JP2016200626A - Light-transmissive resin base material manufacturing method, light-transmissive resin base material, and light-transmissive molded body - Google Patents

Light-transmissive resin base material manufacturing method, light-transmissive resin base material, and light-transmissive molded body Download PDF

Info

Publication number
JP2016200626A
JP2016200626A JP2015078303A JP2015078303A JP2016200626A JP 2016200626 A JP2016200626 A JP 2016200626A JP 2015078303 A JP2015078303 A JP 2015078303A JP 2015078303 A JP2015078303 A JP 2015078303A JP 2016200626 A JP2016200626 A JP 2016200626A
Authority
JP
Japan
Prior art keywords
base material
resin base
infrared
translucent resin
translucent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015078303A
Other languages
Japanese (ja)
Other versions
JP6784914B2 (en
Inventor
幸行 水野
Sachiyuki Mizuno
幸行 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magtic Inc
Original Assignee
Magtic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magtic Inc filed Critical Magtic Inc
Priority to JP2015078303A priority Critical patent/JP6784914B2/en
Publication of JP2016200626A publication Critical patent/JP2016200626A/en
Application granted granted Critical
Publication of JP6784914B2 publication Critical patent/JP6784914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light-transmissive resin base material manufacturing method that can be applied to light-transmissive molded bodies by using high ITO or ATO to achieve infrared intercepting capability and high enough light-transmissivity required for spectacle lenses and the like.SOLUTION: A manufacturing method for light-transmissive resin base material having near-infrared intercepting capability uses addition of a near-infrared absorbent to the resin base material and addition of a yellow pigment so as to achieve a 75% or higher visible light translucency in a colorless transparent state by restraining clouding due to the addition of the near-infrared absorbent in a preset film thickness. As the near-infrared absorbent, ITO or ATO can be used to keep the transmittance of near-infrared rays in the 1600 nm to 1700 nm wavelength range at no more than 5% and in the 1700 nm to 2500 nm wavelength range at no more than 2%.SELECTED DRAWING: Figure 1

Description

本発明は、眼鏡レンズ等の透光性成形体や近赤外線遮蔽フィルムに適用される近赤外線遮蔽のための透光性樹脂基材、その製造方法及びこの透光性樹脂基材を適用した眼鏡レンズ等の透光性成形体に関する。   The present invention relates to a translucent resin base material for near-infrared shielding applied to a translucent molded article such as a spectacle lens or a near-infrared shielding film, a manufacturing method thereof, and spectacles to which the translucent resin base material is applied. The present invention relates to a translucent molded body such as a lens.

例えば眼鏡レンズの表面に近赤外線遮光フィルムを貼付するなどして近赤外線が眼に侵入しないようにした眼鏡が知られている(例えば特許文献1参照)。
特許文献1に記載の眼鏡では、波長域が770nm〜1800nmの範囲の近赤外線を透過率15%以下、より好ましくは5%以下にカットすることができる(図3及び段落0033等の記載参照)。この文献に記載の眼鏡のように、近赤外線遮光フィルムを眼鏡レンズの片面又は両面に積層する眼鏡では、積層数を増やすなどしてフィルムの膜厚を大きくすることで、近赤外線のカット率をさらに高めることはできるものの、膜厚を一定以上に大きくすると透光性など眼鏡レンズの機能を阻害するという不具合が生じる。また、この文献に記載の眼鏡では1800nmを越える近赤外線はあまりカットできないという問題がある(特許文献1の例えば図3参照)。
For example, there is known a spectacle in which a near-infrared light shielding film is attached to the surface of a spectacle lens so that the near-infrared ray does not enter the eye (see, for example, Patent Document 1).
In the glasses described in Patent Document 1, near infrared rays having a wavelength range of 770 nm to 1800 nm can be cut to a transmittance of 15% or less, more preferably 5% or less (see the description in FIG. 3 and paragraph 0033). . Like glasses described in this document, in near-infrared light shielding films that are laminated on one or both sides of a spectacle lens, the near-infrared cut rate can be increased by increasing the film thickness by increasing the number of layers. Although it can be further increased, if the film thickness is increased beyond a certain level, there arises a problem that the function of the spectacle lens such as translucency is hindered. Further, the glasses described in this document have a problem that near infrared rays exceeding 1800 nm cannot be cut so much (see, for example, FIG. 3 of Patent Document 1).

眼鏡レンズ用ではないが、インジウム・スズ酸化物(ITO)を用いた赤外線遮蔽フィルムが知られている。ITOを用いれば、例えば特許文献2に記載の赤外線遮蔽性透明フィルムのように、10μm程度の膜厚で1600nm〜2200nmの近赤外線をほぼ0にカットすることが可能になる。   Although not for eyeglass lenses, an infrared shielding film using indium tin oxide (ITO) is known. If ITO is used, it becomes possible to cut near infrared rays of 1600 nm to 2200 nm to almost zero with a film thickness of about 10 μm, as in the infrared shielding transparent film described in Patent Document 2, for example.

特開2014−203063号公報(例えば図3参照)Japanese Unexamined Patent Application Publication No. 2014-203063 (see, for example, FIG. 3) 特開2014−1062458号公報(例えば段落0048の記載及び図面参照)Japanese Patent Laying-Open No. 2014-106458 (see, for example, the description of paragraph 0048 and the drawings)

しかし、ITOを用いた赤外線遮蔽フィルムは白濁するという問題がある。そのため透光性が低く、用途がディスプレイなどに限られていて高い透光性が求められる眼鏡レンズ等には不適であるという問題がある。
また、特許文献2の赤外線遮蔽フィルムにおいても2500nm前後の波長領域の近赤外線を遮蔽することは困難であるという問題がある。
However, the infrared shielding film using ITO has a problem that it becomes cloudy. Therefore, there is a problem that it is not suitable for a spectacle lens or the like that has low translucency and whose use is limited to a display or the like and high translucency is required.
Further, the infrared shielding film of Patent Document 2 also has a problem that it is difficult to shield near infrared rays in a wavelength region around 2500 nm.

本発明は上記の問題点にかんがみてなされたもので、ITOやATOなどの近赤外線吸剤の粒子を用いて2500nm前後までの広い波長領域で高い赤外線遮蔽性を有し、眼鏡レンズ等の高い透光性を求められる透光性成形体にも適用が可能な透光性樹脂基材の製造方法及び透光性樹脂基材の提供並びにこのような透光性樹脂基材を用いた眼鏡レンズ等の透光性成形体の提供を目的とする。   The present invention has been made in view of the above problems, and has high infrared shielding properties in a wide wavelength region up to about 2500 nm using near infrared absorbent particles such as ITO and ATO, and has high spectacle lenses and the like. Method for producing translucent resin base material applicable to translucent molded body requiring translucency, provision of translucent resin base material, and spectacle lens using such translucent resin base material An object of the present invention is to provide a translucent molded article such as the above.

本発明の目的を達成するために、本発明の発明者が鋭意研究を行った結果、透明な樹脂基材にITO等の近赤外線吸剤の粒子を添加することにより生じる白濁を、黄色の色素を添加することで有効に抑制し、眼鏡のように高い透光性を求められる透光性成形体においてある程度膜厚を大きくしても、75%以上の高い透光性を得られることを見いだした。   In order to achieve the object of the present invention, the inventor of the present invention has conducted intensive research, and as a result, the white turbidity caused by adding particles of near-infrared absorbents such as ITO to a transparent resin base material is converted into a yellow pigment. It is found that high translucency of 75% or more can be obtained even when the film thickness is increased to some extent in a translucent molded article that requires high translucency such as glasses. It was.

すなわち、請求項1に記載の透光性樹脂基材の製造方法は、樹脂基材に近赤外線吸剤の粒子を添加するとともに、黄色の色素を添加する構成としてある。樹脂基材への近赤外線吸剤の粒子の添加量は、予め設定した膜厚(例えば眼鏡レンズ用の透光性樹脂基材では20μm〜30μm)において2500nm前後までの波長領域の近赤外線をほぼ完全に遮蔽する量であり、黄色の色素の添加量は白濁を抑制しつつ無色透明状態の前記膜厚で75%以上の透光率を有する量である。
前記樹脂基材としては、請求項2に記載するように紫外線(UV)硬化樹脂やハードコート剤などを用いることができる。
That is, the manufacturing method of the translucent resin base material of Claim 1 is set as the structure which adds the yellow pigment | dye while adding the particle | grains of a near-infrared absorber to a resin base material. The amount of the near-infrared absorbent particles added to the resin substrate is almost equal to the near-infrared in the wavelength region up to around 2500 nm at a preset film thickness (for example, 20 μm to 30 μm for a translucent resin substrate for spectacle lenses). The amount of the yellow pigment added is an amount having a light transmittance of 75% or more with the film thickness in a colorless and transparent state while suppressing white turbidity.
As the resin substrate, an ultraviolet (UV) curable resin, a hard coat agent, or the like can be used as described in claim 2.

前記樹脂基材の粒子、近赤外線吸剤の粒子及び黄色の色素のそれぞれを溶剤に溶かして樹脂基材溶液、近赤外線吸剤溶液、黄色色素溶液を準備し、これらを適量ずつ混合して透光性樹脂基材溶液を得て、この透光性樹脂基材溶液に眼鏡レンズ等の透光性成形体を浸漬したり、透光性成形体の表面に透光性樹脂基材溶液を塗布したりすることで、本発明の近赤外線遮蔽効果を有する透光性樹脂基材の層を形成することができる。この場合、可能な限り少ない浸漬回数や塗布回数で透光性樹脂基材層が形成できるようにするとコスト的に有利である。そのためには、透光性樹脂基材溶液の粘性を一定以上に高めるとよく、透光性樹脂基材溶液に含有される固形物の量を増やせばよい。   Dissolve each of the resin substrate particles, near infrared absorbent particles and yellow dye in a solvent to prepare a resin substrate solution, a near infrared absorbent solution and a yellow dye solution. Obtain a light-sensitive resin base solution and immerse a light-transmitting molded body such as an eyeglass lens in this light-transmitting resin base solution or apply a light-transmitting resin base solution to the surface of the light-transmitting molded body By doing so, the layer of the translucent resin base material which has the near-infrared shielding effect of this invention can be formed. In this case, it is advantageous in terms of cost if the translucent resin base material layer can be formed with the smallest possible number of immersions and coatings. For this purpose, the viscosity of the translucent resin base solution is preferably increased to a certain level or more, and the amount of solids contained in the translucent resin base solution may be increased.

本発明の透光性樹脂基材を形成するための、前記樹脂基材、前記外線吸剤及び黄色の色素の量(比率)は、実験を繰り返すことで求めることができる。
本発明の発明者が実験を繰り返して眼鏡用レンズに好適な比率を求めたところ、
請求項3に記載するように、前記樹脂基材、前記近赤外線吸収剤、前記色素を100:40〜100:0.0018〜0.01の重量比率とすると良いことを見いだした。100:100:0.01の重量比率とするとさらに好適な透光性樹脂基材が得られる。
The amount (ratio) of the resin base material, the external line absorbent and the yellow pigment for forming the translucent resin base material of the present invention can be determined by repeating experiments.
When the inventor of the present invention repeated experiments to find a suitable ratio for a spectacle lens,
As described in claim 3, the present inventors have found that the resin base material, the near-infrared absorber, and the dye may have a weight ratio of 100: 40 to 100: 0.0018 to 0.01. When the weight ratio is 100: 100: 0.01, a more suitable translucent resin substrate is obtained.

透光性成形体が例えば眼鏡レンズであれば、20μm〜30μm程度の膜厚の透光性樹脂基材の層を一回の浸漬又は塗布で表面に形成することができるように、溶剤に対する前記樹脂基材、前記近赤外線吸収剤及び前記色素の量を上記の範囲で調整して、適度な粘性の溶液(透光性樹脂基材溶液)とする。このような透光性樹脂基材溶液によって得られた透光性樹脂基材は、無色透明な所定の膜厚で75%以上の透光率を有し、2500nmまでの高い近赤外線遮蔽効果を有する。
なお、前記近赤外線吸剤としては請求項4に記載するようにインジウム錫酸化物(ITO)又はアンチモン錫酸化物(ATO)を用いることができる。
If the light-transmitting molded body is, for example, a spectacle lens, the above-mentioned solvent is used so that a layer of a light-transmitting resin substrate having a thickness of about 20 μm to 30 μm can be formed on the surface by one immersion or application. The amount of the resin base material, the near-infrared absorber, and the pigment is adjusted in the above range to obtain a moderately viscous solution (translucent resin base material solution). The translucent resin base material obtained by such translucent resin base material solution has a translucent ratio of 75% or more with a predetermined colorless and transparent film thickness, and has a high near-infrared shielding effect up to 2500 nm. Have.
As the near infrared absorbent, indium tin oxide (ITO) or antimony tin oxide (ATO) can be used as described in claim 4.

本発明の近赤外線遮蔽性を有する透光性樹脂基材は、請求項5に記載するように、近赤外線遮蔽性を有する透光性樹脂基材が、予め設定された膜厚の無色透明状態で、75%以上の可視光透光率を有し所定波長領域の近赤外線を遮蔽するように、近赤外線吸剤及び前記近赤外線吸剤の添加による白濁を抑制するための黄色の色素を含有する構成としてある。   The translucent resin base material having near-infrared shielding property of the present invention is a colorless transparent state having a preset film thickness, as described in claim 5. And containing a near-infrared absorbent and a yellow pigment for suppressing white turbidity due to the addition of the near-infrared absorbent so that it has a visible light transmittance of 75% or more and shields near-infrared rays in a predetermined wavelength region. It is as composition to do.

前記樹脂基材における近赤外線吸剤の含有量は、予め設定した膜厚(例えば眼鏡レンズ用の透光性樹脂基材では20μm〜30μm)において2500nm前後までの波長領域の近赤外線をほぼ完全に遮蔽できる量であり、黄色の色素の添加量は白濁を抑制しつつ当該膜厚で75%以上の可視光透光率を有する量である。
前記樹脂基材としては、請求項6に記載するように紫外線(UV)硬化樹脂やハードコート剤などを用いることができる。
The near-infrared absorbent content in the resin base material is almost completely in the near-infrared wavelength range up to about 2500 nm at a preset film thickness (for example, 20 μm to 30 μm for a translucent resin base material for spectacle lenses). The amount of yellow pigment added is an amount having a visible light transmittance of 75% or more with the film thickness while suppressing white turbidity.
As the resin substrate, an ultraviolet (UV) curable resin, a hard coat agent, or the like can be used as described in claim 6.

前記樹脂基材、前記近赤外線吸収剤及び前記色素の含有量は、請求項7に記載するように、100:40〜100:0.0018〜0.01の重量比率含まれるものを目安とすることができる。100:100:0.01の重量比率とすることで好適な透光性樹脂基材が得られる。
なお、前記近赤外線吸剤としては、請求項8に記載するようにインジウム錫酸化物(ITO)又はアンチモン錫酸化物(ATO)を挙げることができる。
近赤外線の吸収効果としては、請求項9に記載するように1600nm〜1700nmの波長領域における近赤外線の透過率が5%以下、1700nm〜2500nmの波長領域における近赤外線の透過率が2%以下であるのが好ましい。
Content of the said resin base material, the said near-infrared absorber, and the said pigment | dye is set to the thing contained in the weight ratio of 100: 40-100: 0.0018-0.01, as described in Claim 7. be able to. By setting the weight ratio to 100: 100: 0.01, a suitable translucent resin substrate can be obtained.
In addition, as said near-infrared absorber, indium tin oxide (ITO) or antimony tin oxide (ATO) can be mentioned as described in Claim 8.
As the effect of absorbing near infrared rays, the transmittance of near infrared rays in the wavelength region of 1600 nm to 1700 nm is 5% or less, and the transmittance of near infrared rays in the wavelength region of 1700 nm to 2500 nm is 2% or less. Preferably there is.

本発明の透光性成形体は、請求項10に記載するように上記構成の透光性樹脂基材の層を表面に形成した構成としてある。透光性樹脂基材の膜は塗布又は浸漬などの公知の方法によって形成することができる。また、請求項11に記載するように、透光性成形体が眼鏡レンズのような光学部品である場合、透光性樹脂基材の膜厚は20μm〜30μm程度とするのが好ましい。   The translucent molded article of the present invention has a configuration in which a layer of a translucent resin base material having the above configuration is formed on the surface as described in claim 10. The film | membrane of a translucent resin base material can be formed by well-known methods, such as application | coating or immersion. In addition, as described in claim 11, when the translucent molded article is an optical component such as a spectacle lens, the film thickness of the translucent resin base material is preferably about 20 μm to 30 μm.

また、請求項12に記載するように、800nm〜1000nmの波長領域の赤外線を遮断する機能を有する眼鏡レンズに上記構成の透光性樹脂基材の層を形成してもよい。このようにすれば、800nm〜1000nmの領域で赤外線を効果的に遮断することができ、1600nm〜2500nmの領域で近赤外線を効果的に遮断するこのできる高付加価値の眼鏡レンズを得ることができる。   In addition, as described in claim 12, the layer of the translucent resin base material having the above-described structure may be formed on a spectacle lens having a function of blocking infrared rays in a wavelength region of 800 nm to 1000 nm. In this way, it is possible to effectively block infrared rays in the region of 800 nm to 1000 nm, and to obtain such a high value-added spectacle lens that effectively blocks near infrared rays in the region of 1600 nm to 2500 nm. .

本発明の透光性樹脂基材の製造方法によれば、ITOやATOを使用することによる白濁を黄色の色素で抑制することができ、2500nm前後までの波長領域までの近赤外線をほぼ完全に遮蔽する膜厚にしても、75%以上の高い可視光透光性を有する透光性樹脂基材を得ることができる。   According to the method for producing a translucent resin substrate of the present invention, white turbidity due to the use of ITO or ATO can be suppressed with a yellow pigment, and near-infrared light up to a wavelength region of up to about 2500 nm can be almost completely obtained. Even if it is the film thickness to shield, the translucent resin base material which has 75% or more of high visible light translucency can be obtained.

特に、800nm〜1000nmの波長領域の赤外線を遮断する機能を有する眼鏡レンズに本発明の透光性樹脂基材の層を形成することで、例えば800nm〜1000nmの領域で赤外線を効果的に遮断することができ、1600nm〜2500nmの領域で近赤外線を効果的に遮断することのできる高付加価値の眼鏡レンズを得ることができる。   In particular, by forming the translucent resin base material layer of the present invention on a spectacle lens having a function of blocking infrared rays in the wavelength region of 800 nm to 1000 nm, for example, infrared rays are effectively blocked in the region of 800 nm to 1000 nm, for example. It is possible to obtain a high-value-added spectacle lens that can effectively block near-infrared rays in the region of 1600 nm to 2500 nm.

また、固形物であるITO粒子,ATO粒子の量や紫外線硬化剤、ハードコート剤等の固形物(粒子)の量を適宜に調整することで、浸漬や塗布により眼鏡レンズ等の透光性成形体の表面に透光性樹脂基材の膜を形成する際に、少ない浸漬作業又は塗布作業で必要な膜厚を得ることができる。   Also, translucent molding of spectacle lenses, etc. by dipping or coating by appropriately adjusting the amount of solid particles such as ITO particles and ATO particles and the amount of solids (particles) such as UV curing agent and hard coat agent. When a film of a translucent resin substrate is formed on the surface of the body, a necessary film thickness can be obtained with a small immersion operation or coating operation.

本発明の方法で製造された透光性樹脂基材は、眼鏡レンズ等の高い透光性が要求される透光性成形体に好適に適用することができるほか、ディスプレイやスクリーン、車両や家屋等の窓ガラスなど近赤外線を遮蔽する必要があるその他の透光性成形体にも好適に適用することができる。   The translucent resin base material produced by the method of the present invention can be suitably applied to a translucent molded article that requires high translucency such as a spectacle lens, as well as a display, a screen, a vehicle, and a house. It can apply suitably also to the other translucent molded object which needs to shield near infrared rays, such as window glass.

以下、本発明の好適な実施形態を詳細に説明する。
[樹脂基材]
樹脂基材としては、公知の種々のものを用いることができる、例えば眼鏡レンズに適用をする場合は、ハードコート膜を形成するためのハードコート剤や、紫外線照射によって透光性樹脂基材を硬化させるUV硬化樹脂などを挙げることができる。
このような樹脂基材は市販のものを用いることができる。
Hereinafter, preferred embodiments of the present invention will be described in detail.
[Resin substrate]
As the resin base material, various known materials can be used. For example, when applied to a spectacle lens, a hard coat agent for forming a hard coat film or a translucent resin base material by ultraviolet irradiation is used. Examples thereof include a UV curable resin to be cured.
A commercially available resin base material can be used.

[近赤外線吸剤]
近赤外線吸剤としては、インジウム錫酸化物(ITO)又はアンチモン錫酸化物(ATO)を用いることができる。近赤外線吸剤としてフィルタ用に市販されているものを用いることができ、例えば、ITOとしては三菱マテリアル電子化成株式会社製ITOを、ATOとしては三菱マテリアル電子化成株式会社製ATO粒子(商品名:T−1)を用いることができる。
[Near infrared absorber]
As the near-infrared absorbent, indium tin oxide (ITO) or antimony tin oxide (ATO) can be used. As the near infrared absorbent, those commercially available for filters can be used. For example, ITO is ITO manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd., and ATO is ATO particles manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd. (trade name: T-1) can be used.

[黄色の色素]
黄色色素としては黄色波長範囲570nm〜590nmを含むものであればよく、透明な樹脂基材に均一に分散できる色素であれば特に問わない。例えば、ニトロソ色素、ニトロ色素、アゾ色素、スチルベンアゾ色素、ケトイミン色素、トリフェニルメタン色素、キサンテン色素、アクリジン色素、キノリン色素、メチン色素、ポリメチン色素、チアゾール色素、インダミン色素、インドフェノール色素、アジン色素、オキサジン色素、チアジン色素、硫化色素、アミノケトン色素、オキシケトン色素、アントラキノン色素、インジゴイド色素、フタロシアニン色素などが挙げられる。
市販のものとしては例えば日本化薬製色素(商品名;Kayaset YellowEG)を用いることができる。
[Yellow pigment]
Any yellow pigment may be used as long as it includes a yellow wavelength range of 570 nm to 590 nm, and any pigment that can be uniformly dispersed in a transparent resin substrate is usable. For example, nitroso dye, nitro dye, azo dye, stilbene azo dye, ketoimine dye, triphenylmethane dye, xanthene dye, acridine dye, quinoline dye, methine dye, polymethine dye, thiazole dye, indamine dye, indophenol dye, azine dye Oxazine dye, thiazine dye, sulfur dye, aminoketone dye, oxyketone dye, anthraquinone dye, indigoid dye, phthalocyanine dye, and the like.
As a commercially available product, for example, Nippon Kayaku pigment (trade name: Kayase YellowEG) can be used.

[添加及び硬化]
樹脂基材の粒子を有機溶剤に溶かして樹脂基材溶液を得るとともに、近赤外線吸剤の粒子を溶剤に溶かして近赤外線吸剤溶液を得る。また、黄色の色素を溶剤に溶かして黄色色素溶液を得る。そして、これらを適量ずつ混合して透光性樹脂基材溶液を得る。
[Addition and curing]
The resin base material particles are dissolved in an organic solvent to obtain a resin base material solution, and the near infrared absorbent particles are dissolved in a solvent to obtain a near infrared absorbent solution. Also, a yellow pigment solution is obtained by dissolving a yellow pigment in a solvent. Then, an appropriate amount of these are mixed to obtain a translucent resin base material solution.

近赤外線吸剤の粒子の添加量は、予め設定された透光性樹脂基材の膜厚で1600nm〜2500nmの波長領域の近赤外線を5%以下に、好ましくは1700nm〜2500nmの波長領域の近赤外線を2%以下、好ましくは1%以下にほぼ完全にカットすることができる量である。   The addition amount of the near-infrared absorbent particles is such that the near-infrared ray in the wavelength region of 1600 nm to 2500 nm is 5% or less, preferably in the wavelength region of 1700 nm to 2500 nm, in the preset film thickness of the translucent resin substrate. The amount of infrared rays can be cut almost completely to 2% or less, preferably 1% or less.

黄色の色素は、ITOやATOなどの近赤外線吸剤の添加によって発生する透光性樹脂基材の白濁を抑制し、透光性樹脂基材の可視光透光率が無色透明状態で75%以上になる量を添加する。添加量は実験を繰り返すことで好適なものを選択することができる。添加量が少なすぎると白濁を十分に抑制できず、添加量が多すぎると透光性樹脂基材が黄色味を帯びてくる。   The yellow pigment suppresses white turbidity of the translucent resin base material generated by the addition of a near infrared absorbent such as ITO or ATO, and the visible light transmissivity of the translucent resin base material is 75% in a colorless and transparent state. Add the amount to be above. A suitable addition amount can be selected by repeating the experiment. If the addition amount is too small, white turbidity cannot be sufficiently suppressed, and if the addition amount is too large, the translucent resin base material becomes yellowish.

[付加的機能]
本発明の透光性樹脂基材においては、偏光機能や調光機能、視力矯正機能を付加してもよい。必要に応じて他の色素や添加剤を添加してもよい。
[Additional functions]
In the translucent resin base material of this invention, you may add a polarization function, a light control function, and a vision correction function. You may add another pigment | dye and an additive as needed.

[透光性樹脂基材の形成]
樹脂基材の粒子を有機溶剤に溶かして樹脂基材溶液を得るとともに、近赤外線吸剤の粒子を溶剤に溶かして近赤外線吸剤溶液を得る。また、黄色の色素を溶剤に溶かして黄色色素溶液を得る。そして、これらを適量ずつ混合して透光性樹脂基材溶液を得る。この透光性樹脂基材溶液に透光性成形体を浸漬するか透光性樹脂基材溶液を透光性成形体の表面に塗布するかして硬化させることで、透光性樹脂基材の層を透光性成形体の表面に形成することができる。
[Formation of translucent resin substrate]
The resin base material particles are dissolved in an organic solvent to obtain a resin base material solution, and the near infrared absorbent particles are dissolved in a solvent to obtain a near infrared absorbent solution. Also, a yellow pigment solution is obtained by dissolving a yellow pigment in a solvent. Then, an appropriate amount of these are mixed to obtain a translucent resin base material solution. By immersing the translucent molded body in this translucent resin base material solution or applying the translucent resin base material solution to the surface of the translucent molded body and curing it, the translucent resin base material is cured. This layer can be formed on the surface of the translucent molded body.

また、透光性樹脂基材を所望の膜厚のフィルム状にして、眼鏡レンズやディスプレイ、スクリーン、車両や家屋等の窓ガラス等の透光性成形体に貼付して使用することができる。
透光性成形体に使用できる材料としては、透光性に優れるものであればその種類は限定されない。例えば眼鏡レンズ用としては、アクリル樹脂やポリカーボネート樹脂等を挙げることができる。
In addition, the translucent resin base material can be used in the form of a film having a desired film thickness and attached to a translucent molded body such as a spectacle lens, a display, a screen, or a window glass of a vehicle or a house.
As a material which can be used for a translucent molded object, the kind will not be limited if it is excellent in translucency. For example, for eyeglass lenses, acrylic resin, polycarbonate resin, and the like can be given.

前記樹脂基材、前記近赤外線吸収剤及び前記色素の好適な含有割合は、無色透明の所定の膜厚(例えば眼鏡レンズのような光学部品では20μm〜30μm程度)で75%以上の透光性と1600nm付近から2500nm付近まで高い近赤外線遮蔽効果を有するものである。好適な混合割合は実験を繰り返すことで選択することができる。本発明の発明者が後述のように実験を行った結果、前記樹脂基材、前記近赤外線吸収剤及び前記色素の混合比率は、概ね100:40〜100:0.0018〜0.01の重量比率を目安とできることを見いだした。実験では、概ね100:100:0.01の重量比率とすることで良好な結果が得られた。   A preferable content ratio of the resin base material, the near-infrared absorber, and the pigment is a translucent property of 75% or more at a predetermined colorless and transparent film thickness (for example, about 20 μm to 30 μm for an optical component such as a spectacle lens). And a high near-infrared shielding effect from around 1600 nm to around 2500 nm. A suitable mixing ratio can be selected by repeating the experiment. As a result of experiments by the inventor of the present invention as described later, the mixing ratio of the resin base material, the near-infrared absorber, and the dye is approximately 100: 40 to 100: 0.0018 to 0.01 by weight. I found what I can do with the ratio. In the experiment, good results were obtained when the weight ratio was approximately 100: 100: 0.01.

なお、透光性樹脂基材の膜厚は、前記樹脂基材、前記近赤外線吸収剤及び前記色素を含む溶液(透光性樹脂基材溶液)への浸漬又は塗布と乾燥又は硬化とを繰り返すことで、所望の寸法にすることができる。しかし、乾燥又は硬化には時間を要するため、可能な限り少ない浸漬回数又は塗布回数で所望の膜厚を得られるようにすることがコスト的に好ましい。そのためには、透光性樹脂基材溶液の粘性を適度にする必要がある。そこで、上記の範囲内で溶剤に対して固形物である前記樹脂基材、前記近赤外線吸収剤及び前記色素の添加量を調整し、透光性樹脂基材溶液を適度な粘性にする。   In addition, the film thickness of a translucent resin base material repeats immersion or application | coating and drying or hardening to the solution (translucent resin base material solution) containing the said resin base material, the said near-infrared absorber, and the said pigment | dye. Therefore, it can be set to a desired dimension. However, since drying or curing takes time, it is preferable in terms of cost to obtain a desired film thickness with the smallest possible number of immersions or coatings. For this purpose, it is necessary to make the viscosity of the translucent resin substrate solution moderate. Then, the addition amount of the resin base material, the near-infrared absorber, and the pigment that are solids with respect to the solvent within the above range is adjusted to make the translucent resin base material solution suitable viscosity.

[実施例]
以下、本発明の具体的な実施例について説明する。使用した材料は以下のとおりである。
(1) 樹脂基材溶液(A)
UV硬化樹脂粒子の含有量が15重量%と35重量%の樹脂基材溶液を準備した。
(2)近赤外線吸剤溶液(B)
三菱マテリアル製ITO粒子を40重量%含有する近赤外線吸剤溶液を準備した。
[Example]
Hereinafter, specific examples of the present invention will be described. The materials used are as follows.
(1) Resin base solution (A)
Resin substrate solutions having a content of UV curable resin particles of 15 wt% and 35 wt% were prepared.
(2) Near infrared absorbent solution (B)
A near-infrared absorbent solution containing 40% by weight of Mitsubishi Materials ITO particles was prepared.

(3)色素溶液(C)
日本化薬製色素(商品名;Kayaset YellowEG)を0.2重量%含有する色素溶液を準備した。
なお、樹脂基材溶液、近赤外線吸剤溶液及び色素溶液に用いられる各溶剤は同種類のものであるか、異種類であっても互いに混合が可能なものを用いる。
(4) 透光性樹脂基材の形成
溶液(A),(B),(C)を混合してよく攪拌することで得られた混合溶液(透光性樹脂基材溶液)は、一回の浸漬で眼鏡用のレンズの表面に膜厚20〜30μmの無色の透光性樹脂層を形成できる粘性を有するものであった。この混合溶液にポリカーボネート製の眼鏡用のレンズを浸漬しUV硬化させて、前記レンズの表面に膜厚20〜30μmの透光性樹脂層を形成した。
(3) Dye solution (C)
A dye solution containing 0.2% by weight of Nippon Kayaku dye (trade name; Kayase YellowEG) was prepared.
In addition, each solvent used for the resin base material solution, the near-infrared absorbent solution, and the dye solution is the same type, or a different type that can be mixed with each other is used.
(4) Formation of translucent resin base material A mixed solution (translucent resin base material solution) obtained by mixing the solutions (A), (B), and (C) and stirring well is obtained once. It was so viscous that the colorless translucent resin layer having a film thickness of 20 to 30 μm could be formed on the surface of the lens for spectacles. A lens for spectacles made of polycarbonate was immersed in this mixed solution and cured with UV to form a translucent resin layer having a thickness of 20 to 30 μm on the surface of the lens.

(5) 実験結果
上記の条件で実験を繰り返し、透光性樹脂層の白濁の抑制度、着色性、可視光の透光率及び近赤外線領域の透過率を総合的に検討した。その結果を以下の表にまとめた。
表中の「◎」は眼鏡レンズとして非常に優れていることを、「○」は優れていることを、「×」は不適であることをそれぞれ示している。
(5) Experimental Results The experiment was repeated under the above conditions, and the degree of white turbidity suppression, coloring, transmissivity of visible light, and transmissivity in the near infrared region of the translucent resin layer were comprehensively studied. The results are summarized in the following table.
In the table, “◎” indicates that the lens is very excellent as a spectacle lens, “◯” indicates that it is excellent, and “×” indicates that it is not suitable.

なお、実験例No.1〜7のうち、実験例No.3は黄色色素に代えて赤色色素を用いた比較例で、実験例No.7は実験例No.6と同一条件下における後述の第2実施例のものである。
表1は、混合した各溶液の量(g)と判定結果を示し、表2は黄色の色素を添加したNo3〜7の実験例における透光性樹脂基材溶液の総量と各材料の含有量との関係を示し、表3は表2の実験結果に基づいて透光性樹脂基材溶液100重量部における各材料の含有量を換算したものである。
Experimental Example No. 1-7, Experimental Example No. No. 3 is a comparative example using a red pigment instead of a yellow pigment. 7 is an experimental example No. 7. 6 is that of a second embodiment described later under the same conditions as those in FIG.
Table 1 shows the amount (g) of each mixed solution and the determination result, and Table 2 shows the total amount of the translucent resin base solution and the content of each material in the experimental examples Nos. 3 to 7 to which the yellow pigment was added. Table 3 shows the conversion of the content of each material in 100 parts by weight of the translucent resin base material solution based on the experimental results of Table 2.

Figure 2016200626
Figure 2016200626

Figure 2016200626
Figure 2016200626

Figure 2016200626
Figure 2016200626

No.3〜6の実験結果を図1〜図4のグラフに示す。黄色色素に代えて赤色色素を用いたNo.3(図1)のものは黒くなって眼鏡レンズ用としては不可であったが、No.4,5のものは眼鏡レンズのように高い透光性が求められる透光性成形体に用いることが可能で、特にNo6(図4)では非常に好適な結果が得られた。   No. The experimental results of 3-6 are shown in the graphs of FIGS. No. 1 using a red pigment instead of a yellow pigment. No. 3 (FIG. 1) is black and cannot be used for spectacle lenses. Nos. 4 and 5 can be used for a translucent molded body that requires high translucency such as a spectacle lens, and in particular, No. 6 (FIG. 4) gave a very favorable result.

この実験結果から、樹脂基材(UV硬化樹脂)、赤外線吸収剤(ITO)及び色素は、概ね100:40〜100:0.0018〜0.01の重量比率を目安として混合することで、好適な透光性樹脂基材が得られることがわかる。特に、樹脂基材(UV硬化樹脂)及び赤外線吸収剤(ITO)をほぼ同量として、これらに対して黄色色素を重量比で1/1×10程度加えることで、最適な透光性樹脂基材が得られることがわかる。 From this experimental result, the resin base material (UV curable resin), the infrared absorber (ITO), and the pigment are preferably mixed by using a weight ratio of about 100: 40 to 100: 0.0018 to 0.01 as a guide. It can be seen that a transparent resin base material can be obtained. In particular, a resin base material (UV curable resin) and an infrared absorber (ITO) are almost the same amount, and a yellow pigment is added to these in an amount of about 1/1 × 10 4 by weight, so that an optimal translucent resin is obtained. It turns out that a base material is obtained.

[実施例2]
実施例1の実験例No.6で用いた透光性樹脂基材溶液に、本願出願人による特許第5166482号の眼鏡レンズを浸漬させ、UV照射によって硬化させて前記眼鏡レンズの表面に膜厚30μmの透光性樹脂基材の膜を形成した。その結果が上記表1〜3の実験例No.7である。
[Example 2]
Experimental Example No. 1 of Example 1 No. 5166482 by the applicant of the present application is immersed in the translucent resin substrate solution used in No. 6, and cured by UV irradiation, and the translucent resin substrate having a film thickness of 30 μm is formed on the surface of the spectacle lens. A film was formed. The results are shown in Experimental Examples Nos. 7.

眼鏡レンズは、特許第5166482号に記載されているように、ポリカーボネートの樹脂100kgに対して、800nm〜850nmの波長領域の範囲内に透過率10%未満の分光透過率曲線の極小値を有するフタロシアニン系色素を16.0g〜17.0g、950nm〜1000nmの波長領域の範囲内に透過率10%未満の分光透過率曲線の極小値を有するフタロシアニン系色素を18.5g〜19.5g、875nm〜925nmの波長領域の範囲内に透過率10%未満の分光透過率曲線の極小値を有するフタロシアニン系色素を16.0g〜17.0gの重量範囲の割合で混合し、前記樹脂とともに溶融して射出して形成されたものである。   As described in Japanese Patent No. 5166482, a spectacle lens is a phthalocyanine having a minimum value of a spectral transmittance curve having a transmittance of less than 10% within a wavelength range of 800 nm to 850 nm with respect to 100 kg of a polycarbonate resin. A phthalocyanine dye having a minimum value of a spectral transmittance curve with a transmittance of less than 10% within a wavelength range of 16.0 g to 17.0 g and a wavelength range of 950 nm to 1000 nm, and 18.5 g to 19.5 g, 875 nm to 875 nm A phthalocyanine dye having a minimum value of a spectral transmittance curve with a transmittance of less than 10% within a wavelength range of 925 nm is mixed in a proportion in a weight range of 16.0 g to 17.0 g, and melted together with the resin and injected. Is formed.

この実施例2で得られた本発明の透光性樹脂基材膜付の眼鏡レンズにおける分光透過率のグラフを図5に示す。
この実施例2では、800nm〜1000nmの領域で赤外線を効果的に遮断することができ、1500nm〜2500nmの領域で近赤外線を効果的に遮断することのできる高付加価値の眼鏡レンズを得ることができた。
FIG. 5 shows a graph of spectral transmittance in the spectacle lens with the translucent resin base film of the present invention obtained in Example 2.
In Example 2, it is possible to obtain a high-value-added spectacle lens that can effectively block infrared rays in the region of 800 nm to 1000 nm and can effectively block near infrared rays in the region of 1500 nm to 2500 nm. did it.

本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではない。
例えば、本発明の透光性樹脂基材には、偏光機能のほか調光機能を付与することが可能であり、特に眼鏡レンズの場合には、視力矯正機能を付与することも可能である。
Although the embodiment of the present invention has been described, the present invention is not limited to the above embodiment.
For example, the translucent resin base material of the present invention can be provided with a dimming function in addition to a polarizing function, and in particular, in the case of a spectacle lens, it can also be provided with a vision correction function.

本発明の透光性樹脂基材は、通常の眼鏡に限らずサングラス(偏光機能や調光機能を有するものを含む),前掛け眼鏡及び保護眼鏡等の眼鏡レンズに広範に適用が可能であるほか、ディスプレイやフィルタ、車両や家屋の窓ガラス等の他の透光性成形体にも適用も可能である。   The translucent resin base material of the present invention can be widely applied to spectacle lenses such as sunglasses (including those having polarization function and dimming function), front spectacles, and protective spectacles as well as normal spectacles. It can also be applied to other translucent molded articles such as displays, filters, window glass of vehicles and houses.

No3の実験結果を示す透過率と波長の関係グラフである。It is a relationship graph of the transmittance | permeability which shows the experimental result of No3. No4の実験結果を示す透過率と波長の関係グラフである。It is a relationship graph of the transmittance | permeability which shows the experimental result of No4. No5の実験結果を示す透過率と波長の関係グラフである。It is a transmittance | permeability and wavelength related graph which shows the experimental result of No5. No6の実験結果を示す透過率と波長の関係グラフである。It is a transmittance | permeability and wavelength related graph which shows the experimental result of No6. 実施例2の結果を示す透過率と波長の関係グラフである。6 is a graph showing the relationship between transmittance and wavelength, showing the results of Example 2.

Claims (12)

近赤外線遮蔽性を有する透光性樹脂基材の製造方法において、
近赤外線吸収剤を樹脂基材に添加するとともに、予め設定された膜厚で、前記近赤外線吸剤の添加による白濁を抑制して無色透明状態で75%以上の可視光透光率を有するまで黄色の色素を添加したこと、
を特徴とする透光性樹脂基材の製造方法。
In the method for producing a translucent resin base material having a near infrared shielding property,
While adding a near-infrared absorber to a resin base material, with a preset film thickness, suppressing white turbidity due to the addition of the near-infrared absorber and having a visible light transmittance of 75% or more in a colorless and transparent state Adding yellow pigment,
A process for producing a translucent resin substrate characterized by
前記樹脂基材がUV硬化樹脂又はハードコート剤であることを特徴とする請求項1に記載の透光性樹脂基材の製造方法。 The method for producing a translucent resin base material according to claim 1, wherein the resin base material is a UV curable resin or a hard coat agent. 前記樹脂基材、前記近赤外線吸収剤及び前記色素を含む溶液中に、前記樹脂基材、前記近赤外線吸収剤、前記色素が100:40〜100:0.0018〜0.01の重量比率で含まれることを特徴とする請求項1又は2に記載の透光性樹脂基材の製造方法。 In the solution containing the resin substrate, the near-infrared absorber, and the pigment, the resin substrate, the near-infrared absorber, and the pigment are in a weight ratio of 100: 40 to 100: 0.0018 to 0.01. The method for producing a translucent resin base material according to claim 1, wherein the translucent resin base material is contained. 前記近赤外線吸剤がインジウム錫酸化物(ITO)又はアンチモン錫酸化物(ATO)であることを特徴とする請求項1〜3のいずれかに記載の透光性樹脂基材の製造方法。 The said near-infrared absorber is indium tin oxide (ITO) or antimony tin oxide (ATO), The manufacturing method of the translucent resin base material in any one of Claims 1-3 characterized by the above-mentioned. 近赤外線遮蔽性を有する透光性樹脂基材において、
予め設定された膜厚における無色透明状態で75%以上の可視光透光率を有し所定波長領域の近赤外線を遮蔽するように、近赤外線吸剤の粒子及び前記近赤外線吸剤の粒子添加による白濁を抑制するための黄色の色素を含有すること、
を特徴とする透光性樹脂基材。
In the translucent resin base material having a near infrared shielding property,
Addition of near-infrared absorbent particles and near-infrared absorbent particles so as to have a visible light transmittance of 75% or more in a colorless and transparent state at a preset film thickness and to block near-infrared rays in a predetermined wavelength region Containing a yellow pigment to suppress white turbidity due to
A translucent resin base material characterized by the above.
前記樹脂基材がUV硬化樹脂又はハードコート剤であることを特徴とする請求項5に記載の透光性樹脂基材。 The translucent resin base material according to claim 5, wherein the resin base material is a UV curable resin or a hard coat agent. 前記樹脂基材、前記近赤外線吸収剤、前記色素を100:40〜100:0.0018〜0.01の重量比率で含む透光性樹脂基材溶液から形成されることを特徴とする請求項5又は6に記載の透光性樹脂基材。 The translucent resin base material solution containing the resin base material, the near-infrared absorber, and the pigment in a weight ratio of 100: 40 to 100: 0.0018 to 0.01. 5. The translucent resin base material according to 5 or 6. 前記近赤外線吸剤がインジウム錫酸化物(ITO)又はアンチモン錫酸化物(ATO)であることを特徴とする請求項5〜7のいずれかに記載の透光性樹脂基材の製造方法。 The said near-infrared absorber is an indium tin oxide (ITO) or an antimony tin oxide (ATO), The manufacturing method of the translucent resin base material in any one of Claims 5-7 characterized by the above-mentioned. 1600nm〜1700nmの波長領域における近赤外線の透過率が5%以下、1700nm〜2500nmの波長領域における近赤外線の透過率が2%以下であることを特徴とする請求項5〜8のいずれかに記載の透光性樹脂基材。 The near-infrared transmittance in a wavelength region of 1600 nm to 1700 nm is 5% or less, and the near-infrared transmittance in a wavelength region of 1700 nm to 2500 nm is 2% or less. Translucent resin base material. 請求項5〜9のいずれかに記載の前記透光性樹脂基材の膜を表面に形成したことを特徴とする透光性成形体。 A translucent molded article, wherein the film of the translucent resin base material according to claim 5 is formed on a surface. 前記透光性樹脂基材の膜厚が20μm〜30μmであることを特徴とする請求項10に記載の透光性成形体。 The translucent molded article according to claim 10, wherein the translucent resin base material has a thickness of 20 μm to 30 μm. 800nm〜1000nmの波長領域の赤外線を遮断する機能を有することを特徴とする請求項14又は15に記載の透光性成形体。 The translucent molded article according to claim 14 or 15, which has a function of blocking infrared rays in a wavelength region of 800 nm to 1000 nm.
JP2015078303A 2015-04-07 2015-04-07 Manufacturing method of translucent resin base material, translucent resin base material and translucent molded product Active JP6784914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015078303A JP6784914B2 (en) 2015-04-07 2015-04-07 Manufacturing method of translucent resin base material, translucent resin base material and translucent molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078303A JP6784914B2 (en) 2015-04-07 2015-04-07 Manufacturing method of translucent resin base material, translucent resin base material and translucent molded product

Publications (2)

Publication Number Publication Date
JP2016200626A true JP2016200626A (en) 2016-12-01
JP6784914B2 JP6784914B2 (en) 2020-11-18

Family

ID=57422635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078303A Active JP6784914B2 (en) 2015-04-07 2015-04-07 Manufacturing method of translucent resin base material, translucent resin base material and translucent molded product

Country Status (1)

Country Link
JP (1) JP6784914B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144327A (en) * 2018-02-16 2019-08-29 住友ベークライト株式会社 Optical sheet and optical component
US11809933B2 (en) 2018-11-13 2023-11-07 Ppg Industries Ohio, Inc. Method of detecting a concealed pattern
US11808833B2 (en) 2016-10-28 2023-11-07 Ppg Industries Ohio, Inc. Coatings for increasing near-infrared detection distances

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183562A (en) * 2005-12-30 2007-07-19 Ind Technol Res Inst Infrared intercepting hard coating, method for producing the same and laminated composite film including the same
JP2008522228A (en) * 2004-12-03 2008-06-26 エア プロダクツ アンド ケミカルズ インコーポレイテッド Infrared absorbing sun protection film
JP2013006725A (en) * 2011-06-23 2013-01-10 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass
WO2013039039A1 (en) * 2011-09-17 2013-03-21 日本化薬株式会社 Heat ray shielding adhesive composition, heat ray shielding transparent adhesive sheet, and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522228A (en) * 2004-12-03 2008-06-26 エア プロダクツ アンド ケミカルズ インコーポレイテッド Infrared absorbing sun protection film
US20080273240A1 (en) * 2004-12-03 2008-11-06 Air Products And Chemicals, Inc. Infrared Radiation Absorbing Sun Protection Film
JP2007183562A (en) * 2005-12-30 2007-07-19 Ind Technol Res Inst Infrared intercepting hard coating, method for producing the same and laminated composite film including the same
JP2013006725A (en) * 2011-06-23 2013-01-10 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass
WO2013039039A1 (en) * 2011-09-17 2013-03-21 日本化薬株式会社 Heat ray shielding adhesive composition, heat ray shielding transparent adhesive sheet, and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808833B2 (en) 2016-10-28 2023-11-07 Ppg Industries Ohio, Inc. Coatings for increasing near-infrared detection distances
JP2019144327A (en) * 2018-02-16 2019-08-29 住友ベークライト株式会社 Optical sheet and optical component
JP7187780B2 (en) 2018-02-16 2022-12-13 住友ベークライト株式会社 Optical sheets and optical components
US11809933B2 (en) 2018-11-13 2023-11-07 Ppg Industries Ohio, Inc. Method of detecting a concealed pattern

Also Published As

Publication number Publication date
JP6784914B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP5996836B2 (en) Laminated glass lens for glasses
JP5650963B2 (en) Shading lens for protective glasses
CN108351537A (en) Function glasses eyeglass for block ultraviolet and blue light
JP2014032273A (en) Photochromic lens
JP2007093927A (en) Optical article
JP2017116951A (en) Light emission reducing film for electronic devices
JPWO2012133749A1 (en) Photochromic lens
JP2016200626A (en) Light-transmissive resin base material manufacturing method, light-transmissive resin base material, and light-transmissive molded body
WO2019180043A1 (en) Eyewear comprising an ophthalmic lens having an edge coating
JP2011237625A (en) Method for producing translucent resin base material, and translucent resin base material
CN105372836A (en) Eyeglass of eye protection glasses
JP5922384B2 (en) Manufacturing method of spectacle lens
JP2008176143A (en) Optical film and front board for display using same
JP2015087690A (en) Laminated film
CN105754275A (en) Anti-blue light no-coated lens of glasses
CN211718644U (en) High-refractive-index color-changing lens
WO2017001902A1 (en) Anti-scratch and photochromic coating, respective method of application and use
JP7402449B2 (en) Resin composition and method for producing light-shielding lenses
JP2006341204A (en) Method for manufacturing near infrared ray shielding body and plate-like body for display
CN211786445U (en) Low-refractive-index color-changing lens
JP2014106516A (en) Photochromic lens, and manufacturing method for the same
KR20050105060A (en) Production method of a lens for functional goggle and glasses
CN213276171U (en) Firm myopia lens of installation
JP6143261B2 (en) ND filter, ND filter for solar observation, and manufacturing method thereof
JP6016397B2 (en) Manufacturing method of photochromic lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201005

R150 Certificate of patent or registration of utility model

Ref document number: 6784914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150