JP2016199730A - Production method of foam-molded article of carbon fiber-reinforced modified polyester resin - Google Patents
Production method of foam-molded article of carbon fiber-reinforced modified polyester resin Download PDFInfo
- Publication number
- JP2016199730A JP2016199730A JP2015088766A JP2015088766A JP2016199730A JP 2016199730 A JP2016199730 A JP 2016199730A JP 2015088766 A JP2015088766 A JP 2015088766A JP 2015088766 A JP2015088766 A JP 2015088766A JP 2016199730 A JP2016199730 A JP 2016199730A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- component
- weight
- resin
- polyester resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 82
- 229920001225 polyester resin Polymers 0.000 title claims abstract description 30
- 239000004645 polyester resin Substances 0.000 title claims abstract description 30
- 229910052799 carbon Inorganic materials 0.000 title abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title abstract description 5
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 164
- 239000004917 carbon fiber Substances 0.000 claims abstract description 164
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 154
- 229920000139 polyethylene terephthalate Polymers 0.000 claims abstract description 49
- 229920000728 polyester Polymers 0.000 claims abstract description 47
- 239000011230 binding agent Substances 0.000 claims abstract description 31
- 238000005187 foaming Methods 0.000 claims abstract description 14
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 48
- 239000000835 fiber Substances 0.000 claims description 35
- -1 polyethylene terephthalate Polymers 0.000 claims description 34
- 239000004088 foaming agent Substances 0.000 claims description 25
- 239000006260 foam Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- 238000000465 moulding Methods 0.000 claims description 12
- 239000004593 Epoxy Substances 0.000 claims description 9
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 9
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 9
- 238000009739 binding Methods 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- 229920000515 polycarbonate Polymers 0.000 claims description 6
- 239000004417 polycarbonate Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- 125000003700 epoxy group Chemical group 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 3
- 150000002430 hydrocarbons Chemical group 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 238000006056 electrooxidation reaction Methods 0.000 claims 1
- 229920005989 resin Polymers 0.000 abstract description 92
- 239000011347 resin Substances 0.000 abstract description 92
- 239000008188 pellet Substances 0.000 abstract description 77
- 238000001125 extrusion Methods 0.000 abstract description 31
- 239000003054 catalyst Substances 0.000 abstract description 26
- 239000003822 epoxy resin Substances 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 16
- 229920000647 polyepoxide Polymers 0.000 abstract description 16
- 239000002131 composite material Substances 0.000 abstract description 15
- 125000000524 functional group Chemical group 0.000 abstract description 10
- 230000000704 physical effect Effects 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 229920001169 thermoplastic Polymers 0.000 abstract description 5
- 239000004416 thermosoftening plastic Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 238000004898 kneading Methods 0.000 abstract 1
- 150000007524 organic acids Chemical class 0.000 abstract 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 39
- 239000003607 modifier Substances 0.000 description 36
- 238000000034 method Methods 0.000 description 27
- 238000002347 injection Methods 0.000 description 23
- 239000007924 injection Substances 0.000 description 23
- 239000003795 chemical substances by application Substances 0.000 description 22
- 239000000047 product Substances 0.000 description 22
- 238000012360 testing method Methods 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000004698 Polyethylene Substances 0.000 description 15
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 15
- 229920000573 polyethylene Polymers 0.000 description 15
- 239000002023 wood Substances 0.000 description 14
- 239000010410 layer Substances 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 229940057995 liquid paraffin Drugs 0.000 description 12
- 239000000155 melt Substances 0.000 description 12
- 238000003892 spreading Methods 0.000 description 12
- 230000007480 spreading Effects 0.000 description 12
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 11
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 10
- 238000005452 bending Methods 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 235000013312 flour Nutrition 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 238000005303 weighing Methods 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000008116 calcium stearate Substances 0.000 description 5
- 235000013539 calcium stearate Nutrition 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 5
- 235000017557 sodium bicarbonate Nutrition 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000010097 foam moulding Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 241000345998 Calamus manan Species 0.000 description 2
- 239000004970 Chain extender Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000002666 chemical blowing agent Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000012950 rattan cane Nutrition 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010024769 Local reaction Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241001428397 Taito Species 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000874 polytetramethylene terephthalate Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229920005792 styrene-acrylic resin Polymers 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Molding Of Porous Articles (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
本発明は、熱可塑性ポリエステル(A)、炭素繊維(B)、多官能性エポキシ樹脂系結合剤(C)および触媒(D)を該ポリエステルの融点以上の温度に加熱して高溶融粘度化した炭素繊維強化・改質ポリエステル樹脂の発泡成形体を製造する方法を提供することに関する。 In the present invention, the thermoplastic polyester (A), carbon fiber (B), multifunctional epoxy resin binder (C) and catalyst (D) are heated to a temperature equal to or higher than the melting point of the polyester to increase the melt viscosity. The present invention relates to providing a method for producing a foamed article of carbon fiber reinforced / modified polyester resin.
従来の熱可塑性ポリエステルは、例えば芳香族飽和ポリエステルとしてポリエチレンテレフタレート(以下に、PET又はペットと称す。)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)等がある。これらは、熱可塑性樹脂として透明性、機械的強度、剛性等に優れた物性を有し、繊維、フィルム、プラスチックス等として広範囲に使用されている。特に、プラスチックス分野では、成形品がボトル、シート、容器、日用品、自動車内装材、機械部品、電気・電子材料、建材、土木材、各種工業用品等に広く活用されている。
また、それらのポリエステルは、更にガラス繊維または炭素繊維を混合して熱可塑性複合材にする事に依り、機械的強度や耐熱性等の諸特性が改善され、一層高級な用途に使用されて来ている。特に、ガラス繊維が安価であるので、これで強化されたPET複合材、PBT複合材、PC複合材が大量に使用されている。一方、炭素繊維は高強度であるがあまりにも高価格であるために、これらのポリエステル複合材は、特殊用途に少量にしか使用されて来なかった。Conventional thermoplastic polyesters include, for example, polyethylene terephthalate (hereinafter referred to as PET or pet), polybutylene terephthalate (PBT), polycarbonate (PC) and the like as aromatic saturated polyesters. These have excellent physical properties such as transparency, mechanical strength and rigidity as thermoplastic resins, and are widely used as fibers, films, plastics and the like. In particular, in the plastics field, molded products are widely used for bottles, sheets, containers, daily necessities, automobile interior materials, machine parts, electrical / electronic materials, building materials, earth and wood, various industrial products, and the like.
In addition, these polyesters have been used for higher-grade applications because they have improved properties such as mechanical strength and heat resistance by mixing glass fibers or carbon fibers into thermoplastic composites. ing. In particular, since glass fibers are inexpensive, PET composites, PBT composites, and PC composites reinforced with this are used in large quantities. On the other hand, because carbon fibers are high in strength but too expensive, these polyester composites have been used only in small amounts for special applications.
近年、土木・建築、自動車産業、新幹線車両業、宇宙航空産業、リニヤーモーターカー等の先端産業分野に於いては、構成材料の機械的強度の改善による一層の軽量化・省エネルギー化をはじめ、耐食性、電気特性、耐熱性、放熱性等の一層の性能改善が求められている。
合成樹脂は、一般に分子量を増大すれば、成形加工性および物性が改善される。しかしながら、ポリエステルは、その製造法が重縮合法であることに起因して、例えば5万以上の高分子量体が得られ難く、溶融状態では水飴状であり、水平押出法による押出成形体、特に押出発泡成形体を安定に製造することが、極めて困難である。また、このポリエステルの中分子量体を2倍程度の高分子量化する固層重合法は、数時間を必要とするために生産性が低くかった。さらに、石油化学コンビナートの大規模製造設備を必要とする弱点があった。In recent years, in the advanced industrial fields such as civil engineering / architecture, automobile industry, Shinkansen vehicle industry, aerospace industry, linear motor car, etc. Further improvements in performance such as corrosion resistance, electrical characteristics, heat resistance, and heat dissipation are required.
Synthetic resins generally have improved moldability and physical properties if their molecular weight is increased. However, polyester is difficult to obtain, for example, a polymer having a molecular weight of 50,000 or more due to the production method being a polycondensation method. It is extremely difficult to stably produce an extruded foam molded article. In addition, the solid layer polymerization method for increasing the molecular weight of the polyester to about twice the molecular weight requires several hours, so that the productivity is low. In addition, there was a weak point that required large-scale production facilities for petrochemical complexes.
本発明者らは、特許文献1、特許文献2および特許文献3に示される様に、これらポリエステルで末端にカルボキシル基を保有する中分子量体を反応押出法を採用し、エポキシ樹脂系結合剤(鎖延長剤、増粘剤とも称す)および触媒に依り、ポリエステル同士を反応させて数分以下の短時間で高分子量化する高生産性を実現し、コンパクトで安価な設備を使用する反応押出法による製造法を提供した。しかしながら、ポリエステルの溶融張力の増大による成形加工性については画期的な進歩があったが、一方機械的物性の改善については、当初に本発明で期待されていた効果は殆ど見られなかった。
また、本発明者は、特許文献4および特許文献5に示される様に、ポリエチレンテレフタレート(PET)に回収炭素繊維・6mm長の15および30重量%をエポキシ樹脂系結合剤(鎖延長剤)および触媒の存在下に二軸押出機で反応押出法にて反応させて、回収炭素繊維強化・改質ぺっと樹脂とし、それらの機械的強度を引張強度で約2倍から2.4倍および曲げ弾性率で約4倍から6.8倍に大幅改善している。また、本発明者は、特許文献6では、太番手のPAN系レーヨンを原料とした安価な新品炭素繊維・6mm長(ZOLTEK社製)を使用し、同様にしてZOLTEK炭素繊維強化・改質ぺっと樹脂とし、それらの機縅的強度を引張強度で約3倍から4倍および曲げ弾性率で約6倍から10倍に一層大幅に改善している。As shown in Patent Document 1, Patent Document 2 and Patent Document 3, the present inventors adopted a reactive extrusion method for a medium molecular weight body having a carboxyl group at the terminal of these polyesters, and an epoxy resin binder ( Reactive extrusion process that uses compact and inexpensive equipment that achieves high productivity by reacting polyesters and achieving high molecular weight in a short time of several minutes or less, depending on the chain extender and thickener) and catalyst. Provided a manufacturing method. However, although there has been a breakthrough in moldability due to an increase in the melt tension of polyester, on the other hand, with respect to the improvement of mechanical properties, the effect that was originally expected in the present invention was hardly seen.
In addition, as shown in Patent Document 4 and Patent Document 5, the present inventor recovered polyethylene fiber terephthalate (PET) with 15% and 30% by weight of 6 mm long recovered carbon fiber and epoxy resin binder (chain extender) and In the presence of a catalyst, the reaction is carried out by a reactive extrusion method using a twin screw extruder to obtain a recovered carbon fiber reinforced / modified pet resin, which has a mechanical strength of about 2 to 2.4 times in tensile strength and flexural elasticity. The rate has greatly improved from about 4 times to 6.8 times. In addition, in the patent document 6, the present inventor uses an inexpensive new carbon fiber 6 mm long (manufactured by ZOLTEK) made of a thick PAN-based rayon as a raw material, and similarly ZOLTEK carbon fiber reinforced / modified pet. Resins are used, and their mechanical strength has been greatly improved from about 3 to 4 times in tensile strength and from about 6 to 10 times in flexural modulus.
土木・建築、自動車産業、新幹線車両業、航空宇宙産業、リニヤーモーターカー等の先端産業分野に於ける構成材料の機械的強度の改善による一層の軽量化・省エネルギー化をはじめ、耐食性、電導性、耐熱囲、放熱性等の一層の性能改善をすることが求められている。特に、本発明は、強度の不足している合成木材の強度改善による住宅屋外の構造物、高層建築の軽量化資材、沿岸高速道路の高強度・耐食資材、海洋構築物の耐食・高強度資材、水上飛行艇などの耐食資材等の用途開発を目的とする。 Corrosion resistance and electrical conductivity, including further weight reduction and energy saving by improving mechanical strength of components in advanced industrial fields such as civil engineering / architecture, automobile industry, Shinkansen vehicle industry, aerospace industry, linear motor car, etc. Further improvements in performance such as heat-resistant enclosure and heat dissipation are required. In particular, the present invention relates to a structure outside a house by improving the strength of synthetic timber with insufficient strength, a lightening material for a high-rise building, a high strength / corrosion resistant material for a coastal expressway, a corrosion resistant / high strength material for a marine structure, The purpose is to develop applications for anti-corrosion materials such as surface flying boats.
本発明は、強度の改善された炭素繊維強化・改質ぺっと樹脂を発泡させて、軽量化された新材料を製造する方法を提供することを目的とする。即ち、本発明は、熱可塑性ポリエステル(A)、炭素繊維(B)、多官能性エポキシ樹脂系結合剤(C)、触媒(D)を加熱混合して結合反応させることに依り、高溶融粘度化して成形加工性の改善された炭素繊維強化ポリエステル樹脂を製造し、次いで発泡成形法により軽量化されて機械的強度、耐食性等の諸物性も向上させた発泡成形体を製造する方法を提供するものである。 An object of the present invention is to provide a method for producing a lightweight new material by foaming a carbon fiber reinforced / modified pet resin having improved strength. That is, the present invention has a high melt viscosity by heating and mixing thermoplastic polyester (A), carbon fiber (B), multifunctional epoxy resin binder (C) and catalyst (D). To produce a carbon fiber reinforced polyester resin having improved molding processability, and then producing a foam molded article that has been reduced in weight by a foam molding method and improved in physical properties such as mechanical strength and corrosion resistance. Is.
本発明は、更に詳しくは下記の製造方法を提供するものである。
本発明は、第1に(A)成分のポリエステル100重量部、(B)成分の炭素繊維5〜150重量部、(C)成分の結合剤として該分子内に2個以上のエポキシ基を含有する多官能エポキシ化合物0.1〜2重量部、(D)成分の結合反応触媒0.01〜1重量部から構成される組成物を、該ポリエステルの融点以上の温度で加熱して高溶融粘度の炭素繊維強化・改質ポリエステル樹脂とした後に、発泡剤を加えて発泡させることを特徴とする炭素繊維強化・改質ポリエステル樹脂の発泡成形体の製造方法を提供するものである。More specifically, the present invention provides the following production method.
The present invention first includes 100 parts by weight of the polyester as the component (A), 5 to 150 parts by weight of the carbon fiber as the component (B), and two or more epoxy groups in the molecule as a binder for the component (C). A composition composed of 0.1 to 2 parts by weight of a polyfunctional epoxy compound and 0.01 to 1 part by weight of a (D) component binding reaction catalyst is heated at a temperature equal to or higher than the melting point of the polyester to obtain a high melt viscosity. The present invention provides a method for producing a foamed article of carbon fiber reinforced / modified polyester resin, characterized in that the carbon fiber reinforced / modified polyester resin is foamed by adding a foaming agent.
本発明は、第2に(A)成分のポリエステルが、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネートまたはそれらの回収された成形品の再循環物のいずれか一種類以上を含有することを特徴とする請求項1に記載の炭素繊維強化・改質ポリエステル樹脂の発泡成形体の製造方法を提供するものである。。 The second aspect of the present invention is that the polyester as the component (A) contains at least one of polyethylene terephthalate, polybutylene terephthalate, polycarbonate, or a recycled product of the recovered molded product thereof. Item 8. A method for producing a foamed article of carbon fiber reinforced / modified polyester resin according to Item 1. .
