JP2016203337A - Grindstone and manufacturing method for the same - Google Patents

Grindstone and manufacturing method for the same Download PDF

Info

Publication number
JP2016203337A
JP2016203337A JP2015090292A JP2015090292A JP2016203337A JP 2016203337 A JP2016203337 A JP 2016203337A JP 2015090292 A JP2015090292 A JP 2015090292A JP 2015090292 A JP2015090292 A JP 2015090292A JP 2016203337 A JP2016203337 A JP 2016203337A
Authority
JP
Japan
Prior art keywords
abrasive grains
binder
grindstone
fine particles
adhesive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015090292A
Other languages
Japanese (ja)
Other versions
JP6524783B2 (en
Inventor
智行 春日
Satoyuki Kasuga
智行 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015090292A priority Critical patent/JP6524783B2/en
Priority to US15/134,921 priority patent/US20160311083A1/en
Priority to EP16166555.9A priority patent/EP3117959A1/en
Priority to CN201610262403.2A priority patent/CN106078538A/en
Publication of JP2016203337A publication Critical patent/JP2016203337A/en
Application granted granted Critical
Publication of JP6524783B2 publication Critical patent/JP6524783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/14Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
    • B24D3/18Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings for porous or cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/009Tools not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/02Wheels in one piece

Abstract

PROBLEM TO BE SOLVED: To provide a grindstone having long lifetime, which comprises, between abrasive grains, a member for adjusting intervals between the abrasive grains, and a manufacturing method for the same.SOLUTION: A grindstone 10 comprises: a plurality of super-abrasive grains 12 (abrasive grains) which are arranged so as not to contact each other; a vitrified bond 14 (a bonding agent) which is formed in a bridge shape to bridge the plurality of super-abrasive grains 12 (abrasive grains) with each other and bonds the plurality of super-abrasive grains 12 (the abrasive grains) with each other; a plurality of fine particles 16 which are arranged in an assembly state in the vitrified bond 14 and interposed between the plurality of super-abrasive grains 12 so as to arrange the plurality of super-abrasive grains 12 in a non-contact manner; and gas cavities 18 which are formed around the vitrified bond 14.SELECTED DRAWING: Figure 2

Description

本発明は、砥石、及びその製造方法に関する。   The present invention relates to a grindstone and a manufacturing method thereof.

従来、高能率での研削加工において、研削焼け、研削割れなどの熱的損傷を防止し、さらに良好な加工精度を得るために、研削抵抗の低い砥石にて加工が行なわれている。この場合、研削抵抗を下げるためには、単位体積あたりの砥粒含有率(砥粒集中度)を低くした低集中度砥石を用いることが有効である。通常、低集中度砥石は、砥粒、砥粒間に配置される骨材及び結合剤を混合して成形し、その後、焼結して形成している。このとき、砥粒間に配置される骨材としては、例えばWA(白色アルミナ)などが多く用いられている。しかし、WAなどでは、砥石による工作物の研削が進行してくると、工作物から排出される切屑によって骨材の摩滅が進行し、工作物側の面が平坦化して平滑部が形成される。この平滑部によって、研削抵抗が増加する。そして、この研削抵抗の増加によって骨材が大きく破砕、または、脱落する場合がある。このため、例えばボンドブリッジである結合剤が破壊され、これに伴ってCBN砥粒が脱落して工具寿命が低下する虞がある。   Conventionally, in grinding processing with high efficiency, in order to prevent thermal damage such as grinding burn and grinding crack and to obtain better processing accuracy, processing is performed with a grindstone having low grinding resistance. In this case, in order to reduce the grinding resistance, it is effective to use a low-concentration grindstone having a low abrasive content (unit concentration) per unit volume. Usually, the low-concentration grindstone is formed by mixing abrasive grains, an aggregate disposed between the abrasive grains, and a binder, and then sintering. At this time, for example, WA (white alumina) is often used as the aggregate disposed between the abrasive grains. However, in WA or the like, when grinding of a workpiece with a grindstone progresses, wear of the aggregate progresses due to chips discharged from the workpiece, and the surface on the workpiece side is flattened to form a smooth portion. . This smooth portion increases the grinding resistance. Then, the aggregate may be largely crushed or dropped due to this increase in grinding resistance. For this reason, for example, the binder, which is a bond bridge, is destroyed, and as a result, the CBN abrasive grains fall off and the tool life may be reduced.

特許第5398132号公報Japanese Patent No. 5398132

上記のような課題を解決するため、特許文献1に示す従来技術がある。特許文献1の技術では、骨材を、微細な孔を多数有する多孔質のセラミックスによって構成している。これにより、砥石によって工作物の研削が進み、骨材の摩滅が進行し、骨材の破壊が始まっても、その破壊は内部に形成された微細な孔までの間にとどまるため、多孔質の骨材は微細な孔までの間の小破壊を繰り返し、大きく一気に破砕されることが抑制される。しかしながら、多孔質セラミックの内部の孔の配置をコントロールすることは非常に難しい。このため、破壊が始まった後、その破壊を確実に小破壊でとどめられる保障はない。   In order to solve the above-described problems, there is a conventional technique disclosed in Patent Document 1. In the technique of Patent Document 1, the aggregate is composed of porous ceramics having many fine holes. As a result, the grinding of the workpiece proceeds with the grindstone, the wear of the aggregate progresses, and even when the destruction of the aggregate starts, the destruction remains between the fine holes formed inside, so that the porous Aggregate is repeatedly broken down to fine holes, and is prevented from being crushed at once. However, it is very difficult to control the arrangement of the pores inside the porous ceramic. For this reason, after destruction begins, there is no guarantee that the destruction can be kept small.

本発明は、このような事情に鑑みてなされたものであり、砥粒間に、砥粒間の間隔を調整する部材を備えながら、高寿命である砥石、及びその製造方法を提供することを目的とする。   This invention is made | formed in view of such a situation, providing the grindstone with a long life, and its manufacturing method, providing the member which adjusts the space | interval between abrasive grains between abrasive grains. Objective.

上記課題を解決するため、本発明に係る請求項1の砥石は、相互に非接触に配置される複数の砥粒と、前記複数の砥粒のそれぞれを架橋するブリッジ状に形成され、前記複数の砥粒のそれぞれを結合する結合剤と、前記結合剤内に集合した状態で配置され、前記複数の砥粒の間に介在することで前記複数の砥粒を非接触に配置させる複数の微粒子と、前記結合剤の周囲に形成される気孔と、を備える。   In order to solve the above-mentioned problem, the grindstone according to claim 1 of the present invention is formed in a bridge shape that bridges each of the plurality of abrasive grains and the plurality of abrasive grains arranged in non-contact with each other. And a plurality of fine particles arranged in a state of being aggregated in the binder and arranged in a non-contact manner by interposing between the plurality of abrasive grains. And pores formed around the binder.

このように、各砥粒間をブリッジ状に架橋し結合する結合剤内には、複数の微粒子が集合した状態で配置されている。このため、砥石によって工作物の研削が進行し、工作物から排出された切屑によって結合剤の架橋部分が摩滅されても、複数の微粒子は、各微粒子単位で脱離することができる。これにより、複数の微粒子は、塊として一度に大きく破壊されることがないので、複数の微粒子を含む結合剤の架橋部分も、一度に大量に破壊、脱離して砥粒間の結合力を損なわせ、砥粒を脱落させる虞はない。これにより砥石の寿命を向上させることができる。   Thus, in the binder which bridge | crosslinks and couple | bonds each abrasive grain in bridge shape, it has arrange | positioned in the state which the several fine particle aggregated. For this reason, even if grinding of a workpiece progresses with a grindstone and the bridging portion of the binder is worn away by chips discharged from the workpiece, a plurality of fine particles can be detached in units of fine particles. As a result, since the plurality of fine particles are not greatly broken as a lump at once, the cross-linked portion of the binder containing the plurality of fine particles is also destroyed and detached in a large amount at one time to impair the bonding force between the abrasive grains. There is no risk of the abrasive grains falling off. Thereby, the lifetime of a grindstone can be improved.

本発明に係る請求項6の砥石の製造方法によれば、前記砥石は、相互に非接触に配置される複数の砥粒と、前記複数の砥粒のそれぞれを架橋するブリッジ状に形成され、前記複数の砥粒のそれぞれを結合する結合剤と、前記結合剤内に集合した状態で配置され、前記複数の砥粒の間に介在することで前記複数の砥粒を非接触に配置させる複数の微粒子と、前記結合剤の周囲に形成される気孔と、を備え、前記複数の微粒子を接着部材によって相互に接着し造粒して複数の造粒粉体を形成する造粒工程と、前記複数の造粒粉体と前記砥石の形成前における前記複数の砥粒と粉末状態の前記結合剤とを混合し、前記複数の造粒粉体を隣接する前記砥粒間にそれぞれ配置して中間成形体を形成する混合工程と、前記中間成形体を成形型に投入し、前記成形型内を加圧して加圧成形体を形成する加圧工程と、前記加圧成形体に対する加熱により、前記造粒粉体を形成する前記接着部材の一部又は全部を消失させて前記複数の微粒子間に接着部材空間を形成し、溶融した前記結合剤を、前記接着部材空間および前記複数の微粒子間における前記接着部材空間以外の空間に流入させるとともに、前記造粒粉体から前記接着部材の一部又は全部が消失されて形成される前記集合した状態の前記複数の微粒子を内部に含んで前記隣接する砥粒間を前記架橋する加熱工程と、を備える。これにより、請求項1の砥石と同様の砥石が製造できる。   According to the method for producing a grindstone of claim 6 according to the present invention, the grindstone is formed in a bridge shape that bridges each of the plurality of abrasive grains arranged in non-contact with each other and the plurality of abrasive grains, A plurality of binders that bind each of the plurality of abrasive grains and a plurality of abrasive grains that are arranged in a state of being gathered in the binder and that are arranged between the plurality of abrasive grains so that the plurality of abrasive grains are arranged in a non-contact manner. A granulation step of forming a plurality of granulated powders by adhering the plurality of fine particles to each other by an adhesive member and granulating the fine particles; and pores formed around the binder; and The plurality of granulated powders and the plurality of abrasive grains before the formation of the grindstone are mixed with the binder in a powder state, and the plurality of granulated powders are respectively arranged between the adjacent abrasive grains. A mixing step for forming a molded body, and the intermediate molded body is put into a mold, Pressing the inside of the mold to form a pressure-molded body, and heating the pressure-molded body causes a part or all of the adhesive members forming the granulated powder to disappear and the plurality An adhesive member space is formed between the fine particles, and the molten binder is allowed to flow into the adhesive member space and a space other than the adhesive member space between the plurality of fine particles, and from the granulated powder to the adhesive member A heating step of including the plurality of fine particles in the aggregated state formed by erasing a part or all of the inside thereof and cross-linking between the adjacent abrasive grains. Thereby, the grindstone similar to the grindstone of Claim 1 can be manufactured.

本発明の実施の形態を示す砥石の全体図である。1 is an overall view of a grindstone showing an embodiment of the present invention. 砥石層の砥石面付近の組織を示す部分拡大図である。It is the elements on larger scale which show the structure | tissue of the grindstone surface vicinity of a grindstone layer. 図2における砥粒と複数の微粒子との関係を説明する詳細図である。FIG. 3 is a detailed diagram illustrating a relationship between abrasive grains and a plurality of fine particles in FIG. 2. 砥石層の製造方法のフローチャートである。It is a flowchart of the manufacturing method of a grindstone layer. 造粒粉体を説明するための部分拡大図である。It is the elements on larger scale for demonstrating granulated powder. 中間成形体を説明するための部分拡大図である。It is the elements on larger scale for demonstrating an intermediate molded object. 加圧成形体を説明するための部分拡大図である。It is a partial enlarged view for demonstrating a press-molding body. 研削時における微粒子の脱落の様子を説明する図である。It is a figure explaining the mode of omission of particulates at the time of grinding.

(1.砥石10の全体構成)
図1に示すように、砥石10は、円板状に形成される砥石車である。砥石10は、円板状のコア21と、リング状の砥石層22と、を備える。コア21は、鋼、アルミニウムあるいはチタン等の金属材料、或いはFRP(繊維強化プラスチック)材、セラミックス等によって形成される。砥石層22は、リング状に焼成され、コア21の外周に接着剤あるいは焼結によって固着され形成される。或いは、砥石層22は、複数の砥石セグメントを、コア21の外周に接着してリング状になるように形成してもよい。
(1. Overall configuration of the grinding wheel 10)
As shown in FIG. 1, the grindstone 10 is a grinding wheel formed in a disk shape. The grindstone 10 includes a disk-shaped core 21 and a ring-shaped grindstone layer 22. The core 21 is formed of a metal material such as steel, aluminum, or titanium, or an FRP (fiber reinforced plastic) material, ceramics, or the like. The grindstone layer 22 is fired into a ring shape, and is fixed to the outer periphery of the core 21 by an adhesive or sintering. Alternatively, the grindstone layer 22 may be formed such that a plurality of grindstone segments are bonded to the outer periphery of the core 21 to form a ring shape.

コア21の中心には、中心穴23が貫通して形成される。中心穴23は、図略の砥石台が備える砥石軸の軸端に突出する芯合わせボスに嵌合する。中心穴23の周囲には、ボルト孔24が、複数(本実施形態では4個)形成される。複数のボルト孔24には、砥石軸の軸端に開口する螺子孔に螺合するボルトが挿通する。これらのボルト孔24にボルトを挿通し、ボルトを螺子孔に螺入することにより、砥石10が砥石軸に固着される。   A center hole 23 is formed through the center of the core 21. The center hole 23 is fitted into a centering boss that protrudes from the shaft end of a grinding wheel shaft provided in a grinding wheel base (not shown). A plurality of bolt holes 24 (four in this embodiment) are formed around the center hole 23. Bolts that are screwed into screw holes that open to the shaft end of the grindstone shaft are inserted into the plurality of bolt holes 24. The grindstone 10 is fixed to the grindstone shaft by inserting bolts into the bolt holes 24 and screwing the bolts into the screw holes.

(2.砥石層22の構成)
砥石層22は、図2の部分拡大図に示すように、砥粒12(本実施形態では、ダイヤモンドやCBNの超砥粒12として説明する)と、結合剤14(本実施形態では、ビトリファイドボンド14として説明する)と、結合剤14の内部に配置される複数の微粒子16と、気孔18とを備える。
(2. Configuration of the grinding wheel layer 22)
As shown in the partially enlarged view of FIG. 2, the grindstone layer 22 includes abrasive grains 12 (described as superabrasive grains 12 of diamond or CBN in this embodiment) and a binder 14 (in this embodiment, vitrified bond). 14), a plurality of fine particles 16 disposed inside the binder 14, and pores 18.

前述したように、超砥粒12(砥粒)は、例えば、CBN(立方晶窒化ホウ素)砥粒、またはダイヤモンド粒から形成される。本実施形態において、超砥粒12の平均粒径φAは、例えば、125μm程度である。なお、125μmは、あくまで一例として例示しただけであり、この大きさには限らない。図2に示すように、砥石層22において、複数の超砥粒12は、相互に非接触に配置される。このとき、複数の超砥粒12のうち、隣接する超砥粒12間の平均離間距離Lは、図2では、超砥粒12の平均粒径φAとほぼ同じ大きさであるが、平均離間距離Lは、超砥粒12の平均粒径φAと同じ大きさである必要はない。平均離間距離Lは、砥石10に対する所望の集中度に応じて任意に設定される。   As described above, the superabrasive grains 12 (abrasive grains) are formed from, for example, CBN (cubic boron nitride) abrasive grains or diamond grains. In the present embodiment, the average particle diameter φA of the superabrasive grains 12 is, for example, about 125 μm. In addition, 125 micrometers is only illustrated as an example to the last, and is not restricted to this size. As shown in FIG. 2, in the grindstone layer 22, the plurality of superabrasive grains 12 are arranged in non-contact with each other. At this time, the average separation distance L between the adjacent superabrasive grains 12 among the plurality of superabrasive grains 12 is substantially the same as the average grain diameter φA of the superabrasive grains 12 in FIG. The distance L need not be the same size as the average particle diameter φA of the superabrasive grains 12. The average separation distance L is arbitrarily set according to the desired degree of concentration with respect to the grindstone 10.

公知であるビトリファイドボンド14(結合剤)は、隣接する超砥粒12間をブリッジ状に架橋して結合し、架橋部20を形成する(図2、図3参照)。架橋部20内には、前述した複数の微粒子16が、集合した状態で配置され、複数の超砥粒12間に介在することで複数の超砥粒12を非接触に配置させる。複数の微粒子16は、例えば、ファインセラミックス(セラミックスに相当)であるアルミナ(Al)によって、それぞれ略球形状に形成される。ただし、この態様には限らず、微粒子16は、他のセラミックス材料によって形成されてもよい。また、微粒子16は、従来、骨材として用いられる部材によって形成されてもよい。各微粒子16の大きさ(平均粒径φB)は、複数の微粒子16の集合体である後述する造粒粉体30の平均粒径φCに対し、1/5以下で形成される。なお、本実施形態では、微粒子16の平均粒径φBは、造粒粉体30の平均粒径φCの約1/10で形成されるものとする。なお、微粒子16の形状は、球形状には限らない。 A known vitrified bond 14 (binding agent) bridges and bonds adjacent superabrasive grains 12 in a bridge shape to form a crosslinked portion 20 (see FIGS. 2 and 3). In the bridging portion 20, the plurality of fine particles 16 described above are arranged in an aggregated state, and the plurality of superabrasive grains 12 are arranged in a non-contact manner by interposing between the plurality of superabrasive grains 12. The plurality of fine particles 16 are each formed in a substantially spherical shape by alumina (Al 2 O 3 ), which is fine ceramics (corresponding to ceramics), for example. However, not limited to this aspect, the fine particles 16 may be formed of other ceramic materials. Further, the fine particles 16 may be formed by a member conventionally used as an aggregate. The size of each fine particle 16 (average particle diameter φB) is 1/5 or less than the average particle diameter φC of a granulated powder 30 described later, which is an aggregate of a plurality of fine particles 16. In the present embodiment, the average particle diameter φB of the fine particles 16 is about 1/10 of the average particle diameter φC of the granulated powder 30. The shape of the fine particles 16 is not limited to a spherical shape.

架橋部20内に配置される複数の微粒子16は、巨視的に見たとき、隣接する超砥粒12間が、微粒子16で埋められるよう隣接する微粒子16同士が相互に当接し合っているよう配置される。しかし、図3に示すように、微視的に見たときには、隣接する微粒子16間には、微小な隙間がある場合、及び微粒子16同士が相互に接触している場合の二通りの状態がある。微小な隙間がある場合には、隣接する微粒子16の間の微小隙間には、ビトリファイドボンド14が介在している。また、隙間がない場合には、隣接する微粒子16の間にビトリファイドボンド14は介在していない。しかし、いずれの場合においても、隣接する微粒子16同士は、各微粒子16の周囲を覆うビトリファイドボンド14によって相互に結合されている。なお、上記の態様に限らず、隣接する超砥粒12同士の間が全て、微小な隙間を有していても良い。また、隣接する超砥粒12間は微小な隙間を有さず、全て、相互に当接していてもよい。これらによっても同様に効果が得られる。   When viewed macroscopically, the plurality of fine particles 16 disposed in the bridging portion 20 seem to be in contact with each other so that the adjacent superabrasive grains 12 are filled with the fine particles 16. Be placed. However, as shown in FIG. 3, when viewed microscopically, there are two states when there is a minute gap between adjacent fine particles 16 and when the fine particles 16 are in contact with each other. is there. When there is a minute gap, the vitrified bond 14 is interposed in the minute gap between the adjacent fine particles 16. Further, when there is no gap, the vitrified bond 14 is not interposed between the adjacent fine particles 16. However, in any case, the adjacent fine particles 16 are bonded to each other by vitrified bonds 14 covering the periphery of each fine particle 16. In addition, it is not restricted to said aspect, All between adjacent superabrasive grains 12 may have a micro clearance gap. Further, the adjacent superabrasive grains 12 do not have a minute gap and may all be in contact with each other. The effect can be obtained in the same manner.

図2に示すように、気孔18は、ビトリファイドボンド14(結合剤)が架橋された超砥粒12間の周囲に形成される。つまり、気孔18は、複数の超砥粒12、及びビトリファイドボンド14(複数の微粒子16を含む)以外の部分に形成される。気孔18は、砥石10が工作物を研削したとき、排出される切粉を一次的に保持する機能を有する。   As shown in FIG. 2, the pores 18 are formed around the superabrasive grains 12 in which the vitrified bond 14 (binder) is crosslinked. That is, the pores 18 are formed in portions other than the plurality of superabrasive grains 12 and the vitrified bond 14 (including the plurality of fine particles 16). The pores 18 have a function of temporarily holding the discharged chips when the grindstone 10 grinds the workpiece.

(3.砥石層22の製造方法)
次に、CBN砥粒による砥石層22の製造方法について説明する。砥石層22の製造方法は、図4のフローチャートに示すように、造粒工程S10と、分級工程S12と、混合工程S14と、加圧工程S16と、加熱工程S18とを備える。
(3. Manufacturing method of grindstone layer 22)
Next, a method for manufacturing the grindstone layer 22 using CBN abrasive grains will be described. The manufacturing method of the grindstone layer 22 includes a granulation step S10, a classification step S12, a mixing step S14, a pressurizing step S16, and a heating step S18, as shown in the flowchart of FIG.

造粒工程S10は、砥石層22の形成前において、ほぼ球体状に形成された複数の微粒子16を、バインダBi(接着部材)によって相互に接着し造粒して、複数の造粒粉体30を形成する工程である。ここで、造粒粉体30とは、造粒粉体30の一部を拡大した図である図5に示すように、複数の微粒子16が、液体状に加工されたバインダBiを各微粒子16の外周面に付着させた状態で、バインダBi同士が相互に接着され、接着集合体を形成した状態をいう。本実施形態においては、造粒粉体30は、ほぼ球形状である。また、球形状の造粒粉体30の直径を、以後、粉体直径と称す。   In the granulation step S10, before forming the grindstone layer 22, the plurality of fine particles 16 formed in a substantially spherical shape are adhered and granulated with a binder Bi (adhesive member) to form a plurality of granulated powders 30. Is a step of forming. Here, the granulated powder 30 is an enlarged view of a part of the granulated powder 30, and as shown in FIG. In this state, the binder Bi is bonded to each other in a state of being adhered to the outer peripheral surface of each other, thereby forming a bonded assembly. In the present embodiment, the granulated powder 30 has a substantially spherical shape. Further, the diameter of the spherical granulated powder 30 is hereinafter referred to as a powder diameter.

造粒粉体30は、後の工程である混合工程S14、及び加圧工程S16において、隣接する超砥粒12間に配置され、各超砥粒12間の平均離間距離Lを決定する部材である。上記で説明したように、本実施形態においては、各超砥粒12間の平均離間距離Lは、所望の砥石の集中度によって決められる。このため、造粒工程S10では、各造粒粉体30の各粉体直径が、砥石の集中度によって決まる粉体直径を狙って造粒粉体30を形成する。これにより、後に説明する分級工程S12によって、狙いの平均粉体直径φCの造粒粉体30が抽出可能となる。   The granulated powder 30 is a member that is arranged between adjacent superabrasive grains 12 in the subsequent mixing process S14 and pressurizing process S16, and determines an average separation distance L between the superabrasive grains 12. is there. As described above, in the present embodiment, the average separation distance L between the superabrasive grains 12 is determined by the degree of concentration of the desired grindstone. For this reason, in granulation process S10, each powder diameter of each granulated powder 30 aims at the powder diameter decided by the concentration degree of a grindstone, and granulated powder 30 is formed. Thereby, the granulated powder 30 having a target average powder diameter φC can be extracted by the classification step S12 described later.

なお、造粒粉体30を製作する造粒方法はどのようなものでも良く、一例として、公知の造粒装置を使用し造粒すればよい。具体的には、例えば、「造粒便覧」(日本粉体工業協会編,1975.5、オーム社発行)に記載される「流動層造粒装置」を用いて造粒してもよい。このとき、造粒粉体30の製作のために必要であるバインダBiは、ビトリファイドボンド14(結合剤)の軟化点(例えば、600度以上)よりも低い温度(例えば、600度未満)で、消失可能な接着部材である。本実施形態においては、バインダBiは、例えば、PVA(ポリビニルアルコール)、セルロース等を使用する。ただし、上記消失の温度条件を満足すれば、どのような接着部材を用いてもよい。   Any granulation method may be used for producing the granulated powder 30. For example, the granulated powder 30 may be granulated using a known granulator. Specifically, granulation may be performed using, for example, a “fluidized bed granulator” described in “Granulation Handbook” (edited by the Japan Powder Industry Association, 19755.5, published by Ohm). At this time, the binder Bi necessary for the production of the granulated powder 30 is at a temperature (for example, less than 600 degrees) lower than the softening point (for example, 600 degrees or more) of the vitrified bond 14 (binder). This is an erasable adhesive member. In the present embodiment, for example, PVA (polyvinyl alcohol), cellulose, or the like is used as the binder Bi. However, any adhesive member may be used as long as the above disappearance temperature condition is satisfied.

次に、分級工程S12では、造粒工程S10で、球形状に形成された造粒粉体30の粉体直径φCが、均一で、砥石の集中度に応じた所望の大きさになるように、造粒工程S10で形成された複数の造粒粉体30から、粉体直径が、平均粉体直径φCに近い造粒粉体30を複数選別する。このため、例えば、複数の造粒粉体30を、目の細かいふるいから目の大きいふるいの順にふるいにかけ、所望の大きさに近い粉体直径を有する造粒粉体30を抽出(分級)する。その後、選別(分級)された造粒粉体30を混合工程S14に供給する。   Next, in the classification step S12, the powder diameter φC of the granulated powder 30 formed into a spherical shape in the granulation step S10 is uniform and has a desired size according to the degree of concentration of the grindstone. A plurality of granulated powders 30 having a powder diameter close to the average powder diameter φC are selected from the plurality of granulated powders 30 formed in the granulating step S10. For this reason, for example, a plurality of granulated powders 30 are sieved in the order of finer sieves to larger sieves, and granulated powders 30 having a powder diameter close to a desired size are extracted (classified). . Thereafter, the granulated powder 30 that has been selected (classified) is supplied to the mixing step S14.

混合工程S14では、分級工程S12で選別された平均粉体直径φCで形成された複数の造粒粉体30と、砥石10の形成前における複数の超砥粒12と、粉末状態のビトリファイドボンド14x(結合剤)と、を公知の混合器などで混合する。これにより、粉末状のビトリファイドボンド14xは、図6に示すように、造粒粉体30の外周面、及び複数の超砥粒12の外周面に付着される。また、造粒粉体30が、隣接する超砥粒12間に配置され、中間成形体32が形成される。   In the mixing step S14, the plurality of granulated powders 30 formed with the average powder diameter φC selected in the classification step S12, the plurality of superabrasive grains 12 before the formation of the grindstone 10, and the vitrified bond 14x in a powder state (Binder) is mixed with a known mixer or the like. Thereby, the powdered vitrified bond 14x is attached to the outer peripheral surface of the granulated powder 30 and the outer peripheral surfaces of the plurality of superabrasive grains 12, as shown in FIG. Moreover, the granulated powder 30 is arrange | positioned between the adjacent superabrasive grains 12, and the intermediate molded object 32 is formed.

なお、この態様に限らず、混合工程S14では、複数の造粒粉体30の外周面、及び複数の超砥粒12の外周面に、粉末状態のビトリファイドボンド14xをそれぞれ付着させる工程を別に有していても良い。この場合、粉末状のビトリファイドボンド14xが付着済みの造粒粉体30及び超砥粒12を、混合器などで混ぜ合わせればよい。   In addition to this embodiment, the mixing step S14 has a separate step of attaching vitrified bonds 14x in powder form to the outer peripheral surface of the plurality of granulated powders 30 and the outer peripheral surface of the plurality of superabrasive grains 12, respectively. You may do it. In this case, the granulated powder 30 and the superabrasive grains 12 to which the powdered vitrified bond 14x has been adhered may be mixed with a mixer or the like.

加圧工程S16では、中間成形体32(造粒粉体30+超砥粒12+ビトリファイドボンド14x)を成形型に投入し、成形型内を加圧して加圧成形体33(図7参照)を形成する。これにより、加圧成形体33は、各隣接する超砥粒12間が造粒粉体30の平均粉体直径φCだけ離間した状態に配置される。つまり、隣接する超砥粒12間が、平均離間距離Lだけ離間した状態に配置される。加圧工程S16で成形された加圧成形体33は、中間成形体32が、加圧力によって一体的に成形された構造体である。本実施形態においては、加圧成形体33は、砥石層22に対応するリング状を呈する。   In the pressurizing step S16, the intermediate molded body 32 (granulated powder 30 + superabrasive grains 12 + vitrified bond 14x) is charged into the mold, and the inside of the mold is pressurized to form the pressure molded body 33 (see FIG. 7). To do. Thereby, the press-molded body 33 is arranged in a state where the adjacent superabrasive grains 12 are separated by the average powder diameter φC of the granulated powder 30. That is, the adjacent superabrasive grains 12 are arranged in a state of being separated by an average separation distance L. The press-molded body 33 molded in the pressurizing step S16 is a structure in which the intermediate molded body 32 is integrally molded by applying pressure. In the present embodiment, the pressure molded body 33 has a ring shape corresponding to the grindstone layer 22.

加熱工程S18では、加圧工程S16にて生成された加圧成形体33に対して加熱がされ、図1に示す砥石層22が生成される。加熱工程S18では、加圧工程S12の終了後に、加圧成型されたリング状の加圧成形体33が、型枠から抜き出され、ビトリファイドボンド14の適正な焼成温度(例えば1,000℃前後)で加熱される。これに従い、焼成温度まで上昇する過程において、まず、造粒粉体30を接着して形成するPVA(バインダBi)が、例えば600℃以下の温度で消失する。このため、造粒粉体30の内部において、PVAが付着していた位置に、接着部材空間(図略)が生じる。このとき、造粒粉体30では、PVA(バインダBi)が全て消失することにより、微粒子16相互間を結合する、PVAが担っていた分の結合力が消滅する。このため、造粒粉体30は変化し、複数の微粒子16が集合した状態(以降、集合体Sと称す)が形成される。このため、上記で説明したように、微粒子16間に微小な隙間が生じる場合も考えられる。しかし、加圧成形体33は、加圧工程S16によって加圧され、加圧成形体33として成立している。このため、PVA(バインダBi)の消失によって、造粒粉体30を構成していた複数の微粒子16の集合体Sが大きく崩れることはない。   In heating process S18, it heats with respect to the press-molding body 33 produced | generated by pressurization process S16, and the grindstone layer 22 shown in FIG. 1 is produced | generated. In the heating step S18, after completion of the pressurizing step S12, the pressure-molded ring-shaped press-molded body 33 is extracted from the mold, and an appropriate firing temperature of the vitrified bond 14 (for example, around 1,000 ° C.). ). Accordingly, in the process of increasing to the firing temperature, first, PVA (binder Bi) formed by adhering the granulated powder 30 disappears at a temperature of 600 ° C. or less, for example. For this reason, an adhesive member space (not shown) is generated at the position where the PVA is adhered inside the granulated powder 30. At this time, in the granulated powder 30, all the PVA (binder Bi) disappears, so that the bonding force that PVA bears between the fine particles 16 disappears. For this reason, the granulated powder 30 changes to form a state in which a plurality of fine particles 16 are aggregated (hereinafter referred to as an aggregate S). For this reason, as described above, there may be a case where a minute gap is generated between the fine particles 16. However, the press-molded body 33 is pressurized by the pressurizing step S <b> 16 and is formed as the press-molded body 33. For this reason, the aggregate S of the plurality of fine particles 16 constituting the granulated powder 30 is not greatly broken by the disappearance of PVA (binder Bi).

その後、加熱によって、温度が600℃以上に上昇すると、例えば、造粒粉体30の外周面に付着していたビトリファイドボンド14xが溶融し、造粒粉体30内に生じた接着部材空間、及び複数の微粒子16間における接着部材空間以外の空間に流入する。そして、その後、溶融状態のビトリファイドボンド14は、冷却されて固化し、造粒粉体30、及び集合体Sを構成していた複数の微粒子16同士を結合する。また、同様に、複数の超砥粒12の各外周面に付着していたビトリファイドボンド14xも溶融し、これまで、造粒粉体30を構成していた複数の微粒子16の集合体Sに向かって流動する。   Thereafter, when the temperature rises to 600 ° C. or higher by heating, for example, the vitrified bond 14x adhering to the outer peripheral surface of the granulated powder 30 is melted, and the adhesive member space generated in the granulated powder 30; It flows into a space other than the adhesive member space between the plurality of fine particles 16. After that, the molten vitrified bond 14 is cooled and solidified to bond the granulated powder 30 and the plurality of fine particles 16 constituting the aggregate S together. Similarly, the vitrified bond 14x adhering to each outer peripheral surface of the plurality of superabrasive grains 12 is also melted and directed toward the aggregate S of the plurality of fine particles 16 that have previously constituted the granulated powder 30. Fluid.

その後、溶融したビトリファイドボンド14は、複数の微粒子16の集合体Sの表面を流動し、隣接する超砥粒12間を架橋して架橋部20を形成する。これにより、複数の微粒子16の集合体Sは、架橋部20の内部に含まれるように構成される。このとき、微粒子16の集合体Sの一部が、架橋部20の表面から外部空間に露出しているか否かは問わない。また、気孔18が、ビトリファイドボンド14(結合剤)が架橋された超砥粒12間の周囲に形成される。このようにして、リング状の砥石層22が製造される(図2参照)。その後、焼成された砥石層22をコア21の外周に接着剤を用いて固着させ、砥石10が完成する。   Thereafter, the melted vitrified bond 14 flows on the surface of the aggregate S of the plurality of fine particles 16, and bridges between adjacent superabrasive grains 12 to form a crosslinked portion 20. Thereby, the aggregate S of the plurality of fine particles 16 is configured to be included in the bridge portion 20. At this time, it does not matter whether a part of the aggregate S of the fine particles 16 is exposed to the external space from the surface of the bridging portion 20. In addition, pores 18 are formed around the superabrasive grains 12 in which the vitrified bond 14 (binder) is crosslinked. Thus, the ring-shaped grindstone layer 22 is manufactured (see FIG. 2). Thereafter, the baked grindstone layer 22 is fixed to the outer periphery of the core 21 using an adhesive, and the grindstone 10 is completed.

(4.作用)
次に、作用について図8に基づき説明する。上記の砥石10によって工作物Wの研削加工が行なわれると、工作物Wから例えば切屑Vが発生し、砥石10と工作物Wとの間、特に隣接する超砥粒12間をビトリファイドボンド14により架橋する架橋部20で研削抵抗が増大し、架橋部20が摩耗する。しかしながら、架橋部20内には、砥石10の製造時において、隣接する超砥粒12間の平均離間距離Lを決定する機能を有した複数の微粒子16の集合体Sが配置されている。集合体Sは、隣接する微粒子16同士が、ビトリファイドボンド14(結合剤)によって結合されている。
(4. Action)
Next, the operation will be described with reference to FIG. When the workpiece W is ground by the grindstone 10, for example, chips V are generated from the workpiece W, and vitrified bonds 14 between the grindstone 10 and the workpiece W, particularly between adjacent superabrasive grains 12. Grinding resistance increases at the bridging portion 20 to be crosslinked, and the bridging portion 20 is worn. However, an aggregate S of a plurality of fine particles 16 having a function of determining an average separation distance L between adjacent superabrasive grains 12 is disposed in the bridging portion 20 when the grindstone 10 is manufactured. In the aggregate S, adjacent fine particles 16 are bonded together by vitrified bonds 14 (binder).

このため、図8に示すように、架橋部20のうち、例えば、工作物W側の表面が摩耗されると、複数の微粒子16のうち、架橋部20の工作物W側の何れかの微粒子16が、発生した切屑Vによって大きな抵抗を受ける。しかし、抵抗を受けた微粒子16は、複数の微粒子16のうちの一個である。このため、抵抗を受けた微粒子16は、隣接する微粒子16間を結合させていたビトリファイドボンド14が破壊されることで、一個だけ脱離される。そして、研削が進み、他の微粒子16が同様に大きな抵抗を受けた場合でも、上記のような作用によって、抵抗を受けた微粒子16のみが脱落する。このため、隣接する超砥粒12間に、例えば一個の大きな骨材が設けられた従来技術の場合のように、骨材が大きな研削抵抗を受けることで、大きく破壊されて脱落し、この脱落に伴い、骨材を支持していたビトリファイドボンドも脱落して、超砥粒が短期間で脱落してしまう虞はない。これにより、高寿命な砥石10が得られる。   For this reason, as shown in FIG. 8, for example, when the surface on the workpiece W side of the bridging portion 20 is worn, any of the plurality of fine particles 16 on the workpiece W side of the bridging portion 20. 16 is subjected to great resistance by the generated chips V. However, the fine particles 16 that have received resistance are one of the plurality of fine particles 16. For this reason, only one fine particle 16 that has received resistance is detached by breaking the vitrified bond 14 that has bonded the adjacent fine particles 16 together. And even if grinding progresses and other fine particles 16 similarly receive a large resistance, only the fine particles 16 that have received the resistance fall off due to the above-described action. For this reason, as in the case of the prior art in which one large aggregate is provided between adjacent superabrasive grains 12, for example, the aggregate receives a large grinding resistance, so that it is largely destroyed and dropped off. Along with this, the vitrified bond that supported the aggregate also falls off, and there is no possibility that the superabrasive grains fall off in a short period of time. Thereby, the long-life grindstone 10 is obtained.

(5.実施形態による効果)
上記実施形態によれば、砥石10は、相互に非接触に配置される複数の超砥粒12(砥粒)と、複数の超砥粒12(砥粒)のそれぞれを架橋するブリッジ状に形成され、複数の超砥粒12(砥粒)のそれぞれを結合するビトリファイドボンド14(結合剤)と、ビトリファイドボンド14内に集合した状態で配置され、複数の超砥粒12の間に介在することで複数の超砥粒12を非接触に配置させる複数の微粒子16と、ビトリファイドボンド14の周囲に形成される気孔18と、を備える。
(5. Effect by embodiment)
According to the said embodiment, the grindstone 10 is formed in the bridge | bridging shape which bridge | crosslinks each of the some superabrasive grain 12 (abrasive grain) arrange | positioned in non-contact with each other, and the some superabrasive grain 12 (abrasive grain). And a vitrified bond 14 (binding agent) that binds each of the plurality of superabrasive grains 12 (abrasive grains), and is arranged in an aggregated state in the vitrified bond 14, and is interposed between the plurality of superabrasive grains 12. The plurality of fine particles 16 for arranging the plurality of superabrasive grains 12 in a non-contact manner and the pores 18 formed around the vitrified bond 14 are provided.

このように、各超砥粒12(砥粒)間をブリッジ状に架橋し結合するビトリファイドボンド14(結合剤)内には、骨材として複数の微粒子16が集合した状態で配置されている。このため、砥石10によって工作物の研削が進行し、工作物から排出された切屑によってビトリファイドボンド14の架橋部20が摩耗されても、複数の微粒子16は各微粒子16単位で脱離することができる。これにより、複数の微粒子16は、塊として一度に大きく破壊されることがないので、複数の微粒子16を含む架橋部20におけるビトリファイドボンド14も、一度に大量に脱離して超砥粒12間の結合力を損なわせ、超砥粒12を脱落させる虞はない。これにより砥石の寿命を向上させることができる。   Thus, in the vitrified bond 14 (binder) which bridge | crosslinks and couple | bonds between each superabrasive grain 12 (abrasive grain) in the shape of a bridge | bridging, it arrange | positions in the state in which the some fine particle 16 aggregated as an aggregate. For this reason, even if the grinding of the workpiece proceeds by the grindstone 10 and the bridging portion 20 of the vitrified bond 14 is worn by the chips discharged from the workpiece, the plurality of fine particles 16 may be detached in units of the fine particles 16. it can. Thereby, since the plurality of fine particles 16 are not greatly broken as a lump at a time, the vitrified bond 14 in the cross-linking portion 20 including the plurality of fine particles 16 is also detached in a large amount at a time between the superabrasive grains 12. There is no possibility that superabrasive grains 12 may fall off due to the loss of bonding force. Thereby, the lifetime of a grindstone can be improved.

上記実施形態によれば、複数の微粒子16のそれぞれの平均粒径φBは、造粒粉体30の平均粒径φCの1/5以下である。これにより、造粒粉体30が、良好に形成できる。   According to the above embodiment, the average particle diameter φB of each of the plurality of fine particles 16 is 1/5 or less of the average particle diameter φC of the granulated powder 30. Thereby, the granulated powder 30 can be formed satisfactorily.

上記実施形態によれば、複数の微粒子16のうち、ビトリファイドボンド14(結合剤)によって結合される隣接する2つの超砥粒12(砥粒)間の平均離間距離Lは、砥石の集中度に応じて設定される。これにより、高度に集中度が低減された低集中度砥石が形成できる。   According to the above-described embodiment, the average separation distance L between two adjacent superabrasive grains 12 (abrasive grains) bonded by vitrified bond 14 (binder) among the plurality of fine particles 16 is based on the degree of concentration of the grindstone. Set accordingly. As a result, a low-concentration grindstone with a highly reduced concentration can be formed.

上記実施形態によれば、複数の微粒子16の集合体Sでは、各微粒子16は、相互にビトリファイドボンド14(結合剤)によって結合される。これにより、各微粒子16間の結合力が十分確保されるとともに、複数の微粒子16を含んで形成される架橋部20によって結合される超砥粒12(砥粒)間の結合力も十分確保される。   According to the embodiment, in the aggregate S of the plurality of fine particles 16, the fine particles 16 are bonded to each other by vitrified bonds 14 (binder). Thereby, the bonding force between the fine particles 16 is sufficiently secured, and the bonding force between the superabrasive grains 12 (abrasive grains) bonded by the bridging portion 20 including the plurality of fine particles 16 is also sufficiently secured. .

上記実施形態によれば、複数の微粒子16は、金属と比較して熱膨張係数の小さなセラミックスである。このため、複数の微粒子16は、ビトリファイドボンド14(結合剤)内で、熱膨張及び熱収縮しにくいので、ビトリファイドボンド14(結合剤)への負担を軽減でき、寿命を向上させることができる。また、セラミックスという汎用性の高い材料が使用でき経済的である。   According to the embodiment, the plurality of fine particles 16 are ceramics having a smaller thermal expansion coefficient than that of metal. For this reason, since the plurality of fine particles 16 hardly undergo thermal expansion and contraction in the vitrified bond 14 (binder), the burden on the vitrified bond 14 (binder) can be reduced, and the life can be improved. In addition, a highly versatile material such as ceramics can be used, which is economical.

上記実施形態の砥石10の製造方法によれば、複数の微粒子16をバインダBi(接着部材)によって相互に接着し造粒して複数の造粒粉体30を形成する造粒工程S10と、複数の造粒粉体30と砥石10の形成前における複数の超砥粒12(砥粒)と粉末状態のビトリファイドボンド14(結合剤)とを混合し、複数の造粒粉体30を隣接する超砥粒12(砥粒)間にそれぞれ配置して中間成形体32を形成する混合工程S14と、中間成形体32を成形型に投入し、成形型内を加圧して加圧成形体33を形成する加圧工程S16と、加圧成形体33に対する加熱により、造粒粉体30を形成するバインダBi(接着部材)の全部を消失させて複数の微粒子16間に接着部材空間を形成し、溶融したビトリファイドボンド14(結合剤)を、接着部材空間および複数の微粒子16間における接着部材空間以外の空間に流入させるとともに、造粒粉体30からバインダBi(接着部材)の全部が消失されて形成される集合した状態の複数の微粒子16を内部に含んで隣接する超砥粒12(砥粒)間を架橋する加熱工程S18と、を備える。これにより、上記で説明した砥石10が製造できる。   According to the method for manufacturing the grindstone 10 of the above-described embodiment, the plurality of fine particles 16 are adhered to each other by the binder Bi (adhesive member) and granulated to form a plurality of granulated powders 30. The agglomerated powder 30 and a plurality of superabrasive grains 12 (abrasive grains) before the formation of the grindstone 10 are mixed with vitrified bond 14 (binder) in a powdered state so that the agglomerated powders 30 are adjacent to each other. A mixing step S14 in which the intermediate molded body 32 is formed by being arranged between the abrasive grains 12 (abrasive grains), and the intermediate molded body 32 is put into a mold, and the inside of the mold is pressurized to form a pressure molded body 33. The pressurizing step S16 to be performed and heating to the pressure-molded body 33 eliminates all of the binder Bi (adhesive member) forming the granulated powder 30 to form an adhesive member space between the plurality of fine particles 16, and melt Vitrified Bond 14 (Binder) And a plurality of fine particles in an aggregated state that are formed by allowing the binder Bi (adhesive member) to disappear from the granulated powder 30 while flowing into a space other than the adhesive member space between the adhesive member space and the plurality of fine particles 16. Heating process S18 which bridges between adjacent superabrasive grains 12 (abrasive grains) including 16 inside. Thereby, the grindstone 10 demonstrated above can be manufactured.

また、上記実施形態の砥石10の製造方法によれば、造粒工程S10における接着部材は、ビトリファイドボンド14(結合剤)の軟化点よりも低い温度で消失可能なバインダBiである。これにより、加熱工程S18までの間においては、造粒粉体30によって、超砥粒12(砥粒)間の離間距離Lを確保できるともに、ビトリファイドボンド14(結合剤)の軟化点よりも高い温度で焼成される加熱工程S18後においては、造粒粉体30内のバインダBiを消失させ、造粒粉体30を変化させて、複数の微粒子16の集合体Sとし、その後、消失した接着部材空間及び接着部材空間以外の空間に、溶融したビトリファイドボンド14(結合剤)を流入させることで、複数の微粒子16間、及び隣り合う超砥粒12(砥粒)間の結合力を確実に確保できる。   Moreover, according to the manufacturing method of the grindstone 10 of the said embodiment, the adhesive member in granulation process S10 is the binder Bi which can lose | disappear at the temperature lower than the softening point of the vitrified bond 14 (binder). Thus, until the heating step S18, the granulated powder 30 can ensure the separation distance L between the superabrasive grains 12 (abrasive grains) and is higher than the softening point of the vitrified bond 14 (binder). After the heating step S18 baked at a temperature, the binder Bi in the granulated powder 30 is lost, the granulated powder 30 is changed to form an aggregate S of a plurality of fine particles 16, and then the lost adhesive By flowing the melted vitrified bond 14 (binder) into a space other than the member space and the adhesive member space, the bonding force between the plurality of fine particles 16 and between adjacent superabrasive grains 12 (abrasive grains) is ensured. It can be secured.

また、上記実施形態の砥石10の製造方法によれば、複数の造粒粉体30は、球状に形成され、造粒工程S10で形成された複数の造粒粉体30を選別し、均一な粉体直径φCを有する造粒粉体30を抽出する。そして、その後、選別された造粒粉体30を混合工程S14に供給する。このように、超砥粒12(砥粒)間の離間距離L1を決定する造粒粉体30の粉体直径φCが均一であるので、超砥粒12(砥粒)間の離間距離L1のばらつきは抑制され、研削抵抗も安定する。また、砥石1個にかかる加工負荷が平均化され、砥粒の脱落を抑制し、工具寿命の向上が図れる。   Moreover, according to the manufacturing method of the grindstone 10 of the above embodiment, the plurality of granulated powders 30 are formed in a spherical shape, and the plurality of granulated powders 30 formed in the granulation step S10 are selected to be uniform. A granulated powder 30 having a powder diameter φC is extracted. Then, the selected granulated powder 30 is supplied to the mixing step S14. Thus, since the powder diameter φC of the granulated powder 30 that determines the separation distance L1 between the superabrasive grains 12 (abrasive grains) is uniform, the separation distance L1 between the superabrasive grains 12 (abrasive grains) Variations are suppressed and grinding resistance is stabilized. Further, the processing load applied to one grindstone is averaged, and the falling of abrasive grains can be suppressed, and the tool life can be improved.

なお、上記実施形態によれば、造粒工程S10において、接着部材をバインダBiのみとして、造粒粉体30を形成すると説明した。しかし、この態様には限らない。造粒粉体30を形成する際、ビトリファイドボンド14x(結合剤)の軟化点よりも低い温度で消失可能な液体状のバインダBi、及び粉末状のビトリファイドボンド14xを混合して混合剤を形成し、両者を合わせて接着部材としてもよい。また、別の方法として、予め、各微粒子16の表面に粉末状のビトリファイドボンド14xを付着させ、その後、造粒装置によって、液体状のバインダBiを滴下しながら、造粒粉体30を形成し、このような状態のバインダBi、及びビトリファイドボンド14x(結合剤)を接着部材としてもよい。これらにより、加熱工程S18において、各微粒子16間では、初めに接着部材の一部であるバインダBiが消失し、さらに加熱された状態で、ビトリファイドボンド14が溶融し、各微粒子16間を結合する。つまり、造粒粉体30を形成する際、造粒粉体30の内部に、粉末状のビトリファイドボンド14x(結合剤)を内在させた状態で加熱する。このため、隣接する微粒子16同士は、近傍に配置されたビトリファイドボンド14xが溶融し、その後固化することによって確実に結合されるので、各微粒子16では、安定した結合力が得られ、研削時における各微粒子16の脱離速度も安定する。   In addition, according to the said embodiment, in granulation process S10, it demonstrated that the adhesive powder was formed only by binder Bi and the granulated powder 30 was formed. However, it is not limited to this aspect. When the granulated powder 30 is formed, a liquid binder Bi that can disappear at a temperature lower than the softening point of the vitrified bond 14x (binder) and the powdered vitrified bond 14x are mixed to form a mixture. The two may be combined to form an adhesive member. As another method, the powdered vitrified bond 14x is attached to the surface of each fine particle 16 in advance, and then the granulated powder 30 is formed while dropping the liquid binder Bi with a granulator. The binder Bi and the vitrified bond 14x (binder) in such a state may be used as the adhesive member. As a result, in the heating step S18, the binder Bi, which is a part of the adhesive member, first disappears between the fine particles 16, and the vitrified bond 14 melts and bonds between the fine particles 16 in a heated state. . That is, when the granulated powder 30 is formed, the granulated powder 30 is heated in a state where the powdered vitrified bond 14x (binder) is contained inside. For this reason, the adjacent fine particles 16 are reliably bonded by the vitrified bond 14x disposed in the vicinity thereof being melted and then solidified, so that each fine particle 16 can obtain a stable bonding force and can be used during grinding. The desorption rate of each fine particle 16 is also stabilized.

また、上記実施形態の砥石10の製造方法によれば、造粒粉体30を粉体直径で選別する分級工程S12を設けた。しかし、分級工程S12はなくてもよい。造粒工程S10によって、形成された成り行きの造粒粉体30を、そのまま、分級工程S12以降の工程に供給しても、相応の効果は得られる。   Moreover, according to the manufacturing method of the grindstone 10 of the said embodiment, the classification process S12 which sorts the granulated powder 30 with a powder diameter was provided. However, the classification step S12 may be omitted. Even if the resulting granulated powder 30 formed by the granulation step S10 is supplied to the steps after the classification step S12 as it is, a corresponding effect can be obtained.

また、上記実施形態では、砥石10を、ビトリファイドボンド14を結合剤とするビトリファイドボンド砥石としたが、この態様には限らない。別の態様として、砥石は、金属を主成分とする結合剤によって形成するメタルボンド砥石でもよい。また、上記実施形態では、砥石の砥粒を超砥粒としたが、これには限らない。砥粒はアルミナ系、炭化ケイ素系であっても良い。   Moreover, in the said embodiment, although the grindstone 10 was made into the vitrified bond grindstone which used the vitrified bond 14 as a binder, it is not restricted to this aspect. As another embodiment, the grindstone may be a metal bond grindstone formed by a binder containing metal as a main component. Moreover, in the said embodiment, although the abrasive grain of the grindstone was used as the superabrasive grain, it is not restricted to this. The abrasive grains may be alumina-based or silicon carbide-based.

10・・・砥石、 12・・・砥粒(超砥粒)、 14,14x・・・ビトリファイドボンド(結合剤)、 16・・・微粒子、 18・・・気孔、 20・・・架橋部、 21・・・コア、 22・・・砥石層、 30・・・造粒粉体、 32・・・中間成形体、 33・・・加圧成形体、 S10・・・造粒工程、 S12・・・分級工程、 S14・・・加熱工程、 S14・・・混合工程、 S16・・・加圧工程、 S18・・・加熱工程、 Bi・・・バインダ(接着部材)。   DESCRIPTION OF SYMBOLS 10 ... Whetstone, 12 ... Abrasive grain (superabrasive grain), 14, 14x ... Vitrified bond (binder), 16 ... Fine particle, 18 ... Pore, 20 ... Cross-linking part, 21 ... Core, 22 ... Grinding wheel layer, 30 ... Granulated powder, 32 ... Intermediate molded body, 33 ... Pressure molded body, S10 ... Granulating step, S12 ... Classification step, S14 ... heating step, S14 ... mixing step, S16 ... pressurizing step, S18 ... heating step, Bi ... binder (adhesive member).

Claims (9)

相互に非接触に配置される複数の砥粒と、
前記複数の砥粒のそれぞれを架橋するブリッジ状に形成され、前記複数の砥粒のそれぞれを結合する結合剤と、
前記結合剤内に集合した状態で配置され、前記複数の砥粒の間に介在することで前記複数の砥粒を非接触に配置させる複数の微粒子と、
前記結合剤の周囲に形成される気孔と、
を備える砥石。
A plurality of abrasive grains arranged in non-contact with each other;
A binder that bridges each of the plurality of abrasive grains and that binds each of the plurality of abrasive grains;
A plurality of fine particles arranged in a state of being aggregated in the binder, and arranged between the plurality of abrasive grains so that the plurality of abrasive grains are arranged in a non-contact manner;
Pores formed around the binder;
Whetstone equipped with.
前記複数の微粒子のそれぞれの平均粒径は、前記複数の微粒子の平均粒径の1/5以下である、
請求項1に記載の砥石。
The average particle size of each of the plurality of fine particles is 1/5 or less of the average particle size of the plurality of fine particles.
The grindstone according to claim 1.
前記複数の微粒子のうち、前記結合剤によって結合される隣接する2つの前記砥粒間の平均離間距離は、前記砥粒の平均粒径以下である、
請求項1又は2に記載の砥石。
Among the plurality of fine particles, an average separation distance between two adjacent abrasive grains bonded by the binder is equal to or less than an average particle diameter of the abrasive grains.
The grindstone according to claim 1 or 2.
前記複数の微粒子は、相互に前記結合剤によって結合される、
請求項1〜3の何れか1項に記載の砥石。
The plurality of microparticles are bound to each other by the binder;
The grindstone according to any one of claims 1 to 3.
前記複数の微粒子は、セラミックスである、
請求項1〜4の何れか1項に記載の砥石。
The plurality of fine particles are ceramics.
The grindstone according to any one of claims 1 to 4.
砥石の製造方法であって、
前記砥石は、
相互に非接触に配置される複数の砥粒と、
前記複数の砥粒のそれぞれを架橋するブリッジ状に形成され、前記複数の砥粒のそれぞれを結合する結合剤と、
前記結合剤内に集合した状態で配置され、前記複数の砥粒の間に介在することで前記複数の砥粒を非接触に配置させる複数の微粒子と、
前記結合剤の周囲に形成される気孔と、
を備え、
前記複数の微粒子を接着部材によって相互に接着し造粒して複数の造粒粉体を形成する造粒工程と、
前記複数の造粒粉体と前記砥石の形成前における前記複数の砥粒と粉末状態の前記結合剤とを混合し、前記複数の造粒粉体を隣接する前記砥粒間にそれぞれ配置して中間成形体を形成する混合工程と、
前記中間成形体を成形型に投入し、前記成形型内を加圧して加圧成形体を形成する加圧工程と、
前記加圧成形体に対する加熱により、前記造粒粉体を形成する前記接着部材の一部又は全部を消失させて前記複数の微粒子間に接着部材空間を形成し、溶融した前記結合剤を、前記接着部材空間および前記複数の微粒子間における前記接着部材空間以外の空間に流入させるとともに、前記造粒粉体から前記接着部材の一部又は全部が消失されて形成される前記集合した状態の前記複数の微粒子を内部に含んで前記隣接する砥粒間を前記架橋する加熱工程と、
を備える、砥石の製造方法。
A method for manufacturing a grindstone, comprising:
The grindstone is
A plurality of abrasive grains arranged in non-contact with each other;
A binder that bridges each of the plurality of abrasive grains and that binds each of the plurality of abrasive grains;
A plurality of fine particles arranged in a state of being aggregated in the binder, and arranged between the plurality of abrasive grains so that the plurality of abrasive grains are arranged in a non-contact manner;
Pores formed around the binder;
With
A granulation step of forming a plurality of granulated powder by bonding the plurality of fine particles to each other by an adhesive member and granulating;
The plurality of granulated powders and the plurality of abrasive grains before the formation of the grindstone are mixed with the binder in a powder state, and the plurality of granulated powders are respectively disposed between the adjacent abrasive grains. A mixing step to form an intermediate molded body;
A pressing step of charging the intermediate molded body into a mold and pressurizing the inside of the mold to form a pressure molded body;
By heating the pressure-molded body, a part or all of the adhesive member forming the granulated powder is lost to form an adhesive member space between the plurality of fine particles, and the molten binder is The plurality of the aggregated states formed by flowing into a space other than the adhesive member space between the adhesive member space and the plurality of fine particles and part or all of the adhesive member disappearing from the granulated powder A heating step in which the adjacent abrasive grains are cross-linked with the fine particles contained therein,
A method for producing a grindstone, comprising:
前記造粒工程における前記接着部材は、前記結合剤の軟化点よりも低い温度で消失可能なバインダである、
請求項6に記載の砥石の製造方法。
The adhesive member in the granulation step is a binder that can disappear at a temperature lower than the softening point of the binder.
The manufacturing method of the grindstone of Claim 6.
前記造粒工程における前記接着部材は、前記結合剤の軟化点よりも低い温度で消失可能なバインダ及び前記結合剤の混合剤である、
請求項6に記載の砥石の製造方法。
The adhesive member in the granulation step is a binder that can disappear at a temperature lower than the softening point of the binder and a mixture of the binder.
The manufacturing method of the grindstone of Claim 6.
前記造粒工程で形成される前記複数の造粒粉体は、それぞれ略球状に形成され、
前記混合工程に供給するため、前記造粒工程で形成された前記複数の造粒粉体を選別し、均一な直径を有する前記造粒粉体を抽出する分級工程を備える、
請求項6〜8の何れか1項に記載の砥石の製造方法。
The plurality of granulated powders formed in the granulation step are each formed in a substantially spherical shape,
In order to supply to the mixing step, the method comprises sorting the plurality of granulated powders formed in the granulation step and extracting the granulated powder having a uniform diameter,
The manufacturing method of the grindstone of any one of Claims 6-8.
JP2015090292A 2015-04-27 2015-04-27 Method of manufacturing grinding wheel Expired - Fee Related JP6524783B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015090292A JP6524783B2 (en) 2015-04-27 2015-04-27 Method of manufacturing grinding wheel
US15/134,921 US20160311083A1 (en) 2015-04-27 2016-04-21 Grinding wheel and method for manufacturing the same
EP16166555.9A EP3117959A1 (en) 2015-04-27 2016-04-22 Grinding wheel and method for manufacturing the same
CN201610262403.2A CN106078538A (en) 2015-04-27 2016-04-25 Emery wheel and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015090292A JP6524783B2 (en) 2015-04-27 2015-04-27 Method of manufacturing grinding wheel

Publications (2)

Publication Number Publication Date
JP2016203337A true JP2016203337A (en) 2016-12-08
JP6524783B2 JP6524783B2 (en) 2019-06-05

Family

ID=55808985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015090292A Expired - Fee Related JP6524783B2 (en) 2015-04-27 2015-04-27 Method of manufacturing grinding wheel

Country Status (4)

Country Link
US (1) US20160311083A1 (en)
EP (1) EP3117959A1 (en)
JP (1) JP6524783B2 (en)
CN (1) CN106078538A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202002342PA (en) * 2017-10-11 2020-04-29 Almt Corp Vitrified bond super-abrasive grinding wheel
CN112936121B (en) * 2021-04-13 2022-09-23 苏州科技大学 Working layer of superhard abrasive grinding wheel, preparation method of working layer and superhard abrasive grinding wheel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119875A (en) * 1997-06-30 1999-01-26 Toyoda Mach Works Ltd Vitrified grinding wheel
JP2005342836A (en) * 2004-06-03 2005-12-15 Asahi Diamond Industrial Co Ltd Superabrasive tool and manufacturing method thereof
JP2009083036A (en) * 2007-09-28 2009-04-23 Toyoda Van Moppes Ltd Grinding wheel
JP2010036266A (en) * 2008-07-31 2010-02-18 Noritake Co Ltd Vitrified grindstone

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716879B2 (en) * 1986-06-18 1995-03-01 豊田工機株式会社 Grinding tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119875A (en) * 1997-06-30 1999-01-26 Toyoda Mach Works Ltd Vitrified grinding wheel
JP2005342836A (en) * 2004-06-03 2005-12-15 Asahi Diamond Industrial Co Ltd Superabrasive tool and manufacturing method thereof
JP2009083036A (en) * 2007-09-28 2009-04-23 Toyoda Van Moppes Ltd Grinding wheel
JP2010036266A (en) * 2008-07-31 2010-02-18 Noritake Co Ltd Vitrified grindstone

Also Published As

Publication number Publication date
CN106078538A (en) 2016-11-09
JP6524783B2 (en) 2019-06-05
EP3117959A1 (en) 2017-01-18
US20160311083A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
CN100566941C (en) The method of a kind of bonded abrasive grinding tool and centreless grinding
KR100644741B1 (en) Improved coated abrasives
CN101434827B (en) Grinding medium containing ceramic particle, preparation and use thereof
JP5369654B2 (en) Vitrified bond whetstone
US5651729A (en) Grinding wheel, grinding rim for a grinding tool, and method of manufacturing a grinding tool
SE529566C2 (en) Abrasive grinding tools, method for making abrasive tools, grinding method and sintered agglomerates of abrasive grains and a binder
CN105563363B (en) A kind of method that centrifugal drying granulating technique prepares vitrified bond accumulation abrasive material
CN105856089A (en) Grinding composite body and preparation method thereof
JP5398132B2 (en) Grinding wheel
CN105818007B (en) Grinding wheel and its manufacturing method
JP2016203337A (en) Grindstone and manufacturing method for the same
US5125933A (en) Glass-encapsulated abrasive particles for vitreous bond grinding wheels
CN103537994A (en) Vitrified bonded grinding stone
CN104786163A (en) Ceramic bonding agent diamond grinding tool and preparation method thereof
JP2009072835A (en) Superabrasive grain vitrified grinding wheel
RU2650459C1 (en) Cross-linked diamond tool and method of its production
JPH04269172A (en) Resin bond super abrasive grain grinding wheel
US2405086A (en) Method of making abrasive wheels
JP4777708B2 (en) Resin bond grindstone and its manufacturing method
JP2000246647A (en) Vitrified extra-abrasive grain grinding wheel and manufacture thereof
TW201902628A (en) A porous abrasive clusters, a grinding tool and method for making the porous abrasive clusters
JP3406163B2 (en) Superabrasive stone and its manufacturing method
JP2002127020A (en) Method for regenerating grinding wheel
JP4562609B2 (en) Vitrified grinding wheel, method of manufacturing the same, and cast iron workpiece grinding method using the same
JP2012091291A (en) Grinding wheel and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6524783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees