JP2016199471A - Method of producing bicyclic amine compound - Google Patents

Method of producing bicyclic amine compound Download PDF

Info

Publication number
JP2016199471A
JP2016199471A JP2015078137A JP2015078137A JP2016199471A JP 2016199471 A JP2016199471 A JP 2016199471A JP 2015078137 A JP2015078137 A JP 2015078137A JP 2015078137 A JP2015078137 A JP 2015078137A JP 2016199471 A JP2016199471 A JP 2016199471A
Authority
JP
Japan
Prior art keywords
catalyst
group
amine compound
formula
bicyclic amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015078137A
Other languages
Japanese (ja)
Other versions
JP6528519B2 (en
Inventor
範之 原
Noriyuki Hara
範之 原
鈴木 孝生
Kosei Suzuki
孝生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015078137A priority Critical patent/JP6528519B2/en
Publication of JP2016199471A publication Critical patent/JP2016199471A/en
Application granted granted Critical
Publication of JP6528519B2 publication Critical patent/JP6528519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a bicyclic amine compound having a long catalytic activity life.SOLUTION: There is provided a method for producing a bicyclic amine compound represented by formula (2) using an inorganic oxide represented by formula (1) as a catalyst. AMNPO(1) [A is a metal; M is an alkali metal; N is an alkaline earth metal; P is phosphorus; O is oxygen; subscripts a to e are molar numbers of each element; b/a=0.001 to 0.3; c/a=0.001 to 0.1; d/a=0.001 to 0.3; e is a value determined by the bonding state of each atom] [Rto Reach independently represents H, an alkyl group having 1-4 carbon atoms, a hydroxymethyl group or an alkoxy group having 1-4 carbon atoms; X represents a carbon atom or a nitrogen atom; and Y represents H, an alkyl group having 1-4 carbon atoms, a hydroxyl group or a hydroxyalkyl group having 1-4 carbon atoms.]SELECTED DRAWING: None

Description

本発明は、二環式アミン化合物の製造方法に関するものである。   The present invention relates to a method for producing a bicyclic amine compound.

二環式アミン化合物は、例えば、医農薬中間体、有機合成用触媒、化学吸着剤、抗菌剤等に有用な化合物として知られている(例えば、特許文献1参照)。   Bicyclic amine compounds are known as compounds useful for, for example, pharmaceutical and agrochemical intermediates, organic synthesis catalysts, chemical adsorbents, antibacterial agents, and the like (see, for example, Patent Document 1).

二環式アミン化合物の製造方法として、本願出願人は、下記式   As a method for producing a bicyclic amine compound, the applicant of the present invention has the following formula:

Figure 2016199471
Figure 2016199471

[式中、R〜Rは各々独立して、水素原子、炭素数1〜4のアルキル基、水酸基、ヒドロキシメチル基、又は炭素数1〜4のアルコキシ基を表す。また、Xは炭素原子又は窒素原子を表し、Yは水素原子、炭素数1〜4のアルキル基、水酸基、又は炭素数1〜4のヒドロキシアルキル基を表す。]
で示される化合物を固体触媒存在下、気相中で分子内脱水させ、下記式
[Wherein, R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, a hydroxymethyl group, or an alkoxy group having 1 to 4 carbon atoms. X represents a carbon atom or a nitrogen atom, and Y represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, or a hydroxyalkyl group having 1 to 4 carbon atoms. ]
Intramolecular dehydration in the gas phase in the presence of a solid catalyst

Figure 2016199471
Figure 2016199471

[式中、R〜R、X、Yは前記と同じ定義である。]
で示される化合物を製造する方法において、上記固体触媒として下記式

[式中、AはSi、Al、Mg、Ti及びZrからなる群より選ばれる1種又は2種以上の元素を表し、Mはアルカリ金属を表し、Pはリンを表し、Oは酸素を表す。添字a〜dは各元素のモル数を表し、b/a=0.001〜0.3(モル比)、c/a=0.001〜0.3(モル比)であって、dは各原子の結合状態によって任意に取り得る値を表す。ただし、Aが2種以上の元素を表す場合には、添字aはそのモル数が最も大きい元素のモル数を表す。]
で示される無機酸化物を用いる、二環式アミン化合物の製造方法を既に特許出願している(特許文献2参照)。
[Wherein, R 1 to R 8 , X and Y are as defined above. ]
In the method for producing a compound represented by the following formula:
A a M b P c O d
[In the formula, A represents one or more elements selected from the group consisting of Si, Al, Mg, Ti and Zr, M represents an alkali metal, P represents phosphorus, and O represents oxygen. . Subscripts a to d represent the number of moles of each element, b / a = 0.001 to 0.3 (molar ratio), c / a = 0.001 to 0.3 (molar ratio), and d is It represents a value that can be arbitrarily taken depending on the bonding state of each atom. However, when A represents two or more elements, the subscript a represents the number of moles of the element having the largest number of moles. ]
A patent application has already been filed for a method for producing a bicyclic amine compound using an inorganic oxide represented by (see Patent Document 2).

特許文献2には、気相反応による製造方法が示されており、特定の固体触媒を使用することにより、副生タール分が低減できることが記載されている。しかしながら、触媒の劣化抑制について検討がなされておらず、長期の運転評価も約1週間程度の実施に留まっているため、工業的に連続生産する上では未だ改善すべき問題があった。   Patent Document 2 discloses a production method by gas phase reaction, and describes that by-product tar content can be reduced by using a specific solid catalyst. However, there has been no problem to be solved in industrially continuous production because no study has been made on suppression of deterioration of the catalyst and long-term operation evaluation has only been conducted for about one week.

特開2010−037325公報JP 2010-037325 A 特開2012−149048公報JP 2012-149048 A

本発明の目的は、十分な触媒活性を持ち、かつ触媒の劣化を極力抑制して触媒活性を長く維持し、二環式アミン化合物を効率的に得る製造方法を提供することにある。   An object of the present invention is to provide a production method that has a sufficient catalytic activity, suppresses deterioration of the catalyst as much as possible, maintains the catalytic activity for a long time, and efficiently obtains a bicyclic amine compound.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、触媒劣化要因の一つであるリン酸成分の縮合を、アルカリ土類金属元素の添加によって抑制できることを突き止め、上記課題を解決する手段を見出し、本発明を完成するに至った。すなわち、本発明は以下に示すとおりの二環式アミン化合物の製造方法である。   As a result of intensive studies to solve the above problems, the present inventors have found that the condensation of the phosphoric acid component, which is one of the causes of catalyst deterioration, can be suppressed by the addition of alkaline earth metal elements, and the above problems are solved. A means for solving the problem has been found and the present invention has been completed. That is, this invention is a manufacturing method of the bicyclic amine compound as shown below.

[1] 下記式(1)   [1] The following formula (1)

Figure 2016199471
Figure 2016199471

[式中、R〜Rは各々独立して、水素原子、炭素数1〜4のアルキル基、水酸基、ヒドロキシメチル基、又は炭素数1〜4のアルコキシ基を表す。また、Xは炭素原子又は窒素原子を表し、Yは水素原子、炭素数1〜4のアルキル基、水酸基、又は炭素数1〜4のヒドロキシアルキル基を表す。]
で示される化合物から下記式(2)
[Wherein, R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, a hydroxymethyl group, or an alkoxy group having 1 to 4 carbon atoms. X represents a carbon atom or a nitrogen atom, and Y represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, or a hydroxyalkyl group having 1 to 4 carbon atoms. ]
From the compound represented by formula (2)

Figure 2016199471
Figure 2016199471

[式中、R〜R、X、Yは前記と同じ定義である。]
で示される化合物を製造する方法において、下記式(3)
(3)
[式中、Aは金属を表し、Mはアルカリ金属を表し、Nはアルカリ土類金属を表し、Pはリンを表し、Oは酸素を表す。添字a〜eは各元素のモル数を表し、b/a=0.001〜0.3(モル比)、c/a=0.001〜0.1(モル比)、d/a=0.001〜0.3(モル比)であって、eは各原子の結合状態によって任意に取り得る値を表す。]
で示される無機酸化物を触媒として用いることを特徴とする二環式アミン化合物の製造方法。
[Wherein, R 1 to R 8 , X and Y are as defined above. ]
In the method for producing a compound represented by the following formula (3)
A a Mb N c P d O e (3)
[In the formula, A represents a metal, M represents an alkali metal, N represents an alkaline earth metal, P represents phosphorus, and O represents oxygen. Subscripts a to e represent the number of moles of each element, and b / a = 0.001 to 0.3 (molar ratio), c / a = 0.001 to 0.1 (molar ratio), d / a = 0. 0.001 to 0.3 (molar ratio), and e represents a value that can be arbitrarily taken depending on the bonding state of each atom. ]
The manufacturing method of the bicyclic amine compound characterized by using the inorganic oxide shown by these as a catalyst.

[2] 式(1)及び(2)において、Yが水素原子又はヒドロキシメチル基であることを特徴とする上記[1]に記載の二環式アミン化合物の製造方法。   [2] The method for producing a bicyclic amine compound according to the above [1], wherein in the formulas (1) and (2), Y is a hydrogen atom or a hydroxymethyl group.

[3] 式(1)及び(2)において、Xが窒素原子であることを特徴とする上記[1]又は上記[2]に記載の二環式アミン化合物の製造方法。   [3] The method for producing a bicyclic amine compound according to the above [1] or [2], wherein in the formulas (1) and (2), X is a nitrogen atom.

[4] 式(1)及び(2)において、R〜Rが各々独立して、水素原子、メチル基、エチル基、イソプロピル基、又はヒドロキシメチル基を表す(ただし、R〜Rが全て同じ置換基になることはない。)ことを特徴とする上記[1]乃至[3]のいずれかに記載の二環式アミン化合物の製造方法。 [4] In the formulas (1) and (2), R 1 to R 8 each independently represent a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, or a hydroxymethyl group (provided that R 1 to R 8 Are not all the same substituents.) The method for producing a bicyclic amine compound according to any one of [1] to [3] above.

[5] 式(3)において、AがAl又はSiであることを特徴とする上記[1]乃至[4]のいずれかに記載の二環式アミン化合物の製造方法。   [5] The method for producing a bicyclic amine compound according to any one of the above [1] to [4], wherein in the formula (3), A is Al or Si.

[6] 式(3)において、MがNa、K、Rb及びCsの群から選ばれる少なくとも1種であることを特徴とする上記[1]乃至[5]のいずれかに記載の二環式アミン化合物の製造方法。   [6] In the formula (3), M is at least one selected from the group consisting of Na, K, Rb, and Cs. A method for producing an amine compound.

[7] 式(3)において、NがMg、Ca、Sr及びBaの群から選ばれる少なくとも1種であることを特徴とする上記[1]乃至[6]のいずれかに記載の二環式アミン化合物の製造方法。   [7] In the formula (3), N is at least one selected from the group consisting of Mg, Ca, Sr and Ba, and the bicyclic structure according to any one of the above [1] to [6] A method for producing an amine compound.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、上記式(1)で示されるヒドロキシル基含有環状アミン化合物を、無機酸化物触媒の存在下、気相中で分子内脱水させて、上記式(2)で示される二環式アミン化合物を得ることをその特徴とする。   The present invention provides a bicyclic amine represented by the above formula (2) by intramolecular dehydration of a hydroxyl group-containing cyclic amine compound represented by the above formula (1) in the gas phase in the presence of an inorganic oxide catalyst. It is characterized by obtaining a compound.

本発明において、上記式(1)における、Xは炭素原子又は窒素原子を表し、Yは水素原子、炭素数1〜4のアルキル基、水酸基、又は炭素数1〜4のヒドロキシアルキル基を表す。   In the present invention, in the above formula (1), X represents a carbon atom or a nitrogen atom, and Y represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, or a hydroxyalkyl group having 1 to 4 carbon atoms.

本発明において、上記式(1)における、置換基R〜Rは各々独立して、水素原子、炭素数1〜4のアルキル基、水酸基、ヒドロキシメチル基、又は炭素数1〜4のアルコキシ基を表す。 In the present invention, the substituents R 1 to R 8 in the above formula (1) are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, a hydroxymethyl group, or an alkoxy having 1 to 4 carbon atoms. Represents a group.

本発明において、上記式(1)で示される化合物のうち、Xが炭素原子である化合物の具体例としては、例えば、以下の化合物(例示化合物番号1〜6)を挙げることができるが、本発明はこれらに限定されるものではない。   In the present invention, among the compounds represented by the above formula (1), specific examples of the compound in which X is a carbon atom include the following compounds (exemplified compound numbers 1 to 6). The invention is not limited to these examples.

Figure 2016199471
Figure 2016199471

また、上記式(2)で示される二環式アミン化合物のうち、Xが炭素原子である化合物の具体例としては、例えば、以下の化合物(例示化合物番号7〜10)を挙げることができるが、本発明はこれらに限定されるものではない。   Specific examples of the compound in which X is a carbon atom among the bicyclic amine compounds represented by the above formula (2) include the following compounds (exemplified compound numbers 7 to 10). However, the present invention is not limited to these.

Figure 2016199471
Figure 2016199471

次に、無機酸化物触媒を用いる本発明のヒドロキシル基含有環状アミン化合物の分子内脱水反応について説明する。   Next, the intramolecular dehydration reaction of the hydroxyl group-containing cyclic amine compound of the present invention using an inorganic oxide catalyst will be described.

本発明において、無機酸化物触媒としては、特に限定するものではないが、酸成分、塩基成分、又はそれらの両方を担体に担持させた固体触媒であることがより好ましい。   In the present invention, the inorganic oxide catalyst is not particularly limited, but is more preferably a solid catalyst in which an acid component, a base component, or both are supported on a carrier.

固体触媒の担体としては、例えば、無機酸化物が用いられる。無機酸化物としては、特に限定するものではないが、例えば、酸化ケイ素、酸化アルミニウム、アルミノシリケート、ゼオライト、酸化マグネシウム、酸化チタン、酸化ジルコニウム等が挙げられる。   As the solid catalyst carrier, for example, an inorganic oxide is used. The inorganic oxide is not particularly limited, and examples thereof include silicon oxide, aluminum oxide, aluminosilicate, zeolite, magnesium oxide, titanium oxide, and zirconium oxide.

酸成分としては、無機酸を使用することが好ましい。無機酸としては、特に限定するものではないが、例えば、リン酸、ホスホン酸、ホスフィン酸、ホスフィンオキサイド、各種リン酸塩やスルホン酸等が好適なものとして挙げられる。   It is preferable to use an inorganic acid as the acid component. Although it does not specifically limit as an inorganic acid, For example, phosphoric acid, phosphonic acid, phosphinic acid, phosphine oxide, various phosphates, sulfonic acid, etc. are mentioned as a suitable thing.

塩基成分としては、アルカリ金属元素及びアルカリ土類金属元素を含有することが好ましい。アルカリ金属元素としては、特に限定するものではないが、例えば、Li、Na、K、Rb、Cs等が挙げられる。アルカリ土類金属元素としては、特に限定するものではないが、例えば、Mg、Ca、Sr、Ba等が挙げられる。   As the base component, an alkali metal element and an alkaline earth metal element are preferably contained. Although it does not specifically limit as an alkali metal element, For example, Li, Na, K, Rb, Cs etc. are mentioned. Although it does not specifically limit as an alkaline-earth metal element, For example, Mg, Ca, Sr, Ba etc. are mentioned.

このような塩基成分の原料としては、特に限定するものではないが、例えば、それらの酸化物、水酸化物、ハロゲン化物、炭酸塩、硝酸塩、硫酸塩等が挙げられる。本発明において、固体触媒の調製方法は、特に限定するものではないが、例えば、一般的に行われる調製法が利用できる。具体的には、上記した固体触媒の原料(例えば、触媒担体、酸成分の原料、塩基成分の原料等)を水中に溶解又は懸濁させて、攪拌、加熱、濃縮、乾燥等の工程後、成型し、更に焼成を経て固体触媒とする方法等が例示される。   The raw material for such a base component is not particularly limited, and examples thereof include oxides, hydroxides, halides, carbonates, nitrates, and sulfates thereof. In the present invention, the method for preparing the solid catalyst is not particularly limited, but, for example, a generally performed preparation method can be used. Specifically, the above-described solid catalyst raw material (for example, catalyst carrier, acid component raw material, base component raw material, etc.) is dissolved or suspended in water, and after steps such as stirring, heating, concentration, and drying, Examples thereof include a method of forming a solid catalyst through further firing.

固体触媒の焼成温度としては、特に限定するものではないが、通常300〜1100℃の範囲であり、好ましくは400〜700℃の範囲である。400〜700℃の範囲とすることで、固体触媒の酸塩基強度や比表面積等の物性を向上させ、触媒活性、選択率をより高めることができる。   Although it does not specifically limit as a calcination temperature of a solid catalyst, Usually, it is the range of 300-1100 degreeC, Preferably it is the range of 400-700 degreeC. By setting it as the range of 400-700 degreeC, physical properties, such as acid-base intensity | strength of a solid catalyst, and a specific surface area, can be improved, and catalyst activity and a selectivity can be improved more.

また、固体触媒の焼成は、特に限定されるものではないが、空気又は窒素雰囲気下で行えばよい。   Moreover, although baking of a solid catalyst is not specifically limited, What is necessary is just to perform in air or nitrogen atmosphere.

固体触媒にアルカリ土類金属元素を添加する方法については特に制限はなく、アルカリ土類金属と担体を同時に混合して焼成しても、あるいは担体を焼成し、アルカリ土類金属元素塩の水溶液と混練して担持してもよい。   There is no particular limitation on the method of adding the alkaline earth metal element to the solid catalyst, even if the alkaline earth metal and the support are mixed and fired at the same time, or the support is fired to obtain an aqueous solution of the alkaline earth metal element salt. It may be kneaded and supported.

本発明において、分子内脱水反応は主に気相中で行われるが、好ましくは固定床流通式で行われる。   In the present invention, the intramolecular dehydration reaction is mainly performed in the gas phase, but is preferably performed in a fixed bed flow system.

本発明によれば、触媒成分にアルカリ土類金属を含むことにより、従来に比べて触媒を長寿命化し、二環式アミン化合物を工業的に連続的かつ安定的に製造することができるものである。   According to the present invention, by including an alkaline earth metal in the catalyst component, it is possible to prolong the life of the catalyst as compared with the conventional one and to produce the bicyclic amine compound industrially continuously and stably. is there.

実施例及び比較例での反応時間による収率の変化を示す図である。It is a figure which shows the change of the yield by reaction time in an Example and a comparative example. 参考例で得られた固体触媒のP−NMRのチャートを示す図である。It is a figure which shows the chart of P-NMR of the solid catalyst obtained by the reference example.

本発明を以下の参考例、実施例に基づいて更に詳細に説明するが、本発明はこれらに限定して解釈されるものではない。   The present invention will be described in more detail based on the following reference examples and examples, but the present invention should not be construed as being limited thereto.

参考例1(触媒Aの調製)
触媒担体として市販の酸化アルミニウム(住友化学製)60.0gと硝酸カルシウム0.70gを水100mlと混合し、エバポレーターを用いて蒸発乾固させた後、空気雰囲気下、マッフル炉で600℃、5時間焼成した。これを炭酸セシウム19.1g、リン酸水溶液4.75gと混合し、水100mlを加えた後、エバポレーターを用いて蒸発乾固させた。この固体を空気雰囲気下、マッフル炉で200℃、4時間乾燥し、3.5メッシュに破砕して気相反応用触媒(A=Al、M=Cs、N=Ca、a=1、b=0.1、c=0.0025、d=0.07。以下、触媒Aと称する。)を得た。
Reference Example 1 (Preparation of catalyst A)
60.0 g of commercially available aluminum oxide (manufactured by Sumitomo Chemical Co., Ltd.) and 0.70 g of calcium nitrate as a catalyst carrier were mixed with 100 ml of water and evaporated to dryness using an evaporator. Baked for hours. This was mixed with 19.1 g of cesium carbonate and 4.75 g of an aqueous phosphoric acid solution, and after adding 100 ml of water, it was evaporated to dryness using an evaporator. This solid was dried in a muffle furnace at 200 ° C. for 4 hours in an air atmosphere, crushed to 3.5 mesh, and a catalyst for gas phase reaction (A = Al, M = Cs, N = Ca, a = 1, b = 0) 1. c = 0.0025, d = 0.07, hereinafter referred to as Catalyst A).

参考例2(触媒Bの調製)
参考例1において、硝酸カルシウムを1.39g用いる以外は、参考例1に記載の方法に従い触媒調製し、気相反応用触媒(A=Al、M=Cs、N=Ca、a=1、b=0.1、c=0.005、d=0.07。以下、触媒Bと称する。)を得た。当該触媒はP−NMRを測定した。
Reference Example 2 (Preparation of catalyst B)
In Reference Example 1, except that 1.39 g of calcium nitrate was used, a catalyst was prepared according to the method described in Reference Example 1, and a gas phase reaction catalyst (A = Al, M = Cs, N = Ca, a = 1, b = 0.1, c = 0.005, d = 0.07, hereinafter referred to as catalyst B). The catalyst was measured by P-NMR.

参考例3(触媒Cの調製)
参考例1において、硝酸カルシウムを2.80g用いる以外は、参考例1に記載の方法に従い触媒調製し、気相反応用触媒(A=Al、M=Cs、N=Ca、a=1、b=0.1、c=0.01、d=0.07。以下、触媒Cと称する。)を得た。
Reference Example 3 (Preparation of catalyst C)
In Reference Example 1, except that 2.80 g of calcium nitrate was used, a catalyst was prepared according to the method described in Reference Example 1, and a gas phase reaction catalyst (A = Al, M = Cs, N = Ca, a = 1, b = 0.1, c = 0.01, d = 0.07, hereinafter referred to as Catalyst C).

参考例4(触媒Dの調製)
参考例1において、硝酸カルシウムの代わりに硝酸バリウムを0.77g用いる以外は、参考例1に記載の方法に従い触媒調製し、気相反応用触媒(A=Al、M=Cs、N=Ba、a=1、b=0.1、c=0.0025、d=0.07。以下、触媒Dと称する。)を得た。
Reference Example 4 (Preparation of catalyst D)
In Reference Example 1, a catalyst was prepared according to the method described in Reference Example 1 except that 0.77 g of barium nitrate was used instead of calcium nitrate, and a gas phase reaction catalyst (A = Al, M = Cs, N = Ba, a = 1, b = 0.1, c = 0.0025, d = 0.07, hereinafter referred to as Catalyst D).

参考例5(触媒Eの調製)
参考例1において、硝酸カルシウムの代わりに硝酸バリウムを1.54g用いる以外は、参考例1に記載の方法に従い触媒調製し、気相反応用触媒(A=Al、M=Cs、N=Ba、a=1、b=0.1、c=0.005、d=0.07。以下、触媒Eと称する。)を得た。当該触媒はP−NMRを測定した。
Reference Example 5 (Preparation of catalyst E)
In Reference Example 1, except that 1.54 g of barium nitrate was used instead of calcium nitrate, a catalyst was prepared according to the method described in Reference Example 1, and a catalyst for gas phase reaction (A = Al, M = Cs, N = Ba, a = 1, b = 0.1, c = 0.005, d = 0.07, hereinafter referred to as catalyst E). The catalyst was measured by P-NMR.

参考例6(触媒Fの調製)
参考例1において、硝酸カルシウムの代わりに硝酸バリウムを3.09g用いる以外は、参考例1に記載の方法に従い触媒調製し、気相反応用触媒(A=Al、M=Cs、N=Ba、a=1、b=0.1、c=0.01、d=0.07。以下、触媒Fと称する。)を得た。
Reference Example 6 (Preparation of catalyst F)
In Reference Example 1, a catalyst was prepared according to the method described in Reference Example 1 except that 3.09 g of barium nitrate was used instead of calcium nitrate, and a gas phase reaction catalyst (A = Al, M = Cs, N = Ba, a = 1, b = 0.1, c = 0.01, d = 0.07, hereinafter referred to as catalyst F).

参考例7(触媒Gの調製)
参考例1において、硝酸カルシウムの代わりに硝酸ストロンチウムを1.24g用いる以外は、参考例1に記載の方法に従い触媒調製し、気相反応用触媒(A=Al、M=Cs、N=Sr、a=1、b=0.1、c=0.005、d=0.07。以下、触媒Gと称する。)を得た。
Reference Example 7 (Preparation of catalyst G)
In Reference Example 1, except that 1.24 g of strontium nitrate was used instead of calcium nitrate, a catalyst was prepared according to the method described in Reference Example 1, and a catalyst for gas phase reaction (A = Al, M = Cs, N = Sr, a = 1, b = 0.1, c = 0.005, d = 0.07, hereinafter referred to as catalyst G).

参考例8(触媒Hの調製)
触媒担体として市販の酸化アルミニウム(住友化学製)30.0gと炭酸セシウム9.5g、リン酸水溶液2.38gを混合し、水100mlを加えた後、エバポレーターを用いて蒸発乾固させた。この固体を空気雰囲気下、マッフル炉で200℃、4時間乾燥し、3.5メッシュに破砕して気相反応用触媒(A=Al、M=Cs、a=1、b=0.1、d=0.07。以下、触媒Hと称する。)を得た。当該触媒はP−NMRを測定した。
Reference Example 8 (Preparation of catalyst H)
30.0 g of commercially available aluminum oxide (Sumitomo Chemical Co., Ltd.), 9.5 g of cesium carbonate, and 2.38 g of an aqueous phosphoric acid solution were mixed as a catalyst carrier, 100 ml of water was added, and the mixture was evaporated to dryness using an evaporator. This solid was dried in an air atmosphere at 200 ° C. for 4 hours in a muffle furnace, crushed to 3.5 mesh, and a gas phase reaction catalyst (A = Al, M = Cs, a = 1, b = 0.1, d = 0.07, hereinafter referred to as Catalyst H). The catalyst was measured by P-NMR.

参考例9(触媒Iの調製)
参考例1において、硝酸カルシウムを42.1g用いる以外は、参考例1に記載の方法に従い触媒調製し、気相反応用触媒(A=Al、M=Cs、N=Ca、a=1、b=0.1、c=0.15、d=0.07。以下、触媒Iと称する。)を得た。
Reference Example 9 (Preparation of catalyst I)
In Reference Example 1, except that 42.1 g of calcium nitrate was used, a catalyst was prepared according to the method described in Reference Example 1, and a gas phase reaction catalyst (A = Al, M = Cs, N = Ca, a = 1, b = 0.1, c = 0.15, d = 0.07, hereinafter referred to as Catalyst I).

参考例10(触媒Jの調製)
参考例1において、硝酸カルシウムの代わりに硝酸鉄九水和物を4.76g用いる以外は、参考例1に記載の方法に従い触媒調製し、気相反応用触媒(A=Al、M=Cs、N=Fe、a=1、b=0.1、c=0.01、d=0.07。以下、触媒Jと称する。)を得た。
Reference Example 10 (Preparation of catalyst J)
In Reference Example 1, except that 4.76 g of iron nitrate nonahydrate was used instead of calcium nitrate, a catalyst was prepared according to the method described in Reference Example 1, and a catalyst for gas phase reaction (A = Al, M = Cs, N = Fe, a = 1, b = 0.1, c = 0.01, d = 0.07, hereinafter referred to as catalyst J).

参考例11(触媒Kの調製)
参考例1において、硝酸カルシウムの代わりに酸化バナジウムを1.07g用いる以外は、参考例1に記載の方法に従い触媒調製し、気相反応用触媒(A=Al、M=Cs、N=V、a=1、b=0.1、c=0.01、d=0.07。以下、触媒Kと称する。)を得た。
Reference Example 11 (Preparation of catalyst K)
In Reference Example 1, except that 1.07 g of vanadium oxide was used in place of calcium nitrate, a catalyst was prepared according to the method described in Reference Example 1, and a gas phase reaction catalyst (A = Al, M = Cs, N = V, a = 1, b = 0.1, c = 0.01, d = 0.07, hereinafter referred to as catalyst K).

参考例12(触媒Lの調製)
参考例1において、硝酸カルシウムの代わりに硝酸クロム九水和物を4.71g用いる以外は、参考例1に記載の方法に従い触媒調製し、気相反応用触媒(A=Al、M=Cs、N=Cr、a=1、b=0.1、c=0.01、d=0.07。以下、触媒Lと称する。)を得た。
Reference Example 12 (Preparation of catalyst L)
In Reference Example 1, except that 4.71 g of chromium nitrate nonahydrate was used instead of calcium nitrate, a catalyst was prepared according to the method described in Reference Example 1, and a catalyst for gas phase reaction (A = Al, M = Cs, N = Cr, a = 1, b = 0.1, c = 0.01, d = 0.07, hereinafter referred to as catalyst L).

参考例13(触媒Mの調製)
参考例1において、硝酸カルシウムの代わりに硝酸マンガン六水和物を3.38g用いる以外は、参考例1に記載の方法に従い触媒調製し、気相反応用触媒(A=Al、M=Cs、N=Mn、a=1、b=0.1、c=0.01、d=0.07。以下、触媒Mと称する。)を得た。
Reference Example 13 (Preparation of catalyst M)
In Reference Example 1, except that 3.38 g of manganese nitrate hexahydrate was used instead of calcium nitrate, a catalyst was prepared according to the method described in Reference Example 1, and a catalyst for gas phase reaction (A = Al, M = Cs, N = Mn, a = 1, b = 0.1, c = 0.01, d = 0.07, hereinafter referred to as catalyst M).

実施例1(触媒Aを用いた例示化合物10の合成)
例示化合物6[N−(2,3−ジヒドロキシプロピル)ピペラジン]を水に溶解させ、11.25重量%水溶液の原料体を調製した。直径15mmの石英反応管に、触媒Aを20ml、その上下部にそれぞれ長さ23cmになるように、セラミックス製ラシヒリング(直径3mm×長さ3mm×厚み1mm)を詰めた。触媒層の温度は380℃に保ち、上部より、上記調製した例示化合物6を含む原料体を0.3g/分の速度で24時間滴下した。得られた反応混合ガスをコンデンサーで冷却し、反応体をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は97%で、例示化合物10への選択率は54%で、トータルの収率は52%であった。反応結果を表1に示す。
Example 1 (Synthesis of Exemplified Compound 10 Using Catalyst A)
Exemplified Compound 6 [N- (2,3-dihydroxypropyl) piperazine] was dissolved in water to prepare a 11.25 wt% aqueous solution raw material. A quartz reaction tube having a diameter of 15 mm was packed with ceramic Raschig rings (diameter 3 mm × length 3 mm × thickness 1 mm) so that the catalyst A was 20 ml and the upper and lower portions thereof had a length of 23 cm. The temperature of the catalyst layer was kept at 380 ° C., and the raw material body containing the prepared exemplary compound 6 was dropped from above at a rate of 0.3 g / min for 24 hours. The obtained reaction gas mixture was cooled with a condenser, and the reactant was analyzed by gas chromatography. As a result, the conversion of Exemplified Compound 6 was 97%, and the selectivity to Exemplified Compound 10 was 54%, for a total yield. Was 52%. The reaction results are shown in Table 1.

実施例2(触媒Bを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例2で調製した触媒Bを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は97%で、例示化合物10への選択率は56%で、トータルの収率は54%であった。反応結果を表1に示す。
Example 2 (Synthesis of Exemplified Compound 10 Using Catalyst B)
In Example 1, the method described in Example 1 was followed except that Catalyst B prepared in Reference Example 2 was used instead of Catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 97%, the selectivity to Exemplified Compound 10 was 56%, and the total yield was 54%. The reaction results are shown in Table 1.

実施例3(触媒Cを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例3で調製した触媒Cを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は99%で、例示化合物10への選択率は39%で、トータルの収率は39%であった。反応結果を表1に示す。
Example 3 (Synthesis of Exemplified Compound 10 Using Catalyst C)
In Example 1, the method described in Example 1 was followed except that Catalyst C prepared in Reference Example 3 was used instead of Catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 99%, the selectivity to Exemplified Compound 10 was 39%, and the total yield was 39%. The reaction results are shown in Table 1.

実施例4(触媒Dを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例4で調製した触媒Dを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は95%で、例示化合物10への選択率は53%で、トータルの収率は51%であった。反応結果を表1に示す。
Example 4 (Synthesis of Exemplified Compound 10 Using Catalyst D)
In Example 1, the method described in Example 1 was followed except that Catalyst D prepared in Reference Example 4 was used instead of Catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 95%, the selectivity to Exemplified Compound 10 was 53%, and the total yield was 51%. The reaction results are shown in Table 1.

実施例5(触媒Eを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例5で調製した触媒Eを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は95%で、例示化合物10への選択率は55%で、トータルの収率は52%であった。反応結果を表1に示す。
Example 5 (Synthesis of Exemplified Compound 10 Using Catalyst E)
In Example 1, the method described in Example 1 was followed except that Catalyst E prepared in Reference Example 5 was used instead of Catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 95%, the selectivity to Exemplified Compound 10 was 55%, and the total yield was 52%. The reaction results are shown in Table 1.

実施例6(触媒Fを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例6で調製した触媒Fを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は98%で、例示化合物10への選択率は41%で、トータルの収率は40%であった。反応結果を表1に示す。
Example 6 (Synthesis of Exemplified Compound 10 Using Catalyst F)
In Example 1, the method described in Example 1 was followed except that Catalyst F prepared in Reference Example 6 was used instead of Catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 98%, the selectivity to Exemplified Compound 10 was 41%, and the total yield was 40%. The reaction results are shown in Table 1.

実施例7(触媒Gを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例7で調製した触媒Gを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は99%で、例示化合物10への選択率は54%で、トータルの収率は53%であった。反応結果を表1に示す。
Example 7 (Synthesis of Exemplified Compound 10 Using Catalyst G)
In Example 1, the method described in Example 1 was followed except that the catalyst G prepared in Reference Example 7 was used instead of the catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 99%, the selectivity to Exemplified Compound 10 was 54%, and the total yield was 53%. The reaction results are shown in Table 1.

実施例8(触媒Bを用いた例示化合物7の合成)
実施例1において、触媒Aの代わりに参考例2で調製した触媒Bを用い、例示化合物6の代わりに例示化合物3を用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物3の転化率は99%で、例示化合物7への選択率は38%で、トータルの収率は38%であった。反応結果を表1に示す。
Example 8 (Synthesis of Exemplified Compound 7 Using Catalyst B)
In Example 1, the method described in Example 1 was followed except that Catalyst B prepared in Reference Example 2 was used instead of Catalyst A, and Example Compound 3 was used instead of Example Compound 6. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 3 was 99%, the selectivity to Exemplified Compound 7 was 38%, and the total yield was 38%. The reaction results are shown in Table 1.

実施例9(触媒Bを用いた例示化合物8の合成)
実施例1において、触媒Aの代わりに参考例2で調製した触媒Bを用い、例示化合物6の代わりに例示化合物4を用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物4の転化率は99%で、例示化合物8への選択率は45%で、トータルの収率は45%であった。反応結果を表1に示す。
Example 9 (Synthesis of Exemplified Compound 8 Using Catalyst B)
In Example 1, the method described in Example 1 was followed except that the catalyst B prepared in Reference Example 2 was used instead of the catalyst A, and the exemplified compound 4 was used instead of the exemplified compound 6. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 4 was 99%, the selectivity to Exemplified Compound 8 was 45%, and the total yield was 45%. The reaction results are shown in Table 1.

実施例10(触媒Bを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例2で調製した触媒Bを用い、反応を継続して360時間行い、高転化率を維持するため反応温度を初期の380℃から406℃まで上昇させた以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は95%で、例示化合物10への選択率は50%で、トータルの収率は48%であった。反応結果を表1に示す。
Example 10 (Synthesis of Exemplified Compound 10 Using Catalyst B)
In Example 1, the catalyst B prepared in Reference Example 2 was used instead of the catalyst A, the reaction was continued for 360 hours, and the reaction temperature was increased from the initial 380 ° C. to 406 ° C. in order to maintain a high conversion rate. The method described in Example 1 was followed except that. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 95%, the selectivity to Exemplified Compound 10 was 50%, and the total yield was 48%. The reaction results are shown in Table 1.

実施例11(触媒Eを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例5で調製した触媒Eを用い、反応を継続して360時間行い、高転化率を維持するため反応温度を初期の380℃から406℃まで上昇させた以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は95%で、例示化合物10への選択率は53%で、トータルの収率は50%であった。反応結果を表1に示す。
Example 11 (Synthesis of Exemplified Compound 10 Using Catalyst E)
In Example 1, the catalyst E prepared in Reference Example 5 was used instead of the catalyst A, the reaction was continued for 360 hours, and the reaction temperature was increased from the initial 380 ° C. to 406 ° C. in order to maintain a high conversion rate. The method described in Example 1 was followed except that. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 95%, the selectivity to Exemplified Compound 10 was 53%, and the total yield was 50%. The reaction results are shown in Table 1.

比較例1(触媒Hを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例8で調製した触媒Hを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は97%で、例示化合物10への選択率は56%で、トータルの収率は54%であった。反応結果を表2に示す。
Comparative Example 1 (Synthesis of Exemplary Compound 10 Using Catalyst H)
In Example 1, the method described in Example 1 was followed except that catalyst H prepared in Reference Example 8 was used instead of catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 97%, the selectivity to Exemplified Compound 10 was 56%, and the total yield was 54%. The reaction results are shown in Table 2.

比較例2(触媒Hを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例8で調製した触媒Hを用い、反応を継続して360時間行い、高転化率を維持するため反応温度を初期の380℃から424℃まで上昇させた以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は94%で、例示化合物10への選択率は44%で、トータルの収率は41%であった。反応結果を表2に示す。
Comparative Example 2 (Synthesis of Exemplified Compound 10 Using Catalyst H)
In Example 1, the catalyst H prepared in Reference Example 8 was used instead of the catalyst A, the reaction was continued for 360 hours, and the reaction temperature was increased from the initial 380 ° C. to 424 ° C. in order to maintain a high conversion rate. The method described in Example 1 was followed except that. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 94%, the selectivity to Exemplified Compound 10 was 44%, and the total yield was 41%. The reaction results are shown in Table 2.

比較例3(触媒Iを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例9で調製した触媒Iを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は97%で、例示化合物10への選択率は27%で、トータルの収率は26%であった。反応結果を表2に示す。
Comparative Example 3 (Synthesis of Exemplified Compound 10 Using Catalyst I)
In Example 1, the method described in Example 1 was followed except that Catalyst I prepared in Reference Example 9 was used instead of Catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 97%, the selectivity to Exemplified Compound 10 was 27%, and the total yield was 26%. The reaction results are shown in Table 2.

比較例4(触媒Jを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例10で調製した触媒Jを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は95%で、例示化合物10への選択率は46%で、トータルの収率は44%であった。反応結果を表2に示す。
Comparative Example 4 (Synthesis of Exemplified Compound 10 Using Catalyst J)
In Example 1, the method described in Example 1 was followed except that Catalyst J prepared in Reference Example 10 was used instead of Catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 95%, the selectivity to Exemplified Compound 10 was 46%, and the total yield was 44%. The reaction results are shown in Table 2.

比較例5(触媒Kを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例11で調製した触媒Kを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は71%で、例示化合物10への選択率は33%で、トータルの収率は23%であった。反応結果を表2に示す。
Comparative Example 5 (Synthesis of Exemplified Compound 10 Using Catalyst K)
In Example 1, the method described in Example 1 was followed except that Catalyst K prepared in Reference Example 11 was used instead of Catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 71%, the selectivity to Exemplified Compound 10 was 33%, and the total yield was 23%. The reaction results are shown in Table 2.

比較例6(触媒Lを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例12で調製した触媒Lを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は76%で、例示化合物10への選択率は44%で、トータルの収率は33%であった。反応結果を表2に示す。
Comparative Example 6 (Synthesis of Exemplified Compound 10 Using Catalyst L)
In Example 1, the method described in Example 1 was followed except that Catalyst L prepared in Reference Example 12 was used instead of Catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 76%, the selectivity to Exemplified Compound 10 was 44%, and the total yield was 33%. The reaction results are shown in Table 2.

比較例7(触媒Mを用いた例示化合物10の合成)
実施例1において、触媒Aの代わりに参考例13で調製した触媒Mを用いる以外は、実施例1に記載した方法に従った。反応液をガスクロマトグラフィーで分析した結果、例示化合物6の転化率は71%で、例示化合物10への選択率は47%で、トータルの収率は33%であった。反応結果を表2に示す。
Comparative Example 7 (Synthesis of Exemplified Compound 10 Using Catalyst M)
In Example 1, the method described in Example 1 was followed except that Catalyst M prepared in Reference Example 13 was used instead of Catalyst A. As a result of analyzing the reaction solution by gas chromatography, the conversion of Exemplified Compound 6 was 71%, the selectivity to Exemplified Compound 10 was 47%, and the total yield was 33%. The reaction results are shown in Table 2.

Figure 2016199471
Figure 2016199471

Figure 2016199471
Figure 2016199471

表1、表2の結果から、アルカリ土類金属元素を添加することにより、触媒成分であるリン酸の縮合を抑制することができ、従来の触媒より触媒耐久性が向上し、長時間反応を行った場合でも触媒性能が維持された。   From the results of Tables 1 and 2, by adding an alkaline earth metal element, the condensation of phosphoric acid, which is a catalyst component, can be suppressed, the catalyst durability is improved compared to conventional catalysts, and the reaction is continued for a long time. The catalyst performance was maintained even when performed.

本願発明は、例えば、医農薬中間体、有機合成用触媒、化学吸着剤、抗菌剤等に有用な化合物として知られている二環式アミン化合物の製造方法として利用される可能性を有する。   The present invention has a possibility of being used as a method for producing a bicyclic amine compound known as a useful compound for, for example, a pharmaceutical / agrochemical intermediate, a catalyst for organic synthesis, a chemical adsorbent, an antibacterial agent, and the like.

Claims (7)

下記式(1)
Figure 2016199471
[式中、R〜Rは各々独立して、水素原子、炭素数1〜4のアルキル基、水酸基、ヒドロキシメチル基、又は炭素数1〜4のアルコキシ基を表す。また、Xは炭素原子又は窒素原子を表し、Yは水素原子、炭素数1〜4のアルキル基、水酸基、又は炭素数1〜4のヒドロキシアルキル基を表す。]
で示される化合物から下記式(2)
Figure 2016199471
[式中、R〜R、X、Yは前記と同じ定義である。]
で示される化合物を製造する方法において、下記式(3)
(3)
[式中、Aは金属を表し、Mはアルカリ金属を表し、Nはアルカリ土類金属を表し、Pはリンを表し、Oは酸素を表す。添字a〜eは各元素のモル数を表し、b/a=0.001〜0.3(モル比)、c/a=0.001〜0.1(モル比)、d/a=0.001〜0.3(モル比)であって、eは各原子の結合状態によって任意に取り得る値を表す。]
で示される無機酸化物を触媒として用いることを特徴とする二環式アミン化合物の製造方法。
Following formula (1)
Figure 2016199471
[Wherein, R 1 to R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, a hydroxymethyl group, or an alkoxy group having 1 to 4 carbon atoms. X represents a carbon atom or a nitrogen atom, and Y represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, or a hydroxyalkyl group having 1 to 4 carbon atoms. ]
From the compound represented by formula (2)
Figure 2016199471
[Wherein, R 1 to R 8 , X and Y are as defined above. ]
In the method for producing a compound represented by the following formula (3)
A a Mb N c P d O e (3)
[In the formula, A represents a metal, M represents an alkali metal, N represents an alkaline earth metal, P represents phosphorus, and O represents oxygen. Subscripts a to e represent the number of moles of each element, and b / a = 0.001 to 0.3 (molar ratio), c / a = 0.001 to 0.1 (molar ratio), d / a = 0. 0.001 to 0.3 (molar ratio), and e represents a value that can be arbitrarily taken depending on the bonding state of each atom. ]
The manufacturing method of the bicyclic amine compound characterized by using the inorganic oxide shown by these as a catalyst.
式(1)及び(2)において、Yが水素原子又はヒドロキシメチル基であることを特徴とする請求項1に記載の二環式アミン化合物の製造方法。 In formula (1) and (2), Y is a hydrogen atom or a hydroxymethyl group, The manufacturing method of the bicyclic amine compound of Claim 1 characterized by the above-mentioned. 式(1)及び(2)において、Xが窒素原子であることを特徴とする請求項1又は請求項2に記載の二環式アミン化合物の製造方法。 In formula (1) and (2), X is a nitrogen atom, The manufacturing method of the bicyclic amine compound of Claim 1 or Claim 2 characterized by the above-mentioned. 式(1)及び(2)において、R〜Rが各々独立して、水素原子、メチル基、エチル基、イソプロピル基、又はヒドロキシメチル基を表す(ただし、R〜Rが全て同じ置換基になることはない。)ことを特徴とする請求項1乃至請求項3のいずれかに記載の二環式アミン化合物の製造方法。 In formulas (1) and (2), R 1 to R 8 each independently represent a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, or a hydroxymethyl group (provided that R 1 to R 8 are all the same) The method for producing a bicyclic amine compound according to any one of claims 1 to 3, wherein the bicyclic amine compound does not become a substituent. 式(3)において、AがAl又はSiであることを特徴とする請求項1乃至請求項4のいずれかに記載の二環式アミン化合物の製造方法。 In formula (3), A is Al or Si, The manufacturing method of the bicyclic amine compound in any one of Claim 1 thru | or 4 characterized by the above-mentioned. 式(3)において、MがNa、K、Rb及びCsの群から選ばれる少なくとも1種であることを特徴とする請求項1乃至請求項5のいずれかに記載の二環式アミン化合物の製造方法。 6. The bicyclic amine compound according to any one of claims 1 to 5, wherein in the formula (3), M is at least one selected from the group consisting of Na, K, Rb and Cs. Method. 式(3)において、NがMg、Ca、Sr及びBaの群から選ばれる少なくとも1種であることを特徴とする請求項1乃至請求項6のいずれかに記載の二環式アミン化合物の製造方法。 The formula (3), wherein N is at least one selected from the group consisting of Mg, Ca, Sr and Ba, The bicyclic amine compound according to any one of claims 1 to 6, Method.
JP2015078137A 2015-04-07 2015-04-07 Process for producing bicyclic amine compound Active JP6528519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015078137A JP6528519B2 (en) 2015-04-07 2015-04-07 Process for producing bicyclic amine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078137A JP6528519B2 (en) 2015-04-07 2015-04-07 Process for producing bicyclic amine compound

Publications (2)

Publication Number Publication Date
JP2016199471A true JP2016199471A (en) 2016-12-01
JP6528519B2 JP6528519B2 (en) 2019-06-12

Family

ID=57423939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078137A Active JP6528519B2 (en) 2015-04-07 2015-04-07 Process for producing bicyclic amine compound

Country Status (1)

Country Link
JP (1) JP6528519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118932A (en) * 2017-01-26 2018-08-02 東ソー株式会社 Production method for bicyclic amine compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037325A (en) * 2008-05-30 2010-02-18 Tosoh Corp Method for production of hydroxyalkyl triethylenediamines
JP2012149048A (en) * 2010-12-28 2012-08-09 Tosoh Corp Method for producing bicyclic amine compound
JP2014105194A (en) * 2012-11-28 2014-06-09 Tosoh Corp Method for producing bicyclic amine compound
JP2014105192A (en) * 2012-11-28 2014-06-09 Tosoh Corp Manufacturing method of bicyclic amine compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037325A (en) * 2008-05-30 2010-02-18 Tosoh Corp Method for production of hydroxyalkyl triethylenediamines
JP2012149048A (en) * 2010-12-28 2012-08-09 Tosoh Corp Method for producing bicyclic amine compound
JP2014105194A (en) * 2012-11-28 2014-06-09 Tosoh Corp Method for producing bicyclic amine compound
JP2014105192A (en) * 2012-11-28 2014-06-09 Tosoh Corp Manufacturing method of bicyclic amine compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118932A (en) * 2017-01-26 2018-08-02 東ソー株式会社 Production method for bicyclic amine compound

Also Published As

Publication number Publication date
JP6528519B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
KR101841317B1 (en) Zeolite having copper and alkali earth metal supported thereon
CN103168022A (en) Process for preparing a propiolic acid or a derivative thereof
JP5919803B2 (en) Method for producing bicyclic amine compound
BG66322B1 (en) Improved catalyst for the manufacture of acrylonitrile
JP2018501205A (en) Method for producing methyldichlorophosphane
JP6528519B2 (en) Process for producing bicyclic amine compound
Kalita et al. Solvent-free Mukaiyama-aldol condensation catalyzed by Ce–Al–MCM-41 mesoporous materials
KR20130046214A (en) Catalyst for production from butene mixture to butadiene and method of preparing the same
EP3038747A1 (en) Heterogeneous catalysts for the transesterification of aromatic alcohols; and methods of making and use thereof
JP2016216360A (en) Method for producing 2-cyanopyridine
JP2014105192A (en) Manufacturing method of bicyclic amine compound
JP6665600B2 (en) Method for producing bicyclic amine compound
JP6862852B2 (en) Method for producing bicyclic amine compound
JP2010207696A (en) Method of manufacturing catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid
JPS6033539B2 (en) Oxidation catalyst and its preparation method
JP2019518596A (en) Ferrite catalyst for oxidative dehydrogenation reaction, method for producing the same and method for producing butadiene using the same
JP2014105195A (en) Manufacturing method of bicyclic amine compound
JP2014105194A (en) Method for producing bicyclic amine compound
JP2010029847A (en) Production method for methacrylic acid production catalyst
JP6855753B2 (en) Method for producing bicyclic amine
JP2013509297A (en) Planned mixed metal oxide materials for bulk metal oxide catalysts
JP4840907B2 (en) Method for producing organic sulfur compound adsorbent
EP0545318B1 (en) Process for preparing alkylene sulfides
US4567314A (en) Process for producing diolefins
US4555584A (en) Process for producing conjugated dienes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190429

R151 Written notification of patent or utility model registration

Ref document number: 6528519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151