JP2016197127A - Measurement device, control method of measurement device, and program - Google Patents

Measurement device, control method of measurement device, and program Download PDF

Info

Publication number
JP2016197127A
JP2016197127A JP2016152283A JP2016152283A JP2016197127A JP 2016197127 A JP2016197127 A JP 2016197127A JP 2016152283 A JP2016152283 A JP 2016152283A JP 2016152283 A JP2016152283 A JP 2016152283A JP 2016197127 A JP2016197127 A JP 2016197127A
Authority
JP
Japan
Prior art keywords
measurement
projection
imaging
unit
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016152283A
Other languages
Japanese (ja)
Other versions
JP6247724B2 (en
Inventor
正和 東原
Masakazu Higashihara
正和 東原
Original Assignee
キヤノン株式会社
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社, Canon Inc filed Critical キヤノン株式会社
Priority to JP2016152283A priority Critical patent/JP6247724B2/en
Publication of JP2016197127A publication Critical patent/JP2016197127A/en
Application granted granted Critical
Publication of JP6247724B2 publication Critical patent/JP6247724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress a reduction in measurement accuracy on an object in a depth direction to obtain good measurement accuracy over the entire measurement space.SOLUTION: A measurement device comprises: a projection part 101 that projects a pattern including bright parts and dark parts onto an object; an imaging part 102 that photographs the object while the pattern is projected by the projection part 101; a detection part that detects edge parts each showing the boundary of the bright part and dark part of the pattern from an image photographed by the imaging part 102; and a measurement part that measures a three-dimensional shape of the object on the basis of the detected edge positions. A focal position of the imaging part 102 is set farther in a depth direction, when seen from the imaging part 102, than a measurement reference surface that includes a position determined on the basis of an axis passing through the center position of a projection range 105 of the projection part 101 and an axis passing through the center position of an imaging range of the imaging part 102; a focal position of the projection part 101 is set on the measurement reference surface.SELECTED DRAWING: Figure 1

Description

本発明は、計測装置、計測装置の制御方法、およびプログラムに関する。   The present invention relates to a measurement device, a control method for the measurement device, and a program.
三次元形状計測装置で用いられる三次元形状計測法として、いくつかの手法が提案されている。投影装置を用いずに撮影装置だけで形状計測を行うパッシプ方式と、投影装置と撮影装置とを組み合わせて用いるアクティブ方式と、が知られている。アクティブ方式では、投影された対象物を撮影した画像から対象物の三次元形状を計測する。対象物は三次元形状を有していることから、三次元形状計測装置には、奥行方向に関しても形状計測に必要な精度を満たすことが求められる。   Several methods have been proposed as a three-dimensional shape measurement method used in a three-dimensional shape measurement apparatus. There are known a passive method in which shape measurement is performed only by an imaging device without using a projection device, and an active method in which a projection device and an imaging device are used in combination. In the active method, the three-dimensional shape of an object is measured from an image obtained by photographing the projected object. Since the object has a three-dimensional shape, the three-dimensional shape measurement apparatus is required to satisfy the accuracy necessary for shape measurement in the depth direction.
このような、アクティブ方式の三次元形状計測装置の例として、特許文献1および特許文献2が開示されている。特許文献1では、スリット状の投影を対象物に照射して、積算照射強度分布が三角波状になるように光源を制御し、位相シフト法の原理を用いて三次元形状計測を行う技術が開示されている。特許文献2では、デジタル階調値の投影パターンをデフォーカスさせることで、正弦波パターンにし、特許文献1と同様に位相シフト法の原理を用いて三次元形状計測を行う技術が開示されている。   Patent Documents 1 and 2 are disclosed as examples of such an active three-dimensional shape measuring apparatus. Patent Document 1 discloses a technique for irradiating an object with a slit-like projection, controlling the light source so that the integrated irradiation intensity distribution has a triangular wave shape, and performing three-dimensional shape measurement using the principle of the phase shift method. Has been. Patent Document 2 discloses a technique for making a sine wave pattern by defocusing a projection pattern of digital gradation values and performing three-dimensional shape measurement using the principle of the phase shift method as in Patent Document 1. .
特開平11−118443号公報Japanese Patent Laid-Open No. 11-118443 特開2007−85862号公報JP 2007-85862 A
しかしながら、特許文献1に記載の三次元形状計測装置では、計測基準面の上にある対象物の奥行方向の全域において、必要な精度を満たすことが難しい。また、特許文献2に記載の三次元形状計測装置でも、同様に、対象物の奥行方向の全域において必要な精度を満たすことが難しい。なぜならば、対象物を撮影した画像は、撮影光学系のフォーカス面からのデフォーカスに伴いコントラストが悪化し、コントラストが悪化した画像から算出された三次元形状の精度は悪化するからである。   However, in the three-dimensional shape measuring apparatus described in Patent Document 1, it is difficult to satisfy the required accuracy in the entire depth direction of the object on the measurement reference plane. Similarly, in the three-dimensional shape measuring apparatus described in Patent Document 2, it is difficult to satisfy the required accuracy in the entire area in the depth direction of the object. This is because an image obtained by photographing an object is deteriorated in contrast with defocusing from the focus surface of the photographing optical system, and the accuracy of the three-dimensional shape calculated from the image having deteriorated contrast is deteriorated.
具体的には、特許文献1のように、計測基準面が撮影光学系のフォーカス面である場合、計測基準面に置かれた対象物は、計測基準面から離れるほど撮影画像のコントラストが低下し、計測精度が悪化する。そのため、計測基準面での対象物の計測精度に対して、撮影装置に最も近い面での計測精度の悪化が大きく、奥行方向の全域において必要な精度を満たすことが難しいという課題がある。   Specifically, when the measurement reference plane is the focus plane of the photographing optical system as in Patent Document 1, the contrast of the photographed image decreases as the object placed on the measurement reference plane moves away from the measurement reference plane. Measurement accuracy deteriorates. For this reason, there is a problem that the measurement accuracy on the surface closest to the photographing apparatus is greatly deteriorated with respect to the measurement accuracy of the object on the measurement reference surface, and it is difficult to satisfy the required accuracy in the entire region in the depth direction.
また特許文献2のように、投影パターンのフォーカス面が、対象物が存在する領域の外にある場合、投影パターンのコントラストは、投影パターンのフォーカス面に近い対象物の面から遠い面に向かって低下する。それに伴い撮影画像のコントラストが低下するため、計測精度が悪化し、特許文献1と同様に奥行方向の全域において必要な精度を満たすことが難しいという課題がある。   Further, as in Patent Document 2, when the focus surface of the projection pattern is outside the region where the object exists, the contrast of the projection pattern is directed toward a surface far from the surface of the object close to the focus surface of the projection pattern. descend. As a result, the contrast of the captured image is lowered, so that the measurement accuracy is deteriorated, and there is a problem that it is difficult to satisfy the necessary accuracy in the entire area in the depth direction as in Patent Document 1.
上記の課題に鑑み、本発明は、奥行方向に対する計測精度の低下を抑制し、計測空間全域において良好な計測精度を得ることを目的とする。   In view of the above-described problems, an object of the present invention is to suppress a decrease in measurement accuracy in the depth direction and obtain good measurement accuracy in the entire measurement space.
上記の目的を達成する本発明に係る計測装置は、
物体に明部と暗部とを含むパターンを投影する投影手段と、
前記投影手段によりパターンが投影されている間に前記物体を撮像する撮像手段と、
前記撮像手段により撮像された画像から前記パターンの明部と暗部の境界を示すエッジ位置を検出する検出手段と、
前記検出されたエッジ位置に基づいて、前記物体の三次元形状を計測する計測手段とを備え、
前記撮像手段の焦点位置は、前記撮像手段からみて、前記投影手段の投影範囲の中心位置を通る軸と前記撮像手段の撮像範囲の中心位置を通る軸とに基づいて決定される位置を含む計測基準面よりも奥に設定されており、
前記投影手段の焦点位置は、前記計測基準面に設定されている
ことを特徴とする。
The measuring device according to the present invention that achieves the above object is as follows.
Projection means for projecting a pattern including a bright part and a dark part onto an object;
Imaging means for imaging the object while a pattern is projected by the projection means;
Detecting means for detecting an edge position indicating a boundary between a bright part and a dark part of the pattern from an image picked up by the image pickup means;
Measuring means for measuring the three-dimensional shape of the object based on the detected edge position;
The focal position of the imaging means is a measurement including a position determined based on an axis passing through the center position of the projection range of the projection means and an axis passing through the center position of the imaging range of the imaging means when viewed from the imaging means. It is set behind the reference plane,
The focal position of the projection means is set on the measurement reference plane.
本発明によれば、奥行方向に対する計測精度の低下を抑制し、計測空間全域において良好な計測精度を得ることができる。   According to the present invention, it is possible to suppress a decrease in measurement accuracy in the depth direction and to obtain good measurement accuracy in the entire measurement space.
第1実施形態に係る三次元形状計測装置の構成図。The lineblock diagram of the three-dimensional shape measuring device concerning a 1st embodiment. 第1実施形態に係る計測基準面及び計測空間を示す図。The figure which shows the measurement reference plane and measurement space which concern on 1st Embodiment. 第1実施形態に係る投影パターンを示す図。The figure which shows the projection pattern which concerns on 1st Embodiment. 第1実施形態に係る光学系の模式図。1 is a schematic diagram of an optical system according to a first embodiment. 第1実施形態に係る光学系の模式図。1 is a schematic diagram of an optical system according to a first embodiment. 第2実施形態に係る三次元形状計測装置の構成図。The block diagram of the three-dimensional shape measuring apparatus which concerns on 2nd Embodiment. 第2実施形態に係る計測基準面及び計測空間を示す図。The figure which shows the measurement reference plane and measurement space which concern on 2nd Embodiment. 第2実施形態に係る光学系の模式図。The schematic diagram of the optical system which concerns on 2nd Embodiment. 第2実施形態に係る光学系の模式図。The schematic diagram of the optical system which concerns on 2nd Embodiment. 第3実施形態に係る三次元形状計測装置の構成図。The block diagram of the three-dimensional shape measuring apparatus which concerns on 3rd Embodiment. 第3実施形態に係る計測基準面及び計測空間を示す図。The figure which shows the measurement reference plane and measurement space which concern on 3rd Embodiment. 第3実施形態に係る光学系の模式図。The schematic diagram of the optical system which concerns on 3rd Embodiment. 第1実施形態に係る撮影距離とコントラストとの関係、または、撮影距離と撮影画像の明るさとの関係を示す図。The figure which shows the relationship between the shooting distance and contrast which concern on 1st Embodiment, or the relationship between a shooting distance and the brightness of a picked-up image. 第1実施形態に係る撮影距離と計測誤差との関係を示す図。The figure which shows the relationship between the imaging distance which concerns on 1st Embodiment, and a measurement error.
(第1実施形態)
図1を参照して、第1実施形態に係る三次元形状計測装置の構成を説明する。三次元形状計測装置は、投影部101と、撮影部102と、制御部103とを備える。
(First embodiment)
With reference to FIG. 1, the structure of the three-dimensional shape measuring apparatus according to the first embodiment will be described. The three-dimensional shape measurement apparatus includes a projection unit 101, an imaging unit 102, and a control unit 103.
投影部101は、パターン光を対象物104へ投影する投影動作を実行するプロジェクタである。投影部101は、投影範囲105で示される空間へ投影可能である。投影部101は、会議室等で上方投影用に使用されるプロジェクタと同様に、投影軸と投影画像中心とが一致していないものとする。ここで、投影軸とは投影中心に向かう光軸である。   The projection unit 101 is a projector that performs a projection operation of projecting pattern light onto the object 104. The projection unit 101 can project into the space indicated by the projection range 105. Assume that the projection unit 101 does not coincide with the projection axis and the center of the projection image, like a projector used for upward projection in a conference room or the like. Here, the projection axis is an optical axis toward the projection center.
撮影部102は、パターン光が投影された対象物104を撮影するカメラである。撮影部102は、撮影範囲106で示される空間を撮影可能である。制御部103は、例えばパーソナル・コンピュータであり、投影部101および撮影部102の動作を制御する。制御部103は、対象物104の三次元形状を計測する処理も実行する。   The imaging unit 102 is a camera that captures an object 104 onto which pattern light is projected. The photographing unit 102 can photograph the space indicated by the photographing range 106. The control unit 103 is a personal computer, for example, and controls operations of the projection unit 101 and the photographing unit 102. The control unit 103 also executes processing for measuring the three-dimensional shape of the object 104.
次に、図2を参照して、第1実施形態に係る計測基準面及び計測空間を説明する。光軸107は、投影部101から投影画像中心へ向かう光軸であり、投影軸と一致していない。光軸108は、撮影部102の光軸(撮影中心へ向かう撮影軸)である。計測基準面109は、光軸107と光軸108とが交差する点を含む面である。計測空間110は、投影範囲105と撮影範囲106との両方に含まれ、当該投影範囲105と撮影範囲106とにより規定される空間である。本実施形態では、計測基準面109は、計測空間中に含まれ、撮影部102から観察した場合に計測空間110の奥行方向距離を二等分するように配置されている。計測面116は、計測空間110の中で、投影部101および撮影部102から最も近い計測面である。計測面117は、計測空間110の中で、投影部101および撮影部102から最も遠い計測面である。本実施形態では、計測基準面109は、計測空間110の内部に設定されているが、必ずしも当該内部に限定されず外部であってもよい。   Next, the measurement reference plane and the measurement space according to the first embodiment will be described with reference to FIG. The optical axis 107 is an optical axis from the projection unit 101 toward the center of the projection image, and does not coincide with the projection axis. The optical axis 108 is the optical axis of the imaging unit 102 (imaging axis toward the imaging center). The measurement reference plane 109 is a plane including a point where the optical axis 107 and the optical axis 108 intersect. The measurement space 110 is a space that is included in both the projection range 105 and the imaging range 106 and is defined by the projection range 105 and the imaging range 106. In the present embodiment, the measurement reference plane 109 is included in the measurement space, and is arranged so as to bisect the depth direction distance of the measurement space 110 when observed from the imaging unit 102. The measurement surface 116 is the measurement surface closest to the projection unit 101 and the imaging unit 102 in the measurement space 110. The measurement surface 117 is the measurement surface farthest from the projection unit 101 and the imaging unit 102 in the measurement space 110. In the present embodiment, the measurement reference plane 109 is set inside the measurement space 110, but is not necessarily limited to the inside and may be outside.
本実施形態に係る三次元形状計測装置は、空間符号化法による形状計測を行う。まず投影部101が、図3に示されるような明暗パターン111を対象物104へ投影する。そして、撮影部102は、明暗パターン111が投影された対象物104を撮影する。制御部103は、撮影部102により撮影された画像を処理して、対象物104の三次元形状を計測する。より具体的には、明暗パターン111の明暗のエッジ位置を検出し、エッジ位置に対応する投影部101の投影軸と撮影部102の撮影軸とのなす角度に基づいて、三角測量の原理で投影部101および撮影部102から対象物104までの距離を算出する。   The three-dimensional shape measurement apparatus according to the present embodiment performs shape measurement by a spatial encoding method. First, the projection unit 101 projects a light and dark pattern 111 as shown in FIG. Then, the photographing unit 102 photographs the object 104 on which the light and dark pattern 111 is projected. The control unit 103 processes the image photographed by the photographing unit 102 and measures the three-dimensional shape of the object 104. More specifically, the light / dark edge position of the light / dark pattern 111 is detected, and projection is performed based on the principle of triangulation based on the angle formed by the projection axis of the projection unit 101 and the imaging axis of the imaging unit 102 corresponding to the edge position. The distance from the part 101 and the photographing part 102 to the object 104 is calculated.
本実施形態では、明暗パターン111のエッジ位置の検出方法として、ネガポジ交点検出法を用いる。ネガポジ交点検出法は、投影部101が明暗パターン111の明暗位置を切り替えたパターンを連続して投影し、撮影部102が撮影した画像の強度分布の交点をエッジ位置とする方法である。   In the present embodiment, a negative / positive intersection detection method is used as a method for detecting the edge position of the light / dark pattern 111. The negative / positive intersection detection method is a method in which the projection unit 101 continuously projects a pattern in which the light / dark position of the light / dark pattern 111 is switched, and the intersection of the intensity distribution of the image captured by the image capturing unit 102 is used as the edge position.
ネガポジ交点検出法では、一般的に撮影部102により撮影される明暗パターンのコントラストが高い方がエッジ位置の検出精度が高いことが知られている。また、撮影部102により撮影された画像の明度が高い方が撮影部102のSN(信号とノイズとの比)が向上する。そのため、投影部101からの投影は明度が高い方がエッジ位置の検出精度が高くなる。   In the negative / positive intersection detection method, it is generally known that the higher the contrast of a light and dark pattern photographed by the photographing unit 102, the higher the edge position detection accuracy. Further, the SN (ratio of signal to noise) of the photographing unit 102 is improved when the brightness of the image photographed by the photographing unit 102 is high. Therefore, the projection from the projection unit 101 has higher edge position detection accuracy when the brightness is higher.
本実施形態に係る三次元形状計測装置では、計測空間110の全域において必要な精度以上で形状計測する必要がある。しかしながら、撮影部102により撮影された画像は、図13(a)に示されるように、フォーカス位置ではコントラストが高いが、フォーカス位置からずれるとコントラストが低下する。また、図13(b)に示されるように、撮影部102からの距離が近いと取込角度が大きくなり画像は明るくなるが、撮影部102からの距離が遠いと取込角度が小さくなり画像は暗くなる。   In the three-dimensional shape measurement apparatus according to the present embodiment, it is necessary to measure the shape with a precision higher than necessary over the entire measurement space 110. However, as shown in FIG. 13A, the image captured by the imaging unit 102 has a high contrast at the focus position, but the contrast decreases when the image deviates from the focus position. Further, as shown in FIG. 13B, when the distance from the photographing unit 102 is short, the capture angle becomes large and the image becomes bright, but when the distance from the photographing unit 102 is long, the capture angle becomes small and the image becomes small. Becomes darker.
そのため、撮影部102のフォーカス位置を計測基準面109に合わせた場合、計測面116では、デフォーカスによりコントラストが低下するが、計測面116が撮影部102に近いため撮影画像は明るい。一方、計測面117では、デフォーカスによりコントラストが低下し、計測面117が撮影部102から遠いため撮影画像も暗くなる。したがって、撮影距離と計測誤差との関係は、図14(a)に示されるような関係になり、計測面116に比べて計測面117では計測精度は低下する。   Therefore, when the focus position of the photographing unit 102 is set to the measurement reference surface 109, the contrast on the measurement surface 116 decreases due to defocusing, but the photographed image is bright because the measurement surface 116 is close to the photographing unit 102. On the other hand, on the measurement surface 117, the contrast is reduced due to defocusing, and the captured image is also dark because the measurement surface 117 is far from the imaging unit 102. Therefore, the relationship between the shooting distance and the measurement error is as shown in FIG. 14A, and the measurement accuracy on the measurement surface 117 is lower than that on the measurement surface 116.
そこで本実施形態では、投影部101のフォーカス位置を計測基準面109に合わせ、撮影部102のフォーカス位置を計測基準面109よりも撮影部102から奥側に合わせる。   Therefore, in the present embodiment, the focus position of the projection unit 101 is adjusted to the measurement reference plane 109, and the focus position of the imaging unit 102 is adjusted from the imaging unit 102 to the back side of the measurement reference plane 109.
図4は、投影部101のフォーカス位置の様子を示している。レンズ112は、投影部101の投影光学系を模式的に1枚のレンズとして表したものであり、表示素子113は、明暗パターンを表示する。図4に示されるように、投影部101のフォーカス位置は、計測基準面109に合わせている。   FIG. 4 shows the state of the focus position of the projection unit 101. The lens 112 schematically represents the projection optical system of the projection unit 101 as a single lens, and the display element 113 displays a light / dark pattern. As shown in FIG. 4, the focus position of the projection unit 101 is aligned with the measurement reference plane 109.
一方、図5は、撮影部102のフォーカス位置の様子を示している。レンズ114は、撮影部102の撮影光学系を模式的に1枚のレンズとして表したものであり、撮影素子115は、レンズ114から入ってきた光を電気信号に変換する。図5に示されるように、撮影部102のフォーカス位置は、計測基準面109よりも奥側に合わせている。   On the other hand, FIG. 5 shows a state of the focus position of the photographing unit 102. The lens 114 schematically represents the photographing optical system of the photographing unit 102 as one lens, and the photographing element 115 converts the light that has entered from the lens 114 into an electrical signal. As shown in FIG. 5, the focus position of the photographing unit 102 is set to the back side with respect to the measurement reference plane 109.
図4および図5に示されるような構成にすることにより、図13(c)に示されるように、計測面116での撮影部102のデフォーカスによるコントラスト低下は、計測面117でのコントラスト低下よりも大きくなる。したがって、撮影距離と計測誤差との関係は、図14(b)に示されるような関係になり、撮影部102からの距離による撮影画像の明るさの変化と合わせると、計測面116の計測精度と計測面117の計測精度とは同程度となる。また、撮影部102のフォーカス位置が計測基準面109よりも奥にあるため、フォーカス位置が計測基準面109にある場合に比べて、計測面117でのコントラストの低下は小さい。そのため、フォーカス位置が計測基準面109にある場合に比べると計測面117での計測精度は向上する。すなわち、撮影距離全体に渡って計測誤差が一定の範囲に収まり精度の極端な低下が生じず、全体として一定の計測精度を得ることができる。   With the configuration shown in FIGS. 4 and 5, as shown in FIG. 13C, the contrast reduction due to the defocus of the imaging unit 102 on the measurement surface 116 is caused by the contrast reduction on the measurement surface 117. Bigger than. Accordingly, the relationship between the shooting distance and the measurement error is as shown in FIG. 14B, and when combined with the change in brightness of the shot image according to the distance from the shooting unit 102, the measurement accuracy of the measurement surface 116 is measured. The measurement accuracy of the measurement surface 117 is about the same. In addition, since the focus position of the photographing unit 102 is behind the measurement reference plane 109, the reduction in contrast on the measurement plane 117 is smaller than when the focus position is on the measurement reference plane 109. Therefore, the measurement accuracy on the measurement surface 117 is improved as compared with the case where the focus position is on the measurement reference surface 109. That is, the measurement error is within a certain range over the entire photographing distance, and the accuracy is not drastically reduced, and a certain measurement accuracy can be obtained as a whole.
以上説明したように、撮影部102のフォーカス位置を計測基準面109よりも奥に設定することにより、計測空間110全域において一定の計測精度を得ることができる。撮影部102のフォーカス位置を計測基準面109に合わせた場合、計測空間110全域で本実施形態と同程度の計測精度を得るためには、撮影部102の結像性能を上げて撮影画像のコントラストを向上させるか、投影部101から投影される光量を上げる必要がある。しかし、本実施形態ではその必要がないため、撮影部102の結像性能を必要以上に上げる必要がなく、撮影部102を構成するレンズ枚数を削減することができ、全体としてコスト削減につながる。また、投影部101の光源の出力を小さくすることで低消費電力化や、光源から発生する熱が少なくなるため冷却系を小さくすることができ、小型化につながる。   As described above, by setting the focus position of the photographing unit 102 behind the measurement reference plane 109, it is possible to obtain a certain measurement accuracy in the entire measurement space 110. When the focus position of the photographing unit 102 is set to the measurement reference plane 109, in order to obtain the same measurement accuracy as the present embodiment in the entire measurement space 110, the imaging performance of the photographing unit 102 is increased and the contrast of the photographed image is increased. Or the amount of light projected from the projection unit 101 needs to be increased. However, since this is not necessary in the present embodiment, it is not necessary to increase the imaging performance of the photographing unit 102 more than necessary, and the number of lenses constituting the photographing unit 102 can be reduced, leading to cost reduction as a whole. In addition, by reducing the output of the light source of the projection unit 101, the power consumption is reduced, and the heat generated from the light source is reduced, so that the cooling system can be made smaller, leading to miniaturization.
ここで、計測空間の奥行が大きく、計測面116と計測面117との距離がより離れている場合、計測面116の撮影画像の明るさと計測面117の撮影画像の明るさとの差がより大きくなるため、撮影部102のフォーカス位置を計測面117により近い位置に設定する。これにより、計測面117でのデフォーカスによるコントラスト低下が小さくなり、計測面117での精度低下をより軽減できる。   Here, when the depth of the measurement space is large and the distance between the measurement surface 116 and the measurement surface 117 is further away, the difference between the brightness of the captured image on the measurement surface 116 and the brightness of the captured image on the measurement surface 117 is larger. Therefore, the focus position of the photographing unit 102 is set to a position closer to the measurement surface 117. As a result, a decrease in contrast due to defocus on the measurement surface 117 is reduced, and a decrease in accuracy on the measurement surface 117 can be further reduced.
また、撮影部102のレンズ114のデフォーカスによるコントラスト低下が大きい場合、撮影部102のフォーカス位置を計測基準面109に近い位置に設定する。これにより、計測面116でのデフォーカスによるコントラスト低下が小さくなり、計測面116での精度低下をより軽減できる。   When the contrast reduction due to the defocus of the lens 114 of the photographing unit 102 is large, the focus position of the photographing unit 102 is set to a position close to the measurement reference plane 109. As a result, a decrease in contrast due to defocus on the measurement surface 116 is reduced, and a decrease in accuracy on the measurement surface 116 can be further reduced.
なお、撮影部102のフォーカス位置を計測基準面109よりも奥に合わせる方法としては、撮影部102の撮影光学系を設計する際にフォーカス位置を計測基準面109よりも奥にしてもよい。また、撮影部102がオートフォーカス機能を有する場合には、フォーカスを合わせるべき位置にフォーカス合わせ用のチャートを配置してフォーカスを合わせる方法、もしくは、計測基準面109でフォーカスを合わせた後に、フォーカス調整用のレンズを用いて奥側にフォーカスを合わせる方法を取ってもよい。また、フォーカス位置が奥になりすぎると計測精度が低くなる箇所が表れてくるため、フォーカス位置は、コントラストと画像の明るさとの関係によって適切な位置に設定するとよい。   Note that, as a method of adjusting the focus position of the photographing unit 102 behind the measurement reference plane 109, the focus position may be set behind the measurement reference plane 109 when designing the photographing optical system of the photographing unit 102. Further, when the photographing unit 102 has an autofocus function, a focus adjustment chart is arranged by placing a focus adjustment chart at a position to be focused, or focus adjustment is performed after focusing on the measurement reference plane 109. A method of focusing on the back side using a special lens may be used. In addition, when the focus position is too deep, a portion where the measurement accuracy is lowered appears. Therefore, the focus position may be set to an appropriate position depending on the relationship between the contrast and the brightness of the image.
本実施形態では、空間符号化法による三次元形状計測を行っており、エッジ位置の検出方法としてはネガポジ交点検出法を用いている。しかしながら、ネガポジ交点検出法に限定されず、微分フィルタによるエッジ位置の検出や強度分布の重心検出を行う方法を用いてもよい。また、三次元形状計測の方法も空間符号化法だけでなく、正弦波パターンを投影する位相シフト法や光切断法を用いてもよい。   In this embodiment, three-dimensional shape measurement is performed by a spatial encoding method, and a negative / positive intersection detection method is used as a method for detecting an edge position. However, the method is not limited to the negative / positive intersection detection method, and a method of detecting an edge position using a differential filter or detecting the center of gravity of an intensity distribution may be used. Further, the three-dimensional shape measurement method is not limited to the spatial encoding method, and a phase shift method or a light cutting method for projecting a sine wave pattern may be used.
(第2実施形態)
図6を参照して、第2実施形態に係る三次元形状計測装置の構成を説明する。三次元形状計測装置は、投影部201と、撮影部202と、制御部203とを備える。
(Second Embodiment)
With reference to FIG. 6, the structure of the three-dimensional shape measuring apparatus which concerns on 2nd Embodiment is demonstrated. The three-dimensional shape measurement apparatus includes a projection unit 201, an imaging unit 202, and a control unit 203.
投影部201は、パターン光を対象物204へ投影する投影動作を実行するプロジェクタである。投影部201は、投影範囲205で示される空間へ投影可能である。投影部201は、第1実施形態とは異なり、投影軸と投影画像中心とが一致しているものとする。   The projection unit 201 is a projector that performs a projection operation of projecting pattern light onto the object 204. The projection unit 201 can project into the space indicated by the projection range 205. Unlike the first embodiment, the projection unit 201 assumes that the projection axis coincides with the center of the projection image.
撮影部202は、パターン光が投影された対象物204を撮影するカメラである。撮影部202は、撮影範囲206で示される空間を撮影可能である。制御部203は、例えばパーソナル・コンピュータであり、投影部201および撮影部202の動作を制御する。制御部203は、対象物204の三次元形状を計測する処理も実行する。   The imaging unit 202 is a camera that captures an object 204 onto which pattern light is projected. The photographing unit 202 can photograph the space indicated by the photographing range 206. The control unit 203 is a personal computer, for example, and controls operations of the projection unit 201 and the imaging unit 202. The control unit 203 also executes processing for measuring the three-dimensional shape of the object 204.
次に、図7を参照して、第2実施形態に係る計測基準面及び計測空間を説明する。光軸207は、当該投影軸は投影部201から投影画像中心へ向かう光軸であり、投影軸と一致している。光軸208は、撮影部202の光軸(撮影中心へ向かう撮影軸)である。計測基準面209は、光軸207と光軸208とが交差する点を含む面である。計測空間210は、投影範囲205と撮影範囲206との両方に含まれ、当該投影範囲105と撮影範囲106とにより規定される空間である。本実施形態では、計測基準面209は、計測空間中に含まれ、撮影部202から観察した場合に計測空間210の奥行方向距離を二等分するように配置されている。計測面216は、計測空間210の中で、投影部201および撮影部202から最も近い計測面である。計測面217は、計測空間210の中で、投影部201および撮影部202から最も遠い計測面である。本実施形態では、計測基準面209は、計測空間210の内部に設定されているが、必ずしも当該内部に限定されず外部であってもよい。   Next, a measurement reference plane and a measurement space according to the second embodiment will be described with reference to FIG. The optical axis 207 is an optical axis from the projection unit 201 toward the center of the projection image, and coincides with the projection axis. An optical axis 208 is an optical axis of the imaging unit 202 (imaging axis toward the imaging center). The measurement reference plane 209 is a plane including a point where the optical axis 207 and the optical axis 208 intersect. The measurement space 210 is a space that is included in both the projection range 205 and the imaging range 206 and is defined by the projection range 105 and the imaging range 106. In the present embodiment, the measurement reference plane 209 is included in the measurement space and is arranged so as to bisect the depth direction distance of the measurement space 210 when observed from the imaging unit 202. The measurement surface 216 is the measurement surface closest to the projection unit 201 and the imaging unit 202 in the measurement space 210. The measurement surface 217 is the measurement surface farthest from the projection unit 201 and the imaging unit 202 in the measurement space 210. In the present embodiment, the measurement reference plane 209 is set inside the measurement space 210, but is not necessarily limited to the inside and may be outside.
第1実施形態と同様に、本実施形態に係る三次元形状計測装置は、空間符号化法による形状計測を行い、エッジ位置の検出方法としてネガポジ交点検出法を用いる。   Similar to the first embodiment, the three-dimensional shape measurement apparatus according to the present embodiment performs shape measurement by the spatial encoding method, and uses the negative / positive intersection detection method as the edge position detection method.
本実施形態においても、投影部201のフォーカス位置を計測基準面209に合わせ、撮影部202のフォーカス位置を計測基準面209よりも奥側に合わせる。   Also in this embodiment, the focus position of the projection unit 201 is adjusted to the measurement reference plane 209, and the focus position of the imaging unit 202 is adjusted to the back side of the measurement reference plane 209.
図8は、投影部201のフォーカス位置の様子を示している。レンズ212は、投影部201の投影光学系を模式的に1枚のレンズとして表したものであり、表示素子213は、明暗パターンを表示する。図8に示されるように、投影部201のフォーカス位置は、計測基準面209に合わせている。   FIG. 8 shows the focus position of the projection unit 201. The lens 212 schematically represents the projection optical system of the projection unit 201 as one lens, and the display element 213 displays a light / dark pattern. As shown in FIG. 8, the focus position of the projection unit 201 is aligned with the measurement reference plane 209.
一方、図9は、撮影部202のフォーカス位置の様子を示している。レンズ214は、撮影部202の撮影光学系を模式的に1枚のレンズとして表したものであり、撮影素子215は、レンズ214から入ってきた光を電気信号に変換する。図9に示されるように、撮影部202のフォーカス位置は、計測基準面209よりも奥側に合わせている。   On the other hand, FIG. 9 shows a state of the focus position of the photographing unit 202. The lens 214 schematically represents the photographing optical system of the photographing unit 202 as one lens, and the photographing element 215 converts light that has entered from the lens 214 into an electrical signal. As shown in FIG. 9, the focus position of the photographing unit 202 is set to the back side with respect to the measurement reference plane 209.
図8および図9に示されるような構成にすることにより、計測面216での撮影部202のデフォーカスによるコントラスト低下は、計測面217でのコントラスト低下よりも大きくなる。したがって、撮影部202からの距離による撮影画像の明るさの変化と合わせると、計測面216の計測精度と計測面217の計測精度とは同程度となる。また、撮影部202のフォーカス位置が計測基準面209よりも奥にあるため、フォーカス位置が計測基準面209にある場合に比べて、計測面217でのコントラストの低下は小さい。そのため、フォーカス位置が計測基準面209にある場合に比べると計測面217での計測精度は向上する。すなわち、撮影距離全体に渡って計測誤差が一定の範囲に収まり精度の極端な低下が生じず、全体として一定の計測精度を得ることができる。   With the configuration shown in FIGS. 8 and 9, the contrast reduction due to the defocusing of the imaging unit 202 on the measurement surface 216 is larger than the contrast reduction on the measurement surface 217. Therefore, the measurement accuracy of the measurement surface 216 and the measurement accuracy of the measurement surface 217 are comparable when combined with the change in brightness of the captured image due to the distance from the imaging unit 202. In addition, since the focus position of the photographing unit 202 is behind the measurement reference plane 209, the contrast reduction on the measurement plane 217 is small as compared with the case where the focus position is on the measurement reference plane 209. Therefore, the measurement accuracy on the measurement surface 217 is improved as compared with the case where the focus position is on the measurement reference surface 209. That is, the measurement error is within a certain range over the entire photographing distance, and the accuracy is not drastically reduced, and a certain measurement accuracy can be obtained as a whole.
以上説明したように、撮影部202のフォーカス位置を計測基準面209よりも奥に設定することにより、計測空間210全域において一定の計測精度を得ることができる。撮影部202のフォーカス位置を計測基準面209に合わせた場合、計測空間210全域で本実施形態と同程度の計測精度を得るためには、撮影部202の結像性能を上げて撮影画像のコントラストを向上させるか、投影部101から投影される光量を上げる必要がある。しかし、本実施形態ではその必要がないため、撮影部202の結像性能を必要以上に上げる必要がなく、撮影部202を構成するレンズ枚数を削減することができ、全体としてコスト削減につながる。また、投影部201の光源の出力を小さくすることで低消費電力化や、光源から発生する熱が少なくなるため冷却系を小さくすることができ、小型化につながる。   As described above, by setting the focus position of the imaging unit 202 behind the measurement reference plane 209, it is possible to obtain a certain measurement accuracy in the entire measurement space 210. When the focus position of the imaging unit 202 is adjusted to the measurement reference plane 209, in order to obtain the same measurement accuracy as the present embodiment in the entire measurement space 210, the imaging performance of the imaging unit 202 is increased and the contrast of the captured image is increased. Or the amount of light projected from the projection unit 101 needs to be increased. However, since this is not necessary in the present embodiment, it is not necessary to increase the imaging performance of the photographing unit 202 more than necessary, and the number of lenses constituting the photographing unit 202 can be reduced, leading to cost reduction as a whole. Further, by reducing the output of the light source of the projection unit 201, the power consumption is reduced, and the heat generated from the light source is reduced, so that the cooling system can be made smaller, leading to miniaturization.
(第3実施形態)
図6を参照して、第3実施形態に係る三次元形状計測装置の構成を説明する。三次元形状計測装置は、投影部301と、撮影部302と、撮影部303(第2の撮影部)と、制御部304とを備える。
(Third embodiment)
With reference to FIG. 6, the structure of the three-dimensional shape measuring apparatus which concerns on 3rd Embodiment is demonstrated. The three-dimensional shape measurement apparatus includes a projection unit 301, an imaging unit 302, an imaging unit 303 (second imaging unit), and a control unit 304.
投影部301は、本実施形態ではアクティブステレオ方式を用いているため、対象物305へ、ベタ画像を投影するか、または、光源を照射する投影動作を実行する。投影部301は、投影範囲306で示される空間へ投影可能である。   Since the projection unit 301 uses the active stereo method in this embodiment, the projection unit 301 projects a solid image on the object 305 or performs a projection operation of irradiating a light source. The projection unit 301 can project into the space indicated by the projection range 306.
撮影部302および撮影部303は、投影部301により投影が行われた対象物305を撮影するカメラである。撮影部302は、撮影範囲307で示される空間を撮影可能である。撮影部303は、撮影範囲308で示される空間を撮影可能である。すなわち撮影部302および撮影部303は、撮影方向が相互に異なっている。制御部304は、例えばパーソナル・コンピュータであり、投影部301、撮影部302、および撮影部303の各動作を制御する。制御部304は、対象物305の三次元形状を計測する処理も実行する。   The photographing unit 302 and the photographing unit 303 are cameras that photograph the object 305 projected by the projection unit 301. The photographing unit 302 can photograph the space indicated by the photographing range 307. The photographing unit 303 can photograph the space indicated by the photographing range 308. That is, the shooting unit 302 and the shooting unit 303 have different shooting directions. The control unit 304 is a personal computer, for example, and controls each operation of the projection unit 301, the imaging unit 302, and the imaging unit 303. The control unit 304 also executes processing for measuring the three-dimensional shape of the object 305.
次に、図11を参照して、第3実施形態に係る計測基準面及び計測空間を説明する。光軸309は、撮影部302の光軸(撮影中心へ向かう撮影軸)である。光軸310は、撮影部303の光軸(撮影中心へ向かう撮影軸)である。計測基準面311は、投影部301の投影軸と、光軸309および光軸310と、が交差する点を含む面である。計測空間312は、投影範囲306と撮影範囲307と撮影範囲308とに含まれ、当該投影範囲と撮影範囲307と撮影範囲308とにより規定される空間である。本実施形態では、計測基準面311は、計測空間中に含まれ、撮影部302から観察した場合に計測空間312の奥行方向距離を二等分するように配置されている。計測面313は、計測空間312の中で、投影部301、撮影部302、および撮影部303から最も近い計測面である。計測面314は、計測空間312の中で、投影部301、撮影部302、および撮影部303から最も遠い計測面である。本実施形態では、計測基準面311は、計測空間312の内部に設定されているが、必ずしも当該内部に限定されず外部であってもよい。   Next, a measurement reference plane and a measurement space according to the third embodiment will be described with reference to FIG. An optical axis 309 is an optical axis of the imaging unit 302 (imaging axis toward the imaging center). An optical axis 310 is an optical axis of the imaging unit 303 (imaging axis toward the imaging center). The measurement reference plane 311 is a plane including a point where the projection axis of the projection unit 301 intersects with the optical axis 309 and the optical axis 310. The measurement space 312 is a space that is included in the projection range 306, the shooting range 307, and the shooting range 308 and is defined by the projection range, the shooting range 307, and the shooting range 308. In the present embodiment, the measurement reference plane 311 is included in the measurement space, and is arranged so as to bisect the depth direction distance of the measurement space 312 when observed from the imaging unit 302. The measurement surface 313 is the measurement surface closest to the projection unit 301, the imaging unit 302, and the imaging unit 303 in the measurement space 312. The measurement surface 314 is the measurement surface farthest from the projection unit 301, the imaging unit 302, and the imaging unit 303 in the measurement space 312. In the present embodiment, the measurement reference plane 311 is set inside the measurement space 312, but is not necessarily limited to the inside and may be outside.
本実施形態に係る三次元形状計測装置では、第1および第2実施形態とは異なり、投影部301により投影された対象物305を、撮影部302と、撮影部303とにより撮影した各画像から三角測量の原理を用いて対象物305までの距離を算出する、アクティブステレオ方式(ステレオ法)を採用している。そのため、第1および第2実施形態とは異なり、投影部301からパターンを投影する必要がないため、投影部301からはベタ画像を投影すればよい。さらには、投影部301は、電球などの照明部であってもよい。   In the three-dimensional shape measurement apparatus according to this embodiment, unlike the first and second embodiments, the object 305 projected by the projection unit 301 is obtained from each image photographed by the photographing unit 302 and the photographing unit 303. An active stereo method (stereo method) that calculates the distance to the object 305 using the principle of triangulation is adopted. Therefore, unlike the first and second embodiments, there is no need to project a pattern from the projection unit 301, so a solid image may be projected from the projection unit 301. Furthermore, the projection unit 301 may be an illumination unit such as a light bulb.
アクティブステレオ方式では、撮影画像から対象物305のエッジなどの特徴量を検出し、撮影部302および撮影部303により撮影された画像を対応付けて三角測量を行う。そのため、撮影部302および撮影部303により撮影された対象物305のエッジのコントラストが高い程、エッジ位置の検出精度が高くなる。また、撮影部302および撮影部303により撮影された画像の明度が高い方が、撮影部302および撮影部303のSNが向上する。そのため、投影部301からの投影は明度が高い方がエッジ位置の検出精度が高くなる。   In the active stereo method, a feature amount such as an edge of the object 305 is detected from a photographed image, and triangulation is performed by associating the images photographed by the photographing unit 302 and the photographing unit 303 with each other. Therefore, the higher the contrast of the edge of the object 305 photographed by the photographing unit 302 and the photographing unit 303, the higher the edge position detection accuracy. Further, the SN of the photographing unit 302 and the photographing unit 303 is improved when the brightness of the images photographed by the photographing unit 302 and the photographing unit 303 is high. Therefore, the projection from the projection unit 301 has higher edge position detection accuracy when the brightness is higher.
そこで、本実施形態でも第1および第2実施形態と同様に、撮影部302および撮影部303のフォーカス位置を計測基準面311よりも奥側に合わせる。   Therefore, in the present embodiment as well, as in the first and second embodiments, the focus positions of the photographing unit 302 and the photographing unit 303 are set to the back side with respect to the measurement reference plane 311.
図12は、撮影部302および撮影部303のフォーカス位置の様子を示している。レンズ315は、撮影部302の撮影光学系を模式的に1枚のレンズで表したものである。レンズ317は、撮影部303の撮影光学系を模式的に1枚のレンズで表したものである。撮影素子316および撮影素子318は、それぞれレンズ315およびレンズ317から入ってきた光を電気信号に変換する。   FIG. 12 shows the focus positions of the photographing unit 302 and the photographing unit 303. The lens 315 schematically represents the photographing optical system of the photographing unit 302 with one lens. The lens 317 schematically represents the photographing optical system of the photographing unit 303 with a single lens. The imaging element 316 and the imaging element 318 convert light entering from the lens 315 and the lens 317, respectively, into an electrical signal.
図12に示されるような構成にすることにより、計測面313での撮影部302、撮影部303のデフォーカスによるコントラスト低下は、計測面314でのコントラスト低下よりも大きくなる。したがって、撮影部302、撮影部303からの距離による撮影画像の明るさの変化と合わせると、計測面313の計測精度と計測面314の計測精度とは同程度となる。また、撮影部302、撮影部303のフォーカス位置が計測基準面311よりも奥にあるため、フォーカス位置が計測基準面311にある場合に比べて、計測面314でのコントラスト低下は小さい。そのため、フォーカス位置が計測基準面311にある場合に比べると計測面314での計測精度は向上する。すなわち、撮影距離全体に渡って計測誤差が一定の範囲に収まり精度の極端な低下が生じず、全体として一定の計測精度を得ることができる。   With the configuration shown in FIG. 12, the contrast reduction due to defocusing of the imaging unit 302 and the imaging unit 303 on the measurement surface 313 is larger than the contrast reduction on the measurement surface 314. Therefore, the measurement accuracy of the measurement surface 313 and the measurement accuracy of the measurement surface 314 are comparable when combined with the change in brightness of the captured image depending on the distance from the imaging unit 302 and the imaging unit 303. In addition, since the focus positions of the imaging unit 302 and the imaging unit 303 are behind the measurement reference plane 311, the contrast reduction on the measurement plane 314 is smaller than when the focus position is on the measurement reference plane 311. Therefore, the measurement accuracy on the measurement surface 314 is improved as compared with the case where the focus position is on the measurement reference surface 311. That is, the measurement error is within a certain range over the entire photographing distance, and the accuracy is not drastically reduced, and a certain measurement accuracy can be obtained as a whole.
以上説明したように、撮影部302および撮影部303のフォーカス位置を計測基準面311よりも奥に設定することにより、計測空間312全域において一定の計測精度を得ることができる。撮影部302および撮影部303のフォーカス位置を計測基準面311に合わせた場合、計測空間312全域で本実施形態と同程度の計測精度を得るためには、撮影部302および撮影部303の結像性能を上げて撮影画像のコントラストを向上させるか、投影部301から投影される光量を上げる必要がある。しかし、本実施形態ではその必要がないため、撮影部302および撮影部303の結像性能を必要以上に上げる必要がなく、撮影部302および撮影部303を構成するレンズ枚数を削減することができ、全体としてコスト削減につながる。また、投影部301の光源の出力を小さくすることで低消費電力化や、光源から発生する熱が少なくなるため冷却系を小さくすることができ、小型化につながる。   As described above, by setting the focus positions of the imaging unit 302 and the imaging unit 303 behind the measurement reference plane 311, it is possible to obtain a certain measurement accuracy in the entire measurement space 312. When the focus positions of the imaging unit 302 and the imaging unit 303 are aligned with the measurement reference plane 311, the imaging of the imaging unit 302 and the imaging unit 303 is obtained in order to obtain the same measurement accuracy as the present embodiment over the entire measurement space 312. It is necessary to improve the contrast of the captured image by improving the performance or to increase the amount of light projected from the projection unit 301. However, since this is not necessary in the present embodiment, it is not necessary to increase the imaging performance of the photographing unit 302 and the photographing unit 303 more than necessary, and the number of lenses constituting the photographing unit 302 and the photographing unit 303 can be reduced. As a whole, it leads to cost reduction. Further, by reducing the output of the light source of the projection unit 301, the power consumption can be reduced, and the heat generated from the light source can be reduced, so that the cooling system can be reduced, leading to miniaturization.
(その他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
(Other embodiments)
The present invention can also be realized by executing the following processing. That is, software (program) that realizes the functions of the above-described embodiments is supplied to a system or apparatus via a network or various storage media, and a computer (or CPU, MPU, or the like) of the system or apparatus reads the program. It is a process to be executed.
101:投影部、102:撮影部、103:制御部、104:対象物、105:投影範囲、106:撮影範囲、107,108:光軸、109:計測基準面、110:計測空間、111:明暗パターン、112,114:レンズ、113:表示素子、115:撮影素子、116,117:計測面   101: Projection unit, 102: Imaging unit, 103: Control unit, 104: Object, 105: Projection range, 106: Imaging range, 107, 108: Optical axis, 109: Measurement reference plane, 110: Measurement space, 111: Light / dark pattern, 112, 114: lens, 113: display element, 115: imaging element, 116, 117: measurement surface

Claims (9)

  1. 物体に明部と暗部とを含むパターンを投影する投影手段と、
    前記投影手段によりパターンが投影されている間に前記物体を撮像する撮像手段と、
    前記撮像手段により撮像された画像から前記パターンの明部と暗部の境界を示すエッジ位置を検出する検出手段と、
    前記検出されたエッジ位置に基づいて、前記物体の三次元形状を計測する計測手段とを備え、
    前記撮像手段の焦点位置は、前記撮像手段からみて、前記投影手段の投影範囲の中心位置を通る軸と前記撮像手段の撮像範囲の中心位置を通る軸とに基づいて決定される位置を含む計測基準面よりも奥に設定されており、
    前記投影手段の焦点位置は、前記計測基準面に設定されている
    ことを特徴とする計測装置。
    Projection means for projecting a pattern including a bright part and a dark part onto an object;
    Imaging means for imaging the object while a pattern is projected by the projection means;
    Detecting means for detecting an edge position indicating a boundary between a bright part and a dark part of the pattern from an image picked up by the image pickup means;
    Measuring means for measuring the three-dimensional shape of the object based on the detected edge position;
    The focal position of the imaging means is a measurement including a position determined based on an axis passing through the center position of the projection range of the projection means and an axis passing through the center position of the imaging range of the imaging means when viewed from the imaging means. It is set behind the reference plane,
    The focus position of the projection means is set on the measurement reference plane.
  2. 前記画像における前記明部と前記暗部の間のコントラスト値は、前記計測基準面よりも奥の領域において最大値をもつことを特徴とする請求項1に記載の計測装置。   The measurement apparatus according to claim 1, wherein a contrast value between the bright portion and the dark portion in the image has a maximum value in a region deeper than the measurement reference plane.
  3. 前記投影手段からみて、前記投影手段の投影範囲の中心位置を通る軸と前記撮像手段の撮像範囲の中心位置を通る軸とに基づいて決定される位置は、前記投影手段の投影範囲の中心位置を通る軸と前記撮像手段の撮像範囲の中心位置を通る軸との交点位置であることを特徴とする請求項1または2に記載の計測装置。   The position determined based on the axis passing through the center position of the projection range of the projection means and the axis passing through the center position of the imaging range of the imaging means as viewed from the projection means is the center position of the projection range of the projection means The measuring apparatus according to claim 1, wherein the measuring device is an intersection position between an axis passing through and an axis passing through a center position of an imaging range of the imaging means.
  4. 前記計測手段は、空間符号化法により前記物体の三次元形状を計測することを特徴とする請求項1乃至3の何れか1項に記載の計測装置。   The measuring apparatus according to claim 1, wherein the measuring unit measures a three-dimensional shape of the object by a spatial encoding method.
  5. 前記計測手段は、位相シフト法により前記物体の三次元形状を計測することを特徴とする請求項1乃至3の何れか1項に記載の計測装置。   The measuring apparatus according to claim 1, wherein the measuring unit measures a three-dimensional shape of the object by a phase shift method.
  6. 前記投影手段の焦点位置は、固定されていることを特徴とする請求項1乃至5の何れか1項に記載の計測装置。   The measuring apparatus according to claim 1, wherein a focal position of the projection unit is fixed.
  7. 前記撮像手段の撮像素子は一つであることを特徴とする請求項1乃至6の何れか1項に記載の計測装置。   The measuring apparatus according to claim 1, wherein the image pickup unit has one image pickup element.
  8. 物体に明部と暗部とを含むパターンを投影する投影手段と、前記投影手段によりパターンが投影されている間に前記物体を撮像する撮像手段とを備える計測装置の制御方法であって、
    前記撮像手段により撮像された画像から前記パターンの明部と暗部の境界を示すエッジ位置を検出する検出工程と、
    前記検出されたエッジ位置に基づいて、前記物体の三次元形状を計測する計測工程とを有し、
    前記撮像手段の焦点位置は、前記撮像手段からみて、前記投影手段の投影範囲の中心位置を通る軸と前記撮像手段の撮像範囲の中心位置を通る軸とに基づいて決定される位置を含む計測基準面よりも奥に設定されており、
    前記投影手段の焦点位置は、前記計測基準面に設定されている
    ことを特徴とする計測装置の制御方法。
    A control method for a measurement apparatus, comprising: a projecting unit that projects a pattern including a bright part and a dark part onto an object; and an imaging unit that captures the object while the pattern is projected by the projecting unit,
    A detection step of detecting an edge position indicating a boundary between a bright part and a dark part of the pattern from an image captured by the imaging unit;
    A measurement step of measuring a three-dimensional shape of the object based on the detected edge position;
    The focal position of the imaging means is a measurement including a position determined based on an axis passing through the center position of the projection range of the projection means and an axis passing through the center position of the imaging range of the imaging means when viewed from the imaging means. It is set behind the reference plane,
    The focus position of the projection means is set on the measurement reference plane.
  9. コンピュータを、請求項1乃至7の何れか1項に記載の計測装置の各手段として機能させるためのプログラム。   The program for functioning a computer as each means of the measuring device of any one of Claims 1 thru | or 7.
JP2016152283A 2016-08-02 2016-08-02 Measuring device Expired - Fee Related JP6247724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016152283A JP6247724B2 (en) 2016-08-02 2016-08-02 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016152283A JP6247724B2 (en) 2016-08-02 2016-08-02 Measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011228273A Division JP5986364B2 (en) 2011-10-17 2011-10-17 Three-dimensional shape measuring apparatus, control method for three-dimensional shape measuring apparatus, and program

Publications (2)

Publication Number Publication Date
JP2016197127A true JP2016197127A (en) 2016-11-24
JP6247724B2 JP6247724B2 (en) 2017-12-13

Family

ID=57357879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016152283A Expired - Fee Related JP6247724B2 (en) 2016-08-02 2016-08-02 Measuring device

Country Status (1)

Country Link
JP (1) JP6247724B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191281A (en) * 1987-02-04 1988-08-08 Nippon Telegr & Teleph Corp <Ntt> Spatial pattern coding method
JPH03128408A (en) * 1989-07-03 1991-05-31 Nippondenso Co Ltd Three-dimensional shape measuring method
JP2003287405A (en) * 2002-03-28 2003-10-10 Minolta Co Ltd Three-dimensional measuring method and apparatus
US20060017720A1 (en) * 2004-07-15 2006-01-26 Li You F System and method for 3D measurement and surface reconstruction
JP2008145139A (en) * 2006-12-06 2008-06-26 Mitsubishi Electric Corp Shape measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191281A (en) * 1987-02-04 1988-08-08 Nippon Telegr & Teleph Corp <Ntt> Spatial pattern coding method
JPH03128408A (en) * 1989-07-03 1991-05-31 Nippondenso Co Ltd Three-dimensional shape measuring method
JP2003287405A (en) * 2002-03-28 2003-10-10 Minolta Co Ltd Three-dimensional measuring method and apparatus
US20060017720A1 (en) * 2004-07-15 2006-01-26 Li You F System and method for 3D measurement and surface reconstruction
JP2008145139A (en) * 2006-12-06 2008-06-26 Mitsubishi Electric Corp Shape measuring device

Also Published As

Publication number Publication date
JP6247724B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP5986364B2 (en) Three-dimensional shape measuring apparatus, control method for three-dimensional shape measuring apparatus, and program
TW201312249A (en) Image processing system and automatic focusing method
WO2010100842A1 (en) Image capturing device, operator monitoring device, method for measuring distance to face, and program
US9131145B2 (en) Image pickup apparatus and control method therefor
JP2007139894A (en) Imaging apparatus
TWI543582B (en) Image editing method and a related blur parameter establishing method
JP2016075658A (en) Information process system and information processing method
JP6247724B2 (en) Measuring device
EP3163369B1 (en) Auto-focus control in a camera to prevent oscillation
JP6381206B2 (en) Image processing apparatus, control method thereof, and program
JP6193609B2 (en) 3D shape measuring device, 3D shape measuring method
WO2019181622A1 (en) Distance measurement camera
JP2015075648A (en) Focus detection device, control method therefor, control program and imaging device
JP2008233205A (en) Range finder and imaging device
JP2014095631A (en) Three-dimensional measurement device and three-dimensional measurement method
JP6399817B2 (en) Imaging device, imaging device control method, program, and storage medium
WO2014189047A1 (en) Imaging device and autofocus control method
JP2004325619A (en) Imaging apparatus and imaging method
JP2014102478A (en) Autofocus device and imaging apparatus
JP2008233389A (en) Focus determination method, focus-determining device, and focus determination program
JP2017156378A (en) Focus adjustment device
JP2005173396A (en) Imaging apparatus, focus detection method, program and storage medium
JP5679718B2 (en) Imaging device
JP2016090975A (en) Distance detector, imaging apparatus, distance detection method, and program
JP2015060047A (en) Imaging device and focus detection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171117

R151 Written notification of patent or utility model registration

Ref document number: 6247724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees