JP2016194282A - Control method under blast furnace open ceiling in blast furnace gas-fired power generating installation - Google Patents

Control method under blast furnace open ceiling in blast furnace gas-fired power generating installation Download PDF

Info

Publication number
JP2016194282A
JP2016194282A JP2015075092A JP2015075092A JP2016194282A JP 2016194282 A JP2016194282 A JP 2016194282A JP 2015075092 A JP2015075092 A JP 2015075092A JP 2015075092 A JP2015075092 A JP 2015075092A JP 2016194282 A JP2016194282 A JP 2016194282A
Authority
JP
Japan
Prior art keywords
blast furnace
steam
furnace gas
fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015075092A
Other languages
Japanese (ja)
Other versions
JP6520317B2 (en
Inventor
純一 高村
Junichi Takamura
純一 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015075092A priority Critical patent/JP6520317B2/en
Publication of JP2016194282A publication Critical patent/JP2016194282A/en
Application granted granted Critical
Publication of JP6520317B2 publication Critical patent/JP6520317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a positive and stable prevention of occurrence of trip caused by rapid increasing of calorific power of blast furnace gas under blast furnace open ceiling at power generating installation with a steam generator including blast furnace gas as its fuel.SOLUTION: This invention relates to a control method under blast furnace open ceiling in blast furnace gas-fired power generating installation 1 comprising a boiler 10 for burning fuel containing blast furnace gas to generate steam, a steam turbine 12 for converting heat energy of steam generated at the boiler 10 into rotational energy and an electric generator 13 for converting rotational energy of a steam turbine 12 into electric power. Fuel flow rate supplied to the boiler 10 is decreased down to a predetermined and prescribed flow rate under open ceiling of the blast furnace and at the same time a controlled object of a governor valve 51 arranged at a main steam pipe 14 for supplying steam from the boiler 10 to the steam turbine 12 is set to a pressure value at the main steam pipe 14. Pressure controlling by the governor valve 51 against the main steam pipe 14 is performed in such a way that pressure at the main steam pipe 14 before blast furnace open ceiling, is maintained.SELECTED DRAWING: Figure 1

Description

本発明は、高炉から副生ガスとして得られる高炉ガスを燃料とする高炉ガス焚き発電設備において、高炉に吹き抜けが発生したときにおいても発電設備を安定的に運転継続させるための制御方法に関するものである。   The present invention relates to a control method for stably operating a power generation facility even when a blow-through occurs in a blast furnace in a blast furnace gas-fired power generation facility using blast furnace gas obtained as a by-product gas from a blast furnace as a fuel. is there.

従来から、製鉄所においては、高炉から副生ガスとして得られる高炉ガス(BFG)をボイラで燃焼させ、ボイラから発生する高温、高圧の蒸気を用いて蒸気タービン発電機により発電すること、またはガスタービン用燃焼器で高炉ガスを燃焼させ、発生する燃焼ガスを用いてガスタービン発電機により発電すること、すなわち高炉ガス焚き発電が行なわれている。   Conventionally, in a steel mill, blast furnace gas (BFG) obtained as a by-product gas from a blast furnace is burned in a boiler, and power is generated by a steam turbine generator using high-temperature, high-pressure steam generated from the boiler, or gas Blast furnace gas is burned by a turbine combustor, and the generated combustion gas is used to generate power by a gas turbine generator, that is, blast furnace gas-fired power generation is performed.

ところで高炉の操業中においては、いわゆる吹き抜けと称される現象が発生することがある。吹き抜けは、高炉内鉱石層の一部が流動化もしくはチャンネリングを起こして、大量のガスが、装入物と熱交換あるいは反応せずに、多量の顕熱とともに炉頂に達する現象である。このような吹き抜けが発生すると、高炉ガスのカロリー、即ちボイラで燃料として用いる際の発熱量が高くなる。そのため、ボイラに供給する燃料としての高炉ガスの流量が吹き抜けの前後で維持された場合、ボイラに供給される燃料の発熱量の総量が増大する。そうすると、ボイラの負荷が変動し、それに伴い火炉内圧力や、蒸気温度、蒸気圧力などのプロセス値が急激かつ大幅に変動する。その結果、いわゆるボイラトリップ状態に陥ってしまうことがある。そしてトリップ状態となれば、高炉ガス焚き発電設備からの電力及び蒸気の供給が停止するので、その場合の製鉄所内外に与える悪影響は多大となる。具体的には、製鉄所内の各工場への送電が停止することで、各工場の操業を停止せざるを得ない事態が生じたり、発電設備から製鉄所内の各工場への送気が停止することで、各所での操業に支障をきたしたりしてしまう。   By the way, during the operation of the blast furnace, a phenomenon called so-called blow-through may occur. Blowing is a phenomenon in which a part of the ore layer in the blast furnace causes fluidization or channeling, and a large amount of gas reaches the top of the furnace with a large amount of sensible heat without heat exchange or reaction with the charge. When such a blow-through occurs, the calorie of the blast furnace gas, that is, the calorific value when used as fuel in the boiler increases. Therefore, when the flow rate of the blast furnace gas as the fuel supplied to the boiler is maintained before and after the blow-through, the total amount of heat generated by the fuel supplied to the boiler increases. If it does so, the load of a boiler will fluctuate and process values, such as furnace pressure, steam temperature, and steam pressure, will fluctuate rapidly and greatly in connection with it. As a result, a so-called boiler trip state may occur. And if it will be in a trip state, since supply of the electric power and steam from a blast furnace gas-fired power generation facility will stop, the bad influence given to the inside and outside of a steelworks in that case will become great. Specifically, when power transmission to each factory in the steelworks is stopped, it is necessary to stop the operation of each factory, or air supply from the power generation equipment to each factory in the steelworks is stopped. As a result, the operation at each location may be hindered.

上述のような観点から、高炉ガス焚き発電においては、高炉の吹き抜け時において、ボイラに供給される高炉ガスの発熱量が急激に増大することを防止して、吹き抜けによるボイラへの悪影響を最小限に抑えることが強く望まれる。   From the above viewpoint, in blast furnace gas-fired power generation, the amount of heat generated by the blast furnace gas supplied to the boiler is prevented from abruptly increasing when the blast furnace is blown through, and the adverse effect on the boiler due to the blow-through is minimized. It is strongly desired to keep it at a minimum.

高炉の吹き抜け時において、ボイラに供給される高炉ガスの発熱量が急激に増大することを防止するための方法としては、既に特許文献1などにおいて提案されている。   As a method for preventing the amount of heat generated by the blast furnace gas supplied to the boiler from rapidly increasing when the blast furnace is blown through, it has already been proposed in Patent Document 1 and the like.

特許文献1には、高炉ガスの温度から高炉ガス発熱量を推定し、さらに高炉ガス温度・圧力によって発熱量補正を行い、補正後の高炉ガス発熱量を基に、ボイラへ高炉ガスを導く流路に設けられた流量調節弁を制御して、ボイラへ供給する高炉ガスの熱量の変動を抑制する装置が提案されている。   In Patent Document 1, the blast furnace gas calorific value is estimated from the temperature of the blast furnace gas, the calorific value is corrected based on the blast furnace gas temperature and pressure, and the blast furnace gas is introduced into the boiler based on the corrected blast furnace gas calorific value. There has been proposed an apparatus that controls a flow rate control valve provided in a passage to suppress fluctuations in the amount of heat of blast furnace gas supplied to a boiler.

特公平5−77926号公報Japanese Patent Publication No. 5-77926

しかしながら、特許文献1のように、燃料流量を急激に変動させると、ボイラの火炉内圧力や、蒸気圧力などのプロセス値が急激かつ大幅に変動し、ボイラがトリップするおそれがある。したがって特許文献1の方法を実操業に適用しても、高炉の吹き抜け時においてボイラのトリップを確実かつ安定して防止することは困難であった。   However, if the fuel flow rate is changed abruptly as in Patent Document 1, process values such as the pressure in the furnace of the boiler and the steam pressure are changed abruptly and significantly, and the boiler may trip. Therefore, even if the method of Patent Document 1 is applied to actual operation, it has been difficult to reliably and stably prevent a boiler trip when the blast furnace is blown through.

本発明はかかる点に鑑みてなされたものであり、高炉ガスを燃料として蒸気を発生する蒸気発生装置から発生する蒸気を用いた発電設備において、高炉の吹き抜け発生時の高炉ガスの発熱量の急激な増大に起因してトリップが発生してしまうことを、確実かつ安定して防止することを目的としている。   The present invention has been made in view of the above points, and in a power generation facility using steam generated from a steam generator that generates steam using blast furnace gas as fuel, the amount of heat generated by the blast furnace gas at the time of occurrence of blow-through of the blast furnace is rapidly increased. The purpose is to reliably and stably prevent a trip from occurring due to a large increase.

前記の目的を達成するための本発明は、高炉ガスを含む燃料を燃焼させて蒸気を発生させる蒸気発生装置と、前記蒸気発生装置で発生した蒸気の熱エネルギーを回転エネルギーに変換する蒸気タービンと、前記蒸気タービンの回転エネルギーを電力に変換する発電機と、を有する高炉ガス焚き発電設備における高炉吹き抜け時の制御方法であって、高炉吹き抜け時に、前記蒸気発生装置に供給する燃料流量を予め定められた所定の流量まで減少させると共に、前記蒸気発生装置から前記蒸気タービンに蒸気を供給する主蒸気管に設けられた、前記蒸気タービンに流入する蒸気量を制御するガバナ弁の制御対象を、前記主蒸気管の圧力に設定し、前記ガバナ弁による前記主蒸気管の圧力制御は、前記高炉吹き抜け前の前記主蒸気管の圧力を維持するように行われることを特徴としている。   In order to achieve the above object, the present invention includes a steam generator that burns fuel containing blast furnace gas to generate steam, and a steam turbine that converts thermal energy of steam generated by the steam generator into rotational energy. And a generator for converting rotational energy of the steam turbine into electric power, and a control method at the time of blast furnace blow-off in a blast furnace gas-fired power generation facility, wherein a flow rate of fuel supplied to the steam generator at the time of blast furnace blow-off is determined in advance And a control object of a governor valve for controlling the amount of steam flowing into the steam turbine, provided in a main steam pipe for supplying steam from the steam generator to the steam turbine. The pressure of the main steam pipe is set to the pressure of the main steam pipe, and the pressure control of the main steam pipe by the governor valve maintains the pressure of the main steam pipe before the blast furnace blow-through. It is characterized in that performed so that.

本発明によれば、高炉吹き抜け時に、蒸気発生装置に供給する燃料流量を予め定められた所定の流量まで減少させると共に、ガバナ弁により主蒸気管の圧力が高炉吹き抜けの前後で変動しないように制御するので、高炉吹き抜けにより高炉ガスの発熱量が変動した場合であっても、蒸気発生装置への投入熱量の変動、及び主蒸気管の圧力変動を最小限に抑えることで、高炉ガス焚き発電設備を安定運転させ、当該発電設備の運転を継続させることができる。   According to the present invention, at the time of blast furnace blow-through, the flow rate of fuel supplied to the steam generator is reduced to a predetermined flow rate, and the governor valve is controlled so that the pressure of the main steam pipe does not fluctuate before and after the blast furnace blow-through. Therefore, even if the amount of heat generated by the blast furnace gas fluctuates due to blast furnace blow-through, fluctuations in the amount of heat input to the steam generator and fluctuations in the pressure of the main steam pipe are kept to a minimum. Can be operated stably, and the operation of the power generation facility can be continued.

前記高炉吹き抜け時に減少させる、前記蒸気発生装置に供給する燃料流量は、前記蒸気発生装置に供給する燃料の総発熱量が、前記前記高炉吹き抜けの前後で変動しないように定められてもよい。   The flow rate of the fuel supplied to the steam generator, which is decreased when the blast furnace blows through, may be determined so that the total calorific value of the fuel supplied to the steam generator does not fluctuate before and after the blast furnace blow-through.

前記蒸気発生装置はボイラであり、蒸気発生装置に供給する燃料は、前記高炉ガスを含む燃料ガス、または石炭若しくは油の少なくともいずれかと前記高炉ガスを含む燃料ガスを含むものであり、前記高炉吹き抜け時に、前記蒸気発生装置に供給する燃料流量が減少される燃料は、前記蒸気発生装置に供給する燃料が前記高炉ガスを含む燃料ガスである場合は、当該高炉ガスを含む燃料ガスであり、前記蒸気発生装置に供給する燃料が前記石炭または前記油の少なくともいずれかと前記高炉ガスを含む燃料ガスを含むものである場合は、前記石炭、前記油または前記高炉ガスを含む燃料ガスの少なくともいずれかであってもよい。   The steam generator is a boiler, and the fuel supplied to the steam generator includes a fuel gas containing the blast furnace gas, or a fuel gas containing at least one of coal or oil and the blast furnace gas, and the blast furnace blow-through Sometimes, the fuel whose flow rate of fuel supplied to the steam generator is reduced is a fuel gas containing the blast furnace gas when the fuel supplied to the steam generator is a fuel gas containing the blast furnace gas, When the fuel supplied to the steam generator includes at least one of the coal or the oil and the fuel gas containing the blast furnace gas, the fuel is at least one of the coal, the oil or the fuel gas containing the blast furnace gas, Also good.

高炉ガスを燃料として蒸気を発生する蒸気発生装置から発生する蒸気を用いた発電設備において、高炉の吹き抜け発生時の高炉ガスの発熱量の急激な増大に起因してトリップが発生してしまうことを、確実かつ安定して防止することを目的としている。   In a power generation facility using steam generated from a steam generator that generates steam using blast furnace gas as fuel, a trip may occur due to a rapid increase in the amount of heat generated by the blast furnace gas when a blast furnace blow-out occurs. It aims to prevent reliably and stably.

本実施の形態に係る高炉焚き発電設備の構成の概要を示す系統図である。It is a systematic diagram which shows the outline | summary of a structure of the blast furnace burning power generation equipment which concerns on this Embodiment.

以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる高炉ガス焚き発電設備1の構成の概要を示す系統図である。   Embodiments of the present invention will be described below. FIG. 1 is a system diagram showing an outline of the configuration of a blast furnace gas-fired power generation facility 1 according to the present embodiment.

高炉ガス焚き発電設備1は、蒸気発生装置としてのボイラ10と、ボイラ10に高炉ガスを含む燃料を供給する燃料供給設備11と、ボイラ10から発生した高温高圧の過熱蒸気である主蒸気の熱エネルギーを回転エネルギーに変換する蒸気タービン12と、蒸気タービン12の回転エネルギーを電力に変換する発電機13と、ボイラ10で発生した主蒸気を蒸気タービン12に導入する主蒸気管14と、蒸気タービン12で仕事をしてエンタルピが低下した蒸気を水に戻し復水として貯留する復水器15と、ボイラ10と復水器15とを接続する給水管16と、給水管16に設けられ、復水器15に貯留された復水をボイラ10に給水する給水ポンプ17と、を有している。なお、本実施の形態においては、ボイラ10は、例えば蒸発器としてのドラム(図示せず)を有する循環型ボイラであり、蒸気タービン12は、流入した蒸気の全量が復水器15により回収される場合について説明する。   The blast furnace gas-fired power generation facility 1 includes a boiler 10 as a steam generator, a fuel supply facility 11 that supplies fuel containing blast furnace gas to the boiler 10, and heat of main steam that is high-temperature and high-pressure superheated steam generated from the boiler 10. A steam turbine 12 that converts energy into rotational energy, a generator 13 that converts rotational energy of the steam turbine 12 into electric power, a main steam pipe 14 that introduces main steam generated in the boiler 10 into the steam turbine 12, and a steam turbine 12 is provided in the water supply pipe 16 for connecting the boiler 10 and the condenser 15 to the condenser 15 for returning the steam whose enthalpy has been reduced by working to 12 to the water and storing it as condensate. A water supply pump 17 that supplies the boiler 10 with the condensate stored in the water tank 15. In the present embodiment, the boiler 10 is, for example, a circulation boiler having a drum (not shown) as an evaporator, and the steam turbine 12 is recovered by the condenser 15 in which the entire amount of steam that has flowed is recovered. A description will be given of the case.

燃料供給設備11は、ボイラ10に燃料として石炭を供給する石炭供給系統20と、燃料として高炉ガスを供給する高炉ガス供給系統21を有している。石炭供給系統20は、ボイラ10に投入する燃料としての石炭を貯蔵する石炭バンカ30と、石炭を粉砕して微粉化する微粉炭機31と、後述する制御装置100からの燃料投入指令に基づき、石炭バンカ30から微粉炭機31に石炭を投入する給炭機32を備えている。微粉炭機31で粉砕されて微粉化した石炭は、図示しない一次通風機から微粉炭機31に通風される一次燃焼用空気に随伴して微粉炭バーナ33に供給され、ボイラ10内で燃焼される。   The fuel supply facility 11 has a coal supply system 20 that supplies coal as fuel to the boiler 10 and a blast furnace gas supply system 21 that supplies blast furnace gas as fuel. The coal supply system 20 is based on a coal bunker 30 for storing coal as fuel to be input to the boiler 10, a pulverized coal machine 31 for pulverizing and pulverizing coal, and a fuel input command from the control device 100 described later. A coal feeder 32 for supplying coal from the coal bunker 30 to the pulverized coal machine 31 is provided. The coal pulverized and pulverized by the pulverized coal machine 31 is supplied to the pulverized coal burner 33 along with the primary combustion air ventilated from the primary aerator (not shown) to the pulverized coal machine 31 and burned in the boiler 10. The

高炉ガス供給系統21は、図示しない高炉の炉頂から排出された高炉ガスが流れる高炉ガス母管40から分岐点Pにおいて分岐された高炉ガス供給管41と、高炉ガス供給管41を流れる燃料ガスとしての高炉ガスをボイラ10内で燃焼させるガスバーナ42を有している。高炉ガス供給管41におけるガスバーナ42と分岐点Pとの間には、ガスバーナ42に供給する高炉ガスの流量を制御する流量調節弁43が設けられている。   The blast furnace gas supply system 21 includes a blast furnace gas supply pipe 41 branched at a branch point P from a blast furnace gas main pipe 40 through which a blast furnace gas discharged from the top of a blast furnace (not shown), and a fuel gas flowing through the blast furnace gas supply pipe 41. As a gas burner 42 for burning the blast furnace gas in the boiler 10. Between the gas burner 42 and the branch point P in the blast furnace gas supply pipe 41, a flow rate control valve 43 that controls the flow rate of the blast furnace gas supplied to the gas burner 42 is provided.

高炉ガス供給管41における、流量調節弁43と分岐点Pとの間には、高炉ガス供給管41を流れる高炉ガスの状態量を検出するための状態量検出手段44が設けられている。状態量検出手段44は、高炉に吹き抜けが発生したことを検出するとともに、その吹き抜けの程度(高炉ガスの発熱量の増加の程度)を検出するためのものである。   Between the flow control valve 43 and the branch point P in the blast furnace gas supply pipe 41, a state quantity detection means 44 for detecting the state quantity of the blast furnace gas flowing through the blast furnace gas supply pipe 41 is provided. The state quantity detection means 44 is for detecting the occurrence of blow-through in the blast furnace and detecting the degree of blow-through (the degree of increase in the amount of heat generated by the blast furnace gas).

状態量検出手段44は、高炉ガス供給管41を流れる高炉ガスの発熱量を測定する発熱量測定機構44aと、温度測定機構44b、圧力測定機構44c及び流量測定機構44dを有している。これら発熱量測定機構44a、温度測定機構44b、圧力測定機構44c及び流量測定機構44dにおける測定結果も、後述の制御装置100に伝送される。なお、状態量検出手段44は、高炉に吹き抜けが発生したことをより早く検出するために、高炉ガス母管40に極力近い位置(分岐点Pに極力近い位置)に配置することが好ましい。また、高炉吹き抜けが発生したことをより早く検出するという観点からは、例えば高炉ガス母管40に設けられた図示しない状態量検出手段により高炉ガスの状態を監視し、高炉吹き抜けが検出されたときに、その旨の信号を制御装置に入力するようにしてもよい。   The state quantity detection means 44 includes a calorific value measuring mechanism 44a that measures the calorific value of the blast furnace gas flowing through the blast furnace gas supply pipe 41, a temperature measuring mechanism 44b, a pressure measuring mechanism 44c, and a flow rate measuring mechanism 44d. The measurement results in the calorific value measurement mechanism 44a, temperature measurement mechanism 44b, pressure measurement mechanism 44c, and flow rate measurement mechanism 44d are also transmitted to the control device 100 described later. The state quantity detection means 44 is preferably arranged at a position as close as possible to the blast furnace gas mother pipe 40 (position as close as possible to the branch point P) in order to detect earlier that a blow-through has occurred in the blast furnace. Further, from the viewpoint of detecting earlier that the blast furnace blow-through has occurred, for example, when the state of the blast furnace gas is monitored by a state quantity detection means (not shown) provided in the blast furnace gas mother pipe 40, and the blast furnace blow-through is detected. In addition, a signal to that effect may be input to the control device.

主蒸気管14には、ボイラで発生した主蒸気の圧力を測定する蒸気圧力測定機構50と、蒸気タービン12に導入する主蒸気の流量を制御するガバナ弁51が設けられている。蒸気圧力測定機構50は制御装置100に電気的に接続されており、当該蒸気圧力測定機構50で検出された圧力は制御装置100に入力される。   The main steam pipe 14 is provided with a steam pressure measuring mechanism 50 that measures the pressure of the main steam generated in the boiler, and a governor valve 51 that controls the flow rate of the main steam introduced into the steam turbine 12. The steam pressure measurement mechanism 50 is electrically connected to the control device 100, and the pressure detected by the steam pressure measurement mechanism 50 is input to the control device 100.

次に、制御装置100について説明する。制御装置100は、状態量検出手段44で検出された高炉ガスの状態量を常時監視し、当該状態量に基づいて高炉の吹き抜けの有無を検出する。具体的には、状態量検出手段44の発熱量測定機構44aで測定された高炉ガスの発熱量(本実施の形態では標準状態における発熱量)が予め定めた閾値を超えたときに高炉に吹き抜けが発生したと判定する。なお、一般に発熱量測定機構44aでは、発熱量は標準状態(0℃、1気圧での状態)における値として測定される一方で、流量測定機構44dでは実際の高炉ガスの温度、圧力下における流量(実ガス流量)として測定される。そのため、制御装置100では、温度測定機構44b及び圧力測定機構44cの測定結果に基づいて、発熱量測定機構44aで測定された高炉ガスの発熱量を実ガスにおける発熱量に換算する。そして、換算後の発熱量及び必要燃料投入量に基づいてボイラ10に供給する高炉ガス実ガス流量を算出し、この算出された実ガス流量に基づいて流量調節弁43の開度を制御している。なお、流量測定機構44dで測定される流量は、厳密には実ガス流量ではなく、流量測定機構44dの設計圧力、温度における流量であるため、実際の高炉ガスの圧力、温度に基づいて流量補正された値が流量調節弁43などの制御に用いられる。   Next, the control device 100 will be described. The control device 100 constantly monitors the state quantity of the blast furnace gas detected by the state quantity detection means 44, and detects the presence or absence of a blast furnace blow-through based on the state quantity. Specifically, when the calorific value of the blast furnace gas measured by the calorific value measuring mechanism 44a of the state quantity detecting means 44 (in this embodiment, the calorific value in the standard state) exceeds a predetermined threshold value, the blast furnace is blown through. Is determined to have occurred. In general, in the calorific value measuring mechanism 44a, the calorific value is measured as a value in a standard state (state at 0 ° C. and 1 atm), while in the flow rate measuring mechanism 44d, the actual blast furnace gas temperature and flow rate under pressure. Measured as (actual gas flow rate). Therefore, the control device 100 converts the calorific value of the blast furnace gas measured by the calorific value measuring mechanism 44a into the calorific value of the actual gas based on the measurement results of the temperature measuring mechanism 44b and the pressure measuring mechanism 44c. Then, the actual gas flow rate of the blast furnace gas supplied to the boiler 10 is calculated based on the calorific value after conversion and the required fuel input amount, and the opening degree of the flow rate control valve 43 is controlled based on the calculated actual gas flow rate. Yes. The flow rate measured by the flow rate measurement mechanism 44d is not strictly the actual gas flow rate, but the flow rate at the design pressure and temperature of the flow rate measurement mechanism 44d. Therefore, the flow rate correction is based on the actual pressure and temperature of the blast furnace gas. The obtained value is used for controlling the flow rate adjusting valve 43 and the like.

なお、高炉から排出される高炉ガスは、ベンチュリスクラバ(図示せず)等における水の散布によって水蒸気飽和の状態となっているのが通常であるので、ボイラ10供給する高炉ガスの流量算出の際には、温度測定機構44b及び圧力測定機構44cの測定結果に基づいて、水蒸気についての補正も同時に行われる。なお、例えば発熱量測定機構44aが、実ガス状態における発熱量を測定する機能を具備している場合は、温度測定機構44b及び圧力測定機構44cは必ずしも設ける必要はない。   Since the blast furnace gas discharged from the blast furnace is normally in a steam saturated state by water spraying in a venturi scrubber (not shown) or the like, the flow rate of the blast furnace gas supplied to the boiler 10 is calculated. In addition, based on the measurement results of the temperature measurement mechanism 44b and the pressure measurement mechanism 44c, correction for water vapor is also performed at the same time. For example, when the calorific value measuring mechanism 44a has a function of measuring the calorific value in the actual gas state, the temperature measuring mechanism 44b and the pressure measuring mechanism 44c are not necessarily provided.

そして、高炉において吹き抜けが発生したと判定されると、制御装置100では、吹き抜け発生後にボイラ10に投入される燃料の総発熱量が、吹き抜け発生前にボイラ10に投入されていた燃料の総発熱量から変化しないように、減少させるべき高炉ガスの流量を算出する。具体的には、例えば高炉吹き抜け前(通常時)に、高炉ガスが概ね発熱量800kcal/Nm、圧力4kPa、温度40℃で、30万Nm/hrの流量で供給されており、高炉吹き抜け後に、状態量検出手段44での高炉ガスの検出値が、概ね発熱量1200kcal/Nm、圧力6kPa、温度70℃に変化したとする。かかる場合、制御装置100では、高炉吹き抜けにより発熱量が概ね1.5倍となった高炉ガスの流量を、三分の二の20万Nm/hrに減少させるように計算が行われる。そして、制御装置100では、高炉ガスの供給量が20万Nm/hrとなるように、即ち、流量測定機構44dでの測定値が20万Nm/hrとなるように、流量調節弁43の開度が制御される。なおこの際、流量測定機構44dでの測定値は、既述の通り、温度測定機構44bや圧力測定機構44cの測定結果に基づいて適宜補正される。 When it is determined that a blow-through has occurred in the blast furnace, the control device 100 determines that the total calorific value of the fuel input to the boiler 10 after the occurrence of the blow-through is the total heat generation of the fuel input to the boiler 10 before the occurrence of the blow-through. The flow rate of the blast furnace gas to be reduced is calculated so as not to change from the amount. Specifically, for example, blast furnace gas is supplied at a flow rate of 300,000 Nm 3 / hr at a calorific value of 800 kcal / Nm 3 , a pressure of 4 kPa, a temperature of 40 ° C. before the blast furnace blow-through (normal time). Later, it is assumed that the detected value of the blast furnace gas in the state quantity detecting means 44 changes to a calorific value of 1200 kcal / Nm 3 , a pressure of 6 kPa, and a temperature of 70 ° C. In such a case, the control device 100 performs calculation so as to reduce the flow rate of the blast furnace gas, whose calorific value is approximately 1.5 times as a result of the blast furnace blow-through, to two thirds of 200,000 Nm 3 / hr. In the control device 100, the flow rate control valve 43 is set so that the supply amount of the blast furnace gas is 200,000 Nm 3 / hr, that is, the measured value at the flow rate measuring mechanism 44d is 200,000 Nm 3 / hr. Is controlled. At this time, the measurement value at the flow rate measurement mechanism 44d is corrected as appropriate based on the measurement results of the temperature measurement mechanism 44b and the pressure measurement mechanism 44c as described above.

また制御装置100では、燃料流量の設定値の変更と共に、蒸気タービン12の制御モードの切り替えが行われる。具体的には、高炉の吹き抜けが発生しておらず、高炉ガス焚き発電設備1が通常運転の状態にある場合は、制御装置100は、発電機13での電力量及び主蒸気管14の圧力を所定の値に一定制御する、いわゆるボイラタービン協調制御モードによる制御が行われている。このボイラタービン協調制御では、制御装置100により発電機13の出力が制御設定値と一致するようにガバナ弁51の開度が調整されると共に、主蒸気管14の圧力、即ち、蒸気圧力測定機構50での測定値が制御設定値と一致するようにボイラ10への燃料の供給量が制御される。そして、状態量検出手段44により高炉の吹き抜けが検出されると、制御装置100は、上述のように、ボイラ10への燃料供給量を減少させる。それと共に、蒸気圧力測定機構50での測定値が高炉吹き抜けの前後で変化しないように、ガバナ弁51により主蒸気圧力の制御を行う、いわゆるタービンフォローモード(前圧制御)へ制御モードを移行させる。これにより、ボイラ10から発生する蒸気量の変動を最小限に抑えると共に、主蒸気管14の圧力変動を最小限に抑える。   Further, in the control device 100, the control mode of the steam turbine 12 is switched along with the change of the set value of the fuel flow rate. Specifically, when no blast furnace blow-through has occurred and the blast furnace gas-fired power generation facility 1 is in a normal operation state, the control device 100 determines the amount of power in the generator 13 and the pressure of the main steam pipe 14. Control is performed in a so-called boiler turbine cooperative control mode, in which the engine is constantly controlled to a predetermined value. In this boiler turbine cooperative control, the opening degree of the governor valve 51 is adjusted by the control device 100 so that the output of the generator 13 matches the control set value, and the pressure of the main steam pipe 14, that is, the steam pressure measuring mechanism. The amount of fuel supplied to the boiler 10 is controlled so that the measured value at 50 matches the control set value. When the state quantity detection means 44 detects the blast furnace blow-through, the control device 100 decreases the amount of fuel supplied to the boiler 10 as described above. At the same time, the control mode is shifted to a so-called turbine follow mode (pre-pressure control) in which the main steam pressure is controlled by the governor valve 51 so that the measured value at the steam pressure measuring mechanism 50 does not change before and after the blast furnace blow-through. . This minimizes fluctuations in the amount of steam generated from the boiler 10 and minimizes fluctuations in the pressure of the main steam pipe 14.

本実施の形態に係る高炉ガス焚き発電設備1には以上のように構成されている。次に、本実施の形態に係る高炉ガス焚き発電設備1において、高炉の吹き抜けが発生した場合の具体的な各機器の動作について説明する。   The blast furnace gas-fired power generation facility 1 according to the present embodiment is configured as described above. Next, in the blast furnace gas-fired power generation facility 1 according to the present embodiment, specific operations of each device when a blast furnace blow-through occurs will be described.

高炉の吹き抜けが生じていない通常時においては、発熱量測定機構44aで測定された高炉ガスの発熱量が制御装置100により常時監視されている。そして、高炉ガス供給管41を流れる高炉ガスの発熱量が予め定められた閾値を超えない場合は、換言すれば高炉の吹き抜けが生じていない場合は、高炉ガス焚き発電設備1の制御モードはボイラタービン協調モードとなっており、ガバナ弁51は発電機13の発電量を、流量調節弁43や給炭機32は主蒸気管14の圧力をそれぞれ制御設定値に維持するように動作している。この状態においては、高炉ガス母管40から高炉ガス供給管41に導かれた高炉ガスは、流量調節弁43により所定の流量がボイラ10のガスバーナ42へ連続的に供給される。   During normal times when no blast furnace blow-through occurs, the heat generation amount of the blast furnace gas measured by the heat generation amount measuring mechanism 44a is constantly monitored by the control device 100. And when the calorific value of the blast furnace gas which flows through the blast furnace gas supply pipe 41 does not exceed a predetermined threshold value, in other words, when no blast furnace blow-through occurs, the control mode of the blast furnace gas-fired power generation facility 1 is the boiler. In the turbine coordination mode, the governor valve 51 operates to maintain the power generation amount of the generator 13, and the flow rate control valve 43 and the coal feeder 32 maintain the pressure of the main steam pipe 14 at the control set value, respectively. . In this state, the blast furnace gas introduced from the blast furnace gas main pipe 40 to the blast furnace gas supply pipe 41 is continuously supplied to the gas burner 42 of the boiler 10 by the flow rate control valve 43.

そして、制御装置100において監視されている高炉ガスの発熱量が、予め定められた閾値を超えた場合には、高炉吹き抜けが発生したと判定される。   And when the calorific value of the blast furnace gas monitored in the control apparatus 100 exceeds a predetermined threshold value, it is determined that a blast furnace blow-through has occurred.

高炉の吹き抜けが発生すると、制御装置100では、高炉吹き抜けの発生前後の高炉ガスの発熱量に基づいて、高炉吹き抜けの前後でボイラ10に投入される燃料の総発熱量が変化しないように、流量調節弁43を介してボイラ10に供給すべき高炉ガスの流量が算出され、当該算出された値が新たな制御設定値となる。そして、流量調節弁43は、この新たな制御設定値に基づいて開度が調節される。   When the blast furnace blow-through occurs, the control device 100 sets the flow rate so that the total calorific value of the fuel supplied to the boiler 10 does not change before and after the blast furnace blow-through based on the heat generation amount of the blast furnace gas before and after the occurrence of the blast furnace blow-through. The flow rate of the blast furnace gas to be supplied to the boiler 10 is calculated via the control valve 43, and the calculated value becomes a new control set value. Then, the opening degree of the flow rate adjusting valve 43 is adjusted based on the new control set value.

また、高炉の吹き抜け発生時は、高炉ガスの供給量の設定値が変更されると共に、高炉ガス焚き発電設備1の制御モードが、ボイラタービン協調制御から、タービンフォローモードへと切り替えられる。これにより、ガバナ弁51による制御対象が、発電機13の出力から主蒸気の圧力、即ち主蒸気管14に設けられた蒸気圧力測定機構50の測定値となり、主蒸気管14内の圧力が、高炉吹き抜けの発生前後で変化しないように、ガバナ弁51の開度が制御される。   In addition, when the blast furnace blow-through occurs, the set value of the supply amount of the blast furnace gas is changed, and the control mode of the blast furnace gas-fired power generation facility 1 is switched from the boiler turbine cooperative control to the turbine follow mode. Thereby, the object to be controlled by the governor valve 51 becomes the pressure of the main steam from the output of the generator 13, that is, the measurement value of the steam pressure measuring mechanism 50 provided in the main steam pipe 14, and the pressure in the main steam pipe 14 is The opening degree of the governor valve 51 is controlled so as not to change before and after the occurrence of blast furnace blow-through.

この際、状態量検出手段44が高炉ガス母管40からの分岐点Pに近い位置に設置されていると、状態量検出手段44での測定値に基づいて制御装置100で高炉の吹き抜けを検出してから、実際に発熱量が増加した高炉ガスがボイラ10に供給されるまで時間差が発生することが考えられる。かかる場合、ボイラ10に供給される燃料の総発熱量が一時的に減少し、ボイラ10から発生する蒸気量が一時的に減少し、主蒸気管14の圧力が低下することが考えられるが、ガバナ弁51がタービンフォローモード(前圧制御)に切り替えられ、例えば主蒸気管14の圧力が低下しないように、当該ガバナ弁51の開度が閉方向に調節される。そのため、ボイラ10における蒸気温度、蒸気圧力などのプロセス値が急激かつ大幅に変動することを抑制できる。   At this time, if the state quantity detection means 44 is installed at a position close to the branch point P from the blast furnace gas mother pipe 40, the control device 100 detects the blast furnace blow-through based on the measurement value of the state quantity detection means 44. Then, it is conceivable that there will be a time difference until the blast furnace gas whose calorific value has actually increased is supplied to the boiler 10. In such a case, it is conceivable that the total calorific value of the fuel supplied to the boiler 10 is temporarily reduced, the amount of steam generated from the boiler 10 is temporarily reduced, and the pressure of the main steam pipe 14 is lowered. The governor valve 51 is switched to the turbine follow mode (pre-pressure control), and the opening degree of the governor valve 51 is adjusted in the closing direction so that the pressure of the main steam pipe 14 does not decrease, for example. Therefore, it can suppress that process values, such as the steam temperature in the boiler 10, a steam pressure, are fluctuate | varied rapidly and significantly.

そして、高炉吹き抜けの結果、高炉ガス供給管41から供給される高炉ガスの発熱量が増加すると、最終的にボイラ10に供給される燃料の総発熱量は、高炉吹き抜けの前の値と同じとなる。その結果、制御モードがタービンフォローモードに切り替えられた状態の下でも、主蒸気管14の圧力、及び発電機13の出力が、高炉吹き抜け前と同じ状態となる。   As a result of the blast furnace blow-through, when the calorific value of the blast furnace gas supplied from the blast furnace gas supply pipe 41 increases, the total calorific value of the fuel finally supplied to the boiler 10 is the same as the value before the blast furnace blow-through. Become. As a result, even when the control mode is switched to the turbine follow mode, the pressure of the main steam pipe 14 and the output of the generator 13 are the same as before the blast furnace blow-through.

そして、タービンフォローモードでの運転継続後、高炉の吹き抜けが収まると、高炉ガスの発熱量が徐々に低下していく。その状況下で、流量調節弁43の制御設定値を高炉吹き抜け後の状態で維持すると、ボイラ10に投入される燃料の総発熱量が徐々に低下していく。したがって、例えば制御装置100で高炉ガスの発熱量の低下が確認され、高炉の吹き抜けが収まったと判断された場合、制御装置100では流量調節弁43の制御設定値を徐々に上昇させ、最終的に、高炉吹き抜け前の状態まで戻す。そして、主蒸気管14の圧力や発電機13の出力が所望の値で静定した後は、制御装置100における制御モードがタービンフォローモードから再度ボイラタービン協調モードに移行して、引き続き運転が継続される。   After the operation in the turbine follow mode is continued, the amount of heat generated by the blast furnace gas gradually decreases when the blow-through of the blast furnace is settled. Under the circumstances, if the control set value of the flow rate control valve 43 is maintained in the state after the blast furnace blow-through, the total heat generation amount of the fuel charged into the boiler 10 gradually decreases. Therefore, for example, when the controller 100 confirms that the amount of heat generated from the blast furnace gas has been reduced and it is determined that the blow-through of the blast furnace has been stopped, the controller 100 gradually increases the control set value of the flow control valve 43 and finally Return to the state before the blast furnace was blown through. Then, after the pressure of the main steam pipe 14 and the output of the generator 13 are settled at desired values, the control mode in the control device 100 shifts again from the turbine follow mode to the boiler turbine cooperative mode, and the operation continues. Is done.

以上の実施の形態によれば、高炉の吹き抜けが発生した際に、ボイラ10に供給する燃料流量を予め定められた所定の流量、即ち、高炉の吹き抜けの発生前後でボイラ10へ投入される燃料の総発熱量が変動しないように、高炉ガスの供給量を減少させると共に、ガバナ弁51により主蒸気管14の圧力が高炉吹き抜けの前後で変動しないように制御するので、高炉吹き抜けにより高炉ガスの発熱量が変動した場合であっても、ボイラ10への投入熱量の変動、及び主蒸気管14の圧力変動を最小限に抑えることができる。その結果、高炉ガスの発熱量の急激な増大に起因してトリップが発生してしまうことを、確実かつ安定して防止し、高炉ガス焚き発電設備1の運転を安定した状態で継続させることができる。   According to the above embodiment, when a blow-through of the blast furnace occurs, the fuel flow rate supplied to the boiler 10 is a predetermined flow rate, that is, the fuel that is input to the boiler 10 before and after the occurrence of the blow-through of the blast furnace. In order to prevent the total calorific value of the blast furnace from fluctuating, the supply amount of the blast furnace gas is reduced, and the governor valve 51 is controlled so that the pressure of the main steam pipe 14 does not fluctuate before and after the blast furnace blow-through. Even when the calorific value fluctuates, fluctuations in the amount of heat input to the boiler 10 and fluctuations in the pressure of the main steam pipe 14 can be minimized. As a result, it is possible to reliably and stably prevent a trip from occurring due to a rapid increase in the amount of heat generated from the blast furnace gas, and to continue the operation of the blast furnace gas-fired power generation facility 1 in a stable state. it can.

なお、以上の実施の形態では、高炉の吹き抜けの前後でボイラ10に投入される燃料の総発熱量が変動しないように、換言すれば、ボイラ10の負荷が変動しないように、燃料流量の制御設定値を変更したが、高炉の吹き抜けの後の燃料流量の制御設定値の決定の仕方は、本実施の形態の内容に限定されるものではない。換言すれば、高炉吹き抜け後のボイラ10の負荷を高炉吹き抜け前の負荷より低くすることを否定するものではなく、例えばボイラ10の負荷が80%超で100%以下の場合は、高炉吹き抜け時にボイラ負荷が一律に80%となるように制御してもよい。   In the above embodiment, the fuel flow rate control is performed so that the total calorific value of the fuel input to the boiler 10 does not fluctuate before and after the blast furnace blow-through, in other words, the load of the boiler 10 does not fluctuate. Although the setting value has been changed, the method of determining the control setting value of the fuel flow rate after the blast furnace blow-through is not limited to the contents of the present embodiment. In other words, it does not deny that the load of the boiler 10 after the blast furnace blow-off is lower than the load before the blast furnace blow-through. For example, when the load of the boiler 10 is more than 80% and 100% or less, Control may be performed so that the load is uniformly 80%.

また、以上の実施の形態では、高炉吹き抜け時に高炉ガスの流量を制御すべく、流量調節弁43の制御設定値を変更したが、ボイラ10に投入される燃料の総発熱量を維持するという観点からは、高炉ガス以外の燃料、例えば石炭の投入量を変化させるように、給炭機32の制御設定値を変化させるようにしてもよい。   Further, in the above embodiment, the control set value of the flow rate control valve 43 is changed to control the flow rate of the blast furnace gas when the blast furnace blows through, but the viewpoint of maintaining the total calorific value of the fuel that is input to the boiler 10. From the above, the control set value of the coal feeder 32 may be changed so that the amount of fuel other than blast furnace gas, for example, coal, is changed.

また、本実施の形態では、ボイラ10が高炉ガスと石炭の混焼ボイラである場合を例として説明したが、ボイラ10は例えば高炉ガスの専焼であってもよい。かかる場合、燃料供給設備11は高炉ガス供給系統21を有していれば足り、高炉ガスを含む燃料とは、高炉ガス供給系統21から供給される高炉ガスを意味する。また、ボイラ10は、高炉ガスと例えばコークス炉ガス(COG)やLNG、LPGといった他の燃料ガスとの混焼、あるいは例えば軽油、灯油、重油等の燃料油または石炭の少なくともいずれかと高炉ガスを含む燃料ガスとの混焼であってもよい。かかる場合、ボイラ10に供給される燃料の内の少なくともいずれかの制御設定値を変更するようにしてもよい。なお、ここでいう高炉ガスを含む燃料ガスとは、高炉ガスのみから構成される燃料ガスも含む。   Moreover, although this embodiment demonstrated as an example the case where the boiler 10 is a mixed-fired boiler of blast furnace gas and coal, the boiler 10 may be the exclusive combustion of blast furnace gas, for example. In such a case, it is sufficient that the fuel supply facility 11 has the blast furnace gas supply system 21, and the fuel containing the blast furnace gas means blast furnace gas supplied from the blast furnace gas supply system 21. The boiler 10 includes blast furnace gas and co-fired gas such as coke oven gas (COG), LNG, and LPG, or fuel oil such as light oil, kerosene, and heavy oil, or coal and blast furnace gas. It may be co-firing with fuel gas. In such a case, at least one of the control set values of the fuel supplied to the boiler 10 may be changed. In addition, the fuel gas containing blast furnace gas here also includes fuel gas composed only of blast furnace gas.

以上の実施の形態では、蒸気発生装置はボイラ10であったが、蒸気発生装置としては、高炉ガスを燃料として用い且つ蒸気を発生することができるものであれば、例えば高炉ガスを燃料としてガスタービンを運転し、その排気ガスで蒸気を発生させる、いわゆるGTCC(ガスタービンコンバインドサイクル)設備であってもよい。かかる場合も、高炉の吹き抜けの際にガスタービンに供給する燃料流量を減少させ、排熱回収ボイラから発生する主蒸気の圧力を、蒸気タービン12のガバナ弁51で制御するようにしてもよい。
ことが好ましい。
In the above embodiment, the steam generator is the boiler 10, but as the steam generator, any gas can be used as long as it can use blast furnace gas as fuel and generate steam, for example, using blast furnace gas as fuel. It may be a so-called GTCC (gas turbine combined cycle) facility that operates a turbine and generates steam with its exhaust gas. Even in such a case, the flow rate of the fuel supplied to the gas turbine when the blast furnace is blown through may be reduced, and the pressure of the main steam generated from the exhaust heat recovery boiler may be controlled by the governor valve 51 of the steam turbine 12.
It is preferable.

なお、本発明の高炉吹き抜け時の制御方法は、高炉ガス焚き発電のための蒸気生成用ボイラに最適であるが、その他の用途の高炉ガス焚きボイラにも適用し得ることはもちろんである。 The control method during the blast furnace blow-through of the present invention is optimal for a steam generating boiler for blast furnace gas-fired power generation, but of course can also be applied to a blast furnace gas-fired boiler for other uses.

1 高炉ガス焚き発電設備
10 ボイラ
11 燃料供給設備
12 蒸気タービン
13 発電機
14 主蒸気管
15 復水器
20 石炭供給系統
21 高炉ガス供給系統21
30 石炭バンカ
31 微粉炭機
32 給炭機
40 高炉ガス母管
41 高炉ガス供給管
42 ガスバーナ
43 流量調節弁
44 状態量検出手段
44a 発熱量測定機構
44b 温度測定機構
44c 圧力測定機構
44d 流量測定機構
50 蒸気圧力測定機構
51 ガバナ弁
P 合流点
1 Blast furnace gas-fired power generation facility 10 Boiler
DESCRIPTION OF SYMBOLS 11 Fuel supply equipment 12 Steam turbine 13 Generator 14 Main steam pipe 15 Condenser 20 Coal supply system 21 Blast furnace gas supply system 21
DESCRIPTION OF SYMBOLS 30 Coal bunker 31 Pulverized coal machine 32 Coal feeder 40 Blast furnace gas main pipe 41 Blast furnace gas supply pipe 42 Gas burner 43 Flow control valve 44 State quantity detection means 44a Calorific value measurement mechanism 44b Temperature measurement mechanism 44c Pressure measurement mechanism 44d Flow measurement mechanism 50 Steam pressure measuring mechanism 51 Governor valve P Junction point

Claims (3)

高炉ガスを含む燃料を燃焼させて蒸気を発生させる蒸気発生装置と、前記蒸気発生装置で発生した蒸気の熱エネルギーを回転エネルギーに変換する蒸気タービンと、前記蒸気タービンの回転エネルギーを電力に変換する発電機と、を有する高炉ガス焚き発電設備における高炉吹き抜け時の制御方法であって、
高炉吹き抜け時に、前記蒸気発生装置に供給する燃料流量を予め定められた所定の流量まで減少させると共に、前記蒸気発生装置から前記蒸気タービンに蒸気を供給する主蒸気管に設けられた、前記蒸気タービンに流入する蒸気量を制御するガバナ弁の制御対象を、前記主蒸気管の圧力に設定し、
前記ガバナ弁による前記主蒸気管の圧力制御は、前記高炉吹き抜け前の前記主蒸気管の圧力を維持するように行われることを特徴とする、高炉ガス焚き発電設備における高炉吹き抜け時の制御方法。
A steam generator that burns fuel including blast furnace gas to generate steam, a steam turbine that converts thermal energy of steam generated by the steam generator into rotational energy, and converts rotational energy of the steam turbine into electric power A control method at the time of blast furnace blow-through in a blast furnace gas-fired power generation facility having a generator,
The steam turbine provided in a main steam pipe for reducing the flow rate of fuel supplied to the steam generator to a predetermined flow rate and supplying steam from the steam generator to the steam turbine when the blast furnace blows through. Set the control object of the governor valve that controls the amount of steam flowing into the main steam pipe pressure,
The control method at the time of blast furnace blow-off in a blast furnace gas-fired power generation facility, wherein the pressure control of the main steam pipe by the governor valve is performed so as to maintain the pressure of the main steam pipe before the blast furnace blow-through.
前記高炉吹き抜け時に減少させる、前記蒸気発生装置に供給する燃料流量は、前記蒸気発生装置に供給する燃料の総発熱量が、前記前記高炉吹き抜けの前後で変動しないように定められることを特徴とする、請求項1に記載の高炉ガス焚き発電設備における高炉吹き抜け時の制御方法。 The flow rate of the fuel supplied to the steam generator, which is decreased when the blast furnace blows through, is determined so that the total calorific value of the fuel supplied to the steam generator does not fluctuate before and after the blast furnace blow-through. The control method at the time of blast furnace blow-by in the blast furnace gas-fired power generation facility according to claim 1. 前記蒸気発生装置はボイラであり、
前記蒸気発生装置に供給する燃料は、前記高炉ガスを含む燃料ガス、または石炭若しくは油の少なくともいずれかと前記高炉ガスを含む燃料ガスを含むものであり、
前記高炉吹き抜け時に、前記蒸気発生装置に供給する燃料流量が減少される燃料は、
前記蒸気発生装置に供給する燃料が前記高炉ガスを含む燃料ガスである場合は、当該高炉ガスを含む燃料ガスであり、
前記蒸気発生装置に供給する燃料が前記石炭または前記油の少なくともいずれかと前記高炉ガスを含む燃料ガスを含むものである場合は、前記石炭、前記油または前記高炉ガスを含む燃料ガスの少なくともいずれかであることを特徴とする、請求項1または2のいずれか一項に記載の高炉ガス焚き発電設備における高炉吹き抜け時の制御方法。
The steam generator is a boiler;
The fuel supplied to the steam generator includes a fuel gas containing the blast furnace gas, or a fuel gas containing at least one of coal or oil and the blast furnace gas,
The fuel in which the flow rate of fuel supplied to the steam generator is reduced when the blast furnace is blown through,
When the fuel supplied to the steam generator is a fuel gas containing the blast furnace gas, it is a fuel gas containing the blast furnace gas,
When the fuel supplied to the steam generator includes at least one of the coal and the oil and a fuel gas containing the blast furnace gas, the fuel is at least one of the coal, the oil or the fuel gas containing the blast furnace gas. The control method at the time of blast furnace blow-by in the blast furnace gas-fired power generation facility according to any one of claims 1 and 2,
JP2015075092A 2015-04-01 2015-04-01 Control method at blast furnace blow-through in blast furnace gas-fired power generation facility Active JP6520317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015075092A JP6520317B2 (en) 2015-04-01 2015-04-01 Control method at blast furnace blow-through in blast furnace gas-fired power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015075092A JP6520317B2 (en) 2015-04-01 2015-04-01 Control method at blast furnace blow-through in blast furnace gas-fired power generation facility

Publications (2)

Publication Number Publication Date
JP2016194282A true JP2016194282A (en) 2016-11-17
JP6520317B2 JP6520317B2 (en) 2019-05-29

Family

ID=57323556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015075092A Active JP6520317B2 (en) 2015-04-01 2015-04-01 Control method at blast furnace blow-through in blast furnace gas-fired power generation facility

Country Status (1)

Country Link
JP (1) JP6520317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110762506A (en) * 2019-10-31 2020-02-07 大唐郓城发电有限公司 Main steam temperature optimization control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136905U (en) * 1980-03-17 1981-10-16
JPS5871501U (en) * 1981-11-09 1983-05-14 三菱重工業株式会社 Steam generation equipment
JPS60223903A (en) * 1984-04-20 1985-11-08 株式会社日立製作所 Method of controlling non-utility power plant
JPH0577926B2 (en) * 1986-09-11 1993-10-27 Hitachi Shipbuilding Eng Co
JP2007248026A (en) * 2006-03-20 2007-09-27 Jfe Steel Kk Fuel control method and fuel control device for blast furnace gas-fired power generation facility
JP2011163294A (en) * 2010-02-12 2011-08-25 Chugoku Electric Power Co Inc:The Coal-gasified gas supply plant
JP2014169825A (en) * 2013-03-04 2014-09-18 Nippon Steel & Sumitomo Metal Fuel control method under blast furnace open ceiling in blast furnace gas-fired boiler and fuel control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136905U (en) * 1980-03-17 1981-10-16
JPS5871501U (en) * 1981-11-09 1983-05-14 三菱重工業株式会社 Steam generation equipment
JPS60223903A (en) * 1984-04-20 1985-11-08 株式会社日立製作所 Method of controlling non-utility power plant
JPH0577926B2 (en) * 1986-09-11 1993-10-27 Hitachi Shipbuilding Eng Co
JP2007248026A (en) * 2006-03-20 2007-09-27 Jfe Steel Kk Fuel control method and fuel control device for blast furnace gas-fired power generation facility
JP2011163294A (en) * 2010-02-12 2011-08-25 Chugoku Electric Power Co Inc:The Coal-gasified gas supply plant
JP2014169825A (en) * 2013-03-04 2014-09-18 Nippon Steel & Sumitomo Metal Fuel control method under blast furnace open ceiling in blast furnace gas-fired boiler and fuel control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110762506A (en) * 2019-10-31 2020-02-07 大唐郓城发电有限公司 Main steam temperature optimization control method

Also Published As

Publication number Publication date
JP6520317B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
CN1093594C (en) Fuel supply device for gas-turbine and controller thereof
JP6276647B2 (en) Coal fired boiler and its operation control method
JP5970368B2 (en) Boiler control device
CN107314395B (en) The method of fast cutback under unit style generating set emergency situation
JP5665621B2 (en) Waste heat recovery boiler and power plant
JP5659973B2 (en) Steam supply system, control method therefor, and steam supply method
JP2008251247A (en) Fuel cell gas turbine compound power generation system and its control method
JP6520317B2 (en) Control method at blast furnace blow-through in blast furnace gas-fired power generation facility
JP6051952B2 (en) Fuel control method and fuel control apparatus for blast furnace gas fired boiler
JP2015206559A (en) Fuel control method and fuel control device of blast furnace gas boiler
JP4117517B2 (en) Coal gasification combined power plant and its operation control device.
CN108398966A (en) A kind of soot blower system pressure monitoring device and soot-blowing control method
JP3948115B2 (en) Steam turbine operation method for coke dry fire extinguishing equipment
JP2008241048A (en) Operation method and device for gas burning boiler
JP3670791B2 (en) Steam supply method and apparatus for coke dry fire extinguishing equipment
CN110762553A (en) Method for preventing coke falling and fire extinguishing of boiler
JP2007170245A (en) Gas turbine facility, low calory gas feeding facility, and method of suppressing rise of calory of gas
JPH0988631A (en) Gas fuel burning gas turbine misfire preventing method
CN107246607B (en) Automatic stable combustion system for four-corner tangential boiler
JP7131575B2 (en) Steam delivery method and steam delivery system
JP3971646B2 (en) Replenishment steam control method
CN214332673U (en) Boiler superheater control system
CN111594816B (en) Supercritical boiler starting method based on double-layer plasma design
CN217978756U (en) Supercritical gas boiler and gas supply pipeline thereof
JP5537475B2 (en) Waste heat recovery boiler and power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6520317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151