本発明は、第3に(B)成分の炭素繊維が、回収された炭素繊維の短繊維または粉末状繊維、再生された炭素繊維の短繊維または粉末状繊維からなる群のいずれか一種類以上を含有することを特徴とする請求項1に記載の炭素繊維強化・改質ポリエステル樹脂の発泡成形体の製造方法を提供するものである。 The third aspect of the present invention is that the carbon fiber of component (B) is any one or more of the group consisting of recovered short fiber or powdered carbon fiber, regenerated carbon fiber short fiber or powdered fiber The method for producing a foamed article of carbon fiber reinforced / modified polyester resin according to claim 1, comprising:
本発明は、第4に(B)成分の炭素繊維が、工業製品の炭素繊維の短繊維または粉末状繊維、電気化学的に酸化処理された工業製品の炭素繊維の短繊維または粉末状繊維または化学的酸化処理された工業製品の炭素繊維の短繊維または粉末状繊維のいずれか一種類以上を含有することを特徴とする請求項1に記載の炭素繊維強化・改質ポリエステル樹脂の発泡成形体の製造方法を提供するものである。Fourthly, the carbon fiber of the component (B) is an industrial product carbon fiber short fiber or powdered fiber, an electrochemically oxidized industrial product carbon fiber short fiber or powdered fiber, or 2. The carbon fiber reinforced / modified polyester resin foam-molded article according to claim 1, comprising at least one of short fibers or powder fibers of industrially carbonized industrial products. The manufacturing method of this is provided.
本発明は、第5に発泡剤が、揮発性発泡剤であり、不活性ガスの炭酸ガスおよびまたは窒素ガスであることを特徴とする請求項1に記載の炭素繊維強化・改質ポリエステル樹脂の発泡成形体の製造方法を提供するものである。The fifth aspect of the present invention is the carbon fiber-reinforced / modified polyester resin according to claim 1, wherein the foaming agent is a volatile foaming agent and is an inert gas such as carbon dioxide and / or nitrogen gas. The manufacturing method of a foaming molding is provided.
本発明は、第6に発泡剤が、加熱分解形発泡剤であることを特徴とする請求項1に記載の炭素繊維強化・改質ポリエステル樹脂の発泡成形体の製造方法を提供するものである。 Sixthly, the present invention provides the method for producing a foamed molded article of carbon fiber reinforced / modified polyester resin according to claim 1, wherein the foaming agent is a heat decomposable foaming agent. .
本発明は、第7に発泡剤が、低沸点の炭化水素系化合物であることを特徴とする請求項1に記載の炭素繊維強化・改質ポリエステル樹脂の発泡成形体の製造方法を提供するものである。 The present invention seventhly provides the method for producing a foamed article of carbon fiber reinforced / modified polyester resin according to claim 1, wherein the foaming agent is a hydrocarbon compound having a low boiling point. It is.
本発明によれば、最初にポリエステルの分子末端のカルボキシル基を触媒の存在下に結合剤としての多官能性エポキシ樹脂のエポキシ環の開裂を伴う化学反応で新たにヒドロキシ基を含むエステル結合を形成させて巨大分子量とし、かつ高溶融粘度のポリエステル樹脂に改質することが出来る。
なお、本発明の炭素繊維強化・改質ポリエステル樹脂は、JIS法メルトフローレート(280℃、荷重2.16Kg)が20ないし40g/10分のペレットが、ストランド切れが少なくて高速度で製造し易い。しかしながら、水平押出方式の発泡法では溶融粘度が不足気味場合は成形安定性が良くない。そこで、本発明では、成形加工時に(C)成分の結合剤および(D)成分の結合反応触媒をそのままか、あるいは非結晶性ポリエステルまたはポリオレフィンからなる群のいずれか一種類以上を含有する樹脂を基体とするマスターバッチを、発泡成形時に併用する製造法を提供している。マスターバッチの添加量は、炭素繊維強化ポリエステル樹脂に対して1ないし10重量部、好ましくは2ないし6重量部である。JIS法メルトフローレート(280℃、荷重2.16Kg)で、0.1ないし20g/10分が押出発泡成形に好ましい。
本発明では、安価な産業用炭素繊維、一層安価な回収炭素繊維および航空機端材の炭素繊維強化複合材(CFRP)からの再生炭素繊維などが原料として好適に使用する事が出来る。According to the present invention, a new ester bond containing a hydroxy group is first formed by a chemical reaction involving cleavage of the epoxy ring of a polyfunctional epoxy resin as a binder in the presence of a catalyst at the carboxyl group at the molecular end of the polyester. It can be made into a high molecular weight polyester resin with a high melt viscosity.
In addition, the carbon fiber reinforced / modified polyester resin of the present invention is produced at a high speed with pellets having a JIS melt flow rate (280 ° C., load 2.16 Kg) of 20 to 40 g / 10 min with few strand breaks. easy. However, in the horizontal extrusion type foaming method, if the melt viscosity is insufficient, the molding stability is not good. Therefore, in the present invention, the resin containing either the binder of component (C) and the coupling reaction catalyst of component (D) at the time of molding, or one or more of the group consisting of amorphous polyester or polyolefin is used. The manufacturing method which uses together the masterbatch which makes a base | substrate at the time of foam molding is provided. The addition amount of the masterbatch is 1 to 10 parts by weight, preferably 2 to 6 parts by weight, based on the carbon fiber reinforced polyester resin. A JIS method melt flow rate (280 ° C., load 2.16 Kg) and 0.1 to 20 g / 10 min are preferable for extrusion foam molding.
In the present invention, inexpensive industrial carbon fibers, more inexpensive recovered carbon fibers, and recycled carbon fibers from carbon fiber reinforced composites (CFRP) for aircraft end materials can be suitably used as raw materials.
以下、本発明について詳細に説明する。
[(A)成分のポリエステル]
本発明における主原料としての(A)成分のポリエステルは、芳香族飽和ポリエステルである。この系列のポリエステルの具体例としては、ポリエチレンテレフタレート(PET)、イソフタール酸を少量共重合した低融点PET、エチレングリコールとシクロヘキサンジメタノールとテレフタル酸の共重合体(PETG)、ポリテトラメチレンテレフタレート(ポリブチレンテレフタレート、PBT)、ポリエチレンー2,6−ナフタレート(PEN)等が挙げられる。ポリブチレンテレフタレート(PBT)が好ましい。大量生産され極めて安価なポリエチレンテレフタレート(PET)が、特に好ましい。
また、本発明において主原料としての(A)成分のポリエステルは、他の系列のものとしてビスフェノールAを主原料とするポリカーボネート(PC;ポリ−4,4‘−イソプロピレンジフェニルカーボネート)が使用出来る。Hereinafter, the present invention will be described in detail.
[Polyester of component (A)]
The polyester of component (A) as the main raw material in the present invention is an aromatic saturated polyester. Specific examples of this series of polyesters include polyethylene terephthalate (PET), low melting point PET copolymerized with a small amount of isophthalic acid, a copolymer of ethylene glycol, cyclohexanedimethanol and terephthalic acid (PETG), polytetramethylene terephthalate (poly Butylene terephthalate (PBT), polyethylene-2,6-naphthalate (PEN), and the like. Polybutylene terephthalate (PBT) is preferred. Polyethylene terephthalate (PET) that is mass-produced and extremely inexpensive is particularly preferred.
In the present invention, as the polyester of the component (A) as the main raw material, polycarbonate (PC; poly-4,4′-isopropylene diphenyl carbonate) having bisphenol A as the main raw material can be used as another series.
本発明で使用できる代表的ポリエステルとしてのPETは、1,1,2,2−テトラクロロエタン/フェノール(1:1)混合溶媒に溶解して25℃で測定した固有粘度が0.50dl/g以上(繊維用)であることが好ましく、0.70dl/g以上(シート用)であることがより好ましく、0.80dl/g以上(ボトル用)であることが更に一層好ましい。固有粘度が0.50dl/g未満であると、本発明によっても結合反応が困難であり、得られるポリエステル・炭素共重合体が必ずしも優れた機械的強度を得ることができない恐れがある。固有粘度の上限は、特に制限されないが、通常1.1dl/g以下、好ましくはペットボトル用として大量生産され比較的安価な0.80dl/g前後である。市販PETの入手可能の上限は、固有粘度が1.25dl/gであるが、単独使用では成形加工性が悪化するので、本発明では固有粘度が0.60−0.80dl/gのものと混合して使用することが好ましい。 PET as a representative polyester that can be used in the present invention has an intrinsic viscosity of 0.50 dl / g or more measured at 25 ° C. by dissolving in a 1,1,2,2-tetrachloroethane / phenol (1: 1) mixed solvent. (For fibers) is preferred, 0.70 dl / g or more (for sheets) is more preferred, and 0.80 dl / g or more (for bottles) is even more preferred. When the intrinsic viscosity is less than 0.50 dl / g, the bonding reaction is difficult even according to the present invention, and the obtained polyester / carbon copolymer may not always have excellent mechanical strength. The upper limit of the intrinsic viscosity is not particularly limited, but is usually 1.1 dl / g or less, preferably about 0.80 dl / g, which is mass-produced for PET bottles and relatively inexpensive. The upper limit for the availability of commercially available PET is an intrinsic viscosity of 1.25 dl / g. However, since the moldability deteriorates when used alone, the intrinsic viscosity is 0.60-0.80 dl / g in the present invention. It is preferable to use a mixture.
[(B)成分の炭素繊維]
本発明における(B)成分の炭素繊維は、その表面に酸素含有官能基、特にカルボキシル基を保有するものが好ましい。炭素繊維は、第一系列としてPAN系工業製品を使用する事が好ましい。例えば、米国ZOLTEK社の安価な炭素繊維チョップ(米国・ZOLTEK社の太籐(LT)PAN系炭素繊維「Panex35」6mm長)が特に好ましい。東レ(株)の航空機用の高性能炭素繊維「トレカ」T500、T600、T700シリーズも使用できる。また、産業用途のカットファイバーのT008シリーズ、T010シリーズ、TS12−006(カット長3−12mm)、または「トレカ」ミルドファイバーのMLDシリーズ(繊維長30−150μm)なども原料として使用できる。また、一般的にこれらの炭素繊維工業製品は、カルボキシル基の含有量が比較的多く存在する。
第二系列として(株)クレハおよび大阪ガスケミカル(株)のピッチ系炭素繊維の工業製品も使用することが出来る。これらは比較的に官能基の含有量が多いが、強度がやや小さい。成形品の強度に等方性の利点を持つので、好ましく使用できる。[Carbon fiber of component (B)]
The carbon fiber of the component (B) in the present invention preferably has an oxygen-containing functional group, particularly a carboxyl group on its surface. As the carbon fiber, it is preferable to use a PAN-based industrial product as the first series. For example, an inexpensive carbon fiber chop manufactured by ZOLTEK (USA) (a rattan (LT) PAN-based carbon fiber “Panex 35” 6 mm long manufactured by ZOLTEK, USA) is particularly preferable. Toray Industries' high-performance carbon fiber "Torayca" T500, T600, T700 series for aircraft can also be used. In addition, T008 series, T010 series, TS12-006 (cut length 3-12 mm) of cut fibers for industrial use, or MLD series (fiber length 30-150 μm) of “Torayca” milled fibers can also be used as raw materials. In general, these carbon fiber industrial products have a relatively high carboxyl group content.
Pitch-based carbon fiber industrial products of Kureha Co., Ltd. and Osaka Gas Chemical Co., Ltd. can be used as the second series. These have a relatively large functional group content, but have a slightly lower strength. Since the strength of the molded product has an isotropic advantage, it can be preferably used.
本発明の(B)成分の炭素繊維は、第三系列として炭素繊維強化熱硬化化性エポキシ樹脂複合材(CFRP)から回収される再生炭素繊維を好ましく使用することが出来る。素原料となる炭素繊維強化熱硬化性エポキシ樹脂複合材(CFRP)は、現状では航空機を組立てる時に約40%副生する端材、そのボーリング時に副生するドリルの切粉、その他に釣り竿、ゴルフティ等から得られる。将来は、大型航空機の機体の約65%を占めるCFRPのスクラップから大量に派生すると予想される。
その他、航空機機体などの製造時に半端品として回収されるボビン巻の長繊維のカットファイバー(カット長3−12mm)は、良質で極めて安価なので、良好に使用できる。
再生炭素繊維は、実施例の製造例1に例示される様に、八戸・高専の杉山教授法に準じて反応条件の制御下で電解酸化処理等をする事に依り、多数のカルボキシル基を導入した物を特に好適に使用することが出来る。本発明の再生炭素繊維のカルボキシル基量は、通常、0.01−0.20m mol/gの範囲を含有する。好ましく使用できる範囲は、0.02−0.15m mol/gである。
再生炭素繊維の繊維長は、航空機等のCFRP製端材の寸法および組立時のボーリングによる切粉の大きさに従属する。本発明では、繊維長として長繊維(100mm以上)、中繊維(3−100mm)または粉末状繊維(3mm以下)と呼称する。いずれも、本発明で好ましく使用できる。As the carbon fiber of the component (B) of the present invention, regenerated carbon fiber recovered from a carbon fiber reinforced thermosetting epoxy resin composite (CFRP) can be preferably used as a third series. Carbon fiber reinforced thermosetting epoxy resin composite (CFRP), which is the raw material, is currently milled by about 40% when milling aircraft, drill chips by-produced during boring, fishing rods, golf Obtained from tees, etc. The future is expected to be derived in large quantities from CFRP scrap, which accounts for about 65% of large aircraft bodies.
In addition, bobbin-wrapped long-fiber cut fibers (cut length: 3-12 mm) collected as semi-finished products at the time of manufacturing aircraft bodies and the like can be used satisfactorily because they are of good quality and extremely inexpensive.
Recycled carbon fiber introduces a large number of carboxyl groups by performing electrolytic oxidation treatment under the control of reaction conditions according to the Sugiyama teaching method of Hachinohe and National College of Technology as illustrated in Production Example 1 of the Example. The product obtained can be used particularly preferably. The amount of carboxyl groups in the regenerated carbon fiber of the present invention usually contains a range of 0.01-0.20 mmol / g. The range that can be preferably used is 0.02-0.15 mmol / g.
The fiber length of the regenerated carbon fiber depends on the size of the CFRP end material of an aircraft or the like and the size of the chips by boring at the time of assembly. In the present invention, the fiber length is referred to as long fiber (100 mm or more), medium fiber (3-100 mm) or powdered fiber (3 mm or less). Either can be preferably used in the present invention.
[(C)成分の結合剤]
本発明の(C)成分の結合剤は、重量平均分子量が1,000〜300,000であることが好ましく、該分子内に2〜100個のエポキシ基を含有する高分子型多官能エポキシ化合物を単独または2種類以上の混合体として使用することができる。高分子量の骨格を形成する樹脂にエポキシ環を含むグリシジル基をペンダント状に吊下げたものや分子内にエポキシ基を含むものの市販品、例えば、日油(株)の「マープルーフ」シリーズ、BASFジャパン(株)の「ジョンクリルADR」シリーズを使用することができる。骨格となる樹脂は、アクリル樹脂系やスチレンアクリル樹脂系がポリオレフィン系(PP、PS、PE)よりも好ましい。何故ならば、樹脂の溶解度パラメーターは、原料PET 10.7、エポキシ樹脂10.8、ポリアクリル酸メチル10.2、ポリアクリル酸エチル9.4、ポリプロピレン(PP)9.3、ポリメタクリル酸エチル9.0、ポリス散れ(PS)8.9、ポリエチレン(PE)8.0であり、数値が近いほど混合性が良いからである。
なお、ポリオレフィン系は1−2%の混合でも、PET系樹脂のフィルム・シートを白濁させるので、成形品が透明性を必要とする場合には適さない。しかしながら、発泡体とパイプあるいは220℃耐熱・耐油性容器などは白色であるので、それら透明性を必要としない用途と本発明の黒色成形体には使用出来る。[Binder for component (C)]
The binder of the component (C) of the present invention preferably has a weight average molecular weight of 1,000 to 300,000, and a polymer type polyfunctional epoxy compound containing 2 to 100 epoxy groups in the molecule. Can be used alone or as a mixture of two or more. A product in which a glycidyl group containing an epoxy ring is suspended in a resin that forms a high molecular weight skeleton in a pendant form, or a product containing an epoxy group in the molecule, such as NOF's "Murproof" series, BASF Japan Co., Ltd.'s “John Krill ADR” series can be used. As the skeleton resin, an acrylic resin system or a styrene acrylic resin system is more preferable than a polyolefin system (PP, PS, PE). This is because the solubility parameter of the resin is: raw material PET 10.7, epoxy resin 10.8, polymethyl acrylate 10.2, polyethyl acrylate 9.4, polypropylene (PP) 9.3, polyethyl methacrylate This is because 9.0, POLIS scatter (PS) 8.9, polyethylene (PE) 8.0, and the closer the numerical value, the better the mixing property.
In addition, even if the polyolefin type is mixed at 1-2%, the PET resin film / sheet is clouded, so it is not suitable when the molded product requires transparency. However, since the foam and pipe or the 220 ° C. heat and oil resistant container are white, they can be used for those applications that do not require transparency and for the black molded body of the present invention.
(C)成分の多官能エポキシ化合物の配合量は、(A)成分のポリエステル100重量部に対して0.1〜5重量部である。それは、(C)成分の種類と(B)の炭素繊維の種類と添加量に依って大幅に異なる。一般的には、0.1重量部未満では分子量と溶融粘度の増加効果が不充分のため、成形加工性も不充分で成形品の基本物性や機械的特性が劣ることになる。2重量部を越えると逆に成形加工性が悪化し、樹脂の黄変・着色とゲルやフィッシュアイ(FE)が副生したりする。 (C) The compounding quantity of the polyfunctional epoxy compound of a component is 0.1-5 weight part with respect to 100 weight part of polyester of (A) component. It varies greatly depending on the type of component (C) and the type and amount of carbon fiber (B). In general, if the amount is less than 0.1 parts by weight, the effect of increasing the molecular weight and melt viscosity is insufficient, so that the moldability is insufficient and the basic physical properties and mechanical properties of the molded product are inferior. On the other hand, if it exceeds 2 parts by weight, the moldability deteriorates, and the resin is yellowed / colored and gel or fish eye (FE) is by-produced.
[(D)成分の結合反応触媒]
本発明における(D)成分としての結合反応触媒は、(1)アルカリ金属の有機酸塩、炭酸塩および炭酸水素塩、(2)アルカリ土類金属の有機酸塩、炭酸塩および炭酸水素塩からなる群から選ばれた少なくとも一種類以上を含有する触媒である。有機酸塩としては、カルボン酸塩、酢酸塩等が使用できるが、カルボン酸塩の中で特にステアリン酸塩が好ましい。カルボン酸の金属塩を形成する金属としては、リチウム、ナトリウムおよびカリウムのようなアルカリ金属;マグネシウム、カルシウム、ストロンチウムおよびバリウムのようなアルカリ土類金属を使用できる。
この結合反応触媒としてのカルボン酸塩の配合量は(A)成分のポリエステル100重量部に対して0.01〜1重量部である。特に、0.1〜0.5重量部であることが好ましい。0.01重量部未満では触媒効果が小さく、共重合反応が未達となって分子量が充分増大しないことがある。1重量部を超えると局部反応によるゲル生成や加水分解の促進による溶融粘度の急上昇による押出成形機内のトラブルなどを惹起させる。[(D) Component Binding Reaction Catalyst]
The coupling reaction catalyst as the component (D) in the present invention includes (1) alkali metal organic acid salts, carbonates and hydrogen carbonates, and (2) alkaline earth metal organic acid salts, carbonates and hydrogen carbonates. A catalyst containing at least one selected from the group consisting of: As the organic acid salt, carboxylate, acetate and the like can be used, but stearates are particularly preferable among the carboxylates. The metal that forms the metal salt of the carboxylic acid can be an alkali metal such as lithium, sodium and potassium; an alkaline earth metal such as magnesium, calcium, strontium and barium.
The compounding amount of the carboxylate as the binding reaction catalyst is 0.01 to 1 part by weight with respect to 100 parts by weight of the polyester (A). In particular, the amount is preferably 0.1 to 0.5 part by weight. If the amount is less than 0.01 parts by weight, the catalytic effect is small, the copolymerization reaction is not achieved, and the molecular weight may not be sufficiently increased. If the amount exceeds 1 part by weight, problems such as gel generation due to local reactions and troubles in the extruder due to rapid increase in melt viscosity due to acceleration of hydrolysis are caused.
本発明では、(C)成分の結合剤および(D)成分の結合反応触媒が、非結晶性ポリエステルまたはポリオレフィンからなる群のいずれか一種類以上を含有する樹脂を基体とするマスターバッチの形態で使用されることができる。その実例を、製造例2および製造例3に例示した。 In the present invention, the binder of component (C) and the coupling reaction catalyst of component (D) are in the form of a masterbatch based on a resin containing at least one of the group consisting of amorphous polyester or polyolefin. Can be used. The actual example was illustrated in Production Example 2 and Production Example 3.
本発明では、展着剤を有効に使用できるが、(A)成分のポリエステルおよび(B)成分の炭素繊維が粉体の場合に特に有効である。通常、パラフィンオイル、流動パラフィン、トリメチルシラン等が使用できる。流動パラフィンが、無極性で高沸点であり適度の粘着流体であるために特に好ましい。添加量は、(A)成分に対して0.01−1重量部である。これらの展着剤は、(B)成分の炭素繊維を(A)成分のポリエステルのペレットまたは粉体に、均一付着させるために必要であり、また炭素繊維・粉体が大気中に舞い上がり人体や電気計装機器に悪影響を与えることを防止するために必要欠くべからざる助剤である。 In the present invention, a spreading agent can be used effectively, but it is particularly effective when the polyester (A) and the carbon fiber (B) are powders. Usually, paraffin oil, liquid paraffin, trimethylsilane or the like can be used. Liquid paraffin is particularly preferred because it is nonpolar, has a high boiling point and is a moderately viscous fluid. The addition amount is 0.01-1 part by weight with respect to the component (A). These spreading agents are necessary for uniformly adhering the (B) component carbon fibers to the (A) polyester pellets or powder, and the carbon fibers / powder soars into the atmosphere. It is an indispensable auxiliary agent necessary to prevent adverse effects on electrical instrumentation equipment.
本発明の発泡剤は、従来から一般にしられた発泡剤を使用することが出来る。例えば、揮発性発泡剤として、不活性ガスの炭酸ガスおよびまたは窒素ガスを使用することが出来る。これらは、火災を起こさず、防爆仕様の装置を必要としないので、中小企業の町工場でも操業できる。本発明の低発泡倍率の発泡体の工業生産に適する。
本発明の発泡剤として、加熱分解形発泡剤を使用することが出来る。ポリエステル樹脂の融点が200℃を越えるので、実際に使用できる化学物質は少ない。ポリプロピレンの低発泡に使用される重曹系の発泡剤が使用できる。しかし、水蒸気の発生を伴うので、加水分解し易いポリエステル樹脂の発泡成形では短期的な装置整備が必要となる。
低沸点の炭化水素系化合物、例えばフロパン、ブタン、ヘキサン等も使用できる。5−20倍の高発泡用に適する。しかし、発泡倍率の増大に従ってる発泡体の強度が激減するので、課題が残る。可燃性ガスの取扱いにより、設備や建屋の防爆が必要となり、大規模事業者しか操業できないという課題が残る。As the foaming agent of the present invention, a conventional foaming agent can be used. For example, an inert gas such as carbon dioxide and / or nitrogen gas can be used as the volatile foaming agent. These do not cause fires and do not require explosion-proof equipment, so they can be operated in small and medium-sized town factories. Suitable for industrial production of the foam of the present invention having a low expansion ratio.
As the foaming agent of the present invention, a heat decomposable foaming agent can be used. Since the melting point of the polyester resin exceeds 200 ° C., there are few chemical substances that can actually be used. A baking soda-based blowing agent used for low foaming of polypropylene can be used. However, since it is accompanied by the generation of water vapor, short-term equipment maintenance is required for foam molding of polyester resin which is easily hydrolyzed.
Low boiling hydrocarbon compounds such as furopan, butane and hexane can also be used. Suitable for 5 to 20 times higher foaming. However, since the strength of the foam according to the increase in the expansion ratio is drastically reduced, a problem remains. The handling of combustible gas requires explosion-proofing of facilities and buildings, leaving the problem that only large-scale operators can operate.
[配合方法、反応押出方法]
次に、本発明のポリエステル樹脂を配合する方法に付いて説明する。(A)成分のポリエステルは、通常のバージンペレット、回収したフレーク、粒状物、粉末、チップ等の任意形状のものが使用し得る。一般的には、主成分のポリエステルを乾燥する方が好ましい。各成分をタンブラーやヘンシェルミキサー等の混合機で混和させてから、トップフィード法として押出装置に供給する。炭素繊維が粉体状の場合に適する。加熱溶融する温度は、ポリエステルの融点の250度以上で300度以下であることが反応押出法の観点から望ましい。特に、280℃以下が好ましく、特に好ましくは265℃である。300℃を越えると炭素繊維の表面処理剤やサイジング剤の変質およびポリエステルの変色や熱分解が生じることがある。
上記の同時に混合する方法以外に、サイドフィード法として二軸押出装置に(A)成分のポリエステルと(C)成分の結合剤と(D)成分の触媒を供給して反応押出をしながら、二軸押出装置の出口部分に(B)成分の炭素繊維を注入して、炭素繊維の切断を防いで複合材を生産することが出来る。炭素繊維が短繊維の場合に適する。
反応押出装置としては、単軸押出機、二軸押出機、それらの組合せの二段押出機等を使用することができる。単軸押出機は、安価であり、炭素繊維が粉体状の場合に適する。二軸押出機は、高価であるが、短繊維の炭素繊維をサイドフィードする場合に適する。[Formulation method, reactive extrusion method]
Next, a method for blending the polyester resin of the present invention will be described. As the polyester (A), those having an arbitrary shape such as ordinary virgin pellets, recovered flakes, granules, powders and chips can be used. In general, it is preferable to dry the main component polyester. Each component is mixed with a mixer such as a tumbler or a Henschel mixer, and then supplied to the extrusion apparatus as a top feed method. Suitable when the carbon fiber is in powder form. It is desirable from the viewpoint of the reactive extrusion method that the temperature for melting by heating is 250 degrees or more and 300 degrees or less of the melting point of the polyester. In particular, it is preferably 280 ° C. or lower, particularly preferably 265 ° C. If it exceeds 300 ° C., the surface treatment agent or sizing agent of the carbon fiber may be altered, and the polyester may be discolored or thermally decomposed.
In addition to the simultaneous mixing method described above, as a side feed method, a polyester (A) component, a binder (C) component, and a catalyst (D) component are fed into a twin-screw extruder and subjected to reactive extrusion. The composite material can be produced by injecting the carbon fiber of the component (B) into the outlet portion of the shaft extrusion apparatus to prevent the carbon fiber from being cut. Suitable when the carbon fiber is a short fiber.
As the reactive extrusion apparatus, a single screw extruder, a twin screw extruder, a two-stage extruder of a combination thereof, or the like can be used. Single screw extruders are inexpensive and are suitable when the carbon fiber is in powder form. The twin screw extruder is expensive, but is suitable for side-feeding short carbon fibers.
本発明の高強度・軽量の低発泡体の用途例としては、当面は住宅の屋外デッキ資材および海洋構築物資材が想定される。特に、米国と欧州における住宅の屋外デッキ資材は年間260万トンに達する。従来は、天然木材に依存して来たが、南洋材や南米材の資源枯渇に直面して回復の見通しが無い。現在、木粉/ポリエチレンと木粉/ポリプロピレンの合成木材が使用されている。しかしながら、天然木材の強い強度(曲げ弾性率 6−14GPa)に比べると、木粉/ポリエチレン(1−3GPa)と木粉/ポリプロピレン(約5GPa)の合成木材の強度が弱すぎる。しかしながら、北米の合成木材の市場は約69万トン/2013年で木粉/ポリエチレン83パーセント、木粉/ポリプロピレン9%、木粉/塩化ビニル7%、その他1%とされている。
本発明の炭素繊維強化・改質ポリエステル樹脂は、固体成形体の強度が大きい(ZOLTEK 30%で曲げ弾性率 22GPa)であるので、その低倍率の発泡成型体の開発が期待されている。As an application example of the high-strength, lightweight low-foam material of the present invention, for the time being, residential outdoor deck materials and marine construction materials are assumed. In particular, the outdoor deck materials for houses in the US and Europe reach 2.6 million tons per year. Traditionally, it has relied on natural timber, but there is no prospect of recovery in the face of depletion of South and South American wood resources. Currently, wood flour / polyethylene and wood flour / polypropylene synthetic wood are used. However, the strength of synthetic wood of wood flour / polyethylene (1-3 GPa) and wood flour / polypropylene (about 5 GPa) is too weak compared to the strong strength of natural wood (flexural modulus 6-14 GPa). However, the synthetic wood market in North America is about 690,000 tons / 2013, with wood flour / polyethylene 83%, wood flour / polypropylene 9%, wood flour / vinyl chloride 7%, and others 1%.
Since the carbon fiber reinforced / modified polyester resin of the present invention has a high strength of a solid molded body (ZOLTEK 30% and a flexural modulus of 22 GPa), development of a low-magnification foam molded body is expected.
次に本発明を実施例に基づいて詳細に説明する。本発明のポリエステルおよびポリエステル・炭素繊維複合材についての評価方法は以下の通りである。
(1)PET等の固有粘度(IV値)の測定法
1,1,2,2ーテトラクロロエタンとフェノールの等重量の混合溶媒を使用し、キャノンフエンスケ粘度計で25℃にて測定した。または、メーカーのカタログ値を採用した。
(2)メルトフローレート(MFR)の測定法
JIS K7210の条件20に従い、温度280℃、または温度260℃、荷重2.16kgの条件で測定した。但し、樹脂は予め120℃×12時間または140℃×4時間で、熱風乾燥または真空乾燥されたものを使用した。
(3)比重の測定法
JIS K7112のA法(水中置換法)に従い、樹脂ペレットまたは成形体の小片についてアルコールを液体として測定した。または、JIS K7222の寸法測定法でも測定した。
(4)機械的強度の測定法
▲1▼試作ペレットが少量の場合は小型試験片を作成して実施した。
例えば、住友重機械工業(株)製の射出成形機SE18DUZ(型締め圧18トン、スクリュー径16mm)を使用し、成形温度270℃、金型温度35℃、冷却時間15−20秒の条件で成形した。
試験片の形状:引張試験片 JIS K7162 5A型(厚み2mm)
曲げ試験片 短冊型 80mm×10mm(厚み4mm)
▲2▼試作ペレットが多量の場合(3Kg以上)は多目的試験片を作成して実施した。
試験片の形状:ISO 20753、JIS K7139 A1型
全長さ120mm、厚み4mm、チャック部幅20mm、くびれ部幅10mm、 同その長さ80mm(Zランナー方式)
引張試験:引張強度は、試験速度2mm/分にて実施し、3−5点の平均値で評価した。ヤング率は、最大荷重の25%と75%の直線回帰により算出した(JIS K7073ほか)。
曲げ試験:曲げ強度は、3点曲げを試験速度5mm/分にて実施し、3−5点の平均値で評価した。
曲げ弾性率は、最大荷重の25%と75%の直線回帰により算出した(JIS K7074ほか)。
(5)酸性官能基量およびカルボキシル基量の測定法
JIS K 0070に準じ、Boehm法で測定した。炭素繊維またはポリエステルのサンプルに水酸化ナトリウム、炭酸水素ナトリウムを個々に加え、電位差自動測定装置を使用して塩酸溶液を用いて逆滴定をした。全酸性官能基量(全酸量)を水酸化ナトリウム添加後の塩酸溶液による逆滴定で、また強酸性官能基量(カルボキシル基量)を炭酸水素ナトリウム添加後の塩酸溶液による逆滴定で測定した。なお、弱酸性官能基量(フェノール系水酸基量)は、全酸量―カルボキシル基量から求めた。例えば、カルボキシル基量は、電池負極のカーボン材の表面では0.01−0.15mmol/g、PET樹脂で0.04以下m mol/gである。Next, the present invention will be described in detail based on examples. The evaluation methods for the polyester and the polyester / carbon fiber composite of the present invention are as follows.
(1) Measuring method of intrinsic viscosity (IV value) of PET, etc. Using a mixed solvent of equal weight of 1,1,2,2-tetrachloroethane and phenol, it was measured at 25 ° C. with a Canon Fuenske viscometer. Or, the manufacturer's catalog value was adopted.
(2) Measurement method of melt flow rate (MFR) According to the condition 20 of JIS K7210, it measured on condition of temperature 280 degreeC or temperature 260 degreeC, and load 2.16kg. However, the resin used was 120 ° C. × 12 hours or 140 ° C. × 4 hours in advance and dried with hot air or vacuum.
(3) Measuring method of specific gravity According to JIS K7112, Method A (submersion method), the resin pellets or small pieces of the molded body were measured with alcohol as a liquid. Or it measured also by the dimension measuring method of JISK7222.
(4) Measuring method of mechanical strength (1) When a small amount of prototype pellets was produced, a small test piece was prepared and carried out.
For example, using an injection molding machine SE18DUZ manufactured by Sumitomo Heavy Industries, Ltd. (with a clamping pressure of 18 tons and a screw diameter of 16 mm), the molding temperature is 270 ° C., the mold temperature is 35 ° C., and the cooling time is 15-20 seconds. Molded.
Shape of test piece: Tensile test piece JIS K7162 5A type (thickness 2 mm)
Bending specimen strip type 80mm x 10mm (thickness 4mm)
(2) When a large amount of prototype pellets (3 kg or more), a multi-purpose test piece was prepared and carried out.
Shape of test piece: ISO 20753, JIS K7139 A1 type, total length 120mm, thickness 4mm, chuck width 20mm, constriction width 10mm, length 80mm (Z runner method)
Tensile test: The tensile strength was measured at a test speed of 2 mm / min, and evaluated by an average value of 3-5 points. Young's modulus was calculated by linear regression of 25% and 75% of the maximum load (JIS K7073 and others).
Bending test: The bending strength was evaluated by an average value of 3 to 5 points by carrying out 3 point bending at a test speed of 5 mm / min.
The flexural modulus was calculated by linear regression of 25% and 75% of the maximum load (JIS K7074 et al.).
(5) Measuring method of the amount of acidic functional groups and the amount of carboxyl groups It measured with the Boehm method according to JISK0070. Sodium hydroxide and sodium hydrogen carbonate were individually added to a sample of carbon fiber or polyester, and back titration was performed using a hydrochloric acid solution using an automatic potentiometer. Total acidic functional group amount (total acid amount) was measured by back titration with hydrochloric acid solution after addition of sodium hydroxide, and strong acidic functional group amount (carboxyl group amount) was measured by back titration with hydrochloric acid solution after addition of sodium bicarbonate. . The weakly acidic functional group amount (phenolic hydroxyl group amount) was determined from the total acid amount-carboxyl group amount. For example, the amount of carboxyl groups is 0.01-0.15 mmol / g on the surface of the carbon material of the battery negative electrode, and 0.04 or less mmol / g for the PET resin.
本発明に係わる特徴的な素材についての製造例を示す。本発明の主たる構成要素である(B)成分の炭素繊維については、ポリエステル樹脂との密着性と改質剤との結合反応性のために酸性官能基およびカルボキシル基を含有させることが好ましい。なお、新品工業製品にも、大小はあるが酸性官能基およびカルボキシル基が含有されている。 The manufacture example about the characteristic raw material concerning this invention is shown. About the carbon fiber of the (B) component which is the main component of this invention, it is preferable to contain an acidic functional group and a carboxyl group for adhesiveness with a polyester resin and bond reactivity with a modifier. New industrial products also contain acidic functional groups and carboxyl groups, though large and small.
(B)成分の酸性官能基およびカルボキシル基を含有する再生炭素繊維の製造
[再生炭素繊維の焼成法およびアルカリ液の電解酸化法に依る製造例と分析例]
特許文献(特開2013−249386号)に準じて、航空機組立時に副生したCFRPの端材約30Kgを10cm角以下に裁断し、電気炉で400−500℃にて熱硬化性エポキシ樹脂部分を焼成除去して再生炭素繊維(集結体)約15Kgを得た。
再生炭素繊維(集結体)5gを500ccのビーカーに入れ、0.1mol/Lの水酸化ナトリウム水溶液200mLに浸漬させた。再生炭素繊維集結体側を陽極とし、陰極側をチタニウム電極として、3V×0.5Aにて直流電解反応を1時間実施した。この電解酸化処理に依り開繊した再生炭素繊維を中性になるまで水洗し、乾燥してから保管した。これを3回繰り返した。
再生炭素繊維1gを各200ccの三角フラスコに秤量し、0.1mol/Lの水酸化ナトリウム水溶液または炭酸水素ナトリウム水溶液の各50mLに浸漬させた。栓をしてからその2体を24時間浸透機にかけた。各容器の上澄み液5mLを0.05mol/L塩酸水溶液で滴定し、全酸量とカルボキシル基量とを同定した。このBoehm法に依る分析を焼成後の再生炭素繊維と新品炭素繊維についても実施し、その結果を比較して以下に示す。
カルボキシル基は、新品炭素繊維には極めて微量にしか存在しないが、本発明の焼成後の再生炭素繊維には0.03−0.05m mol/gも存在し、電解酸化後の再生炭素繊維にはその2−3倍の0.10m mol/g にまで増加していた。尚、PET樹脂では0.04以下m mol/gであるので、本発明の再生炭素繊維のカルボキシル基量は充分である。(B) Manufacture of Regenerated Carbon Fiber Containing Component Acidic Functional Group and Carboxyl Group [Production Examples and Analytical Examples Based on Firing Method of Regenerated Carbon Fiber and Electrolytic Oxidation Method of Alkaline Solution]
According to the patent document (Japanese Patent Laid-Open No. 2013-249386), about 30 kg of CFRP end material generated as a by-product during the assembly of the aircraft is cut to 10 cm square or less, and the thermosetting epoxy resin portion is cut at 400-500 ° C. in an electric furnace. About 15 kg of regenerated carbon fiber (aggregate) was obtained by firing and removal.
5 g of regenerated carbon fiber (aggregate) was placed in a 500 cc beaker and immersed in 200 mL of a 0.1 mol / L sodium hydroxide aqueous solution. Using the regenerated carbon fiber aggregate side as an anode and the cathode side as a titanium electrode, a direct current electrolysis reaction was carried out at 3 V × 0.5 A for 1 hour. The regenerated carbon fiber opened by this electrolytic oxidation treatment was washed with water until neutral, dried and stored. This was repeated three times.
1 g of regenerated carbon fiber was weighed in each 200 cc Erlenmeyer flask and immersed in 50 mL of a 0.1 mol / L sodium hydroxide aqueous solution or sodium hydrogen carbonate aqueous solution. After plugging, the two bodies were put on a permeator for 24 hours. The supernatant of each container (5 mL) was titrated with 0.05 mol / L hydrochloric acid aqueous solution to identify the total acid amount and the carboxyl group amount. The analysis based on the Boehm method was also performed on the regenerated carbon fiber and the new carbon fiber after firing, and the results are compared and shown below.
Carboxyl groups are present only in a very small amount in new carbon fibers, but 0.03-0.05 mmol / g is also present in the regenerated carbon fiber after firing according to the present invention. Increased 2-3 times to 0.10 mmol / g. In addition, since it is 0.04 or less mmol / g in PET resin, the amount of carboxyl groups of the regenerated carbon fiber of the present invention is sufficient.
上記で得た再生炭素繊維集結体約1Kgを10Lの電解槽に入れ、水酸化カリウム水溶液を張込んだ。この再生炭素繊維集結体を銅製の陽極側とし、陰極側をチタニウム製電極として、低電流・低電圧の直流電解反応を4時間実施した。再生炭素繊維集結体は、殆どが開繊していたが、更に機械的に開繊して黒色光沢性の再生炭素繊維を得た。繊維長は、5−10cmであった。約50%のアルカリ水を含む再生炭素繊維を酸性溶液で中和し、水洗した後に180℃で一夜乾燥して保管した。同様操作を数回繰り返し、再生炭素繊維5Kgを製造した。 About 1 kg of the regenerated carbon fiber aggregate obtained above was placed in a 10 L electrolytic cell, and a potassium hydroxide aqueous solution was filled. The regenerated carbon fiber aggregate was used as a copper anode side, and the cathode side was used as a titanium electrode, and a low current / low voltage DC electrolytic reaction was carried out for 4 hours. Although most of the regenerated carbon fiber aggregates were opened, they were further mechanically opened to obtain a black glossy regenerated carbon fiber. The fiber length was 5-10 cm. Regenerated carbon fiber containing about 50% alkaline water was neutralized with an acidic solution, washed with water, dried at 180 ° C. overnight and stored. The same operation was repeated several times to produce 5 kg of regenerated carbon fiber.
(C)成分および(D)成分の改質剤マスターバッチ(MB−G)
[(C)成分および(D)成分にPETGを基体に使用した改質剤マスターバッチ(MB−G)の製造例]
改質剤マスターバッチ(MB−G)は、通常(C)成分の結合剤マスターバッチおよび(D)成分の触媒マスターバッチについて、それらペレットの1対1の配合から構成される。
[1](C)成分の結合剤マスターバッチの製造例
(C)成分の結合剤として、分子内に2個以上のエポキシ基を含有する多官能エポキシ化合物の代表例として日油(株)の「マープルーフ G−0130SP」(エポキシ数 10個/数平均分子量、数平均分子量5,500、エポキシ等量530g/eq.:略称「EP‐A」)を採用し、基体樹脂としてイーストマン社の非結晶性コポリエステル「Eastar PETG 6763」を使用した。
まず、このEP‐Aの15重量部(15Kg、白色粉末)、基体樹脂としてPETG 6763の粉砕された白色粉末50重量部(50Kg)、PETG 6763の透明ペレット50重量部(50Kg)および展着剤としての流動パラフィン0.1重量部(0.10Kg)の配合物115.1Kgをヘンシェルミキサーで混合した。
東芝機械(株)製の同方向2軸押出機(スクリュー口径70mm、L/D=32、2ベント式)を使用し、シリンダーとダイスの設定温度を100−220℃およびスクリュー回転数 160rpmとし、配合物115Kgをホッパーから容量フィーダーを経てトップフィードした。ストランド金型の樹脂圧力は4.9−5.0MPaで、金型出口から水盤中へのストランドは直線状で安定し、吐出速度は117Kg/hであった。
この温かい白色ペレットA剤((C)成分の結合剤マスターバッチ)を直ちに70℃のホッぱーに移送して一夜流動乾燥して後に、紙・アルミ・ポリエチレンの三層防湿袋に貯蔵した。収量は107Kgであった。(C) Component and (D) component modifier master batch (MB-G)
[Manufacturing example of modifier masterbatch (MB-G) using PETG as a substrate for component (C) and component (D)]
The modifier master batch (MB-G) is usually composed of a one-to-one blend of the pellets for the binder master batch of component (C) and the catalyst master batch of component (D).
[1] Example of production of binder masterbatch of component (C) As a binder of component (C), as a representative example of a polyfunctional epoxy compound containing two or more epoxy groups in the molecule, NOF Corporation's Employing “Marproof G-0130SP” (epoxy number 10 / number average molecular weight, number average molecular weight 5,500, epoxy equivalent 530 g / eq .: abbreviation “EP-A”) A non-crystalline copolyester “Eastar PETG 6763” was used.
First, 15 parts by weight (15 Kg, white powder) of this EP-A, 50 parts by weight (50 Kg) of pulverized white powder of PETG 6763 as a base resin, 50 parts by weight (50 Kg) of transparent pellets of PETG 6763, and a spreading agent 115.1 kg of the liquid paraffin 0.1 wt. (0.10 kg) was mixed with a Henschel mixer.
Using the same direction twin screw extruder (screw diameter 70 mm, L / D = 32, 2 vent type) manufactured by Toshiba Machine Co., Ltd., the set temperature of the cylinder and the die is 100-220 ° C. and the screw rotation speed is 160 rpm, 115 kg of the blend was top fed from the hopper via a volume feeder. The resin pressure of the strand mold was 4.9 to 5.0 MPa, the strand from the mold outlet to the water basin was linear and stable, and the discharge speed was 117 kg / h.
This warm white pellet A agent (the binder masterbatch of component (C)) was immediately transferred to a hopper at 70 ° C., fluidized and dried overnight, and then stored in a three-layer moisture-proof bag of paper, aluminum, and polyethylene. Yield was 107 kg.
[2](D)成分の触媒マスターバッチの製造例
結合反応用触媒の代表例としてのステアリン酸カルシウム50%、ステアリン酸リチウム25%およびステアリン酸ナトリウム25%から成る白色粉末状複合触媒(略称:「C10」)10重量部(10Kg)、基体樹脂としてPETG 6763の粉砕された白色粉末50重量部(50Kg)、PETG 6763の透明ペレット50重量部(50Kg)および展着剤としての流動パラフィン0.2重量部(0.20Kg)の配合物110.2Kgをヘンシェルミキサーで混合した。これを押出機上のホッパーに移納した。前記とほぼ同様操作にて押出を実施した。ストランド金型の樹脂圧力は7.1−9.6MPaで、金型出口から水盤中への白色ストランドは直線状で安定し、吐出速度は200Kg/hであった。 この温かい白色ペレットB剤((D)成分の触媒マスターバッチ)を直ちに70℃のホッぱーに移送して一夜流動乾燥して後に、紙・アルミ・ポリエチレンの三層防湿袋に貯蔵した。収量は102Kgであった。
この(C)成分の結合剤マスターバッチA剤100Kgおよび(D)成分の触媒マスターバッチB剤100Kgの白色ペレットを1対1に配合し、改質剤マスターバッチ(MB−G)200Kgを製造した。[2] Example of production of catalyst masterbatch of component (D) White powdery composite catalyst (abbreviation: "" comprising 50% calcium stearate, 25% lithium stearate and 25% sodium stearate as a representative example of the catalyst for the binding reaction. C10 ") 10 parts by weight (10 Kg), 50 parts by weight (50 Kg) of pulverized white powder of PETG 6763 as a base resin, 50 parts by weight (50 Kg) of transparent pellets of PETG 6863, and liquid paraffin 0.2 as a spreading agent Part by weight (0.20 Kg) of the formulation, 110.2 Kg, was mixed with a Henschel mixer. This was transferred to a hopper on the extruder. Extrusion was carried out in substantially the same manner as described above. The resin pressure of the strand mold was 7.1 to 9.6 MPa, the white strand from the mold outlet to the water basin was linear and stable, and the discharge speed was 200 kg / h. This warm white pellet B agent (catalyst masterbatch of component (D)) was immediately transferred to a hopper at 70 ° C., fluidized and dried overnight, and then stored in a three-layer moisture-proof bag of paper, aluminum and polyethylene. Yield was 102 kg.
100 kg of binder master batch A agent of component (C) and 100 kg of catalyst master batch B agent of component (D) were blended one-on-one to produce 200 kg of modifier master batch (MB-G). .
(C)成分および(D)成分の改質剤マスターバッチ(MB−E)
[(C)成分および(D)成分にポリエチレンを基体に使用した改質剤マスターバッチ(MB−E)の製造例]
改質剤マスターバッチ(MB−E)は、通常(C)成分の結合剤マスターバッチおよび(D)成分の触媒マスターバッチについて、それらペレットの2対1の配合から構成される。
[1](C)成分の結合剤マスターバッチの製造例
基体樹脂としてPETGの代わりに、低密度ポリエチレンの粉砕物(MI 2)を使用し、(C)成分の結合剤:略称EP‐Aの15重量部および結晶核剤としてタルク1重量部の濃度にして、製造例2と同様に実施した。この温かい白色ペレットAE剤((C)成分の結合剤マスターバッチ)を直ちに70℃のホッパーに移送して一夜流動乾燥して後に、紙・アルミ・ポリエチレンの三層防湿袋に貯蔵した。収量は約100Kgであった。
[2](D)成分の触媒マスターバッチの製造例
基体樹脂としてPETGの代わりに、低密度ポリエチレンの粉砕物(MI 2)を使用し、(D)成分の複合触媒:略称C10の10重量部の濃度にして、製造例2と同様に実施した。この温かい白色ペレットBE剤((D)成分の触媒マスターバッチ)を直ちに70℃のホッパーに移送して一夜流動乾燥して後に、紙・アルミ・ポリエチレンの三層防湿袋に貯蔵した。収量は約100Kgであった。
この(C)成分の結合剤マスターバッチAE剤および(D)成分の触媒マスターバッチBE剤の白色ペレットを2対1に配合し、改質剤マスターバッチ(MB−E)150Kgを製造した。(C) Component and (D) component modifier masterbatch (MB-E)
[Production Example of Modifier Master Batch (MB-E) Using Polyethylene as Base for Component (C) and Component (D)]
The modifier masterbatch (MB-E) is usually composed of a 2 to 1 blend of the pellets for the binder masterbatch of component (C) and the catalyst masterbatch of component (D).
[1] Example of production of binder masterbatch of component (C) A pulverized product of low density polyethylene (MI 2) was used instead of PETG as a base resin, and a binder of component (C): abbreviation EP-A The same procedure as in Production Example 2 was carried out with a concentration of 15 parts by weight and 1 part by weight of talc as a crystal nucleating agent. This warm white pellet AE agent (the binder masterbatch of component (C)) was immediately transferred to a hopper at 70 ° C., fluidized and dried overnight, and then stored in a three-layer moisture-proof bag of paper, aluminum, and polyethylene. The yield was about 100 kg.
[2] Production example of catalyst master batch of component (D) Low-density polyethylene pulverized product (MI 2) was used as the base resin instead of PETG, and composite catalyst of component (D): 10 parts by weight of abbreviation C10 This was carried out in the same manner as in Production Example 2. This warm white pellet BE agent (catalyst masterbatch of component (D)) was immediately transferred to a hopper at 70 ° C., fluidized and dried overnight, and stored in a three-layer moisture-proof bag of paper, aluminum, and polyethylene. The yield was about 100 kg.
The binder master batch AE agent of component (C) and the white pellets of catalyst master batch BE agent of component (D) were blended 2 to 1 to produce 150 kg of modifier master batch (MB-E).
[ペット樹脂と炭素繊維チョップ15%と改質剤から成るZOLTEK炭素繊維強化・改質ペット樹脂ペレットR1の製造]
A成分のポリエステルとして汎用ペット樹脂ペレット(ボトルグレード: 台湾・南亜3802T、IV値0.80)100重量部(乾燥後の水分含有率 約100ppm以下)とC成分の結合剤として多官能エポキシ樹脂0.60重量部、D成分の結合反応の混合触媒0.16重量部とE成分の展着剤としての流動パラフィン0.06重量部をスーパーミキサーで均一混合した。これらを主体樹脂押出用の第1ホッパーに納入した。一方、B成分の炭素繊維としてLT炭素繊維チョップ(米国・ZOLTEK社の太籐(LT)レーヨンからのPAN系炭素繊維「Panex35」6mm長)をサイドフィーダー用の第2ホッパーに納入した
東芝機械(株)製の同方向2軸押出機(口径60mm、1ベント式)を使用し、この押出機の10ブロックから成るシリンダ−とダイスの設定温度を150−270℃およびスクリュー回転数150rpmとした。重量式計量フィーダーを使用し、第1ホッパーからA成分とC成分とD成分等の混合樹脂を100Kg/hの速度で反応押出を行い、また第2ホッパーから炭素繊維チョップを17.6Kg/h(炭素繊維の含有量15%)の速度で連続的にサイドフィードした。
ストランドを口径3mmの斜め下方向のノズルから水中に連続的に押出し、回転カッタ‐で切断して黒色樹脂ペレットR1約180Kgを製造した。金型出口から水盤中へのストランドは直線状であり溶融張力が増加していた。その形状は、円柱状で直径約3.4mm×長さ約6mmであった。また、MFR(260℃、荷重2.16Kg)は、6.2g/10分であった。
この炭素繊維強化・改質ペット樹脂の黒色ペレットR1を120℃・一夜熱風乾燥し、日精樹脂工業(株)製のハイブリッド式射出成形機FNZ60(型締め圧140トン、スクリュー径60mm)を使用し、成形温度280℃、金型温度130−145℃、射出圧力53MPa、射出速度12mm/s、スクリュー回転数80rpmおよび冷却時間20秒の条件にて、下記の射出成形体を成形した。
多目的試験片の形状:ISO 20753、JIS K7139 A1型
全長さ120mm、厚み4mm、チャック部の幅20mm、くびれ部の幅10mm、
同その長さ80mm(Zランナー方式)
尚、このZOITEK炭素繊維(CF15%)強化・改質ペット樹脂ペレットR1は、バリの副生が無くて良好な射出成型性を示した。試験片の表面は平滑で艶があった。引張速度2mm/分および曲げ速度5mm/分での試験を実施した。このペレットの物性値を表1に示した。
製造例8のべっと樹脂のみの透明ペレットP1に比べると、本例R1のZOLTEK炭素繊維約15%の混合効果は、引張強さ2.9倍、ヤング率4.1倍、曲げ強さ3.5倍、曲げ弾性率5.7倍である。[Production of ZOLTEK Carbon Fiber Reinforced / Modified Pet Resin Pellets R1 Consisting of 15% Pet Resin, Carbon Fiber Chop, and Modifier]
General-purpose pet resin pellets (bottle grade: Taiwan / South Asia 3802T, IV value 0.80) as polyester for component A, polyfunctional epoxy resin as binder for component C and 100 parts by weight (moisture content after drying of about 100 ppm or less) 0.60 part by weight, 0.16 part by weight of the mixed catalyst for the D component binding reaction and 0.06 part by weight of liquid paraffin as a spreading agent for the E component were uniformly mixed by a super mixer. These were delivered to the first hopper for main resin extrusion. On the other hand, as the carbon fiber of component B, Toshiba carbon fiber chops (PAN-based carbon fiber “Panex35” 6 mm long from Taito (LT) rayon from ZOLTEK, USA) were delivered to the second hopper for the side feeder. The same direction twin screw extruder (caliber: 60 mm, 1 vent type) manufactured by Co., Ltd. was used, and the set temperature of the cylinder and the die consisting of 10 blocks of this extruder was 150 to 270 ° C. and the screw rotation speed was 150 rpm. Using a gravimetric weighing feeder, a mixed resin such as A component, C component, and D component is reactively extruded from the first hopper at a rate of 100 kg / h, and a carbon fiber chop is fed from the second hopper to 17.6 kg / h. Side feed was continuously performed at a rate of (carbon fiber content: 15%).
The strand was continuously extruded into water from a diagonally downward nozzle having a diameter of 3 mm and cut with a rotary cutter to produce about 180 kg of black resin pellet R1. The strand from the mold outlet to the basin was linear and the melt tension increased. The shape was cylindrical and the diameter was about 3.4 mm × length was about 6 mm. Moreover, MFR (260 degreeC, load 2.16Kg) was 6.2g / 10min.
This carbon fiber reinforced / modified pet resin black pellet R1 is dried with hot air overnight at 120 ° C., and a hybrid injection molding machine FNZ60 manufactured by Nissei Plastic Industry Co., Ltd. (clamping pressure 140 tons, screw diameter 60 mm) is used. The following injection molded article was molded under the conditions of a molding temperature of 280 ° C., a mold temperature of 130 to 145 ° C., an injection pressure of 53 MPa, an injection speed of 12 mm / s, a screw rotation speed of 80 rpm, and a cooling time of 20 seconds.
Shape of multi-purpose test piece: ISO 20553, JIS K7139 A1 type, total length 120 mm, thickness 4 mm, chuck portion width 20 mm, constriction portion width 10 mm,
Same length 80mm (Z runner method)
This ZOITEK carbon fiber (CF15%) reinforced / modified pet resin pellet R1 showed no injection by-product and showed good injection moldability. The surface of the test piece was smooth and glossy. The test was performed at a tensile speed of 2 mm / min and a bending speed of 5 mm / min. The physical property values of the pellets are shown in Table 1.
Compared to the sticky resin-only transparent pellet P1 of Production Example 8, the mixing effect of ZOLTEK carbon fiber of about 15% in this Example R1 is 2.9 times the tensile strength, 4.1 times the Young's modulus, and the bending strength. It is 3.5 times and the flexural modulus is 5.7 times.
[ペット樹脂と炭素繊維チョップ30%と改質剤から成るZOLTEK炭素繊維強化・改質ペット樹脂ペレットR2の製造] ZOL 30%
前記の製造例4とほぼ同一条件にて、ペレットR2の製造を実施した。但し、炭素維繊チョップの含有量を約30%にする為にサイドフィードの速度を2倍にした。A成分のポリエステルとして汎用ペット樹脂ペレット(ボトルグレード: 台湾・南亜3802T、IV値0.80)100重量部(乾燥後の水分含有率 約100ppm以下)とC成分の結合剤として多官能エポキシ樹脂0.56重量部、D成分の結合反応の混合触媒0.16重量部とE成分の展着剤としての流動パラフィン0.06重量部をスーパーミキサーで均一混合した。これらを主体樹脂押出用の第1ホッパーに納入した。一方、B成分の炭素繊維としてLT炭素繊維チョップ(米国・ZOLTEK社の太籐PAN系炭素繊維「Panex35」6mm長)をサイドフィーダー用の第2ホッパーに納入した。
同方向2軸押出機(口径60mm、1ベント式)を使用し、この押出機の10ブロックから成るシリンダ−とダイスの設定温度を150−270℃およびスクリュー回転数 150rpmとした。重量式計量フィーダーを使用し、第1ホッパーからA成分とC成分とD成分等の混合樹脂を100Kg/hの速度で反応押出を行い、また第2ホッパーから炭素繊維チョップを42Kg/h(炭素繊維の含有量30%)の速度で連続的にサイドフィードした。
ストランドを口径3mmの斜め下方向のノズルから水中に連続的に押出し、回転カッタ‐で切断して黒色樹脂ペレットR2約250Kgを製造した。金型出口から水盤中へのストランドは直線状であり溶融張力が増加していた
その形状は、円柱状で直径約3.4mm×長さ約6mmであった。また、MFR(260℃、荷重2.16Kg)は、6.7g/10分であった。この炭素繊維(CF15%)強化・改質ペット樹脂ペレットR2は、バリの副生が無くて良好な射出成型性を示し、試験片の表面はほぼ平滑で艶があった。このペレットの物性値を表1に示した。製造例8のPET樹脂のみの透明ペレットP1に比べると、本例R2のZOLTEK炭素繊維約30%の混合効果は、引張強さ3.5倍、ヤング率6.1倍、曲げ強さ3.9倍、曲げ弾性率10.3倍であった。射出成形性が良好で、機械的強度が大幅改善された炭素繊維強化・改質ペット樹脂ペレットが得られた。[Production of ZOLTEK Carbon Fiber Reinforced / Modified Pet Resin Pellets R2 Composed of PET Resin, Carbon Fiber Chop 30%, and Modifier] ZOL 30%
Pellets R2 were produced under substantially the same conditions as in Production Example 4 above. However, the side feed speed was doubled to reduce the carbon fiber chop content to about 30%. General-purpose pet resin pellets (bottle grade: Taiwan / South Asia 3802T, IV value 0.80) as polyester for component A, polyfunctional epoxy resin as binder for component C and 100 parts by weight (moisture content after drying of about 100 ppm or less) 0.56 parts by weight, 0.16 parts by weight of the mixed catalyst for the D component binding reaction and 0.06 parts by weight of liquid paraffin as the E component spreading agent were uniformly mixed by a super mixer. These were delivered to the first hopper for main resin extrusion. Meanwhile, an LT carbon fiber chop (a rattan PAN-based carbon fiber “Panex 35”, 6 mm long from ZOLTEK, USA) as a B-component carbon fiber was delivered to a second hopper for a side feeder.
A twin-screw extruder in the same direction (caliber 60 mm, 1 vent type) was used, and the set temperature of the cylinder and die comprising 10 blocks of this extruder was 150 to 270 ° C. and the screw rotation speed was 150 rpm. Using a gravimetric weighing feeder, a mixed resin such as A component, C component, and D component is reactively extruded from the first hopper at a rate of 100 Kg / h, and a carbon fiber chop from the second hopper is 42 Kg / h (carbon Side feed was continuously performed at a rate of 30% fiber content).
The strand was continuously extruded into water from an obliquely downward nozzle having a diameter of 3 mm, and cut with a rotary cutter to produce about 250 kg of black resin pellet R2. The strand from the mold outlet to the water basin was linear and the melt tension was increased. The shape of the strand was cylindrical and the diameter was about 3.4 mm × length was about 6 mm. Moreover, MFR (260 degreeC, load 2.16Kg) was 6.7 g / 10min. This carbon fiber (CF 15%) reinforced / modified pet resin pellet R2 showed no injection by-product and showed good injection moldability, and the surface of the test piece was almost smooth and glossy. The physical property values of the pellets are shown in Table 1. Compared with the transparent pellet P1 made only of the PET resin of Production Example 8, the mixing effect of ZOLTEK carbon fiber of about 30% of this Example R2 is 3.5 times the tensile strength, 6.1 times the Young's modulus, and 3 times the bending strength. It was 9 times and the flexural modulus was 10.3 times. Carbon fiber reinforced / modified PET resin pellets with good injection moldability and greatly improved mechanical strength were obtained.
[ペット樹脂と回収炭素繊維チョップ約15%と改質剤マスターバッチから成る回収炭素繊維強化・改質ペット樹脂ペレットR3の製造]
A成分のポリエステルとして市販ペット(PET)樹脂ペレット(汎用ボトルグレード: IV値0.80、MFR 35g/10分、280℃・2.16Kg)100重量部(120Kg;120℃・12時間での熱風乾燥後の水分含有率 約100ppm)と改質剤マスターバッチ(MB−G:PETG基体、製造例2)6重量部(7.2Kg;C成分の結合体としての多官能エポキシ樹脂:EP‐Aの0.45重量部、D成分の結合反応触媒:C10の0.30重量部)とをタンブラーを使用して、30rpm×10分間にわたり混合した。これらを第1ホッパーに納入した。
B成分の炭素繊維として回収炭素繊維チョップ(ボビン巻のPAN系炭素繊維の回収品を集めて、6mm長に裁断したもの。40Kg)を第2ホッパーに納入した。
ドイツ・ベルストルフ社製の同方向2軸押出機(ZE40E:スクリュー口径42mm、L/D=38)を使用し、この押出機の10ブロックから成るシリンダ−とダイスの設定温度を150−270℃およびスクリュー回転数 100rpmとし、回収炭素繊維チョップを第5ブロックに連続的に注入した。
重量式計量単軸フィーダーを使用し、第1ホッパーからA成分とC成分とD成分の混合樹脂ペレットを18.02Kg/hの速度で、また第2ホッパーから回収炭素繊維チョップを3.0Kg/h(炭素繊維の含有量14.3%)の速度で押出機に投入した。
ストランドを口径3mmの斜め下方向のノズルから三本を水中に連続的に押出し、引取り速度20m/分にて、回転カッタ‐で切断して黒色樹脂ペレットR1を製造した。ストランド金型の樹脂圧力は0.90−1.2MPaで、金型出口から水盤中へのストランドは直線状であり溶融張力が増加していた。
この温かい黒色樹脂ペレットゅ収量は(20.6Kg)R3を直ちに120℃一夜熱風乾燥して後に、紙・アルミ・ポリエチレンの三層防湿袋に貯蔵した。その形状は、円柱状で直径約2.5mm×長さ約4.5mmであった。また、MFR(280℃、荷重2.16Kg)は、35g/10分であった。[Manufacture of recovered carbon fiber reinforced / modified pet resin pellets R3 consisting of approximately 15% PET resin and recovered carbon fiber chop and a master batch of modifier]
Commercially available PET (PET) resin pellets (polyester bottle grade: IV value 0.80, MFR 35 g / 10 min, 280 ° C., 2.16 Kg) as component A polyester 100 parts by weight (120 Kg; hot air at 120 ° C. for 12 hours Moisture content after drying of about 100 ppm) and modifier masterbatch (MB-G: PETG substrate, Production Example 2) 6 parts by weight (7.2 Kg; polyfunctional epoxy resin as conjugate of component C: EP-A And 0.45 parts by weight of D component coupling reaction catalyst: 0.30 parts by weight of C10) were mixed using a tumbler at 30 rpm × 10 minutes. These were delivered to the first hopper.
A recovered carbon fiber chop (collected bobbin-wound PAN-based carbon fiber and cut into 6 mm length, 40 kg) was delivered to the second hopper as the B component carbon fiber.
The same direction twin screw extruder (ZE40E: screw diameter 42 mm, L / D = 38) manufactured by Berstolf, Germany, was used, and the set temperature of the cylinder and the die consisting of 10 blocks of this extruder was 150-270 ° C. and The screw rotation speed was 100 rpm, and the recovered carbon fiber chop was continuously injected into the fifth block.
Using a gravimetric weighing single screw feeder, mixed resin pellets of A component, C component and D component from the first hopper at a speed of 18.02 kg / h, and recovered carbon fiber chop from the second hopper at 3.0 kg / h It was charged into the extruder at a rate of h (carbon fiber content 14.3%).
Three strands were continuously extruded into water from a diagonally downward nozzle having a diameter of 3 mm, and cut with a rotary cutter at a take-up speed of 20 m / min to produce a black resin pellet R1. The resin pressure of the strand mold was 0.90 to 1.2 MPa, and the strand from the mold outlet to the basin was linear and the melt tension increased.
The yield of this warm black resin pellet was (20.6 kg) R3 was immediately dried in hot air at 120 ° C. overnight and stored in a three-layer moisture-proof bag of paper, aluminum and polyethylene. The shape was cylindrical and had a diameter of about 2.5 mm and a length of about 4.5 mm. Moreover, MFR (280 degreeC, load 2.16Kg) was 35 g / 10min.
この回収炭素繊維(15%)強化・改質ペット樹脂の黒色ペレットR3を真空下に再乾燥し、住友重機械工業(株)製の射出成形機SE18DUZ(型締め圧18トン、スクリュー径16mm/SLスクリュー)を使用し、成形温度270−280℃、金型温度37−38℃、射出圧力64−70MPa、射出速度20mm/s、スクリュー回転数100rpmおよび冷却時間15秒の条件にて、下記の射出成形体を成形した。
射出成形体の形状:引張試験用小型片 JIS K7162 5A型(厚み2mm)
また、同じ成形装置を使用し、ほぼ同様条件ではあるが、射出圧力115−123MPaおよび冷却時間20秒の条件にて、下記の射出成形体を成形した
射出成形体の形状:曲げ試験用小型片の短冊型 長さ80mm×巾10mm(厚み4mm)両者共、バリの副生が無くて良好な射出成型性を示した。このペレットR3の物性値を表2に示した。製造例8のペっと樹脂のみの透明ペレットP1に比べると、引張強さ2.0倍、ヤング率2.1倍、曲げ強さ2.3倍、曲げ弾性率3.9倍であった。This recovered carbon fiber (15%) reinforced / modified pet resin black pellet R3 was re-dried under vacuum, and an injection molding machine SE18DUZ manufactured by Sumitomo Heavy Industries, Ltd. (clamping pressure 18 tons, screw diameter 16 mm / SL screw), molding temperature 270-280 ° C., mold temperature 37-38 ° C., injection pressure 64-70 MPa, injection speed 20 mm / s, screw rotation speed 100 rpm, and cooling time 15 seconds. An injection molded body was molded.
Shape of injection-molded body: small piece for tensile test JIS K7162 5A type (thickness 2 mm)
In addition, the same molding apparatus was used and the following injection molded body was molded under the conditions of almost the same conditions but with an injection pressure of 115 to 123 MPa and a cooling time of 20 seconds. Shape of injection molded body: small piece for bending test The strip type was 80 mm long × 10 mm wide (thickness 4 mm). Both showed no injection of burrs and showed good injection moldability. The physical properties of the pellet R3 are shown in Table 2. Compared to the transparent pellet P1 made only of Pette resin in Production Example 8, the tensile strength was 2.0 times, Young's modulus was 2.1 times, flexural strength was 2.3 times, and flexural modulus was 3.9 times. .
[ペット樹脂と回収炭素繊維チョップ約30%と改質剤マスターバッチから成る回収炭素繊維強化ペット樹脂ペレットR4の製造]
前記の製造例6とほぼ同一条件にて、ペレットR4の製造を実施した。但し、回収炭素維繊チョップの含有量を約30%にする為にその供給速度を2倍にし、ペット樹脂の供給速度を低下させた。
即ち、A成分のポリエステルとして市販ペット(PET)樹脂ペレット(汎用ボトルグレード:IV値0.80、MFR 25g/10分、280℃・2.16Kg)100重量部(120Kg;120℃・12時間での熱風乾燥後の水分含有率 約100ppm)と改質剤マスターバッチ(MB−G:PETG基体、製造例2)6重量部(7.2Kg;C成分の結合体として多官能エポキシ樹脂0.45重量部、D成分の結合反応触媒0.30重量部)とをタンブラーを使用して、30rpm×10分間にわたり混合した。これらを第1ホッパーに納入した。B成分の炭素繊維として回収炭素繊維チョップ(ボビン巻のPAN系炭素繊維の回収品を集めて、6mm長に裁断したもの。40Kg)を第2ホッパーに納入した。
ドイツ・ベルストルフ社製の同方向2軸押出機(ZE40E:スクリュー口径42mm、L/D=38)を使用し、この押出機の10ブロックから成るシリンダ−とダイスの設定温度を150−270℃およびスクリュー回転数 150rpmとし、回収炭素繊維チョップを第5ブロックに連続的に注入した。
重量式計量単軸フィーダーを使用し、第1ホッパーからA成分とC成分とD成分の混合樹脂ペレットを14.84Kg/hの速度で、また第2ホッパーから回収炭素繊維チョップを6.0Kg/h(炭素繊維の含有量28.8%)の速度で押出機に投入した。
ストランドを口径3mmの斜め下方向のノズルから三本を水中に連続的に押出し、引取り速度20m/分にて、回転カッタ‐で切断して黒色樹脂ペレットR2を製造した。ストランド金型の樹脂圧力は1.1−1.2MPaで、金型出口から水盤中へのストランドは直線状であり溶融張力が増加していた。
この温かい黒色樹脂ペレットR465Kgを直ちに120℃一夜熱風乾燥して後に、紙・アルミ・ポリエチレンの三層防湿袋に貯蔵した。その形状は、円柱状で直径約3mm×長さ約5mmであった。また、MFR(280℃、荷重2.16Kg)は、25g/10分であった。
この黒色ペレットR4を真空下に再乾燥し、住友重機械工業(株)製の射出成形機SE18DUZ(型締め圧18トン、スクリュー径16mm/SLスクリュー)を使用し、製造例6とほぼ同様条件ではあるが、射出圧力116−121MPaの条件にて、下記の射出成形体を成形した。射出成形体の形状:引張試験片用 JIS K7162 5A型(厚み2mm)。また、同じ成形装置を使用し、製造例6とほぼ同様条件ではあるが、射出圧力120−124MPaの条件にて、下記の射出成形体を成形した:射出成形体の形状:曲げ試験片用の短冊型 長さ80mm×巾10mm(厚み4mm)。
尚、この炭素繊維強化ペット樹脂ペレットR6は、製造例8のPET樹脂のみの透明ペレットP1に比べると、回収炭素繊維(6mm長のチョップ)約30%の混合効果は、引張強さ2.4倍、ヤング率5.0倍、曲げ強さ2.8倍、曲げ弾性率6.8倍であった。[Manufacture of recovered carbon fiber reinforced PET resin pellet R4 consisting of approximately 30% PET resin and recovered carbon fiber chop and a master batch of modifier]
Pellets R4 were produced under substantially the same conditions as in Production Example 6 above. However, in order to reduce the content of the recovered carbon fiber chop to about 30%, the supply rate was doubled to reduce the supply rate of the pet resin.
That is, as a polyester of component A, commercially available PET (PET) resin pellets (general-purpose bottle grade: IV value 0.80, MFR 25 g / 10 minutes, 280 ° C., 2.16 Kg) 100 parts by weight (120 Kg; 120 ° C., 12 hours) Water content after hot air drying of about 100 ppm) and modifier masterbatch (MB-G: PETG substrate, Production Example 2) 6 parts by weight (7.2 Kg; polyfunctional epoxy resin 0.45 as a C component conjugate) Parts by weight and 0.30 parts by weight of the D component coupling reaction catalyst) were mixed using a tumbler at 30 rpm × 10 minutes. These were delivered to the first hopper. A recovered carbon fiber chop (collected bobbin-wound PAN-based carbon fiber and cut into 6 mm length, 40 kg) was delivered to the second hopper as the B component carbon fiber.
The same direction twin screw extruder (ZE40E: screw diameter 42 mm, L / D = 38) manufactured by Berstolf, Germany, was used, and the set temperature of the cylinder and the die consisting of 10 blocks of this extruder was 150-270 ° C. and The screw rotation speed was 150 rpm, and the recovered carbon fiber chop was continuously injected into the fifth block.
Using a gravimetric weighing single screw feeder, mixed resin pellets of A component, C component and D component from the first hopper at a speed of 14.84 kg / h, and recovered carbon fiber chop from the second hopper to 6.0 kg / The extruder was charged at a rate of h (carbon fiber content: 28.8%).
Three strands were continuously extruded into water from an obliquely downward nozzle having a diameter of 3 mm, and cut with a rotary cutter at a take-up speed of 20 m / min to produce black resin pellets R2. The resin pressure of the strand mold was 1.1 to 1.2 MPa, and the strand from the mold outlet to the water basin was linear and the melt tension increased.
This warm black resin pellet R465 Kg was immediately dried with hot air overnight at 120 ° C. and then stored in a three-layer moisture-proof bag of paper, aluminum, and polyethylene. The shape was cylindrical and had a diameter of about 3 mm and a length of about 5 mm. Moreover, MFR (280 degreeC, load 2.16Kg) was 25 g / 10min.
This black pellet R4 was re-dried under vacuum, using an injection molding machine SE18DUZ manufactured by Sumitomo Heavy Industries, Ltd. (clamping pressure: 18 tons, screw diameter: 16 mm / SL screw), under substantially the same conditions as in Production Example 6. However, the following injection-molded article was molded under the condition of an injection pressure of 116 to 121 MPa. Shape of injection-molded body: JIS K7162 5A type (thickness 2 mm) for tensile test pieces. Further, the same molding apparatus was used, and the following injection molded body was molded under the conditions of injection pressure 120 to 124 MPa under substantially the same conditions as in Production Example 6: Shape of injection molded body: for bending test piece Strip type Length 80 mm x width 10 mm (thickness 4 mm).
This carbon fiber reinforced pet resin pellet R6 has a mixed strength of about 30% recovered carbon fiber (6 mm long chop) compared to the transparent pellet P1 made only of PET resin in Production Example 8, and has a tensile strength of 2.4. The Young's modulus was 5.0 times, the flexural strength was 2.8 times, and the flexural modulus was 6.8 times.
[ぺっと樹脂のみによるペレットP1の製造]
A成分のPET樹脂(ペットボトル用市販汎用品のペレット: IV値0.80、MFR 35g/10分、280℃・2.16Kg)100重量部(3Kg)のみを使用し、製造例4と5とほぼ同様な押出条件にてリペレットP1を製造し、透明ペレット2.9Kgを得た。ストランドは、金型出口から水面までに弓状に垂れ、水盤中では蛇行して溶融張力が小さいことを示した。この透明ペレットP1は、円柱状で直径約3mm×長さ約5mmであった。また、MFR(280℃、荷重2.16Kg)は、57g/10分で、比較的低溶融粘度であった。
このPET樹脂のみのペレットP1を、射出成形して製造例6および7と同様にして引張試験片および曲げ試験片を成形した。引張強さ59MPa、ヤング率1.9GPaおよび曲げ強さ84MPa、曲げ弾性率2.1GPaであった。[Manufacture of pellets P1 using only pet resin]
Production Examples 4 and 5 using only 100 parts by weight (3 Kg) of component A PET resin (Pellets of commercially available general-purpose products for PET bottles: IV value 0.80, MFR 35 g / 10 min, 280 ° C., 2.16 Kg) Repellet P1 was produced under substantially the same extrusion conditions as in Example 1, and 2.9 kg of transparent pellets were obtained. The strand drooped in an arc from the mold outlet to the water surface, meandering in the basin, indicating a low melt tension. The transparent pellet P1 was cylindrical and had a diameter of about 3 mm and a length of about 5 mm. Moreover, MFR (280 degreeC, load 2.16Kg) was 57 g / 10min, and was comparatively low melt viscosity.
This PET resin-only pellet P1 was injection-molded to form tensile test pieces and bending test pieces in the same manner as in Production Examples 6 and 7. The tensile strength was 59 MPa, the Young's modulus was 1.9 GPa, the bending strength was 84 MPa, and the flexural modulus was 2.1 GPa.
[ペットボトル・フレークと回収炭素繊維チョップ15%と改質剤から成る回収炭素繊維強化・改質ペットボトル・フレークのペレットR5(99%がリサイクル品)の製造]
A成分のポリエステルとして市販ペットボトル・フレーク((株)西東京通商の汎用品: IV値0.73、MFR 57g/10分、280℃・2.16Kg)100重量部(120℃・2時間での真空乾燥後の水分含有率 約100ppm以下)、C成分の結合剤として多官能エポキシ樹脂(EP−A)0.70重量部、D成分の結合反応の混合触媒0.15重量部およびE成分の展着剤としての流動パラフィン0.05重量部をタンブラーで均一混合した。これらを主体樹脂押出用の第1ホッパーに納入した。一方、回収炭素繊維チョップ(ボビン巻のPAN系炭素繊維の回収品を集めて、6mm長に裁断したもの)をサイドフィーダー用の第2ホッパーに納入した。
日立造船(株)製の同方向2軸押出装置(口径35mm、L/D 35)を使用し、この押出機のシリンダ−とストランド金型の設定温度を150−270℃およびスクリュー回転数 150rpmとした。容量式計量フィーダーを使用し、第1ホッパーからA成分とC成分とD成分等の組成物を17Kg/hの速度で反応押出を行い、また第2ホッパーから計量機を使用して炭素繊維チョップを3Kg/h(炭素繊維の含有量15%)の速度で連続的にサイドフィードした。
ストランドを口径3mmの斜め下方向のノズルから水中に連続的に押出し、回転カッタ‐で切断して黒色樹脂ペレットR5約200Kgを製造した。金型出口から水盤中へのストランドは直線状であり溶融張力が増加していた。その形状は、円柱状で直径約3.4mm×長さ約6mmであった。また、MFR(260℃、荷重2.16Kg)は、4.2g/10分であり、充分に高溶融粘度化されていた。[Production of recovered carbon fiber reinforced / modified PET bottle flake pellets R5 (99% recycled) consisting of 15% PET bottle flakes and recovered carbon fiber chop and a modifier]
Commercially available PET bottle flakes as a polyester of A component (general-purpose product of Nishitokyo Tsusho Co., Ltd .: IV value 0.73, MFR 57 g / 10 min, 280 ° C., 2.16 Kg) 100 parts by weight (at 120 ° C. for 2 hours) Water content after vacuum drying of about 100 ppm or less), 0.70 part by weight of a polyfunctional epoxy resin (EP-A) as a binder for component C, 0.15 part by weight of a mixed catalyst for the binding reaction of component D and component E 0.05 parts by weight of liquid paraffin as a spreading agent was uniformly mixed with a tumbler. These were delivered to the first hopper for main resin extrusion. On the other hand, the recovered carbon fiber chop (collected bobbin-rolled PAN-based carbon fiber and cut into 6 mm length) was delivered to the second hopper for the side feeder.
Using a twin-screw extruder in the same direction (caliber 35 mm, L / D 35) manufactured by Hitachi Zosen Co., Ltd., the set temperature of the cylinder and strand mold of this extruder is 150-270 ° C. and the screw rotation speed is 150 rpm. did. Using a capacity-type weighing feeder, reactive extrusion of the composition of component A, component C and component D from the first hopper at a rate of 17 kg / h, and carbon fiber chop using the meter from the second hopper Was continuously side-fed at a rate of 3 kg / h (carbon fiber content: 15%).
The strand was continuously extruded into water from an obliquely downward nozzle having a diameter of 3 mm, and cut with a rotary cutter to produce about 200 kg of black resin pellet R5. The strand from the mold outlet to the basin was linear and the melt tension increased. The shape was cylindrical and the diameter was about 3.4 mm × length was about 6 mm. Further, MFR (260 ° C., load 2.16 Kg) was 4.2 g / 10 minutes, and the melt viscosity was sufficiently increased.
[ペット樹脂と新品炭素繊維チョップ15%と改質剤から成るZOLTEK炭素繊維強化・改質ペット樹脂ペレットR1組成物からの水平式押出法による細平板および発泡板の製造]
ZOLTEK炭素繊維(15%)強化ペット樹脂の乾燥した黒色ペレットR1(MFR 6.2g/10分: 260℃、荷重2.16Kg)100重量部、結合剤(EP‐A)ゼロまたは0.4重量部、触媒(C10)ゼロまたは0.2重量部および化学発泡剤ペレットEE405F(永和化成工業(株)製、重曹系のポリエチレン基体、ガス発生量 66ml/g、主として炭酸ガス)ゼロまたは2.5重量部、および展着剤として流動パラフィン0.1重量部を事前に混合し、ホッパーに投入した。
(株)テクノベル製の2軸押出機(口径15mm、L/D30)に、原料供給機、異形金型、樹脂圧力測定センサー、空冷機、ステンレス製滑行板、水盤、引取り機を設置した。上記の配合物を、スクリュー温度245−280℃、回転数1150rpm、金型温度250−260℃において、ペレット等の配合物の供給速度1−2Kg/h、引取り速度1−2m/分にて水平方向に押出した。樹脂の溶融粘性、流動性および引け等を考慮して、異形金型は、細平板用には太鼓形(巾25mm: 中央部間隙2.5mm、両端部間隙1.5mm)を、また発泡板用には鼓形(巾25mm: 中央部間隙2.5mm、両端部間隙4.5mm)を使用した。試験結果を表3にまとめて示した。
この水平式押出法による異形成形においては、樹脂圧力が高くなるほどに成形体の製造が安定し、また成形体が異形金型の巾(25mm)および間隙(25mm)に近づくほど、成形加工が成功に近づく。本発明では、発泡倍率として1.5‐3倍が好ましい。天然木材や合成木材の巨大用途を目標としている。
本例1‐S1の細平板製造では、樹脂圧力0.1MPaと樹脂の溶融張力低くて細平板の左右と上下にネックインが生じ、成形体が細くて薄くなった。本例1‐F1の発泡板製造では、発泡剤2.5部を添加したら巾と厚みが夫々大きくなったが、不充分であった。更に、本例1‐F2の発泡板製造では、発泡剤2.5部の外に改質剤として結合剤(EP‐A)0.4および触媒(C10)0.2重量部を添加したら、樹脂圧力が倍増すると共に発泡板の巾(19mm)と厚み(2.3mm)も増大し、発泡倍率も1.5倍に到達した。これらは、更に発泡剤の添加量2.5部を3‐4部に増加させれば、一層改善・制御が出来る。特に、本例1‐F2の発泡板は、寸法調整金型を使用しないのに係わらず表面平滑性が良くて、成形状態も安定し、改質剤の添加効果が顕著であった。[Manufacture of thin flat plate and foamed plate by horizontal extrusion method from ZOLTEK carbon fiber reinforced / modified pet resin pellet R1 composition consisting of 15% pet resin, new carbon fiber chop and modifier]
ZOLTEK carbon fiber (15%) reinforced PET resin dried black pellets R1 (MFR 6.2 g / 10 min: 260 ° C., load 2.16 Kg) 100 parts by weight, binder (EP-A) zero or 0.4 weight Part, catalyst (C10) zero or 0.2 parts by weight and chemical blowing agent pellet EE405F (manufactured by Eiwa Kasei Kogyo Co., Ltd., baking soda-based polyethylene substrate, gas generation amount 66 ml / g, mainly carbon dioxide) zero or 2.5 Part by weight and 0.1 part by weight of liquid paraffin as a spreading agent were mixed in advance and put into a hopper.
A raw material feeder, a deformed mold, a resin pressure measuring sensor, an air cooler, a stainless steel sliding plate, a water pan, and a take-up machine were installed in a twin-screw extruder (caliber 15 mm, L / D30) manufactured by Technobel. At the screw temperature of 245 to 280 ° C., the rotational speed of 1150 rpm, the mold temperature of 250 to 260 ° C., the feed rate of the blend such as pellets is 1-2 kg / h, and the take-up speed is 1-2 m / min. Extruded horizontally. Taking into account the resin's melt viscosity, fluidity, shrinkage, etc., the deformed mold has a drum shape (width 25 mm: center gap 2.5 mm, gap at both ends 1.5 mm), and foam plate for thin flat plates For this purpose, a drum shape (width 25 mm: center gap 2.5 mm, both end gap 4.5 mm) was used. The test results are summarized in Table 3.
In the deformed shape by the horizontal extrusion method, as the resin pressure increases, the production of the molded body becomes more stable, and as the molded body approaches the width (25 mm) and the gap (25 mm) of the deformed mold, the molding process is successful. Get closer to. In the present invention, the expansion ratio is preferably 1.5-3 times. It is aimed at huge uses of natural and synthetic wood.
In the production of the thin flat plate of Example 1-S1, the resin pressure was 0.1 MPa, the melt tension of the resin was low, neck-in occurred on the left and right and top and bottom of the thin flat plate, and the molded body became thin and thin. In the production of the foam board of Example 1-F1, the width and thickness were increased when 2.5 parts of the foaming agent was added, but this was insufficient. Furthermore, in the production of the foam plate of Example 1-F2, when 2.5 parts by weight of the binder (EP-A) and 0.2 parts by weight of the catalyst (C10) were added as modifiers in addition to 2.5 parts of the foaming agent, As the resin pressure doubled, the width (19 mm) and thickness (2.3 mm) of the foam plate increased, and the foaming ratio reached 1.5 times. These can be further improved and controlled by increasing the amount of foaming agent added from 2.5 parts to 3-4 parts. In particular, the foamed plate of Example 1-F2 had good surface smoothness, a stable molding state, and a remarkable effect of adding a modifier regardless of the use of a dimension adjusting mold.
[ペット樹脂と新品炭素繊維チョップ30%と改質剤から成るZOLTEK炭素繊維強化・改質ペット樹脂ペレットR2等の組成物からの水平式押出法による細平板および発泡板の製造]
実施例1と同様な押出条件と操作にて、細平板および発泡板の製造を実施した。試験結果を表3にまとめて示した。ZOLTEK炭素繊維(30%)強化ペット樹脂の乾燥した黒色ペレットR2(MFR 6.7g/10分: 260℃、荷重2.16Kg)100重量部、結合剤(EP‐A)ゼロまたは0.4重量部、触媒(C10)ゼロまたは0.2重量部および化学発泡剤ペレットEE405F(永和化成工業(株)製、ガス発生量 66ml/g)ゼロまたは2.5重量部、および展着剤として流動パラフィンゼロまたは0.1重量部を事前に混合し、ホッパーに投入した。
本例2‐S2の細平板製造では、樹脂圧力0.2MPaと樹脂の溶融張力がやや低くて細平板に左右と上下にやはりネックインが生じ、成形体が細くて薄くなった。次に、本例2‐F3の発泡板の製造では、発泡剤2.5部を添加したら巾(18mm)と厚み(2.1mm)が夫々大きくなり、発泡倍率も1.5倍に到達した。また、本例2‐F4の発泡板の製造では、発泡剤2.5部の外に更に改質剤として結合剤0.4‐触媒0.2重量部を添加したら、樹脂圧力が10倍の2.3MPaに増加すると共に発泡板の巾(18mm)と厚み(2.1mm)も増大し、発泡倍率も当面の目標の2.0倍に到達した。本例諸例から解る様に発泡板の製造においては、改質剤の添加が必要かつ不可欠である。[Manufacture of thin flat plates and foamed plates by horizontal extrusion from a composition such as ZOLTEK carbon fiber reinforced / modified pet resin pellets R2 comprising 30% pet resin, 30% carbon fiber chop and a modifier]
Production of thin flat plates and foamed plates was carried out under the same extrusion conditions and operations as in Example 1. The test results are summarized in Table 3. ZOLTEK carbon fiber (30%) reinforced PET resin dried black pellet R2 (MFR 6.7 g / 10 min: 260 ° C., load 2.16 Kg) 100 parts by weight, binder (EP-A) zero or 0.4 weight Parts, catalyst (C10) zero or 0.2 parts by weight and chemical blowing agent pellet EE405F (manufactured by Eiwa Chemical Industry Co., Ltd., gas generation amount 66 ml / g) zero or 2.5 parts by weight, and liquid paraffin as a spreading agent Zero or 0.1 parts by weight were premixed and charged into the hopper.
In the production of the thin flat plate of Example 2-S2, the resin pressure was 0.2 MPa and the melt tension of the resin was slightly low, so that neck-in occurred on the thin flat plate from left to right and up and down, and the compact was thin and thin. Next, in the production of the foam board of Example 2-F3, when 2.5 parts of the foaming agent was added, the width (18 mm) and thickness (2.1 mm) were increased, and the foaming ratio reached 1.5 times. . In addition, in the production of the foam plate of Example 2-F4, when 2.5 parts by weight of a binder was added as a modifier in addition to 2.5 parts by weight of the foaming agent, the resin pressure was increased 10 times. While increasing to 2.3 MPa, the width (18 mm) and thickness (2.1 mm) of the foam plate increased, and the expansion ratio reached 2.0 times the target for the time being. As can be seen from the examples, the addition of a modifier is necessary and indispensable in the production of foamed plates.
[ペット樹脂と回収炭素繊維チョップ15%と改質剤マスターバッチから成る回収炭素繊維強化・改質ペット樹脂ペレットR3からの押出法による細平板と広幅発泡板の製造]
回収炭素繊維(15%)強化・改質ペット樹脂の乾燥した黒色ペレットR3(MFR 35g/10分: 280℃、荷重2.16Kg)は、MFRが大きいので溶融粘度が比較的小さい。そこで実地例1と同様に細平板を水平押出して発泡用に必要不可欠な改質剤マスターバッチの添加量を予め試験・決定した。実地例1の試験設備を使用し、黒色ペレットR3の100重量部、改質剤マスターバッチ(MB‐E)ゼロ、2、4重量部で細平板を水平押出した。但し、樹脂の溶融粘性、流動性および引け等を考慮して、異形金型は、矩形形(巾25mm: 中央部間隙1.5mm)とした。試験結果を表4にまとめて示した。改質剤(MB‐G)の添加量を増加させるに連れて、樹脂圧力が増加すると共に細平板の巾と厚みが顕著に増大したので、最適添加量を6重量部とした。
(株)創研製のTダイ式フィルム・シート押出製造装置を使用して、広幅発泡板の製造をした(本例3‐F5)。主押出機は、単軸スクリュー、口径30mm、L/D 38、副押出機は、単軸スクリュー、口径25mm、L/D 25である。Tダイは、巾250mm、リップギャップ1.5mm、垂直式、フィードブロック方式である。ポリッシング・ロールは鏡面仕上げのステンレス製で、オイル式温度制御である。ガイドロールは温水制御である。引取り機は、空気圧制御式のゴムロールである。
乾燥した回収炭素繊維(15%)強化・改質ペット樹脂の黒色ペレットR3(MFR 35g/10分: 280℃、荷重2.16Kg)100重量部、改質剤マスターバッチ(MB‐E)6重量部、化学発泡剤ペレットEE405F(永和化成工業(株)製、ガス発生量 66ml/g)2.5重量部、滑材としてステアリン酸カルシウム0.1重量部および展着剤として流動パラフィン0.05重量部を事前に混合し、主押出機のホッパーに投入した。副押出機は加熱停止させた。シリンダー温度255−265℃、Tダイの温度245‐260℃、スクリュー回転70rpm、ロール温度40‐70℃で、引取り速度0.4m/分にて、広幅発泡板を製造した。樹脂圧力は、5.5MPaであった。広幅発泡板は、幅25cmでネックインが無く、厚みは2.8mmとリップギャップの倍で、発泡倍率は2.1倍であった。本例発明により、ほぼ目標の発泡体が製造出来た(例3‐F5)。[Manufacture of thin flat plate and wide foamed plate by extrusion method from recovered carbon fiber reinforced / modified PET resin pellet R3 consisting of 15% PET resin, recovered carbon fiber chop and modifier masterbatch]
Recovered carbon fiber (15%) reinforced / modified PET resin dried black pellets R3 (MFR 35 g / 10 min: 280 ° C., load 2.16 Kg) has a relatively high melt viscosity due to its high MFR. Therefore, in the same manner as in Example 1, a thin flat plate was horizontally extruded to test and determine in advance the amount of modifier masterbatch necessary for foaming. Using the test equipment of Example 1, a thin flat plate was horizontally extruded with 100 parts by weight of black pellets R3, zero modifier masterbatch (MB-E), and 2, 4 parts by weight. However, taking into account the melt viscosity, fluidity, and shrinkage of the resin, the deformed mold was a rectangular shape (width 25 mm: center gap 1.5 mm). The test results are summarized in Table 4. As the addition amount of the modifier (MB-G) was increased, the resin pressure increased and the width and thickness of the thin flat plate increased remarkably, so the optimum addition amount was 6 parts by weight.
A wide foamed plate was produced using a T-die type film / sheet extrusion production apparatus manufactured by Soken Co., Ltd. (Example 3-F5). The main extruder is a single screw, 30 mm diameter, L / D 38, and the sub-extruder is a single screw, 25 mm diameter, L / D 25. The T-die has a width of 250 mm, a lip gap of 1.5 mm, a vertical type, and a feed block type. The polishing roll is made of stainless steel with a mirror finish and oil temperature control. The guide roll is hot water controlled. The take-up machine is a pneumatically controlled rubber roll.
Dry recovered carbon fiber (15%) reinforced / modified PET resin black pellet R3 (MFR 35 g / 10 min: 280 ° C., load 2.16 Kg) 100 parts by weight, modifier masterbatch (MB-E) 6 parts by weight Parts, chemical foaming agent pellets EE405F (manufactured by Eiwa Chemical Industry Co., Ltd., gas generation amount 66 ml / g) 2.5 parts by weight, calcium stearate 0.1 parts by weight as a lubricant and liquid paraffin 0.05 parts by weight The parts were mixed in advance and charged into the hopper of the main extruder. The sub-extruder was stopped from heating. A wide foam plate was produced at a cylinder temperature of 255-265 ° C., a T-die temperature of 245-260 ° C., a screw rotation of 70 rpm, and a roll temperature of 40-70 ° C., and a take-up speed of 0.4 m / min. The resin pressure was 5.5 MPa. The wide foam plate had a width of 25 cm, no neck-in, a thickness of 2.8 mm, twice the lip gap, and a foaming ratio of 2.1 times. According to the present invention, a substantially targeted foam could be produced (Example 3-F5).
[ペット樹脂と回収炭素繊維チョップ30%と改質剤マスターバッチから成る回収炭素繊維強化・改質ペット樹脂ペレットR4からの押出法による細平板と2種3層広幅発泡板の製造]
回収炭素繊維(30%)強化・改質ペット樹脂の乾燥した黒色ペレットR4(MFR 25g/10分: 280℃、荷重2.16Kg)は溶融粘度が比較的小さいので、実地例3と同様に細平板を水平押出して発泡用に必要不可欠な改質剤マスターバッチの添加量を予め試験・決定した。実地例1の試験設備を使用し、黒色ペレットR4の100重量部、改質剤マスターバッチ(MB‐E)4、6重量部、滑材としてステアリン酸カルシウム0.1重量部および展着剤として流動パラフィン0.05重量部の組成物を事前混合し、水平押出法で細平板を製造した。試験結果を表5にまとめて示した。細平板は、改質剤(MB‐G)の添加量を増加させるに連れて、樹脂圧力が増加すると共に細平板の厚みが若干増大したので、最適添加量を6重量部とした。
2種3層の広幅発泡板の製造は、実施例3の(株)創研製のTダイ式フィルム・シート押出製造装置を使用して実施した(本例4‐F6)。主押出機で、樹脂R4に改質剤、発泡剤、滑材としてステアリン酸カルシウム0.1重量部および展着剤として流動パラフィン0.05重量部の組成物を単層発泡板に押出した。一方、副押出機から同一樹脂R4、滑材としてステアリン酸カルシウム0.1重量部および展着剤として流動パラフィン0.05重量部の組成物を押出し、フィードブロック式Tダイでスキン層として外側から覆って、2種3層の広幅発泡板とした。乾燥した回収炭素繊維(30%)強化・改質ペット樹脂の黒色ペレットR4(MFR 25g/10分: 280℃、荷重2.16Kg)100重量部、改質剤マスターバッチ(MB‐E)6重量部および化学発泡剤ペレットEE405F(永和化成工業(株)製、ガス発生量 66ml/g)2.5重量部を事前に混合し、主押出機のホッパーに投入した。主押出機のシリンダー温度255−265℃、Tダイの温度245‐260℃、スクリュー回転70rpm、樹脂圧力5MPa、ロール温度40‐70℃とした。一方、副押出機のホッパーにペレットR4を投入し、シリンダー温度を260‐270℃に設定し、スクリュー回転15rpm、樹脂圧力3MPaとした。この結果、引取り速度0.4m/分にて、2種3層の広幅発泡板を製造出来た。この広幅発泡板は、幅24cmで若干ネックインがあり、厚みは3.0mmとリップギャップの倍で、発泡倍率は3層体の平均として1.9倍であった。本例発明により、ほぼ目標の2種3層の発泡体が製造出来た(例4‐F6)。[Manufacture of thin flat plate and 2 types, 3 layers wide foamed plate by extrusion method from recovered carbon fiber reinforced / modified PET resin pellet R4 consisting of PET resin, recovered carbon fiber chop 30% and modifier masterbatch]
Recovered carbon fiber (30%) reinforced / modified PET resin dried black pellet R4 (MFR 25 g / 10 min: 280 ° C., load 2.16 Kg) has a relatively low melt viscosity. The amount of modifier masterbatch, which is indispensable for foaming, was tested and determined in advance by horizontally extruding a flat plate. Using the test facility of practical example 1, 100 parts by weight of black pellet R4, 4 parts by weight of modifier masterbatch (MB-E), 0.1 parts by weight of calcium stearate as a lubricant and fluid as a spreading agent A composition of 0.05 part by weight of paraffin was premixed and a thin flat plate was produced by a horizontal extrusion method. The test results are summarized in Table 5. In the thin flat plate, as the amount of the modifier (MB-G) added was increased, the resin pressure increased and the thickness of the thin flat plate increased slightly, so the optimum addition amount was 6 parts by weight.
The production of the two-type, three-layer wide foam plate was carried out using a T-die type film / sheet extrusion production apparatus manufactured by Soken Co., Ltd. in Example 3 (Example 4-F6). In the main extruder, a composition of 0.1 part by weight of calcium stearate as a modifier, a foaming agent, a lubricant and 0.05 part by weight of liquid paraffin as a spreading agent was extruded onto a single-layer foamed plate. On the other hand, the same resin R4, 0.1 parts by weight of calcium stearate as a lubricant and 0.05 parts by weight of liquid paraffin as a spreading agent were extruded from the sub-extruder, and covered with a feed block T-die as a skin layer from the outside. Thus, a wide foam plate of 2 types and 3 layers was obtained. Dry recovered carbon fiber (30%) reinforced / modified PET resin black pellets R4 (MFR 25 g / 10 min: 280 ° C., load 2.16 Kg) 100 parts by weight, modifier masterbatch (MB-E) 6 parts by weight And 2.5 parts by weight of chemical foaming agent pellets EE405F (manufactured by Eiwa Kasei Kogyo Co., Ltd., gas generation amount 66 ml / g) were mixed in advance and charged into the hopper of the main extruder. The cylinder temperature of the main extruder was 255-265 ° C., the temperature of the T die was 245-260 ° C., the screw rotation was 70 rpm, the resin pressure was 5 MPa, and the roll temperature was 40-70 ° C. On the other hand, the pellet R4 was put into the hopper of the sub-extruder, the cylinder temperature was set to 260-270 ° C., the screw rotation was 15 rpm, and the resin pressure was 3 MPa. As a result, a two-type, three-layer wide foam plate could be produced at a take-up speed of 0.4 m / min. This wide foam plate had a width of 24 cm, had a slight neck-in, a thickness of 3.0 mm, twice the lip gap, and an expansion ratio of 1.9 times as an average of the three-layered body. According to the present invention, almost the target two-kind three-layer foam could be produced (Example 4-F6).
[ペットボトル・フレークと回収炭素繊維チョップ15%と改質剤から成る回収炭素繊維強化・改質ペットボトル・フレークのペレットR5(99%がリサイクル品)の炭酸ガス法による発泡ボードの製造]
日立造船(株)製の2軸押出機(口径60mm、L/D 40)に、第1ホッパーおよび重量式計量機、第2ホッパーおよび容量式計量機、ベント式真空ライン、温度制御装置、炭酸ガス注入装置と注入ライン、ギヤーポンプ、Tダイ(巾1,200mm、水平押出し用)、冷却装置、引取り装置、自動裁断機などを設置した。
第1ホッパーには、未乾燥の回収炭素繊維強化・改質ペットボトル・フレークのペレットR5(MFR4.2g/10分:260℃、荷重2.16Kg)を投入し、第2ホッパーには改質剤ペレット(MB−E)を投入した。押出機は、シリンダー、ギヤーポンプおよびTダイの温度を240−280℃に設定し、高真空引き下に、樹脂組成物の押出速度75Kg/h、炭酸ガス注入量2.5−5g/分とした。第2ホッパーの改質剤ペレット(MB−E)の添加量を制御して、スクリュー先端圧力を6−7MPaに制御した。この様にして、巾120cm、平均厚み2.2−2.4mm、発泡倍率2−4倍の発泡ボードを製造した。[Manufacturing of foamed board by carbon dioxide gas method of recovered carbon fiber reinforced / modified PET bottle flake pellets R5 (99% recycled) consisting of 15% PET bottle flakes and recovered carbon fiber chop and a modifier]
Hitachi Zosen's twin screw extruder (caliber 60 mm, L / D 40), first hopper and weight-type weighing machine, second hopper and capacity-type weighing machine, vent type vacuum line, temperature control device, carbonic acid A gas injection device, an injection line, a gear pump, a T die (width 1,200 mm, for horizontal extrusion), a cooling device, a take-up device, an automatic cutter, and the like were installed.
The first hopper is loaded with undried recovered carbon fiber reinforced / modified PET bottles / flakes pellets R5 (MFR 4.2 g / 10 min: 260 ° C., load 2.16 Kg), and the second hopper is modified. Agent pellets (MB-E) were charged. In the extruder, the temperature of the cylinder, gear pump and T die was set to 240 to 280 ° C., the extrusion rate of the resin composition was 75 kg / h, and the carbon dioxide injection rate was 2.5 to 5 g / min under high vacuum. . The addition amount of modifier pellets (MB-E) in the second hopper was controlled to control the screw tip pressure to 6-7 MPa. In this way, a foam board having a width of 120 cm, an average thickness of 2.2 to 2.4 mm, and a foaming ratio of 2 to 4 times was produced.
本発明によれば、炭素繊維強化・改質ポリエステル樹脂の製造に際し、改質剤(結合剤と触媒)を併用させることに依り、その溶融粘度を高める事に依り、従来異形押出成形が困難だった水平押出法の成形体を極めて安定に製造できる様になった。また、この新素材は、炭素繊維強化により、機械的強度を飛躍的に高めることが出来、また発泡により軽量化出来た。耐食性、耐熱性、伝熱性導電性、耐油性、耐候性等の諸物性も向上させることが出来る。また、回収炭素繊維、炭素繊維強化エポキシ樹脂複合材からの再生炭素繊維および安価な新品炭素繊維強も使用することが出来る。
本発明は、当面は土木・建築資材の用途を対象とする。近い将来は鉄道車両、自動車産業、新幹線車両業、リニヤーモーターカー、航空宇宙産業等の先端産業分野に於ける内装材料や構成材料の強度改善による一層の軽量化・省エネルギー化の用途を対象とする。また、電波吸収性、導電性、耐熱性、放熱性等の一層の性能改善ができるので、この機能性材料分野の利用可能性が大きい。According to the present invention, in the production of carbon fiber reinforced / modified polyester resin, by using a modifier (a binder and a catalyst) in combination, and by increasing its melt viscosity, it has been difficult to perform conventional extrusion molding. In addition, it has become possible to produce a molded product of the horizontal extrusion method very stably. In addition, this new material has been able to dramatically increase the mechanical strength by strengthening the carbon fiber, and has been able to reduce the weight by foaming. Various physical properties such as corrosion resistance, heat resistance, heat transfer conductivity, oil resistance, and weather resistance can also be improved. Also, recovered carbon fiber, recycled carbon fiber from carbon fiber reinforced epoxy resin composite, and inexpensive new carbon fiber strength can be used.
The present invention is intended for civil engineering and building materials for the time being. In the near future, we will target applications for further weight and energy savings by improving the strength of interior materials and components in advanced industries such as the railway vehicle, automobile industry, Shinkansen vehicle industry, linear motor car and aerospace industry. To do. Moreover, since further performance improvements such as radio wave absorption, conductivity, heat resistance, and heat dissipation can be achieved, the applicability in this functional material field is great.
Claims (7)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015088766A JP6619150B2 (en) | 2015-04-07 | 2015-04-07 | Method for producing expanded molded article of carbon fiber reinforced / modified polyethylene terephthalate resin |
PCT/JP2015/075006 WO2016117161A1 (en) | 2015-01-25 | 2015-09-02 | Method for manufacturing carbon fiber reinforced/modified polyester resin |
US15/545,770 US20180016420A1 (en) | 2015-01-25 | 2015-09-02 | Method for producing modified polyester resin reinforced with carbon fiber |
US15/931,662 US20200270422A1 (en) | 2015-01-25 | 2020-05-14 | Method for producing modified polyester resin reinforced with carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015088766A JP6619150B2 (en) | 2015-04-07 | 2015-04-07 | Method for producing expanded molded article of carbon fiber reinforced / modified polyethylene terephthalate resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016199730A true JP2016199730A (en) | 2016-12-01 |
JP6619150B2 JP6619150B2 (en) | 2019-12-11 |
Family
ID=57422398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015088766A Active JP6619150B2 (en) | 2015-01-25 | 2015-04-07 | Method for producing expanded molded article of carbon fiber reinforced / modified polyethylene terephthalate resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6619150B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020105271A (en) * | 2018-12-26 | 2020-07-09 | 倉敷紡績株式会社 | Composition for carbon fiber-including resin extrusion-foamed molding, foamed molding using the composition and production method therefor |
CN114525625A (en) * | 2022-01-11 | 2022-05-24 | 武汉理工大学 | Self-pressurization polyacrylonitrile core-shell nanofiber membrane as well as preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000169613A (en) * | 1998-10-02 | 2000-06-20 | Dainippon Jushi Kenkyusho:Kk | Production of polyester resin foam molded product |
JP2015007212A (en) * | 2013-05-30 | 2015-01-15 | エフテックス有限会社 | Manufacturing method of polyester-carbon fiber copolymer |
-
2015
- 2015-04-07 JP JP2015088766A patent/JP6619150B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000169613A (en) * | 1998-10-02 | 2000-06-20 | Dainippon Jushi Kenkyusho:Kk | Production of polyester resin foam molded product |
JP2015007212A (en) * | 2013-05-30 | 2015-01-15 | エフテックス有限会社 | Manufacturing method of polyester-carbon fiber copolymer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020105271A (en) * | 2018-12-26 | 2020-07-09 | 倉敷紡績株式会社 | Composition for carbon fiber-including resin extrusion-foamed molding, foamed molding using the composition and production method therefor |
JP7101611B2 (en) | 2018-12-26 | 2022-07-15 | 倉敷紡績株式会社 | A composition for extrusion foam molding of a carbon fiber-containing resin, a foam molded product using the composition, and a method for producing the same. |
CN114525625A (en) * | 2022-01-11 | 2022-05-24 | 武汉理工大学 | Self-pressurization polyacrylonitrile core-shell nanofiber membrane as well as preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6619150B2 (en) | 2019-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016117161A1 (en) | Method for manufacturing carbon fiber reinforced/modified polyester resin | |
US8258239B2 (en) | Production method of polyethylene terephthalate graft copolymerized resin and molded product thereof | |
EP3112421B1 (en) | Polyamide resin composition for molded article to be in contact with high-pressure hydrogen, and molded article obtained therefrom | |
Xie et al. | Plasticizer combinations and performance of wood flour–poly (lactic acid) 3D printing filaments | |
JP2015007212A (en) | Manufacturing method of polyester-carbon fiber copolymer | |
EP3816231B1 (en) | Polyamide resin composition for blow-molded products exposed to high-pressure hydrogen, and blow-molded product | |
WO2000020491A1 (en) | Foamed polyester resin molding and process for producing the same | |
JP6547253B2 (en) | Carbon fiber reinforced polyester resin and method of manufacturing injection molded product thereof | |
JP2014148656A (en) | Method for manufacturing polyester/carbon copolymer | |
JP2016088073A (en) | Manufacturing method of bolt/nut made of carbon fiber reinforced polyester resin | |
CN1502652A (en) | Reinforcing toughening material of polyolefine/inorganic powder compound material and use thereof | |
JP6892572B2 (en) | Method for manufacturing injection foam molded product of carbon fiber reinforced / modified polyester resin | |
JP6619150B2 (en) | Method for producing expanded molded article of carbon fiber reinforced / modified polyethylene terephthalate resin | |
KR20210096363A (en) | Method for manufacturing waste plastic recycled molding with excellent hardness and strength | |
JP2009155366A (en) | Foam molded article | |
JP2017533984A (en) | Concentrate composition for polymer chain extension | |
JP6843330B2 (en) | Method for manufacturing a foam molded product of carbon fiber reinforced / modified polypropylene resin | |
JP6707225B2 (en) | Method for producing carbon fiber reinforced/modified polypropylene resin | |
KR101361314B1 (en) | High density polyethylene resin composition and molded article prepared therefrom | |
Gong et al. | Mechanical properties and fracture behavior of injection and compression molded polypropylene/coal gangue powder composites with and without a polymeric coupling agent | |
JP2016079376A (en) | Production method of carbon fiber-reinforced polyester resin and extrusion-molded article of the same | |
JP6552210B2 (en) | Method for producing carbon fiber reinforced / modified polyethylene terephthalate resin | |
JP2008031482A (en) | Method for producing polyethylene terephthalate-based graft copolymer resin | |
JP3982582B2 (en) | Polyethylene terephthalate-polyester elastomer block copolymer resin and method for producing the same | |
EP3816230B1 (en) | Polyamide resin composition for extrusion molded products exposed to high-pressure hydrogen, and extrusion molded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190305 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190704 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20190704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6619150 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |