor generator MG1, and the second motor generator MG2 are directly connected to the carrier CA1, the sun gear S1, and the ring gear R1, respectively. However, a transmission gear, a clutch, or the like may be interposed. .

機械式有段変速部14は遊星歯車式の自動変速機で、前記中間伝達部材20の回転を変速して出力軸32から出力する。具体的には、シングルピニオン型の第2遊星歯車装置26、シングルピニオン型の第3遊星歯車装置28、およびシングルピニオン型の第4遊星歯車装置30を備えているとともに、油圧式摩擦係合装置として2つのクラッチC1、C2、および3つのブレーキB1、B2、B3(以下、特に区別しない場合は単にクラッチC、ブレーキBという)が設けられており、図3の係合作動表に示されるように、それ等のクラッチCおよびブレーキBの何れか2つが係合させられることにより、4つの前進ギヤ段1st〜4thと後進ギヤ段R(リバース)が成立させられ、それ等が総て開放されることによって動力伝達を遮断するN(ニュートラル)になる。クラッチCおよびブレーキBは、油圧制御回路50から油圧が供給されることにより係合させられるようになっており、油圧制御回路50の電磁切換弁や油圧制御弁等が電気的に制御されることによって係合、開放制御される。上記出力軸32は、差動歯車装置34を介して左右の駆動輪36に連結されている。   The mechanical stepped transmission unit 14 is a planetary gear type automatic transmission that changes the rotation of the intermediate transmission member 20 and outputs it from the output shaft 32. Specifically, it includes a single pinion type second planetary gear device 26, a single pinion type third planetary gear device 28, and a single pinion type fourth planetary gear device 30, and a hydraulic friction engagement device. Are provided with two clutches C1 and C2 and three brakes B1, B2 and B3 (hereinafter simply referred to as clutch C and brake B unless otherwise distinguished), as shown in the engagement operation table of FIG. Further, any two of these clutches C and brakes B are engaged, so that four forward gear stages 1st to 4th and reverse gear stage R (reverse) are established, and they are all released. N (neutral) that cuts off power transmission. The clutch C and the brake B are engaged by being supplied with hydraulic pressure from the hydraulic control circuit 50, and the electromagnetic switching valve, hydraulic control valve, etc. of the hydraulic control circuit 50 are electrically controlled. Is engaged and released. The output shaft 32 is connected to the left and right drive wheels 36 via a differential gear device 34.

このような動力伝達装置10においては、電気式無段変速部12と機械式有段変速部14とによって、全体として無段変速制御を行うことができる。また、電気式無段変速部12の変速比が一定となるように制御することで、全体として有段変速と同様の変速制御を行うことも可能である。何れの場合も、機械式有段変速部14が変速される際には、その変速が速やかに且つ円滑に行われるようにするため、その変速に伴う中間伝達部材20の回転速度変化に対応して電気式無段変速部12の各部の回転速度が制御される。   In such a power transmission device 10, continuously variable transmission control can be performed by the electric continuously variable transmission unit 12 and the mechanical stepped transmission unit 14. Further, by performing control so that the gear ratio of the electric continuously variable transmission unit 12 is constant, it is possible to perform the same shift control as the stepped shift as a whole. In any case, when the mechanical step-variable transmission unit 14 is shifted, in order to perform the shift quickly and smoothly, it corresponds to a change in the rotational speed of the intermediate transmission member 20 accompanying the shift. Thus, the rotational speed of each part of the electric continuously variable transmission unit 12 is controlled.

電子制御装置40は、CPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行う。この電子制御装置40は、エンジン18、モータジェネレータMG1、MG2、および機械式有段変速部14を制御するためのコントローラとして機能するもので、エンジン12の出力制御やモータジェネレータMG1、NG2のトルク制御を行うハイブリッド制御部42、機械式有段変速部14の変速制御を行う有段変速制御部44を備えている。電子制御装置40には、アクセルペダルの操作量であるアクセル操作量Acc、エンジン18のスロットル弁開度θth、エンジン回転速度NE、MG1回転速度NMG1、MG2回転速度NMG2、機械式有段変速部14の出力軸32の回転速度(出力軸回転速度)Nout 、バッテリー24の蓄電残量SOCなど、制御に必要な各種の信号が各センサから供給される。MG2回転速度NMG2は、機械式有段変速部14の入力回転速度(AT入力回転速度)である。   The electronic control unit 40 includes a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like. The CPU uses a temporary storage function of the RAM, and signals according to a program stored in the ROM in advance. Process. The electronic control unit 40 functions as a controller for controlling the engine 18, the motor generators MG1, MG2, and the mechanical stepped transmission unit 14, and controls the output of the engine 12 and the torque control of the motor generators MG1, NG2. And a stepped speed change control unit 44 for performing speed change control of the mechanical stepped speed change portion 14. The electronic control unit 40 includes an accelerator operation amount Acc that is an operation amount of an accelerator pedal, a throttle valve opening θth of the engine 18, an engine rotational speed NE, an MG1 rotational speed NMG1, an MG2 rotational speed NMG2, and a mechanical step-variable transmission unit 14. Various signals necessary for control, such as the rotation speed (output shaft rotation speed) Nout of the output shaft 32 and the remaining power SOC of the battery 24, are supplied from each sensor. The MG2 rotational speed NMG2 is an input rotational speed (AT input rotational speed) of the mechanical stepped transmission unit 14.

ハイブリッド制御部42は、エンジン18を効率の良い作動域で作動させる一方で、エンジン18と第2モータジェネレータMG2との駆動力配分を制御したり、第1モータジェネレータMG1の回生トルク制御や力行トルク制御により電気式無段変速部12の変速比を制御したり、第1モータジェネレータMG1、第2モータジェネレータMG2の回生トルク制御でバッテリー24を充電したりする。このハイブリッド制御部42は充放電制限部46を備えており、バッテリー24の蓄電残量SOCやバッテリー温度等に応じて、バッテリー24の定格性能や耐久性を考慮して放電許容量Wout および充電許容量Winを設定する。例えば、蓄電残量SOCが少なくなった場合は、放電が制限されるように放電許容量Wout が低減され、モータジェネレータMG1、MG2の力行トルクが制限される。また、蓄電残量SOCが多くなった場合は、充電が制限されるように充電許容量Winが低減され、モータジェネレータMG1、MG2の回生トルクが制限される。   The hybrid control unit 42 operates the engine 18 in an efficient operating range, while controlling the driving force distribution between the engine 18 and the second motor generator MG2, and the regenerative torque control and power running torque of the first motor generator MG1. The gear ratio of the electric continuously variable transmission unit 12 is controlled by the control, or the battery 24 is charged by regenerative torque control of the first motor generator MG1 and the second motor generator MG2. The hybrid control unit 42 includes a charge / discharge limiting unit 46, which takes into account the rated performance and durability of the battery 24 according to the remaining power storage SOC of the battery 24, the battery temperature, etc. Set the capacity Win. For example, when the remaining power storage SOC decreases, discharge allowable amount Wout is reduced so that discharge is limited, and the power running torque of motor generators MG1 and MG2 is limited. Further, when the remaining power storage SOC increases, the allowable charging amount Win is reduced so that charging is restricted, and the regenerative torque of the motor generators MG1 and MG2 is restricted.

有段変速制御部44は、例えば車速V(出力軸回転速度Nout に対応)およびスロットル弁開度θth等の車両の運転状態をパラメータとして予め定められたマップに従って、機械式有段変速部14の複数の前進ギヤ段1st〜4thの変速制御を行う。有段変速制御部44は変速時油圧制御部48を備えており、前記クラッチCやブレーキBの係合側および開放側の油圧を適切に制御することで、変速ショックを抑制しつつできるだけ短時間で変速が行われるようになっている。具体的には、例えば係合圧に対応する油圧の大きさやその油圧の変化パターン、変化タイミング、変化勾配などが、アップ・ダウンやパワーON・OFF、ギヤ段などの変速の種類、或いは車速V等に応じて制御される。   The stepped transmission control unit 44 is configured to change the mechanical stepped transmission unit 14 according to a map determined in advance with the vehicle operating state such as the vehicle speed V (corresponding to the output shaft rotational speed Nout) and the throttle valve opening θth as parameters. Shift control of a plurality of forward gears 1st to 4th is performed. The stepped shift control unit 44 includes a shift hydraulic pressure control unit 48, and by appropriately controlling the hydraulic pressure on the engagement side and the release side of the clutch C and the brake B, the stepped shift control unit 44 is as short as possible while suppressing shift shock. Shifting is performed at. Specifically, for example, the magnitude of the hydraulic pressure corresponding to the engagement pressure, the change pattern of the hydraulic pressure, the change timing, the change gradient, and the like, the type of speed change such as up / down, power ON / OFF, gear stage, or vehicle speed V It is controlled according to etc.

一方、上記機械式有段変速部14の変速時には、変速比の変化に応じてAT入力回転速度、すなわち中間伝達部材20の回転速度であるMG2回転速度NMG2が変化するため、前記ハイブリッド制御部42は、機械式有段変速部14の変速に対応して電気式無段変速部12の各部の回転速度制御を行う。この電気式無段変速部12の各部の回転速度制御は、エンジン回転速度NEを一定に維持して行うこともできるが、エンジン回転速度NEを上昇または下降させながら行うものでも良く、アップ・ダウンやパワーON・OFFなどの変速の種類に応じて適宜定められる。   On the other hand, at the time of shifting by the mechanical stepped transmission unit 14, the AT input rotation speed, that is, the MG2 rotation speed NMG2, which is the rotation speed of the intermediate transmission member 20, changes according to the change of the transmission gear ratio. Performs the rotational speed control of each part of the electric continuously variable transmission unit 12 corresponding to the shift of the mechanical stepped transmission unit 14. The rotational speed control of each part of the electric continuously variable transmission unit 12 can be performed while maintaining the engine rotational speed NE constant, but may be performed while increasing or decreasing the engine rotational speed NE. It is determined appropriately according to the type of shift such as power ON / OFF.

ここで、前記充放電制限部46によりバッテリー24の充放電が制限されると、モータジェネレータMG1、MG2の力行トルクや回生トルクが制限される場合があり、機械式有段変速部14の変速に対応して電気式無段変速部12の各部の回転速度制御を適切に行うことができなくなることがある。すなわち、機械式有段変速部14における消費パワー(変速時イナーシャパワー、クラッチ損失、駆動パワー等)は入力パワーと一致し、その入力パワーは電気式無段変速部12に対する供給パワー(エンジン出力およびバッテリー出力)と一致するため、バッテリー24の充放電の制限でバッテリー出力が制限されると、機械式有段変速部14におけるパワーの収支バランスが崩れることがある。具体的には、バッテリー24の放電が制限されて放電許容量Wout が少なくなると、第2モータジェネレータMG2の力行トルクが制限されるなどして電気式無段変速部12に対する供給パワーが減少し、相対的に機械式有段変速部14の消費パワーが大きくなるため、電気式無段変速部12のイナーシャエネルギーが減少してエンジン回転速度NEが低下し、変速後の駆動力低下を招いてドラビリが悪化したり、運転者に違和感を生じさせたりすることがある。また、バッテリー24の充電が制限されて充電許容量Winが少なくなると、モータジェネレータMG1、MG2の回生トルクが制限されるなどして電気式無段変速部12に対する供給パワーが増大し、相対的に機械式有段変速部14の消費パワーが小さくなるため、例えばパワーONのアップシフト時にAT入力回転速度NMG2の低下速度が遅くなって変速時間が長くなることがある。パワーONのダウンシフト時には、AT入力回転速度NMG2が変速後の同期回転速度に達する直前で入力パワーを低下させ、AT入力回転速度NMG2の上昇を抑制する場合があるが、第2モータジェネレータMG2の回生トルクが制限されると、AT入力回転速度NMG2の上昇を抑制することができず、変速ショックが発生することがある。   Here, when the charging / discharging of the battery 24 is restricted by the charge / discharge restriction unit 46, the power running torque and the regenerative torque of the motor generators MG1, MG2 may be restricted. Correspondingly, the rotational speed control of each part of the electric continuously variable transmission unit 12 may not be performed properly. That is, the power consumption (inertia power during shifting, clutch loss, driving power, etc.) in the mechanical stepped transmission unit 14 matches the input power, and the input power is the power supplied to the electric continuously variable transmission unit 12 (engine output and power). Therefore, if the battery output is limited by the charging / discharging of the battery 24, the balance of power balance in the mechanical stepped transmission 14 may be lost. Specifically, when the discharge of the battery 24 is limited and the allowable discharge amount Wout decreases, the power running torque of the second motor generator MG2 is limited, and the power supplied to the electric continuously variable transmission unit 12 decreases. Since the power consumption of the mechanical stepped transmission unit 14 is relatively increased, the inertia energy of the electric continuously variable transmission unit 12 is decreased, the engine rotational speed NE is decreased, and the driving force after the shift is decreased, resulting in drivability. May worsen or cause the driver to feel uncomfortable. Further, when the charging of the battery 24 is limited and the allowable charging amount Win decreases, the regenerative torque of the motor generators MG1 and MG2 is limited, and the power supplied to the electric continuously variable transmission unit 12 increases. Since the power consumption of the mechanical stepped transmission unit 14 is reduced, for example, when the power is turned on, the AT input rotational speed NMG2 may decrease at a slower rate and the shift time may become longer. When the power is turned down, the input power may be reduced just before the AT input rotational speed NMG2 reaches the synchronized rotational speed after the shift, and the increase in the AT input rotational speed NMG2 may be suppressed. However, the second motor generator MG2 When the regenerative torque is limited, an increase in the AT input rotation speed NMG2 cannot be suppressed, and a shift shock may occur.

これを防止するためには、バッテリー24の充放電の制限に拘らず、電気式無段変速部12に対する供給パワーと機械式有段変速部14における消費パワーとの収支バランスが確保されるようにすれば良く、本実施例では消費パワーに関与するクラッチ損失が制御される。すなわち、前記変速時油圧制御部48によって制御されるクラッチCおよびブレーキBの油圧が、放電許容量Wout および充電許容量Winに応じて補正されるようになっている。図4は、変速時油圧制御部48によって実行される変速時の油圧制御を具体的に説明するフローチャートで、ステップS3が、放電許容量Wout および充電許容量Winに応じて油圧(係合圧)を補正する係合圧補正部として機能している。   In order to prevent this, a balance between the power supplied to the electric continuously variable transmission unit 12 and the power consumption of the mechanical stepped transmission unit 14 is ensured regardless of the charging / discharging of the battery 24. In this embodiment, clutch loss related to power consumption is controlled. In other words, the hydraulic pressures of the clutch C and the brake B controlled by the shift hydraulic pressure control unit 48 are corrected according to the allowable discharge amount Wout and the allowable charge amount Win. FIG. 4 is a flowchart for specifically explaining the hydraulic control at the time of shifting executed by the hydraulic control unit 48 at the time of shifting. In step S3, the hydraulic pressure (engagement pressure) according to the allowable discharge amount Wout and the allowable charging amount Win. It functions as an engagement pressure correction unit that corrects.

図4のステップS1では、前記充放電制限部46と同様にバッテリー24の蓄電残量SOCやバッテリー温度等に応じて放電許容量Wout および充電許容量Winを算出する。充放電制限部46で設定された放電許容量Wout および充電許容量Winを読み込んでも良いし、バッテリー温度が所定値以上の場合は蓄電残量SOCで代用することも可能である。   In step S1 of FIG. 4, the allowable discharge amount Wout and the allowable charge amount Win are calculated according to the remaining power storage SOC of the battery 24, the battery temperature, and the like in the same manner as the charge / discharge limiting unit 46. The allowable discharge amount Wout and the allowable charge amount Win set by the charge / discharge limiting unit 46 may be read, or when the battery temperature is equal to or higher than a predetermined value, the remaining power storage SOC can be substituted.

ステップS2では、アップ・ダウンやパワーON・OFF、ギヤ段などの変速の種類、或いは車速V等に応じて、変速時におけるクラッチC、ブレーキBの係合側および開放側の油圧の油圧値や変化パターン、変化タイミング、変化勾配等を設定する。また、ステップS3では、ステップS1で算出した放電許容量Wout および充電許容量Winに応じて変速時におけるクラッチC、ブレーキBの油圧補正量を算出し、ステップS2で設定された油圧を補正する。図5は、放電許容量Wout による油圧補正量の一例で、放電許容量Wout が予め定められた補正閾値α以下になると、油圧が減圧されるとともに、放電許容量Wout が少なくなる程減圧量が連続的(実施例では直線的)に大きくなるように、演算式やマップ等によって定められている。図6は、充電許容量Winによる油圧補正量の一例で、充電許容量Winが予め定められたの補正閾値β以下になると、油圧が増圧されるとともに、充電許容量Winが少なくなる程増圧量が連続的(実施例では直線的)に大きくなるように、演算式やマップ等によって定められている。そして、次のステップS4では、ステップS3で補正された後の油圧値に従って、変速時におけるクラッチC、ブレーキBの油圧制御を実行する。   In step S2, according to the type of speed change such as up / down, power ON / OFF, gear stage, or vehicle speed V, the hydraulic pressure values of the engagement side and release side hydraulic pressures of the clutch C and the brake B at the time of speed change, Set change pattern, change timing, change gradient, etc. In step S3, the hydraulic pressure correction amounts of the clutch C and the brake B at the time of shifting are calculated according to the allowable discharge amount Wout and the allowable charge amount Win calculated in step S1, and the hydraulic pressure set in step S2 is corrected. FIG. 5 shows an example of the hydraulic pressure correction amount based on the discharge allowable amount Wout. When the discharge allowable amount Wout is less than or equal to a predetermined correction threshold value α, the hydraulic pressure is reduced and the pressure reduction amount decreases as the discharge allowable amount Wout decreases. It is determined by an arithmetic expression, a map or the like so as to increase continuously (linearly in the embodiment). FIG. 6 shows an example of the hydraulic pressure correction amount based on the allowable charging amount Win. When the allowable charging amount Win is equal to or less than a predetermined correction threshold β, the hydraulic pressure is increased and the charging allowable amount Win increases as the allowable charging amount Win decreases. The amount of pressure is determined by an arithmetic expression, a map, or the like so as to increase continuously (in the embodiment, linearly). In the next step S4, hydraulic control of the clutch C and the brake B at the time of shifting is executed in accordance with the hydraulic pressure value corrected in step S3.

上記補正閾値α、βは、バッテリー24の充放電の制限でパワーの収支バランスが悪化するか否かを考慮して予め一定値が定められても良いが、アップ・ダウンやパワーON・OFF、ギヤ段などの変速の種類、或いは車速V等に応じて設定されるようにしても良い。例えば車速Vが高車速の場合は、補正閾値αを大きくすることが適当である。変速の種類等により減圧量や増圧量の変化率を変更しても良い。補正量を連続的に変化させる代わりに段階的に変化させても良い。また、この油圧補正は、変速中常に反映させるものでも良いが、イナーシャ相だけ、或いは変速後の同期回転直前だけなど、一部の期間だけ補正しても良い。   The correction threshold values α and β may be set in advance in consideration of whether or not the balance of power balance deteriorates due to charging / discharging of the battery 24, but up and down, power ON / OFF, You may make it set according to the kind of gear shifts, such as a gear stage, or the vehicle speed V. For example, when the vehicle speed V is high, it is appropriate to increase the correction threshold α. The rate of change of the pressure reduction amount or the pressure increase amount may be changed depending on the type of shift. The correction amount may be changed stepwise instead of continuously. The hydraulic pressure correction may be always reflected during the shift, but may be corrected only for a part of the period such as only the inertia phase or just before the synchronous rotation after the shift.

図7は、パワーONのアップシフトの際に、前記ステップS3で放電許容量Wout に応じて係合側のクラッチCまたはブレーキBの油圧が減圧補正された場合の各部の作動状態の変化を示すタイムチャートの一例である。時間t1は、変速に伴ってAT入力回転速度NMG2が低下し始めたイナーシャ相の開始時間で、時間t2は、AT入力回転速度NMG2が変速後の同期回転速度になったイナーシャ相の終了時間である。実線は油圧補正が行われた本実施例の場合で、破線は油圧補正を行わない従来の場合であり、本実施例ではイナーシャ相の期間中だけ油圧が減圧補正されている。放電許容量Wout が少ない場合は、第2モータジェネレータMG2の力行トルクが制限されるなどして電気式無段変速部12に対する供給パワー、すなわち機械式有段変速部14の入力パワーが減少するが、本実施例では油圧が減圧補正されることで機械式有段変速部14の消費パワーが低減されるため、機械式有段変速部14におけるパワーの収支バランスが改善する。これにより、第2モータジェネレータMG2の力行トルクの制限等に起因してエンジン回転速度NEが破線で示すように低下することが抑制され、そのエンジン回転速度NEの低下によって変速後のドラビリが悪化したり、エンジン回転速度NEの低下で運転者に違和感を生じさせたりすることが抑制される。なお、油圧の減圧補正で駆動力伝達量が低下するが、前記図5の補正閾値αおよび油圧補正量を適当に設定することにより、駆動力性能に与える影響を必要最小限に抑えることができる。   FIG. 7 shows the change in the operating state of each part when the hydraulic pressure of the clutch C or the brake B on the engagement side is corrected to be reduced in accordance with the discharge allowable amount Wout in step S3 during the power-on upshift. It is an example of a time chart. The time t1 is the start time of the inertia phase when the AT input rotational speed NMG2 starts to decrease with the shift, and the time t2 is the end time of the inertia phase when the AT input rotational speed NMG2 becomes the synchronous rotational speed after the shift. is there. The solid line indicates the case where the hydraulic pressure correction is performed, and the broken line indicates the conventional case where the hydraulic pressure correction is not performed. In the present embodiment, the hydraulic pressure is corrected to be reduced only during the inertia phase. When the discharge allowable amount Wout is small, the power running torque of the second motor generator MG2 is limited and the power supplied to the electric continuously variable transmission unit 12, that is, the input power of the mechanical stepped transmission unit 14 decreases. In this embodiment, since the power consumption of the mechanical stepped transmission unit 14 is reduced by correcting the hydraulic pressure to be reduced, the balance of power balance in the mechanical stepped transmission unit 14 is improved. As a result, the engine rotational speed NE is prevented from decreasing as indicated by the broken line due to the limitation of the power running torque of the second motor generator MG2, etc., and the drivability after the shift deteriorates due to the decrease in the engine rotational speed NE. Or causing the driver to feel uncomfortable due to a decrease in the engine speed NE. Although the driving force transmission amount decreases due to the hydraulic pressure reduction correction, the influence on the driving force performance can be minimized by setting the correction threshold value α and the hydraulic pressure correction amount in FIG. 5 appropriately. .

図8は、パワーONのアップシフトの際に、前記ステップS3で充電許容量Winに応じて係合側のクラッチCまたはブレーキBの油圧が増圧補正された場合の各部の作動状態の変化を示すタイムチャートの一例である。時間t1は、変速に伴ってAT入力回転速度NMG2が低下し始めたイナーシャ相の開始時間で、時間t2は、AT入力回転速度NMG2が変速後の同期回転速度になったイナーシャ相の終了時間である。実線は油圧補正が行われた本実施例の場合で、破線は油圧補正を行わない従来の場合であり、本実施例ではイナーシャ相の期間中だけ油圧が増圧補正されている。充電許容量Winが少ない場合は、モータジェネレータMG1、MG2の回生トルクが制限されるなどして電気式無段変速部12に対する供給パワー、すなわち機械式有段変速部14の入力パワーが増大するが、本実施例では油圧が増圧補正されることで機械式有段変速部14の消費パワーが増大されられるため、機械式有段変速部14におけるパワーの収支バランスが改善する。これにより、モータジェネレータMG1、MG2の回生トルクの制限等に起因して破線で示すようにAT入力回転速度NMG2の低下速度が遅くなり、変速時間が長くなることが抑制される。なお、油圧の増圧補正で駆動力伝達量が増加するが、前記図6の補正閾値βおよび油圧補正量を適当に設定することにより、駆動力性能に与える影響を必要最小限に抑えることができる。   FIG. 8 shows the change in the operating state of each part when the hydraulic pressure of the clutch C or the brake B on the engagement side is corrected to increase in accordance with the allowable charging amount Win in the step S3 during the power ON upshift. It is an example of the time chart shown. The time t1 is the start time of the inertia phase when the AT input rotational speed NMG2 starts to decrease with the shift, and the time t2 is the end time of the inertia phase when the AT input rotational speed NMG2 becomes the synchronous rotational speed after the shift. is there. The solid line indicates the case where the hydraulic pressure correction is performed, and the broken line indicates the conventional case where the hydraulic pressure correction is not performed. In the present embodiment, the hydraulic pressure is corrected to be increased only during the inertia phase. When the allowable charging amount Win is small, the regenerative torque of the motor generators MG1 and MG2 is limited, and the power supplied to the electric continuously variable transmission unit 12, that is, the input power of the mechanical stepped transmission unit 14 increases. In this embodiment, since the power consumption of the mechanical stepped transmission unit 14 is increased by correcting the hydraulic pressure to be increased, the balance of power balance in the mechanical stepped transmission unit 14 is improved. As a result, it is possible to prevent the AT input rotation speed NMG2 from decreasing at a slower rate and increasing the shifting time as indicated by the broken line due to the limitation of the regenerative torque of the motor generators MG1 and MG2. Note that the amount of driving force transmission increases due to the hydraulic pressure increase correction, but by appropriately setting the correction threshold β and the hydraulic pressure correction amount in FIG. 6, the influence on the driving force performance can be minimized. it can.

このように、本実施例の動力伝達装置10においては、バッテリー24の放電許容量Wout および充電許容量Winに応じて機械式有段変速部14の変速時におけるクラッチC、ブレーキBの油圧が補正され、その機械式有段変速部14における消費パワー(変速時イナーシャパワー、クラッチ損失、駆動パワー等)が増減させられるため、第1モータジェネレータMG1および第2モータジェネレータMG2のトルク制限に伴う電気式無段変速部12からの入力パワー(エンジンパワーおよびバッテリーパワー)の制限に拘らず、その入力パワーと消費パワーとの収支バランスを確保することができる。これにより、バッテリー24の充放電の制限に拘らず、機械式有段変速部14の変速に対する電気式無段変速部12の回転速度制御が当初の設定に近い状態でバランス良く行われるようになり、エンジン回転速度NEが低下したり機械式有段変速部14の変速時間が長くなったり変速ショックが発生したりすることが抑制される。   As described above, in the power transmission device 10 of the present embodiment, the hydraulic pressures of the clutch C and the brake B during the shift of the mechanical stepped transmission unit 14 are corrected according to the discharge allowable amount Wout and the charge allowable amount Win of the battery 24. Since the power consumption (inertia power at the time of shifting, clutch loss, driving power, etc.) in the mechanical step-variable transmission unit 14 is increased or decreased, the electric type accompanying the torque limitation of the first motor generator MG1 and the second motor generator MG2 Regardless of the restrictions on the input power (engine power and battery power) from the continuously variable transmission unit 12, a balance between the input power and the consumed power can be ensured. As a result, the rotational speed control of the electric continuously variable transmission unit 12 with respect to the shift of the mechanical stepped transmission unit 14 is performed in a well-balanced manner in a state close to the initial setting regardless of the charging / discharging limitation of the battery 24. Further, it is possible to prevent the engine rotation speed NE from being lowered, the shift time of the mechanical stepped transmission unit 14 from being increased, and a shift shock from occurring.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.

10:ハイブリッド車用動力伝達装置 12:電気式無段変速部 14:機械式有段変速部 16:第1遊星歯車装置(差動歯車機構) 18:エンジン 24:バッテリー 40:電子制御装置 46:充放電制限部 48:変速時油圧制御部 MG1:第1モータジェネレータ MG2:第2モータジェネレータ S1:サンギヤ(差動制御要素) CA1:キャリア(差動入力要素) R1:リングギヤ(差動出力要素) C1、C2:クラッチ(摩擦係合装置) B1〜B3:ブレーキ(摩擦係合装置)   10: Power transmission device for hybrid vehicle 12: Electric continuously variable transmission unit 14: Mechanical stepped transmission unit 16: First planetary gear unit (differential gear mechanism) 18: Engine 24: Battery 40: Electronic control unit 46: Charge / discharge limiting unit 48: Hydraulic control unit during shifting MG1: First motor generator MG2: Second motor generator S1: Sun gear (differential control element) CA1: Carrier (differential input element) R1: Ring gear (differential output element) C1, C2: Clutch (friction engagement device) B1 to B3: Brake (friction engagement device)

Claims (1)

エンジンに連結された差動入力要素、第1モータジェネレータに連結された差動制御要素、および第2モータジェネレータに連結された差動出力要素が、差動回転可能な差動歯車機構を有する電気式無段変速部と、
前記第1モータジェネレータおよび前記第2モータジェネレータに電気的に接続された充放電可能なバッテリーと、
前記電気式無段変速部の前記差動出力要素と駆動輪との間に直列に配設されるとともに、係合圧を制御可能な摩擦係合装置によって複数のギヤ段が成立させられる機械式有段変速部と、
を有するハイブリッド車用動力伝達装置において、
前記バッテリーの充放電許容量に応じて前記機械式有段変速部の変速時における前記摩擦係合装置の係合圧が補正される
ことを特徴とするハイブリッド車用動力伝達装置。
A differential input element coupled to the engine, a differential control element coupled to the first motor generator, and a differential output element coupled to the second motor generator have a differential gear mechanism capable of differential rotation. A continuously variable transmission,
A chargeable / dischargeable battery electrically connected to the first motor generator and the second motor generator;
A mechanical type that is arranged in series between the differential output element of the electric continuously variable transmission unit and a drive wheel, and a plurality of gear stages are established by a friction engagement device capable of controlling an engagement pressure. A stepped transmission,
In a hybrid vehicle power transmission device having
The power transmission device for a hybrid vehicle, wherein the engagement pressure of the friction engagement device at the time of shifting of the mechanical stepped transmission unit is corrected according to a charge / discharge allowable amount of the battery.
JP2015088824A 2015-04-23 2015-04-23 Power transmission device for hybrid vehicle Pending JP2016203833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015088824A JP2016203833A (en) 2015-04-23 2015-04-23 Power transmission device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015088824A JP2016203833A (en) 2015-04-23 2015-04-23 Power transmission device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2016203833A true JP2016203833A (en) 2016-12-08
JP2016203833A5 JP2016203833A5 (en) 2017-06-22

Family

ID=57486640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015088824A Pending JP2016203833A (en) 2015-04-23 2015-04-23 Power transmission device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2016203833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11472399B2 (en) 2019-10-02 2022-10-18 Toyota Jidosha Kabushiki Kaisha Controller and control method for hybrid vehicle
US11572057B2 (en) 2019-09-19 2023-02-07 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle for limiting supercharger pressure changes due to power limits

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090118936A1 (en) * 2007-11-04 2009-05-07 Gm Global Technology Operations, Inc. Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system
JP2010000958A (en) * 2008-06-20 2010-01-07 Toyota Motor Corp Control device for vehicular power transmission device
JP2010036705A (en) * 2008-08-04 2010-02-18 Toyota Motor Corp Controller for vehicular power transmission
JP2010076544A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp Control device for vehicle power transmission device
JP2010241378A (en) * 2009-04-09 2010-10-28 Toyota Motor Corp Controller for vehicle power transmission device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090118936A1 (en) * 2007-11-04 2009-05-07 Gm Global Technology Operations, Inc. Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system
JP2010000958A (en) * 2008-06-20 2010-01-07 Toyota Motor Corp Control device for vehicular power transmission device
JP2010036705A (en) * 2008-08-04 2010-02-18 Toyota Motor Corp Controller for vehicular power transmission
JP2010076544A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp Control device for vehicle power transmission device
JP2010241378A (en) * 2009-04-09 2010-10-28 Toyota Motor Corp Controller for vehicle power transmission device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11572057B2 (en) 2019-09-19 2023-02-07 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle for limiting supercharger pressure changes due to power limits
US11472399B2 (en) 2019-10-02 2022-10-18 Toyota Jidosha Kabushiki Kaisha Controller and control method for hybrid vehicle

Similar Documents

Publication Publication Date Title
JP6607179B2 (en) Vehicle control device
JP6673817B2 (en) Control device for hybrid vehicle
US10100923B2 (en) Vehicle and control method of vehicle
JP2018100004A (en) Control apparatus for hybrid vehicle
RU2675484C1 (en) Control device and method for hybrid vehicle
JP2018099946A (en) Control device for hybrid vehicle
JP2020032854A (en) Vehicular control apparatus
JP2017194103A (en) Gear change control device of vehicle
CN111422184B (en) Vehicle control device
US8123654B2 (en) Hybrid driving apparatus, vehicle with the same and control method of the same
CN110341694B (en) Hybrid vehicle
JP2019085002A (en) Hybrid-vehicle control apparatus
CN108216193B (en) Control device for hybrid vehicle
CN108116400B (en) Control device for vehicle drive device
JP2016203833A (en) Power transmission device for hybrid vehicle
JP2017105370A (en) Control apparatus for power transmission device
JP2010274788A (en) Control unit of power transmission device for hybrid vehicle
JP2020029168A (en) Vehicle control device
JP2018095217A (en) Vehicle control device
JP2019031208A (en) Vehicle control device
JP6658490B2 (en) Vehicle control device
JP2020142663A (en) Vehicular control apparatus
JP2017077836A (en) Controller for vehicle drive device
JP2020001422A (en) Control device for hybrid vehicle
JP7201469B2 (en) vehicle controller

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904