JP2016201217A - Battery monitoring system - Google Patents

Battery monitoring system Download PDF

Info

Publication number
JP2016201217A
JP2016201217A JP2015079463A JP2015079463A JP2016201217A JP 2016201217 A JP2016201217 A JP 2016201217A JP 2015079463 A JP2015079463 A JP 2015079463A JP 2015079463 A JP2015079463 A JP 2015079463A JP 2016201217 A JP2016201217 A JP 2016201217A
Authority
JP
Japan
Prior art keywords
voltage detection
battery
detection
monitoring
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015079463A
Other languages
Japanese (ja)
Inventor
和士 黒田
Kazushi Kuroda
和士 黒田
義幸 高原
Yoshiyuki Takahara
義幸 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015079463A priority Critical patent/JP2016201217A/en
Publication of JP2016201217A publication Critical patent/JP2016201217A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery monitoring system that enables a monitoring device to specify a trouble site in each voltage detection device while assigning an identification number unique to each voltage detection device.SOLUTION: In a battery monitoring system which includes a plurality of voltage detection devices which are connected in series to detect the voltage of each of battery cells of a battery pack, and a monitoring device for monitoring the detected voltage, the monitoring device transmits a count command signal for instructing counting of an identification number to a voltage detection device at one end. The voltage detection device receives the count command signal transmitted from the monitoring device or the voltage detection device at the preceding stage, stores the incremented identification number into storage means according to the count command signal, and transmits a response signal to the monitoring device after the time corresponding to the identification number of the storage means. The voltage detection device excluding the voltage detection device at the other end transmits the count command signal including the identification number of the storage means to the voltage detection device at the rear state. The monitoring device receives the response signal from the voltage detection device and on the basis of the response signal. specifies failure parts in the plurality of voltage detection devices.SELECTED DRAWING: Figure 2

Description

本発明は、組電池を構成する電池セルそれぞれの電圧を監視する電池監視システムに関する。   The present invention relates to a battery monitoring system that monitors the voltage of each battery cell constituting an assembled battery.

従来、直列に接続された複数の電池セルそれぞれの電圧を監視するシステムが知られている(例えば、特許文献1参照)。特許文献1記載のシステムは、各電池セルそれぞれの電圧を検出する電圧検出装置と、各電池セルそれぞれの電圧を監視する監視装置と、を備えている。   Conventionally, a system for monitoring the voltage of each of a plurality of battery cells connected in series is known (see, for example, Patent Document 1). The system described in Patent Document 1 includes a voltage detection device that detects the voltage of each battery cell, and a monitoring device that monitors the voltage of each battery cell.

電圧検出装置は、電池セルごとに対応して設けられている。すべての電圧検出装置は、通信線を介して直列に接続されている。また、監視装置は、すべての電圧検出装置のうち一端に存在する電圧検出装置(最前段の電圧検出装置)に通信線を介して接続されている。各電圧検出装置は、前段から送信される識別番号である特定情報を受信し、その受信した特定情報を自己のID信号として記憶領域に格納し、その受信した特定情報に対して情報(具体的には、"1")を付加して後段の電圧検出装置に向けて送信する。かかるシステムによれば、各電圧検出装置に固有の特定情報(ID情報)を付与することができる。   The voltage detection device is provided corresponding to each battery cell. All the voltage detection devices are connected in series via a communication line. In addition, the monitoring device is connected to a voltage detection device (frontmost voltage detection device) present at one end of all the voltage detection devices via a communication line. Each voltage detection device receives specific information that is an identification number transmitted from the previous stage, stores the received specific information in a storage area as its own ID signal, and receives information (specifically, for the received specific information). Is added with “1”) and transmitted to the subsequent voltage detection apparatus. According to such a system, specific information (ID information) unique to each voltage detection device can be given.

また、監視装置は、各電圧検出装置との間で情報の授受を行う。このため、監視装置に、各電圧検出装置によって検出された電池セルの電圧を収集することができる。   The monitoring device exchanges information with each voltage detection device. For this reason, the voltage of the battery cell detected by each voltage detection apparatus can be collected in the monitoring apparatus.

特開2011−181392号公報JP 2011-181392A

しかしながら、上記特許文献1記載のシステムでは、何れか2つの電圧検出装置を繋ぐ通信線上において断線や短絡などの故障が発生した場合或いは電圧検出装置自体の故障が発生した場合に、監視装置がその故障箇所を特定することができない。   However, in the system described in Patent Document 1, when a failure such as a disconnection or a short circuit occurs on a communication line connecting any two voltage detection devices, or when a failure of the voltage detection device itself occurs, the monitoring device The failure location cannot be specified.

本発明は、上述の点に鑑みてなされたものであり、各電圧検出装置に固有の識別番号を付与しつつ、監視装置に電圧検出装置における故障箇所を特定させることが可能な電池監視システムを提供することを目的とする。   The present invention has been made in view of the above points, and provides a battery monitoring system capable of causing a monitoring device to identify a fault location in the voltage detection device while giving a unique identification number to each voltage detection device. The purpose is to provide.

本発明の一態様は、組電池を構成する電池セルそれぞれの電圧を検出する、直列に接続された複数の電圧検出装置と、前記電圧検出装置により検出された前記電圧を監視する監視装置と、を備える電池監視システムであって、前記監視装置は、すべての前記電圧検出装置のうち一端に存在する前記電圧検出装置に向けて識別番号のカウントを指令するカウント指令信号を送信する監視側送信手段を有し、前記電圧検出装置は、前記監視装置の前記監視側送信手段又は前段の前記電圧検出装置から送信される前記カウント指令信号を受信する検出側受信手段と、前記検出側受信手段に受信された前記カウント指令信号に従ってインクリメントした前記識別番号を記憶手段に記憶する識別番号制御手段と、前記記憶手段に記憶された前記識別番号に応じた時間が経過した後に前記監視装置に向けて前記カウント指令信号に応答する応答信号を送信する第1検出側送信手段と、を有し、すべての前記電圧検出装置のうち他端に存在する前記電圧検出装置を除く前記電圧検出装置は、前記記憶手段に記憶された前記識別番号を含む前記カウント指令信号を後段の前記電圧検出装置に向けて送信する第2検出側送信手段を有し、前記監視装置は、前記電圧検出装置の前記第1検出側送信手段から送信される前記応答信号を受信する監視側受信手段と、前記監視側受信手段に受信される前記応答信号に基づいて、直列に接続された複数の前記電圧検出装置における故障箇所を特定する故障検出手段と、を有する電池監視システムである。   One aspect of the present invention includes a plurality of voltage detection devices connected in series for detecting the voltage of each battery cell constituting an assembled battery, and a monitoring device for monitoring the voltage detected by the voltage detection device; The monitoring device comprises a monitoring-side transmission means for transmitting a count command signal for instructing counting of an identification number toward the voltage detection device existing at one end of all the voltage detection devices. The voltage detection device includes: a detection-side reception unit that receives the count command signal transmitted from the monitoring-side transmission unit of the monitoring device or the previous voltage detection device; and the detection-side reception unit An identification number control means for storing in the storage means the identification number incremented in accordance with the counted command signal, and the identification number stored in the storage means First detection side transmission means for transmitting a response signal in response to the count command signal toward the monitoring device after a lapse of a corresponding time, and is present at the other end of all the voltage detection devices The voltage detection device excluding the voltage detection device has second detection-side transmission means for transmitting the count command signal including the identification number stored in the storage means to the voltage detection device in the subsequent stage, The monitoring device includes a monitoring-side receiving unit that receives the response signal transmitted from the first detection-side transmitting unit of the voltage detection device, and a serial connection based on the response signal received by the monitoring-side receiving unit. And a failure detection means for identifying a failure location in the plurality of voltage detection devices connected to the battery monitoring system.

本発明によれば、各電圧検出装置に固有の識別番号を付与しつつ、監視装置に電圧検出装置における故障箇所を特定させることができる。   According to the present invention, it is possible to cause the monitoring device to identify a failure location in the voltage detection device while giving a unique identification number to each voltage detection device.

本発明の一実施例である電池監視システムの構成図である。It is a block diagram of the battery monitoring system which is one Example of this invention. 本実施例の電池監視システムにおいて故障箇所が無い時に実現される一例の動作タイムチャートである。It is an operation | movement time chart of an example implement | achieved when there is no failure location in the battery monitoring system of a present Example. 本実施例の電池監視システムにおいて故障箇所がある時に実現される一例の動作タイムチャートである。It is an operation | movement time chart of an example implement | achieved when there exists a failure location in the battery monitoring system of a present Example. 本実施例の電池監視システムにおいて実行される制御ルーチンの一例のフローチャートである。It is a flowchart of an example of the control routine performed in the battery monitoring system of a present Example.

以下、図面を用いて、本発明に係る電池監視システムの具体的な実施の形態について説明する。   Hereinafter, specific embodiments of a battery monitoring system according to the present invention will be described with reference to the drawings.

図1は、本発明の一実施例である電池監視システム10の構成図を示す。   FIG. 1 shows a configuration diagram of a battery monitoring system 10 according to an embodiment of the present invention.

本実施例の電池監視システム10は、組電池を構成する電池セルを監視するシステムである。この組電池は、複数の二次電池である電池セルが直列に接続された構成を有している。この組電池は、リチウム電池やニカド電池,ニッケル水素電池などである。この組電池は、車両などに搭載される。   The battery monitoring system 10 of the present embodiment is a system that monitors battery cells that constitute an assembled battery. This assembled battery has a configuration in which battery cells, which are a plurality of secondary batteries, are connected in series. The assembled battery is a lithium battery, a nickel-cadmium battery, a nickel metal hydride battery, or the like. This assembled battery is mounted on a vehicle or the like.

電池監視システム10は、検出装置12と、監視装置14と、を備えている。検出装置12は、組電池の複数の電池セルに対応して、複数の電圧検出装置16を有している。監視装置14及び複数の電圧検出装置16は、デイジーチェーン接続されている。   The battery monitoring system 10 includes a detection device 12 and a monitoring device 14. The detection device 12 has a plurality of voltage detection devices 16 corresponding to the plurality of battery cells of the assembled battery. The monitoring device 14 and the plurality of voltage detection devices 16 are daisy chain connected.

監視装置14は、マイクロコンピュータ(以下、マイコンと称す。)18を主体に構成された電子制御ユニットである。以下、監視装置14をECU14と称す。マイコン18は、周辺機能CSI(Computer System Interface)を搭載している。ECU14は、プログラムを実行するCPUと、プログラムやデータを記憶するROMと、一時的にデータを記憶するRAMと、周辺機器に接続される入出力ポートと、を有している。ECU14は、具体的には、入出力ポートとして、送信データを送信するTxDポートと、クロック信号を出力するCLKポートと、受信データを受信するRxDポートと、を有している。   The monitoring device 14 is an electronic control unit mainly composed of a microcomputer (hereinafter referred to as a microcomputer) 18. Hereinafter, the monitoring device 14 is referred to as an ECU 14. The microcomputer 18 has a peripheral function CSI (Computer System Interface). The ECU 14 includes a CPU that executes programs, a ROM that stores programs and data, a RAM that temporarily stores data, and input / output ports connected to peripheral devices. Specifically, the ECU 14 has, as input / output ports, a TxD port that transmits transmission data, a CLK port that outputs a clock signal, and an RxD port that receives reception data.

電圧検出装置16は、電池セルごとに対応して設けられている。電圧検出装置16は、電池スタックに複数配置されている。各電圧検出装置16はそれぞれ、対応の電池セルの両端電圧を検出する電池検出IC(Integrated Circuit)である。以下、電圧検出装置16を電池検出IC16と称す。また、電池セルはn個設けられているものとし、各電池検出IC16を電池検出IC16−1,16−2,・・・,16−nとする。これらn個の電池検出IC16は、直列に接続されている。   The voltage detection device 16 is provided for each battery cell. A plurality of voltage detection devices 16 are arranged in the battery stack. Each voltage detection device 16 is a battery detection IC (Integrated Circuit) that detects the voltage across the corresponding battery cell. Hereinafter, the voltage detection device 16 is referred to as a battery detection IC 16. Further, n battery cells are provided, and the battery detection ICs 16 are designated as battery detection ICs 16-1, 16-2, ..., 16-n. These n battery detection ICs 16 are connected in series.

ECU14は、通信線20,22,24を介して検出装置12の一つの電池検出IC16−1に接続されている。通信線20,22,24はそれぞれ、差動信号を流通させるべく2本の信号線からなる。以下、ECU14に直接に接続する電池検出IC16−1を最前段の電池検出IC16−1とし、ECU14から最も離れて存在する電池検出IC16−nを最後段の電池検出IC16−nとする。   The ECU 14 is connected to one battery detection IC 16-1 of the detection device 12 via the communication lines 20, 22, and 24. Each of the communication lines 20, 22, and 24 is composed of two signal lines so that a differential signal can be circulated. Hereinafter, the battery detection IC 16-1 directly connected to the ECU 14 is referred to as the front-stage battery detection IC 16-1, and the battery detection IC 16-n existing farthest from the ECU 14 is referred to as the last-stage battery detection IC 16-n.

通信線20は、ECU14のTxDポートに接続し、ECU14からのデータを最前段の電池検出IC16−1に向けて流通させる差動信号線である。通信線22は、ECU14のCLKポートに接続し、ECU14からのクロック信号を最前段の電池検出IC16−1に向けて流通させる差動信号線である。通信線24は、ECU14のRxDポートに接続し、最前段の電池検出IC16−1からのデータをECU14に向けて流通させる差動信号線である。   The communication line 20 is a differential signal line that is connected to the TxD port of the ECU 14 and distributes data from the ECU 14 toward the battery detection IC 16-1 at the front stage. The communication line 22 is a differential signal line that is connected to the CLK port of the ECU 14 and distributes the clock signal from the ECU 14 toward the battery detection IC 16-1 at the front stage. The communication line 24 is a differential signal line that is connected to the RxD port of the ECU 14 and distributes data from the battery detection IC 16-1 at the front stage toward the ECU 14.

各電池検出IC16は、前段用受信ポートと、後段用送信ポートと、後段用受信ポートと、前段用送信ポートと、を有している。前段用受信ポートは、ECU14又は前段の電池検出IC16からのデータを受信する受信ポートである。後段用送信ポートは、後段の電池検出IC16に向けてデータを送信する送信ポートである。後段用受信ポートは、後段の電池検出IC16からのデータを受信する受信ポートである。前段用送信ポートは、前段の電池検出IC16又はECU14に向けてデータを送信する送信ポートである。   Each battery detection IC 16 includes a front-stage reception port, a rear-stage transmission port, a rear-stage reception port, and a front-stage transmission port. The reception port for the front stage is a reception port that receives data from the ECU 14 or the battery detection IC 16 of the front stage. The rear-stage transmission port is a transmission port that transmits data toward the rear-stage battery detection IC 16. The subsequent-stage reception port is a reception port that receives data from the subsequent-stage battery detection IC 16. The upstream transmission port is a transmission port that transmits data to the upstream battery detection IC 16 or the ECU 14.

最前段の電池検出IC16−1の前段用受信ポートには、通信線20,22が接続されている。2つの電池検出IC16の間には、ポート同士を接続する通信線26,28が介在している。通信線26,28はそれぞれ、差動信号を流通させるべく2本の信号線からなる。通信線26は、前段の電池検出IC16の後段用送信ポートと後段の電池検出IC16の前段用受信ポートとを接続させ、前段の電池検出IC16からのデータを後段の電池検出IC16に向けて流通させる差動信号線である。通信線28は、後段の電池検出IC16の前段用送信ポートと前段の電池検出IC16の後段用受信ポートとを接続させ、後段の電池検出IC16からのデータを前段の電池検出IC16に向けて流通させる差動信号線である。   Communication lines 20 and 22 are connected to the reception port for the front stage of the battery detection IC 16-1 at the front stage. Between the two battery detection ICs 16, communication lines 26 and 28 that connect the ports are interposed. Each of the communication lines 26 and 28 is composed of two signal lines so as to distribute a differential signal. The communication line 26 connects the transmission port for the rear stage of the battery detection IC 16 at the front stage and the reception port for the front stage of the battery detection IC 16 at the rear stage, and distributes the data from the battery detection IC 16 at the front stage toward the battery detection IC 16 at the rear stage. It is a differential signal line. The communication line 28 connects the transmission port for the front stage of the battery detection IC 16 at the rear stage and the reception port for the rear stage of the battery detection IC 16 at the rear stage, and distributes data from the battery detection IC 16 at the rear stage toward the battery detection IC 16 at the front stage. It is a differential signal line.

最前段の電池検出IC16−1の所定端子には、短絡線34が接続されている。最前段の電池検出IC16−1は、所定端子が短絡線34にて短絡されていることを検知した場合に、自電池検出IC16が最前段の電池検出IC16−1であることを判定する。最前段の電池検出IC16−1は、自電池検出IC16が最前段の電池検出IC16−1であることを判定しかつECU14から通信線20,22を介して送信されるデータ及びクロック信号を前段用受信ポートにて受信すると、そのデータとクロック信号とを重畳した重畳信号を差動信号に変換する。そして、その重畳信号を後段用送信ポートから通信線26を介して次段の電池検出IC16−2へ向けて送信する。   A short-circuit wire 34 is connected to a predetermined terminal of the battery detection IC 16-1 at the foremost stage. When detecting that the predetermined terminal is short-circuited by the short-circuit line 34, the foremost battery detection IC 16-1 determines that the own battery detection IC 16 is the foremost battery detection IC 16-1. The front-stage battery detection IC 16-1 determines that the own battery detection IC 16 is the front-stage battery detection IC 16-1, and uses data and a clock signal transmitted from the ECU 14 via the communication lines 20 and 22 for the previous stage. When the signal is received at the receiving port, the superimposed signal obtained by superimposing the data and the clock signal is converted into a differential signal. Then, the superimposed signal is transmitted from the subsequent-stage transmission port to the next-stage battery detection IC 16-2 via the communication line 26.

二段目以降の電池検出IC16(但し、最後段の電池検出IC16−nを除く。)はそれぞれ、前段の電池検出IC16から通信線26を介して送信される重畳信号を前段用受信ポートにて受信すると、その重畳信号を後段用送信ポートから通信線26を介して次段の電池検出IC16へ向けて送信する。   The battery detection ICs 16 in the second and subsequent stages (except for the battery detection IC 16-n in the last stage) each receive a superimposed signal transmitted from the battery detection IC 16 in the previous stage via the communication line 26 at the reception port for the previous stage. When received, the superimposed signal is transmitted from the subsequent-stage transmission port to the battery detection IC 16 at the next stage via the communication line 26.

最後段の電池検出IC16−nの所定端子には、短絡線36が接続されている。また、最後段の電池検出IC16−nの後段用送信ポート及び後段用受信ポートはそれぞれ、短絡されている。最後段の電池検出IC16−nは、所定端子が短絡線36にて短絡されていることを検知した場合に、自電池検出IC16が最後段の電池検出IC16−nであることを判定する。最後段の電池検出IC16−nは、自電池検出IC16が最後段の電池検出IC16−nであることを判定しかつ前段の電池検出IC16−(nー1)から通信線26を介して送信される重畳信号を前段用受信ポートにて受信すると、その重畳信号に応答する折り返し信号を差動信号に変換する。そして、その折り返し信号を前段用送信ポートから通信線28を介して前段の電池検出IC16−(nー1)へ向けて送信する。   A short circuit line 36 is connected to a predetermined terminal of the battery detection IC 16-n at the last stage. The rear-stage transmission port and the rear-stage reception port of the last-stage battery detection IC 16-n are short-circuited. When the last battery detection IC 16-n detects that the predetermined terminal is short-circuited by the short-circuit line 36, the last battery detection IC 16-n determines that the own battery detection IC 16 is the last battery detection IC 16-n. The battery detection IC 16-n at the last stage determines that the own battery detection IC 16 is the battery detection IC 16-n at the last stage and is transmitted from the battery detection IC 16- (n-1) at the previous stage via the communication line 26. When the superimposition signal to be received is received at the reception port for the previous stage, the return signal in response to the superimposition signal is converted into a differential signal. Then, the return signal is transmitted from the transmission port for the previous stage toward the battery detection IC 16- (n-1) of the previous stage via the communication line 28.

二段目から最後段より一つ前段までの電池検出IC16はそれぞれ、後段の電池検出IC16から通信線28を介して送信される折り返し信号を後段用受信ポートにて受信すると、その折り返し信号を前段用送信ポートから通信線28を介して前段の電池検出IC16へ向けて送信する。最前段の電池検出IC16−1は、後段の電池検出IC16−2から通信線28を介して送信される折り返し信号を後段用受信ポートにて受信すると、その折り返し信号からクロック信号を除いたうえで差動信号に変換する。そして、そのクロック信号を除いた折り返し信号を前段用送信ポートから通信線24を介してECU14へ向けて送信する。ECU14は、通信線20,22からのデータ及びクロック信号の送信後、最前段の電池検出IC16−1から通信線24を介して送信される折り返し信号をRxDポートにて受信することができる。   When each of the battery detection ICs 16 from the second stage to the last stage receives the return signal transmitted from the subsequent stage battery detection IC 16 via the communication line 28 at the reception port for the rear stage, Is transmitted from the transmission port to the battery detection IC 16 in the previous stage via the communication line 28. When the front-stage battery detection IC 16-1 receives the return signal transmitted from the rear-stage battery detection IC 16-2 via the communication line 28 at the rear-stage reception port, the front-stage battery detection IC 16-1 removes the clock signal from the return signal. Convert to differential signal. Then, the return signal excluding the clock signal is transmitted from the front-stage transmission port to the ECU 14 via the communication line 24. The ECU 14 can receive the return signal transmitted from the battery detection IC 16-1 at the front stage via the communication line 24 after transmission of the data and the clock signal from the communication lines 20 and 22 at the RxD port.

各電池検出IC16は、揮発性メモリ32を有している。揮発性メモリ32には、自電池検出IC16に割り当てられた識別番号としてのアドレスが記憶される。各電池検出IC16は、揮発性メモリ32にアドレスを記憶すると共に、その揮発性メモリ32に記憶されているアドレスに従った制御を行う。各電池検出IC16は、クロック信号に従って同期して作動する。   Each battery detection IC 16 has a volatile memory 32. The volatile memory 32 stores an address as an identification number assigned to the own battery detection IC 16. Each battery detection IC 16 stores an address in the volatile memory 32 and performs control according to the address stored in the volatile memory 32. Each battery detection IC 16 operates in synchronization with the clock signal.

次に、図2〜図4を参照して、本実施例の電池監視システム10の動作について説明する。   Next, the operation of the battery monitoring system 10 of this embodiment will be described with reference to FIGS.

図2は、本実施例の電池監視システム10において故障箇所が無い時に実現される一例の動作タイムチャートを示す。図3は、本実施例の電池監視システム10において故障箇所がある時に実現される一例の動作タイムチャートを示す。また、図4は、本実施例の電池監視システム10において実行される制御ルーチンの一例のフローチャートを示す。   FIG. 2 shows an example of an operation time chart realized when there is no failure location in the battery monitoring system 10 of the present embodiment. FIG. 3 shows an example of an operation time chart realized when there is a failure location in the battery monitoring system 10 of the present embodiment. FIG. 4 shows a flowchart of an example of a control routine executed in the battery monitoring system 10 of the present embodiment.

本実施例の電池監視システム10において、ECU14のマイコン18は、まず、周辺機能CSIにより電池検出IC16に対して、(1)接続確認指示を行う。具体的には、接続確認を指示する信号(接続確認信号)をTxDポートから通信線20を介して最前段の電池検出IC16−1に向けて送信すると共に、クロック信号をCLKポートから通信線22を介して最前段の電池検出IC16−1に向けて送信する。   In the battery monitoring system 10 of the present embodiment, the microcomputer 18 of the ECU 14 first (1) issues a connection confirmation instruction to the battery detection IC 16 by the peripheral function CSI. Specifically, a signal for instructing connection (connection confirmation signal) is transmitted from the TxD port to the foremost battery detection IC 16-1 via the communication line 20, and a clock signal is transmitted from the CLK port to the communication line 22. To the frontmost battery detection IC 16-1.

最前段の電池検出IC16−1は、前段用受信ポートにてECU14からの接続確認信号及びクロック信号を受信すると、その接続確認信号とクロック信号とを重畳した重畳信号を生成し、その重畳信号を差動信号に変換する。そして、その重畳信号を後段用送信ポートから通信線26を介して一つ後段の電池検出IC16−2に向けて送信する。最前段の電池検出IC16−1の後段に存在する各電池検出IC16は、一つ前段の電池検出IC16からの接続確認信号とクロック信号とを重畳した重畳信号を前段用受信ポートにて受信すると、その重畳信号をゲートウェイして後段用送信ポートから通信線26を介して一つ後段の電池検出IC16に向けて送信する。   When the front-stage battery detection IC 16-1 receives the connection confirmation signal and the clock signal from the ECU 14 at the front-stage reception port, the front-stage battery detection IC 16-1 generates a superposition signal by superimposing the connection confirmation signal and the clock signal. Convert to differential signal. Then, the superimposed signal is transmitted from the subsequent-stage transmission port to the next-stage battery detection IC 16-2 via the communication line 26. Each of the battery detection ICs 16 present in the subsequent stage of the battery detection IC 16-1 in the foremost stage receives a superimposed signal obtained by superimposing the connection confirmation signal and the clock signal from the battery detection IC 16 in the previous stage at the reception port for the previous stage. The superimposed signal is gatewayed and transmitted from the subsequent-stage transmission port to the next-stage battery detection IC 16 via the communication line 26.

最後段の電池検出IC16−nは、前段用受信ポートにて一つ前段の電池検出IC16−(n−1)からの接続確認信号とクロック信号とを重畳した重畳信号を受信すると、その接続確認信号に応答する折り返し信号を生成し、差動信号に変換する。そして、その折り返し信号を前段用送信ポートから通信線28を介して一つ前段の電池検出IC16−(n−1)に向けて送信する。最後段の電池検出IC16−nの前段に存在する各電池検出IC16は、一つ後段の電池検出IC16からの折り返し信号を後段用受信ポートにて受信すると、その折り返し信号をゲートウェイして前段用送信ポートから通信線28を介して一つ前段の電池検出IC16に向けて送信する。   When the last-stage battery detection IC 16-n receives the superimposed signal obtained by superimposing the connection confirmation signal and the clock signal from the previous-stage battery detection IC 16- (n-1) at the reception port for the previous stage, the connection confirmation is performed. A folding signal in response to the signal is generated and converted into a differential signal. Then, the return signal is transmitted from the transmission port for the previous stage to the battery detection IC 16- (n-1) of the previous stage via the communication line 28. When each of the battery detection ICs 16 existing before the last-stage battery detection IC 16-n receives a return signal from the next-stage battery detection IC 16 at the subsequent-stage reception port, it gateways the return signal and transmits it for the previous stage. The data is transmitted from the port to the immediately preceding battery detection IC 16 via the communication line 28.

最前段の電池検出IC16−1は、一つ後段の電池検出IC16−2からの折り返し信号を後段用受信ポートにて受信すると、その折り返し信号からクロック信号を除いたうえで差動信号に変換する。そして、そのクロック信号を除いた折り返し信号を前段用送信ポートから通信線24を介してECU14に向けて送信する。   When the first-stage battery detection IC 16-1 receives the return signal from the second-stage battery detection IC 16-2 at the subsequent-stage reception port, the first-stage battery detection IC 16-1 removes the clock signal from the return signal and converts it to a differential signal. . Then, the return signal excluding the clock signal is transmitted from the front-stage transmission port to the ECU 14 via the communication line 24.

ECU14のマイコン18は、(1)接続確認指示後、最前段の電池検出IC16−1からの折り返し信号に基づいて、(2)接続確認を行う。具体的には、最前段の電池検出IC16−1からの折り返し信号をRxDポートで受信した場合は、すべての電池検出ICの接続が適切になされていると判定する。一方、最前段の電池検出IC16−1からの折り返し信号を受信しなかった場合は、何れかの箇所で接続が適切になされていないと判定する。   The microcomputer 18 of the ECU 14 (1) performs connection confirmation based on the return signal from the battery detection IC 16-1 at the front stage after the connection confirmation instruction. Specifically, when the return signal from the battery detection IC 16-1 at the front stage is received at the RxD port, it is determined that all the battery detection ICs are properly connected. On the other hand, if the return signal from the battery detection IC 16-1 at the foremost stage is not received, it is determined that the connection is not properly made at any location.

次に、ECU14のマイコン18は、周辺機能CSIにより電池検出IC16に対して、(3)接続確認アドレスカウント指示を行う(ステップ100)。具体的には、接続確認アドレスカウントを指示する信号(アドレスカウント指示信号)をTxDポートから通信線20を介して最前段の電池検出IC16−1に向けて送信すると共に、クロック信号をCLKポートから通信線22を介して最前段の電池検出IC16−1に向けて送信する。このECU14が送信するアドレスカウント指示信号には、電池検出IC16のアドレスを示すアドレス値が初期値(ゼロ)であるものが含まれている。   Next, the microcomputer 18 of the ECU 14 performs (3) connection confirmation address count instruction to the battery detection IC 16 by the peripheral function CSI (step 100). Specifically, a signal for instructing connection confirmation address counting (address count instruction signal) is transmitted from the TxD port to the battery detection IC 16-1 at the forefront stage via the communication line 20, and a clock signal is transmitted from the CLK port. It transmits toward the battery detection IC 16-1 in the forefront stage via the communication line 22. The address count instruction signal transmitted by the ECU 14 includes an address value indicating the address of the battery detection IC 16 having an initial value (zero).

最前段の電池検出IC16−1は、ECU14からのアドレスカウント指示信号及びクロック信号を前段用受信ポートにて受信すると(ステップ200)、(4)そのアドレスカウント指示信号に含まれるアドレス値(具体的には、初期値ゼロ)に"1"を加算(インクリメント)する(ステップ210)。そして、その加算して得たアドレス値を揮発性メモリ32に記憶させる(ステップ220)。また、(5)その加算して得たアドレス値を含むアドレスカウント指示信号とECU14からのクロック信号とを重畳した重畳信号を生成し、その重畳信号を差動信号に変換し、その変換後の重畳信号を後段用送信ポートから通信線26を介して一つ後段の電池検出IC16−2に向けて送信する(ステップ230)。   When the battery detection IC 16-1 at the front stage receives the address count instruction signal and the clock signal from the ECU 14 at the reception port for the front stage (step 200), (4) an address value (specifically, included in the address count instruction signal) 1 is added (incremented) to the initial value zero) (step 210). Then, the address value obtained by the addition is stored in the volatile memory 32 (step 220). Further, (5) a superimposed signal is generated by superimposing the address count instruction signal including the address value obtained by the addition and the clock signal from the ECU 14, and the superimposed signal is converted into a differential signal. The superimposition signal is transmitted from the subsequent-stage transmission port to the next-stage battery detection IC 16-2 via the communication line 26 (step 230).

更に、最前段の電池検出IC16−1は、上記の如くアドレス値を加算して得た後、その加算して得たアドレス値に基づいて、ECU14からのアドレスカウント指示信号に応答するアドレスカウント応答信号をECU14宛てに出力するタイミング(応答時間T1)を算出する(ステップ240)。具体的には、一つ後段の電池検出IC16−2がECU14宛てに出力したアドレスカウント応答信号が自電池検出IC16−1をゲートウェイしてECU14に到達した後に自電池検出IC16−1から出力するアドレスカウント応答信号が通信線24を流通してECU14に到達するようにタイミング算出を行う。   Further, the battery detection IC 16-1 at the forefront stage obtains the address value by adding the address value as described above, and then responds to the address count instruction signal from the ECU 14 based on the obtained address value. The timing (response time T1) at which the signal is output to the ECU 14 is calculated (step 240). Specifically, the address output from the own battery detection IC 16-1 after the address count response signal output to the ECU 14 by the next battery detection IC 16-2 reaches the ECU 14 through the gateway of the own battery detection IC 16-1. Timing calculation is performed so that the count response signal reaches the ECU 14 through the communication line 24.

上記の応答時間T1は、例えば、検出装置12に含まれることが可能な電池検出IC16の最大の数から自己のアドレス値"1"を差し引いて得られた値に、定数(尚、この定数は、後段の電池検出IC16が出力するアドレスカウント応答信号と重ならない時間に設定されている。)を乗算して得られる時間である。   The response time T1 is a constant obtained by subtracting its own address value “1” from the maximum number of battery detection ICs 16 that can be included in the detection device 12, for example. This time is set to a time that does not overlap with the address count response signal output from the battery detection IC 16 in the subsequent stage.

最前段の電池検出IC16−1の後段に存在する各電池検出IC16は、一つ前段の電池検出IC16からのアドレスカウント指示信号とクロック信号とを重畳した重畳信号を前段用受信ポートにて受信すると(ステップ200)、(4)そのアドレスカウント指示信号に含まれるアドレス値に"1"を加算する(ステップ210)。そして、その加算して得たアドレス値を揮発性メモリ32に記憶させる(ステップ220)。また、(5)その加算して得たアドレス値を含むアドレスカウント指示信号とECU14からのクロック信号とを重畳した重畳信号を生成し、その重畳信号を差動信号に変換し、その変換後の重畳信号を後段用送信ポートから通信線26を介して一つ後段の電池検出IC16に向けて送信する(ステップ230)。   Each of the battery detection ICs 16 existing after the battery detection IC 16-1 at the foremost stage receives a superimposed signal obtained by superimposing the address count instruction signal and the clock signal from the battery detection IC 16 at the previous stage at the reception port for the previous stage. (Step 200), (4) "1" is added to the address value included in the address count instruction signal (Step 210). Then, the address value obtained by the addition is stored in the volatile memory 32 (step 220). Further, (5) a superimposed signal is generated by superimposing the address count instruction signal including the address value obtained by the addition and the clock signal from the ECU 14, and the superimposed signal is converted into a differential signal. The superimposition signal is transmitted from the subsequent-stage transmission port to the next-stage battery detection IC 16 via the communication line 26 (step 230).

更に、各電池検出IC16は、上記の如くアドレス値を加算して得た後、その加算して得たアドレス値に基づいて、一つ前段の電池検出IC16からのアドレスカウント指示信号に応答するアドレスカウント応答信号をECU14宛てに出力するタイミング(応答時間T)を算出する(ステップ240)。具体的には、一つ後段の電池検出IC16がECU14宛てに出力したアドレスカウント応答信号が自電池検出IC16−1をゲートウェイしてECU14に到達した後に自電池検出IC16から出力するアドレスカウント応答信号が通信線24を流通してECU14に到達するようにタイミング算出を行う。上記の応答時間Tは、例えば、検出装置12に含まれることが可能な電池検出IC16の最大の数から自己のアドレス値を差し引いて得られた値に、上記の定数を乗算して得られる時間である。   Further, each battery detection IC 16 is obtained by adding the address value as described above, and then, based on the address value obtained by the addition, an address responding to the address count instruction signal from the battery detection IC 16 in the previous stage. Timing (response time T) for outputting the count response signal to the ECU 14 is calculated (step 240). Specifically, the address count response signal output from the own battery detection IC 16 after the address count response signal output to the ECU 14 by the next battery detection IC 16 reaches the ECU 14 through the gateway of the own battery detection IC 16-1 Timing calculation is performed so as to reach the ECU 14 through the communication line 24. The response time T is, for example, a time obtained by multiplying a value obtained by subtracting its own address value from the maximum number of battery detection ICs 16 that can be included in the detection device 12 by the above constant. It is.

各電池検出IC16は、上記の如く応答時間Tを算出した後、その応答時間Tに従ったタイミングで、(6)アドレスカウント応答信号を前段用送信ポートから通信線28を介して一つ前段の電池検出IC16に向けて送信する(ステップ250)。各電池検出IC16は、一つ後段の電池検出IC16からのアドレスカウント応答信号を後段用受信ポートにて受信すると、そのアドレスカウント応答信号をゲートウェイして前段用送信ポートから通信線28を介して一つ前段の電池検出IC16に向けて送信する。   Each battery detection IC 16 calculates the response time T as described above, and at a timing according to the response time T, (6) sends an address count response signal from the previous-stage transmission port via the communication line 28 to the previous-stage transmission port. Transmission is performed toward the battery detection IC 16 (step 250). When each of the battery detection ICs 16 receives the address count response signal from the subsequent battery detection IC 16 at the subsequent reception port, the battery detection IC 16 gateways the address count response signal from the previous transmission port via the communication line 28. It transmits toward the battery detection IC 16 in the previous stage.

最前段の電池検出IC16−1は、一つ後段の電池検出IC16−2からのアドレスカウント応答信号を後段用受信ポートにて受信すると、そのアドレスカウント応答信号をゲートウェイして前段用送信ポートから通信線24を介してECU14に向けて送信する。尚、各電池検出IC16からECU14への応答信号の送信は、アドレス値の大きい方から順に、時間的に重複することなく行われる。   When the front-stage battery detection IC 16-1 receives the address count response signal from the next-stage battery detection IC 16-2 at the rear-stage reception port, it gateways the address count response signal and communicates from the front-stage transmission port. It transmits toward ECU14 via the line 24. In addition, transmission of the response signal from each battery detection IC 16 to the ECU 14 is performed in order from the larger address value without time overlap.

ECU14のマイコン18は、(3)接続確認アドレスカウント指示後、各電池検出IC16それぞれからのアドレスカウント応答信号に基づいて、(7)接続確認アドレスカウント指示に対する応答確認を行う(ステップ110)。ECU14は、アドレス値ごとに各電池検出IC16がアドレスカウント応答信号を出力するタイミングを予め把握している。ECU14は、上記した応答確認として具体的には、すべての電池検出IC16からのアドレスカウント応答信号それぞれを所望のタイミングで受信できるか否かを判別する。   The microcomputer 18 of the ECU 14 (3) confirms the response to the connection confirmation address count instruction based on the address count response signal from each battery detection IC 16 after the connection confirmation address count instruction (step 110). ECU14 grasps | ascertains beforehand the timing which each battery detection IC16 outputs an address count response signal for every address value. Specifically, the ECU 14 determines whether or not each of the address count response signals from all the battery detection ICs 16 can be received at a desired timing as the above-described response confirmation.

ECU14のマイコン18は、図2に示す如くすべての電池検出IC16からのアドレスカウント応答信号がそれぞれ所望のタイミングで受信できたと判別した場合は、すべての電池検出IC16との通信が、何ら故障なく適切に行うことができる正常状態にあると判定することができる。   When the microcomputer 18 of the ECU 14 determines that the address count response signals from all the battery detection ICs 16 have been received at the desired timing as shown in FIG. 2, the communication with all the battery detection ICs 16 is appropriate without any failure. It can be determined that the current state is normal.

一方、マイコン18は、図3に示す如く何れかの電池検出IC16からのアドレスカウント応答信号が所望のタイミングで受信できないと判別した場合は、その何れかの電池検出IC16との通信が、適切に行うことができない異常状態にあると判定することができる。   On the other hand, when the microcomputer 18 determines that the address count response signal from any of the battery detection ICs 16 cannot be received at a desired timing as shown in FIG. 3, communication with the battery detection IC 16 is appropriately performed. It can be determined that there is an abnormal state that cannot be performed.

具体的には、2つの電池検出IC16の間の通信線上において断線や短絡などの故障が発生し或いは電池検出IC16自体の故障が発生すると、その故障箇所よりも後段側に存在する電池検出IC16がアドレスカウント応答信号を出力することは不可能となり、或いは、その故障箇所よりも後段側に存在する電池検出IC16が出力したアドレスカウント応答信号がECU14に到達することは不可能となる。   Specifically, when a failure such as a disconnection or a short circuit occurs on the communication line between the two battery detection ICs 16 or a failure occurs in the battery detection IC 16 itself, the battery detection ICs 16 existing on the downstream side of the failure point are It becomes impossible to output the address count response signal, or it becomes impossible for the address count response signal output by the battery detection IC 16 existing on the rear side of the failure portion to reach the ECU 14.

そこで、ECU14のマイコン18は、アドレスカウント応答信号を受信できなかった電池検出IC16のうち最も前段に存在する電池検出IC16に故障が生じており、或いは、アドレスカウント応答信号を受信できなかった電池検出IC16のうち最も前段に存在する電池検出IC16と、その電池検出IC16の一つ前段のアドレスカウント応答信号を受信できた電池検出IC16との間の通信線26,28に故障が生じていると判定する(ステップ120)。   Therefore, the microcomputer 18 of the ECU 14 detects that the battery detection IC 16 existing in the first stage among the battery detection ICs 16 that have not received the address count response signal has failed, or the battery detection that has failed to receive the address count response signal. It is determined that a failure has occurred in the communication lines 26 and 28 between the battery detection IC 16 that is present in the foremost stage of the IC 16 and the battery detection IC 16 that has received the address count response signal in the previous stage of the battery detection IC 16. (Step 120).

このように、本実施例の電池監視システム10においては、ECU14からの接続確認アドレスカウント指示を、検出装置12の直列に接続された最前段の電池検出IC16−1から最後段の電池検出IC16−nへ順に送ることができる。そして、その接続確認アドレスカウント指示の、最前段の電池検出IC16−1から最後段の電池検出IC16−nへの送り過程で、各電池検出IC16にアドレス値を計算・記憶させてアドレス値を付与することができる。   Thus, in the battery monitoring system 10 of the present embodiment, the connection confirmation address count instruction from the ECU 14 is sent from the front battery detection IC 16-1 connected to the detection device 12 in series to the last battery detection IC 16-. n in order. Then, in the process of sending the connection confirmation address count instruction from the first battery detection IC 16-1 to the last battery detection IC 16-n, each battery detection IC 16 calculates and stores an address value and assigns the address value. can do.

また、上記の如く各電池検出IC16にアドレス値を付与した後、各電池検出IC16に、そのアドレス値に従った応答時間Tの経過後に、接続確認アドレスカウント指示に応答するアドレスカウント応答信号をECU14宛てに出力させることができる。そして、ECU14に、すべての電池検出IC16からのアドレスカウント応答信号それぞれを所望のタイミングで受信できるか否かを判別させて、直列に接続された複数の電池検出IC16における故障箇所を特定させることができる。   Further, after the address value is given to each battery detection IC 16 as described above, an address count response signal that responds to the connection confirmation address count instruction is sent to each battery detection IC 16 after the response time T according to the address value elapses. Can be output to. Then, it is possible to cause the ECU 14 to determine whether or not each of the address count response signals from all the battery detection ICs 16 can be received at a desired timing, and to specify a failure location in the plurality of battery detection ICs 16 connected in series. it can.

従って、本実施例の電池監視システム10によれば、各電池検出IC16に固有の特定情報であるアドレス値を付与しつつ、ECU14に検出装置12の電池検出IC16における故障箇所(例えば、断線位置や故障した電池検出IC16)を特定させることができる。   Therefore, according to the battery monitoring system 10 of the present embodiment, while giving an address value, which is specific information unique to each battery detection IC 16, to the ECU 14, a failure location (for example, a disconnection position or The faulty battery detection IC 16) can be identified.

尚、上記の実施例においては、ECU14がアドレスカウント指示信号を送信することが特許請求の範囲に記載した「監視側送信手段」に、電池検出IC16がECU14からの初期のアドレス値を含むアドレスカウント指示信号を受信することが特許請求の範囲に記載した「検出側受信手段」に、電池検出IC16がインクリメントしたアドレス値を揮発性メモリ32に記憶することが特許請求の範囲に記載した「識別番号制御手段」に、すべての電池検出IC16のうち最後段の電池検出IC16を除く電池検出IC16が揮発性メモリ32内のアドレス値を含むアドレスカウント指示信号を一つ後段の電池検出IC16に向けて送信することが特許請求の範囲に記載した「第2検出側送信手段」に、電池検出IC16が揮発性メモリ32内のアドレス値に応じた応答時間Tが経過した後に応答信号をECU14宛てに出力することが特許請求の範囲に記載した「第1検出側送信手段」に、ECU14が各電池検出IC16からの応答信号を受信することが特許請求の範囲に記載した「監視側受信手段」に、ECU14が各電池検出IC16からの応答信号に基づいて故障箇所を特定することが特許請求の範囲に記載した「故障検出手段」に、それぞれ相当している。   In the above embodiment, the ECU 14 transmits the address count instruction signal to the “monitoring transmission means” described in the claims, and the battery detection IC 16 includes the address count including the initial address value from the ECU 14. The instruction signal is received in the “detection side receiving means” described in the claims, and the address value incremented by the battery detection IC 16 is stored in the volatile memory 32. The battery detection ICs 16 except for the last battery detection IC 16 among all the battery detection ICs 16 transmit an address count instruction signal including the address value in the volatile memory 32 to the next battery detection IC 16 to the control means. In the “second detection-side transmission means” described in the claims, the battery detection IC 16 is connected to the volatile memory 3. The response signal T is output to the ECU 14 after the response time T corresponding to the address value in the ECU has passed. In the “monitoring side receiving means” described in the claims that the signal is received, the ECU 14 specifies the failure location based on the response signal from each battery detection IC 16. It corresponds to “detection means”.

ところで、上記の実施例においては、ECU14に初期値ゼロのアドレス値が含まれるアドレスカウント指示信号を送信させると共に、各電池検出IC16に、受信したアドレスカウント指示信号に含まれるアドレス値に"1"を加算する処理を行わせた後、その加算後のアドレス値を揮発性メモリ32に記憶させ、その加算後のアドレス値を含むアドレスカウント指示信号を一つ後段の電池検出IC16へ向けて送信させることとしている。   By the way, in the above-described embodiment, the ECU 14 is caused to transmit an address count instruction signal including an address value having an initial value of zero, and each battery detection IC 16 is set to “1” in the address value included in the received address count instruction signal. Then, the address value after the addition is stored in the volatile memory 32, and an address count instruction signal including the address value after the addition is transmitted to the battery detection IC 16 at the next stage. I am going to do that.

しかし、本発明はこれに限定されるものではなく、ECU14に初期値が"1"であるアドレス値が含まれるアドレスカウント指示信号を送信させると共に、各電池検出IC16に、受信したアドレスカウント指示信号に含まれるアドレス値自体を揮発性メモリ32に記憶させ、そのアドレスカウント指示信号に含まれるアドレス値自体に"1"を加算する処理を行わせた後、その加算後のアドレス値を含むアドレスカウント指示信号を一つ後段の電池検出IC16へ向けて送信させることとしてもよい。   However, the present invention is not limited to this, and causes the ECU 14 to transmit an address count instruction signal including an address value whose initial value is “1”, and also causes each battery detection IC 16 to receive the received address count instruction signal. Is stored in the volatile memory 32, and the address value itself included in the address count instruction signal is added to "1". The instruction signal may be transmitted to the battery detection IC 16 at the next stage.

すなわち、本発明の一態様は、組電池を構成する電池セルそれぞれの電圧を検出する、直列に接続された複数の電圧検出装置と、前記電圧検出装置により検出された前記電圧を監視する監視装置と、を備える電池監視システムであって、前記監視装置は、すべての前記電圧検出装置のうち一端に存在する前記電圧検出装置に向けて識別番号のカウントを指令するカウント指令信号を送信する監視側送信手段を有し、前記電圧検出装置は、前記監視装置の前記監視側送信手段又は前段の前記電圧検出装置から送信される前記カウント指令信号を受信する検出側受信手段と、前記検出側受信手段に受信された前記カウント指令信号に従って前記識別番号を記憶手段に記憶する識別番号制御手段と、前記記憶手段に記憶された前記識別番号に応じた時間が経過した後に前記監視装置に向けて前記カウント指令信号に応答する応答信号を送信する第1検出側送信手段と、を有し、すべての前記電圧検出装置のうち他端に存在する前記電圧検出装置を除く前記電圧検出装置は、前記記憶手段に記憶された前記識別番号をインクリメントした値を含む前記カウント指令信号を後段の前記電圧検出装置に向けて送信する第2検出側送信手段を有し、前記監視装置は、前記電圧検出装置の前記第1検出側送信手段から送信される前記応答信号を受信する監視側受信手段と、前記監視側受信手段に受信される前記応答信号に基づいて、直列に接続された複数の前記電圧検出装置における故障箇所を特定する故障検出手段と、を有する電池監視システムであってもよい。   That is, according to one aspect of the present invention, a plurality of voltage detection devices connected in series for detecting the voltage of each battery cell constituting an assembled battery, and a monitoring device for monitoring the voltage detected by the voltage detection device And the monitoring device transmits a count command signal for instructing counting of an identification number toward the voltage detection device existing at one end of all the voltage detection devices. The voltage detection device includes a detection side reception unit that receives the count command signal transmitted from the monitoring side transmission unit of the monitoring device or the previous voltage detection device, and the detection side reception unit. The identification number control means for storing the identification number in the storage means in accordance with the count command signal received in response to the identification number stored in the storage means First detection side transmission means for transmitting a response signal responding to the count command signal toward the monitoring device after a lapse of time, and the voltage existing at the other end of all the voltage detection devices The voltage detection device excluding the detection device has second detection-side transmission means for transmitting the count command signal including a value obtained by incrementing the identification number stored in the storage means to the subsequent voltage detection device. The monitoring device is based on a monitoring-side receiving unit that receives the response signal transmitted from the first detecting-side transmitting unit of the voltage detecting device, and the response signal received by the monitoring-side receiving unit. The battery monitoring system may include a failure detection unit that identifies a failure location in the plurality of voltage detection devices connected in series.

かかる変形例の構成においても、上記実施例と同様の効果を得ることができる。具体的には、各電池検出IC16に固有の特定情報であるアドレス値を付与しつつ、ECU14に検出装置12の電池検出IC16における故障箇所(例えば、断線位置や故障した電池検出IC16)を特定させることができる。   Even in the configuration of such a modification, the same effect as in the above embodiment can be obtained. Specifically, while giving an address value, which is specific information unique to each battery detection IC 16, the ECU 14 is caused to specify a failure location (for example, a disconnection position or a failed battery detection IC 16) in the battery detection IC 16 of the detection device 12. be able to.

10 電池監視システム
14 監視装置(ECU)
16 電圧検出装置(電池検出IC)
18 マイクロコンピュータ(マイコン)
20,22,24,26,28 通信線
32 揮発性メモリ
10 Battery monitoring system 14 Monitoring device (ECU)
16 Voltage detector (battery detection IC)
18 Microcomputer
20, 22, 24, 26, 28 Communication line 32 Volatile memory

Claims (1)

組電池を構成する電池セルそれぞれの電圧を検出する、直列に接続された複数の電圧検出装置と、前記電圧検出装置により検出された前記電圧を監視する監視装置と、を備える電池監視システムであって、
前記監視装置は、すべての前記電圧検出装置のうち一端に存在する前記電圧検出装置に向けて識別番号のカウントを指令するカウント指令信号を送信する監視側送信手段を有し、
前記電圧検出装置は、前記監視装置の前記監視側送信手段又は前段の前記電圧検出装置から送信される前記カウント指令信号を受信する検出側受信手段と、前記検出側受信手段に受信された前記カウント指令信号に従ってインクリメントした前記識別番号を記憶手段に記憶する識別番号制御手段と、前記記憶手段に記憶された前記識別番号に応じた時間が経過した後に前記監視装置に向けて前記カウント指令信号に応答する応答信号を送信する第1検出側送信手段と、を有し、
すべての前記電圧検出装置のうち他端に存在する前記電圧検出装置を除く前記電圧検出装置は、前記記憶手段に記憶された前記識別番号を含む前記カウント指令信号を後段の前記電圧検出装置に向けて送信する第2検出側送信手段を有し、
前記監視装置は、前記電圧検出装置の前記第1検出側送信手段から送信される前記応答信号を受信する監視側受信手段と、前記監視側受信手段に受信される前記応答信号に基づいて、直列に接続された複数の前記電圧検出装置における故障箇所を特定する故障検出手段と、を有する電池監視システム。
A battery monitoring system comprising: a plurality of voltage detection devices connected in series for detecting the voltage of each battery cell constituting an assembled battery; and a monitoring device for monitoring the voltage detected by the voltage detection device. And
The monitoring device has monitoring-side transmission means for transmitting a count command signal for instructing counting of an identification number toward the voltage detection device existing at one end of all the voltage detection devices,
The voltage detection device includes: a detection-side reception unit that receives the count command signal transmitted from the monitoring-side transmission unit of the monitoring device or the preceding voltage detection device; and the count received by the detection-side reception unit. An identification number control means for storing in the storage means the identification number incremented according to the command signal, and responding to the count command signal toward the monitoring device after a time corresponding to the identification number stored in the storage means has elapsed. First detection side transmission means for transmitting a response signal to
The voltage detection devices other than the voltage detection device existing at the other end among all the voltage detection devices direct the count command signal including the identification number stored in the storage means to the voltage detection device in the subsequent stage. Second detection side transmission means for transmitting
The monitoring device includes a monitoring-side receiving unit that receives the response signal transmitted from the first detection-side transmitting unit of the voltage detection device, and a serial connection based on the response signal received by the monitoring-side receiving unit. And a failure detection means for identifying a failure location in the plurality of voltage detection devices connected to the battery.
JP2015079463A 2015-04-08 2015-04-08 Battery monitoring system Pending JP2016201217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015079463A JP2016201217A (en) 2015-04-08 2015-04-08 Battery monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015079463A JP2016201217A (en) 2015-04-08 2015-04-08 Battery monitoring system

Publications (1)

Publication Number Publication Date
JP2016201217A true JP2016201217A (en) 2016-12-01

Family

ID=57424445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015079463A Pending JP2016201217A (en) 2015-04-08 2015-04-08 Battery monitoring system

Country Status (1)

Country Link
JP (1) JP2016201217A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772090A (en) * 2016-12-28 2017-05-31 深圳市共济科技股份有限公司 The Analysis of Networking method and Analysis of Networking system of Monitored System of Industrial Storage Cell
CN110794305A (en) * 2019-10-14 2020-02-14 北京理工大学 Power battery fault diagnosis method and system
CN111801587A (en) * 2018-02-23 2020-10-20 松下半导体解决方案株式会社 Voltage measuring device, voltage detection circuit, and voltage detection method
US11018382B2 (en) 2017-02-15 2021-05-25 Lg Chem, Ltd. System and method for assigning unique number to cell module controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772090A (en) * 2016-12-28 2017-05-31 深圳市共济科技股份有限公司 The Analysis of Networking method and Analysis of Networking system of Monitored System of Industrial Storage Cell
CN106772090B (en) * 2016-12-28 2019-06-18 深圳市共济科技股份有限公司 The Analysis of Networking method and Analysis of Networking system of Monitored System of Industrial Storage Cell
US11018382B2 (en) 2017-02-15 2021-05-25 Lg Chem, Ltd. System and method for assigning unique number to cell module controller
CN111801587A (en) * 2018-02-23 2020-10-20 松下半导体解决方案株式会社 Voltage measuring device, voltage detection circuit, and voltage detection method
CN110794305A (en) * 2019-10-14 2020-02-14 北京理工大学 Power battery fault diagnosis method and system

Similar Documents

Publication Publication Date Title
US20100052428A1 (en) Multi-cell battery system, and management number numbering method
JP2016201217A (en) Battery monitoring system
JP5393932B1 (en) Data processing apparatus and communication system
KR20190089457A (en) Integrated circuit and battery management system including the same
KR101133069B1 (en) Information processing apparatus, data transferring apparatus and data transferring method
US7924737B2 (en) Signal degrade detecting method, signal restoration detecting method, devices for those methods, and traffic transmission system
EP1857938A1 (en) Information processing apparatus and information processing method
JP4291384B2 (en) Detection method of disconnection and power supply disconnection of IO unit connected to numerical controller
JP2013207945A (en) Battery system
US20160109862A1 (en) Multiplex control device
WO2014071575A1 (en) Redundancy device unit and method for determining fault in industrial control system, industrial control system and industrial system comprising redundancy device unit
US11095475B2 (en) Communication failure detection device
JP5018396B2 (en) Communication apparatus and communication system
JP5779522B2 (en) Communication device, failure determination method, and program
JP6344302B2 (en) Battery controller
US8700237B1 (en) System and method for communicating critical and noncritical data in a consist
JP6984548B2 (en) Battery monitoring device
US20230230428A1 (en) Inspection apparatus and inspection method
CN117373377B (en) Signal transmission system and signal transmission control method thereof
JP4661778B2 (en) Wired communication system
CN109101359B (en) Equipment, method and module for transmitting information between equipment components and computer equipment
EP3139545B1 (en) Communication interface apparatus
JP2007158534A (en) Communication system
JP2008141327A (en) Lan abnormality monitoring device
CN102868640B (en) Method, device and system for increasing available bandwidth of aggregation link