JP2016193866A - Cyclooxygenase inhibitor, nadph-cytochrome p450 reductase inhibitor and tyrosinase inhibitor that contain mimosine or derivative thereof - Google Patents

Cyclooxygenase inhibitor, nadph-cytochrome p450 reductase inhibitor and tyrosinase inhibitor that contain mimosine or derivative thereof Download PDF

Info

Publication number
JP2016193866A
JP2016193866A JP2015074723A JP2015074723A JP2016193866A JP 2016193866 A JP2016193866 A JP 2016193866A JP 2015074723 A JP2015074723 A JP 2015074723A JP 2015074723 A JP2015074723 A JP 2015074723A JP 2016193866 A JP2016193866 A JP 2016193866A
Authority
JP
Japan
Prior art keywords
mimosine
inhibitor
trp
tyrosinase
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015074723A
Other languages
Japanese (ja)
Other versions
JP6512546B2 (en
Inventor
真吉 多和田
Shinkichi Tawada
真吉 多和田
ガオ クェン ビン ウェン
Gao Kuen Bin Wen
ガオ クェン ビン ウェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO SYSTEM CONSULTING KK
Original Assignee
BIO SYSTEM CONSULTING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO SYSTEM CONSULTING KK filed Critical BIO SYSTEM CONSULTING KK
Priority to JP2015074723A priority Critical patent/JP6512546B2/en
Publication of JP2016193866A publication Critical patent/JP2016193866A/en
Application granted granted Critical
Publication of JP6512546B2 publication Critical patent/JP6512546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide excellent inhibitors of cyclooxygenase, NADPH-cytochrome P450 reductase, or tyrosinase.SOLUTION: A mimosine derivative is represented by the general formula (1) in the figure, where X represents an amino acid residue selected from the group consisting of L or D form phenylalanine (Phe), alanine (Ala), proline (ProP), valine (Val) and tryptophan (Trp)SELECTED DRAWING: Figure 4

Description

本発明は、ミモシン又はその誘導体に関し、更に詳細には、優れたシクロオキシナーゼ阻害活性、NADPH-シトクロムP450レダクターゼ阻害活性及びチロシナーゼ阻害活性を有するミモシン又はその誘導体に関する。   The present invention relates to mimosine or a derivative thereof, and more particularly, to mimosine or a derivative thereof having excellent cyclooxynase inhibitory activity, NADPH-cytochrome P450 reductase inhibitory activity, and tyrosinase inhibitory activity.

生体内のほとんどの化学反応は酵素によって触媒されており、様々な疾患にも酵素が関与している。このため、特定の酵素の作用を阻害する物質が薬剤として利用されている。例えば、非ステロイド性抗炎症薬(NSAIDs)はリュウマチ性関節炎などの様々な炎症性疾患に対し治療効果を有するが、NSAIDsの作用は、主にアラキドン酸からプロスタグランジンへの変換における律速酵素であるシクロオキシナーゼ(COX)の阻害に基づくものである。COXには、COX-1,COX-2と呼ばれる2つのアイソザイムが存在する。COX-1は、主に哺乳動物の細胞や組織に発現し、ホメオスタシスを維持するプロスタグランジン類を産生する機能を有する。一方、COX-2は、脳、肝臓、卵巣などに発現し、炎症性の刺激に反応して誘導される。COX-2選択的阻害剤は、消化管阻害作用などが少ない理想的な抗炎症剤となり得ると考えられる(非特許文献1〜5)。   Most chemical reactions in the body are catalyzed by enzymes, and enzymes are also involved in various diseases. For this reason, substances that inhibit the action of specific enzymes are used as drugs. For example, nonsteroidal anti-inflammatory drugs (NSAIDs) have therapeutic effects on various inflammatory diseases such as rheumatoid arthritis, but NSAIDs are primarily rate-limiting enzymes in the conversion of arachidonic acid to prostaglandins. It is based on the inhibition of a certain cyclooxynase (COX). COX has two isozymes called COX-1 and COX-2. COX-1 is mainly expressed in mammalian cells and tissues, and has a function of producing prostaglandins that maintain homeostasis. On the other hand, COX-2 is expressed in the brain, liver, ovary, etc., and is induced in response to inflammatory stimuli. It is considered that a COX-2 selective inhibitor can be an ideal anti-inflammatory agent with little gastrointestinal inhibitory action (Non-Patent Documents 1 to 5).

またシトクロムP450(CYP)は、薬物の酸化的代謝などにおいて重要な役割を担っており、またその生体内活性化や腫瘍の形成及び発達における役割からがん治療のための標的となっている。電子移動ジフラボタンパク質であるNADPH-シトクロムP450レダクターゼ(CPR)は、多くのCYP反応の触媒反応に必須であり、また多くの他のたんぱく質や低分子化合物に電子を供給する。CPRはまた、酸化ストレスやDNA損傷を起こす活性酸素種(ROS)を生成することが報告されている。このためCPR阻害剤は、CYPが関与する疾患の治療や活性酸素種の抑制において有用であると考えられる(非特許文献6〜11)。   Cytochrome P450 (CYP) plays an important role in the oxidative metabolism of drugs and is a target for cancer treatment because of its role in in vivo activation and tumor formation and development. NADPH-cytochrome P450 reductase (CPR), an electron transfer diflavoprotein, is essential for the catalysis of many CYP reactions and supplies electrons to many other proteins and small molecules. CPR has also been reported to produce reactive oxygen species (ROS) that cause oxidative stress and DNA damage. For this reason, CPR inhibitors are considered to be useful in the treatment of diseases involving CYP and the suppression of reactive oxygen species (Non-Patent Documents 6 to 11).

一方、皮膚におけるメラニンの形成は、紫外線による癌から保護する作用を有するが、メラニンが異常蓄積すると、メリスマ、しみ、炎症後黒皮症、日光性色素斑などの皮膚障害を引き起こす。メラニンの生成は、メラニン生成経路の重要な酵素であるチロシナーゼや、チロシナーゼ関連タンパク質(TRP-1)、ドーパクロムトートメラーゼ(TRP-2)などの他の酵素によって制御される。チロシナーゼは、モノフェノラーゼ反応とジフェノラーゼ反応による3,4-ジヒドロキシフェニルアラニンからo-ドーパキノンへの酸化によってチロシンを水酸化する。このようにチロシナーゼは、メラニン形成において重要な役割を果たすため、その阻害剤は美白剤として利用できる可能性がある(非特許文献12〜18)。   On the other hand, the formation of melanin in the skin has an effect of protecting against cancer caused by ultraviolet rays. However, abnormal accumulation of melanin causes skin disorders such as merisma, blotches, post-inflammatory melanosis, and solar pigmented spots. Melanin production is controlled by other enzymes such as tyrosinase, a tyrosinase-related protein (TRP-1), and dopachrome tomerase (TRP-2), which are important enzymes in the melanin production pathway. Tyrosinase hydroxylates tyrosine by oxidation of 3,4-dihydroxyphenylalanine to o-dopaquinone by monophenolase and diphenolase reactions. Thus, since tyrosinase plays an important role in melanogenesis, the inhibitor may be used as a whitening agent (Non-Patent Documents 12 to 18).

これらの酵素の阻害剤としていくつかの物質が知られているが(特許文献1〜2)、その活性や安全性が十分でないものもあり、なお天然物由来で強力かつ安全性の高い阻害剤が求められている。   Although some substances are known as inhibitors of these enzymes (Patent Documents 1 and 2), some of them are not sufficiently active and safe, and are still powerful and safe inhibitors derived from natural products. Is required.

特開昭56−7710号公報JP 56-7710 A 特開昭63−174910号公報JP-A 63-174910

Gautam, R.; Jachak, S. M.; Kumar, V.; Mohan, C. G. Synthesis, biological evaluation and molecular docking studies of stellatin derivatives as cyclooxygenase (COX-1, COX-2) inhibitors and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2011, 21, 1612-1616.Gautam, R .; Jachak, SM; Kumar, V .; Mohan, CG Synthesis, biological evaluation and molecular docking studies of stellatin derivatives as cyclooxygenase (COX-1, COX-2) inhibitors and anti-inflammatory agents.Bioorg. Med. Chem. Lett. 2011, 21, 1612-1616. Ulbrich, H.; Fiebich, B.; Dannhardt, G. Cyclooxygenase-1/2 (COX-1/COX-2) and 5-lipoxygenase (5-LOX) inhibitors of the 6,7-diary-2,3-1H-dihydropyrrolizine type. Eur. J. Med. Chem. 2002, 37, 953-959.Ulbrich, H .; Fiebich, B .; Dannhardt, G. Cyclooxygenase-1 / 2 (COX-1 / COX-2) and 5-lipoxygenase (5-LOX) inhibitors of the 6,7-diary-2,3- 1H-dihydropyrrolizine type. Eur. J. Med. Chem. 2002, 37, 953-959. Jain, H. K.; Mourya, V. K.; Agrawal, R. K. Inhibitory mode of 2-acetoxyphenyl alkyl sulfides against COX-1 and COX-2: QSAR analyses. Bioorg. Med. Chem. Lett. 2006, 16, 5280-5284.Jain, H. K .; Mourya, V. K .; Agrawal, R. K. Inhibitory mode of 2-acetoxyphenyl alkyl sulfides against COX-1 and COX-2: QSAR analyzes. Bioorg. Med. Chem. Lett. 2006, 16, 5280-5284. Vitale, P.; Tacconelli, S.; Perrone, M. G.; Malerba, P.; Simone, L.; Scilimati, A.; Lavecchia, A.; Dovizio, M.; Marcantoni, E.; Bruno, A.; Patrignani, P. Synthesis, pharmacological characterization, and docking analysis of a novel family of diarylisoxazoles as highly selective cyclooxygenase-1 (COX-1) inhibitors. J. Med. Chem. 2013, 56, 4277-4299.Vitale, P .; Tacconelli, S .; Perrone, MG; Malerba, P .; Simone, L .; Scilimati, A .; Lavecchia, A .; Dovizio, M .; Marcantoni, E .; Bruno, A .; Patrignani , P. Synthesis, pharmacological characterization, and docking analysis of a novel family of diarylisoxazoles as highly selective cyclooxygenase-1 (COX-1) inhibitors. J. Med. Chem. 2013, 56, 4277-4299. Gierse, J.; Nickols, M.; Leahy, K.; Warner, J.; Zhang, Y.; Cortes-Burgos, L.; Carter, J.; Seibert, K.; Masferrer, J. Evaluation of COX-1/COX-2 selectivity and potency of a new class of COX-2 inhibitors. Eur. J. Pharmacol. 2008, 588, 93-98.Gierse, J .; Nickols, M .; Leahy, K .; Warner, J .; Zhang, Y .; Cortes-Burgos, L .; Carter, J .; Seibert, K .; Masferrer, J. Evaluation of COX- 1 / COX-2 selectivity and potency of a new class of COX-2 inhibitors. Eur. J. Pharmacol. 2008, 588, 93-98. Pandit, S.; Mukherjee, P. K.; Mukherjee, K.; Gajbhiye, R.; Venkatesh, M.; Ponnusankar, S.; Bhadra, S. Cytochrome P450 inhibitory potential of selected Indian spices-possible food drug interaction. Food Res. Int. 2012, 45, 69-74.Pandit, S .; Mukherjee, PK; Mukherjee, K .; Gajbhiye, R .; Venkatesh, M .; Ponnusankar, S .; Bhadra, S. Cytochrome P450 inhibitory potential of selected Indian spices-possible food drug interaction. Int. 2012, 45, 69-74. Sridhar, J.; Liu, J.; Foroozesh, M.; Stevens C. L. K. Inhibition of cytochrome P450 enzymes by quinones and anthraquinones. Chem. Res. Toxicol. 2012, 25, 357-365.Sridhar, J .; Liu, J .; Foroozesh, M .; Stevens C. L. K. Inhibition of cytochrome P450 enzymes by quinones and anthraquinones. Chem. Res. Toxicol. 2012, 25, 357-365. Gan, L.; von Moltke, L. L.; Trepanier, L. A.; Harmatz, J. S.; Greenblatt, D. J.; Court, M. H. Role of NADPH-cytochrome P450 reductase and cytochrome-b5/NADH-b5 reductase in variability of CYP3A activity in human liver microsomes. Drug Metab. Dispos. 2009, 37, 90-96.Gan, L .; von Moltke, LL; Trepanier, LA; Harmatz, JS; Greenblatt, DJ; Court, MH Role of NADPH-cytochrome P450 reductase and cytochrome-b5 / NADH-b5 reductase in variability of CYP3A activity in human liver microsomes Drug Metab. Dispos. 2009, 37, 90-96. Gray, J. P.; Mishin, V.; Heck, D. E.; Laskin, D. L. Laskin, J. D. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species. Toxicol. Appl. Pharmacol. 2010, 247, 76-82.Gray, JP; Mishin, V .; Heck, DE; Laskin, DL Laskin, JD Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species.Toxicol.Appl. Pharmacol. 2010, 247, 76-82. Pandey, A. V.; Fluck, C. E. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol. Ther. 2013, 138, 229-254.Pandey, A. V .; Fluck, C. E. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol. Ther. 2013, 138, 229-254. Pillai, V. C.; Mehvar, R. Inhibition of NADPH-cytochrome P450 reductase by tannic acid in rat liver microsomes and primary hepatocytes: methodological artifacts and application to ischemia-reperfusion injury. J. Pharm. Sci. 2011, 100, 3495-3505.Pillai, V. C .; Mehvar, R. Inhibition of NADPH-cytochrome P450 reductase by tannic acid in rat liver microsomes and primary hepatocytes: methodological artifacts and application to ischemia-reperfusion injury.J. Pharm. Sci. 2011, 100, 3495-3505. Huh, S.; Jung, E.; Lee, J.; Roh, K.; Kim, J.-D.; Lee, J.; Park, D. Mechanisms of melanogenesis inhibition by propafenone. Arch Dermatol Res. 2010, 302, 561-565.Huh, S .; Jung, E .; Lee, J .; Roh, K .; Kim, J.-D .; Lee, J .; Park, D. Mechanisms of melanogenesis inhibition by propafenone. Arch Dermatol Res. 2010, 302, 561-565. Morikawa, T.; Nakanishi, Y.; Ninomiya, K.; Matsuda, H.; Nakashima, S.; Miki, H.; Miyashita, Y.; Yoshikawa, M.; Hayakawa, T.; Muraoka, O. Dimeric pyrrolidinoindoline-type alkaloids with melanogenesis inhibitory activity in flower buds of Chimonanthus praecox. J Nat Med. 2014. DOI 10.1007/s11418-014-0832-1.Morikawa, T .; Nakanishi, Y .; Ninomiya, K .; Matsuda, H .; Nakashima, S .; Miki, H .; Miyashita, Y .; Yoshikawa, M .; Hayakawa, T .; Muraoka, O. Dimeric pyrrolidinoindoline-type alkaloids with melanogenesis inhibitory activity in flower buds of Chimonanthus praecox. J Nat Med. 2014. DOI 10.1007 / s11418-014-0832-1. Lee, J.; Jung, E.; Park, J.; Jung, K.; Park, E.; Kim, J.; Hong, S.; Park, J.; Park, S.; Lee, S.; Park, D. Glycyrrhizin induces melanogenesis by elevating a cAMP level in B16 melanoma cells. J Invest Dermatol. 2005, 124, 405-411.Lee, J .; Jung, E .; Park, J .; Jung, K .; Park, E .; Kim, J .; Hong, S .; Park, J .; Park, S .; Lee, S .; Park, D. Glycyrrhizin induces melanogenesis by elevating a cAMP level in B16 melanoma cells.J Invest Dermatol. 2005, 124, 405-411. Liu, H.; Sui, X.; Li, X.; Li, Y. Lyoniresinol inhibits melanogenic activity through the induction of microphthalmia-associated transcription factor and extracellular receptor kinase activation. Mol Cell Biochem. 2013, 373, 211-216.Liu, H .; Sui, X .; Li, X .; Li, Y. Lyoniresinol inhibits melanogenic activity through the induction of microphthalmia-associated transcription factor and extracellular receptor kinase activation. Mol Cell Biochem. 2013, 373, 211-216. Song, K.-K.; Huang, H.; Han, P.; Zhang, C.-L.; Shi, Y.; Chen, Q.-X. Inhibitory effects of cis- and trans-isomers of 3,5-dihydroxystilbene on the activity of mushroom tyrosinase. Biochem. Biophys. Res. Commun. 2006, 342, 1147-1151.Song, K.-K .; Huang, H .; Han, P .; Zhang, C.-L .; Shi, Y .; Chen, Q.-X. Inhibitory effects of cis- and trans-isomers of 3, 5-dihydroxystilbene on the activity of mushroom tyrosinase. Biochem. Biophys. Res. Commun. 2006, 342, 1147-1151. Delogu, G.; Podda, G.; Corda, M.; Fadda, M. B.; Fais, A.; Era, B. Synthesis and biological evaluation of a novel series of bis-salicylaldehydes as mushroom tyrosinase inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 6138-6140.Delogu, G .; Podda, G .; Corda, M .; Fadda, MB; Fais, A .; Era, B. Synthesis and biological evaluation of a novel series of bis-salicylaldehydes as mushroom tyrosinase inhibitors. Bioorg. Med. Chem Lett. 2010, 20, 6138-6140. An, S. M.; Kim, H. J.; Kim, J.-E.; Boo, Y. C. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother. Res. 2008, 22, 1200-1207.An, S. M .; Kim, H. J .; Kim, J.-E .; Boo, Y. C. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother. Res. 2008, 22, 1200-1207.

従って、本発明の課題は、シクロオキシゲナーゼ、NADPH-シトクロムP450レダクターゼ(CPR)又はチロシナーゼに対し優れた阻害活性を有するとともに、安全性の高い阻害剤を提供することである。   Accordingly, an object of the present invention is to provide a highly safe inhibitor having excellent inhibitory activity against cyclooxygenase, NADPH-cytochrome P450 reductase (CPR) or tyrosinase.

本発明者らは、上記課題を解決するために鋭意研究を行った結果、ギンネム(ギンゴウカン)やミモザなどの熱帯〜亜熱帯植物中に含まれるミモシンや、これに特定のアミノ酸を結合したミモシンジペプチドは、シクロオキシゲナーゼ、CPR、チロシナーゼに対し優れた阻害活性を示すことを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that mimosine contained in tropical to subtropical plants such as ginnemu (Gingoukan) and mimosa, and mimosine dipeptide having a specific amino acid bound thereto, The present inventors have found that they exhibit excellent inhibitory activity against cyclooxygenase, CPR, and tyrosinase, and have completed the present invention.

すなわち本発明は、下記一般式(1);

Figure 2016193866
(式中、XはL体又はD体のフェニルアラニン(Phe)、アラニン(Ala)、プロリン(Pro)
、バリン(Val)及びトリプトファン(Trp)よりなる群から選ばれるアミノ酸残基を示
す)
で表されるミモシン誘導体である。 That is, the present invention provides the following general formula (1);
Figure 2016193866
(In the formula, X is L-form or D-form phenylalanine (Phe), alanine (Ala), proline (Pro)
, Amino acid residues selected from the group consisting of valine (Val) and tryptophan (Trp)
It is a mimosine derivative represented by

また本発明は、上記ミモシン誘導体又はミモシンを有効成分として含有するシクロオキシゲナーゼ阻害剤、CPR阻害剤又はチロシナーゼ阻害剤である。   The present invention is also a cyclooxygenase inhibitor, CPR inhibitor or tyrosinase inhibitor containing the mimosine derivative or mimosine as an active ingredient.

本発明に用いるミモシン又はその誘導体は、優れたシクロオキシゲナーゼ阻害作用、NADPH-シトクロムP450レダクターゼ(CPR)阻害作用、チロシナーゼ阻害作用を有するとともに、細胞毒性が低く安全性にも優れるものである。   The mimosine or derivative thereof used in the present invention has excellent cyclooxygenase inhibitory action, NADPH-cytochrome P450 reductase (CPR) inhibitory action, and tyrosinase inhibitory action, and has low cytotoxicity and excellent safety.

ミモシンジペプチドの反応スキームを示す図である。It is a figure which shows the reaction scheme of a mimosin dipeptide. 0〜15μMの各ミモシン誘導体の存在下におけるラインウィーバー・バークプロットである。It is a line weaver bark plot in the presence of 0-15 μM of each mimosine derivative. B16F10細胞生存性に対する各ミモシン誘導体の影響を示すグラフである。It is a graph which shows the influence of each mimosine derivative with respect to B16F10 cell viability. 細胞内チロシナーゼに対する各ミモシン誘導体の阻害率を示すグラフである。It is a graph which shows the inhibition rate of each mimosine derivative with respect to intracellular tyrosinase.

本発明のミモシン誘導体は、下記一般式(1);

Figure 2016193866
で表されるものである。 The mimosine derivative of the present invention has the following general formula (1):
Figure 2016193866
It is represented by

ミモシン(β-[N-(3-ヒドロキシ-4-ピリドン)]-α-アミノプロピオン酸)は、ピリジン環の窒素原子に結合したアラニン側鎖を有する非タンパク質アミノ酸であるが、上記一般式(1)のミモシン誘導体は、このミモシンに1つのアミノ酸が結合したジペプチドである。   Mimosine (β- [N- (3-hydroxy-4-pyridone)]-α-aminopropionic acid) is a non-protein amino acid having an alanine side chain bonded to the nitrogen atom of the pyridine ring. The mimosine derivative of 1) is a dipeptide in which one amino acid is bound to this mimosine.

上記一般式(1)中、Xは、アミノ酸残基であれば特に制限なく、例えば、アラニン(Ala;A)、アルギニン(Arg;R)、アスパラギン(Asn;N)、アスパラギン酸(Asp;D)システイン(Cys;C)、グルタミン(Gln;Q)、グルタミン酸(Glu;E)、グリシン(Gly;G)、ヒスチジン(His;H)、イソロイシン(Ile;I)、ロイシン(Leu;L)、リシン(Lys;K)、メチオニン(Met;M)、フェニルアラニン(Phe;F)、プロリン(Pro;P)、セリン(Ser;S)、トレオニン(Thr;T)、トリプトファン(Trp;W)、チロシン(Tyr;Y)、バリン(Val;V)などが例示される。このうち、フェニルアラニン(Phe;F)、アラニン(Ala;A)、プロリン(Pro;P)、バリン(Val;V)、トリプトファン(Trp;Y)が好適であり、その中でも、シクロオキシゲナーゼ阻害作用、NADPH-シトクロムP450レダクターゼ(CPR)阻害作用、チロシナーゼ阻害作用等に優れることから、フェニルアラニン(Phe;F)、アラニン(Ala;A)、プロリン(Pro;P)、バリン(Val;V)、トリプトファン(Trp;Y)が好適である。XはN末端側でミモシンとアミド結合している。   In the general formula (1), X is not particularly limited as long as it is an amino acid residue. For example, alanine (Ala; A), arginine (Arg; R), asparagine (Asn; N), aspartic acid (Asp; D) ) Cysteine (Cys; C), glutamine (Gln; Q), glutamic acid (Glu; E), glycine (Gly; G), histidine (His; H), isoleucine (Ile; I), leucine (Leu; L), Lysine (Lys; K), methionine (Met; M), phenylalanine (Phe; F), proline (Pro; P), serine (Ser; S), threonine (Thr; T), tryptophan (Trp; W), tyrosine (Tyr; Y), valine (Val; V) and the like are exemplified. Of these, phenylalanine (Phe; F), alanine (Ala; A), proline (Pro; P), valine (Val; V), and tryptophan (Trp; Y) are preferred, and among them, cyclooxygenase inhibitory action, NADPH -Since it is excellent in cytochrome P450 reductase (CPR) inhibitory action, tyrosinase inhibitory action, etc., phenylalanine (Phe; F), alanine (Ala; A), proline (Pro; P), valine (Val; V), tryptophan (Trp) Y) is preferred. X has an amide bond with mimosine on the N-terminal side.

基Xを構成するアミノ酸に光学異性体が存在する場合は、D体であってもL体であってもよいが、D体は特にCPR阻害活性やチロシナーゼ阻害活性に優れる。   When an optical isomer is present in the amino acid constituting the group X, it may be D-form or L-form, but D-form is particularly excellent in CPR inhibitory activity and tyrosinase inhibitory activity.

本発明のミモシン誘導体の好適な例として、シクロオキシゲナーゼ−1(COX-1)及びシクロオキシゲナーゼ−2(COX-2)阻害活性に優れることから、基Xとして、D-Ala、L-Pro、D-Pro、L-Val、L-Trp、D-Trpが好ましい。L-Pro、L-Val、L-Trp、D-Trpはシクロオキシナーゼ−2(COX-2)阻害活性が高いため好ましく、L-Val、L-Trpがより好ましい。L-ValはCOX-2選択性が高いために抗炎症剤として好適である。またCPR阻害活性に優れるため、D-Phe、D-Ala、D-Pro、D-Val、L-Trp、D-Trpが好適であり、特にL-Trp、D-Trpが好ましい。一方、チロシナーゼ阻害活性に優れることから、D-Phe、D-Ala、L-Pro、D-Pro、L-Val、D-Val、L-Trp、D-Trpが好ましく、L-Pro、L-Val、D-Valがより好ましく、特にD-Valが好ましい。   As a preferred example of the mimosine derivative of the present invention, since it has excellent cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) inhibitory activity, as group X, D-Ala, L-Pro, D-Pro , L-Val, L-Trp and D-Trp are preferred. L-Pro, L-Val, L-Trp, and D-Trp are preferable because of their high cyclooxynase-2 (COX-2) inhibitory activity, and L-Val and L-Trp are more preferable. L-Val is suitable as an anti-inflammatory agent because of its high COX-2 selectivity. Moreover, since it is excellent in CPR inhibitory activity, D-Phe, D-Ala, D-Pro, D-Val, L-Trp, and D-Trp are preferable, and L-Trp and D-Trp are particularly preferable. On the other hand, D-Phe, D-Ala, L-Pro, D-Pro, L-Val, D-Val, L-Trp, and D-Trp are preferred because of their excellent tyrosinase inhibitory activity, and L-Pro, L-Pro Val and D-Val are more preferable, and D-Val is particularly preferable.

また本発明の好適なミモシン誘導体は下記一般式(2)

Figure 2016193866
で表すこともできる。 A preferred mimosine derivative of the present invention is represented by the following general formula (2):
Figure 2016193866
It can also be expressed as

上記一般式(2)中、Rは、ベンジル基、メチル基、ピロリジン基、イソプロピル基及び3-インドリルメチル基よりなる群から選ばれる基を示す。   In the general formula (2), R represents a group selected from the group consisting of a benzyl group, a methyl group, a pyrrolidine group, an isopropyl group, and a 3-indolylmethyl group.

また上記一般式(2)中、*は不斉炭素の絶対配置(S又はR)を示す符号である。本発明のミモシン誘導体には、エナンチオマー、ジアステレオマーおよびラセミ体を含むこれらの混合物が包含される。   In the above general formula (2), * is a symbol indicating the absolute configuration (S or R) of the asymmetric carbon. The mimosine derivatives of the present invention include mixtures thereof including enantiomers, diastereomers and racemates.

本発明の好適なミモシン誘導体の例として以下のものを例示することができる(Miはミモシン残基を示す)。
Mi-L-Phe
Mi-D-Phe
Mi-L-Ala
Mi-D-Ala
Mi-L-Pro
Mi-D-Pro
Mi-L-Val
Mi-D-Val
Mi-L-Trp
Mi-D-Trp
Examples of suitable mimosine derivatives of the present invention include the following (Mi represents a mimosine residue).
Mi-L-Phe
Mi-D-Phe
Mi-L-Ala
Mi-D-Ala
Mi-L-Pro
Mi-D-Pro
Mi-L-Val
Mi-D-Val
Mi-L-Trp
Mi-D-Trp

上記一般式(1)又は(2)で示される本発明のミモシン誘導体は、例えば以下の方法によって製造することができる。   The mimosine derivative of the present invention represented by the above general formula (1) or (2) can be produced, for example, by the following method.

ミモシンはギンネムやミモザのような熱帯・亜熱帯植物に含まれる。このギンネムは、ネムノキ科ギンゴウカン属の常緑低木で、熱帯から亜熱帯アジアに分布し、日本では沖縄県から九州南部に分布する。   Mimosine is found in tropical and subtropical plants such as Ginnemu and Mimosa. This Ginnemu is an evergreen shrub belonging to the genus Ginkgoceae, distributed from the tropics to subtropical Asia, and in Japan from Okinawa Prefecture to the southern part of Kyushu.

このギンネムの葉からミモシンを得るには、まず、ギンネムの葉、好ましくは新鮮な若葉を、好ましくは細切ないし細断して抽出原料とする。   In order to obtain mimosine from the leaves of this gynem, first, the leaves of the gynem, preferably fresh young leaves, are preferably chopped or shredded to obtain a raw material for extraction.

次いで、上記のように準備した抽出原料に対し、適量の水を加熱し、得られた熱水で抽出する。この熱水抽出は、70℃以上、好ましくは75℃ないし沸騰状態の熱水で行うことができるが、ミモシン分解酵素を失活させ、純度の高いミモシンを得るためには、沸騰水(100℃程度)の熱水を用いることが特に好ましい。また、抽出時間は、5ないし30分程度であり、特に10分間程度煮沸抽出を行うことが好ましい。抽出に用いる抽出溶媒としては、蒸留水が好ましく、また、抽出中、必要により連続あるいは間欠的に攪拌することが望ましい。   Next, an appropriate amount of water is heated with respect to the extraction raw material prepared as described above, and extracted with the obtained hot water. This hot water extraction can be performed with hot water at 70 ° C. or higher, preferably 75 ° C. to boiling. However, in order to deactivate the mimosine degrading enzyme and obtain highly pure mimosine, boiling water (100 ° C. It is particularly preferable to use hot water. The extraction time is about 5 to 30 minutes, and it is particularly preferable to perform boiling extraction for about 10 minutes. As an extraction solvent used for extraction, distilled water is preferable, and it is desirable to stir continuously or intermittently as necessary during extraction.

このギンネム葉抽出液中に、強陽イオン交換樹脂を加えて、ミモシンを含む被吸着成分を吸着させる。次いで、このイオン交換樹脂を、水や、水-エタノール混液で洗浄した後、アンモニア水中等に浸漬し、ミモシンをイオン交換樹脂から溶出させる。この溶出液を必要により活性炭処理した後、濃縮処理し、低温で放置することによりミモシン塩が析出してくるので、これを集めることでミモシンが得られる。得られたミモシンは必要に応じて再結晶等の手段により精製してもよい。   A strong cation exchange resin is added to this ginnemu leaf extract to adsorb adsorbed components including mimosine. Next, the ion exchange resin is washed with water or a water-ethanol mixed solution and then immersed in ammonia water or the like to elute mimosine from the ion exchange resin. The eluate is treated with activated carbon as necessary, concentrated, and left at a low temperature to precipitate a mimosine salt. By collecting this, mimosine can be obtained. The obtained mimosine may be purified by means such as recrystallization as necessary.

このようにして得られたミモシンに、ペプチド固相合成法などの公知のペプチド合成法を用いてアミノ酸を結合させることにより本発明のミモシン誘導体を得ることができる。   The mimosine derivative of the present invention can be obtained by binding an amino acid to the mimosine thus obtained using a known peptide synthesis method such as a peptide solid phase synthesis method.

ミモシンおよびアミノ酸は、アミノ基を、9-フルオレニルメチルオキシカルボニル基(Fmoc)やt-ブチルオキシカルボニル基(Boc)などの保護基で保護することが好ましい。   Mimosine and amino acids preferably protect amino groups with protecting groups such as 9-fluorenylmethyloxycarbonyl group (Fmoc) and t-butyloxycarbonyl group (Boc).

ペプチド結合を形成するための縮合剤としては、例えば、ジイソプロピルカルボジイミド(DIC)、N,N-ジシクロヘキシルカルボジイミド(DCC)等が挙げられる。また、これらの縮合剤をN-ヒドロキシベンゾトリアゾール(HOBt)と混合して用いることもできる。   Examples of the condensing agent for forming a peptide bond include diisopropylcarbodiimide (DIC), N, N-dicyclohexylcarbodiimide (DCC), and the like. Further, these condensing agents can be used by mixing with N-hydroxybenzotriazole (HOBt).

ペプチド又はアミノ酸のアミノ末端アミノ基の保護基であるBocおよびFmocは、トリフルオロ酢酸(TFA)、ピペリジンなどにより除去することができる。   Boc and Fmoc, which are protecting groups for the amino terminal amino group of a peptide or amino acid, can be removed with trifluoroacetic acid (TFA), piperidine and the like.

また、ペプチド固相合成樹脂としては、Wang樹脂などを用いることができる。ペプチドをペプチド固相合成樹脂より脱離させるにあたっては、例えば、TFAなどが用いられる。   Moreover, Wang resin etc. can be used as a peptide solid-phase synthetic resin. For releasing the peptide from the peptide solid phase synthetic resin, for example, TFA is used.

本発明のミモシン誘導体を製造するためのFmoc固相合成法による反応スキームを図1に示す。このスキームにおいては、N-(9-フルオレニルメトキシカルボニルオキシ)コハク酸イミド(Fmoc-OSu)のFmoc基をミモシンに結合してFmoc-ミモシンを調製し、これをWang樹脂に結合したアミノ酸と結合させることによって、ミモシンジペプチドを形成させている。以下、より具体的に説明する。   A reaction scheme according to the Fmoc solid phase synthesis method for producing the mimosine derivative of the present invention is shown in FIG. In this scheme, Fmoc-mimosine is prepared by coupling the Fmoc group of N- (9-fluorenylmethoxycarbonyloxy) succinimide (Fmoc-OSu) to mimosine, which is linked to the amino acid bound to Wang resin. By binding, mimosine dipeptide is formed. More specific description will be given below.

(Fmoc-ミモシンの調製)
ミモシンおよび炭酸ナトリウムを蒸留水に溶解し、この溶液にFmoc-OSuをジオキサンに溶解した溶液を滴下し、室温で一晩インキュベートする。次いで、炭酸ナトリウム溶液を添加し、攪拌した後、この溶液をろ過し、次いで酢酸エチルで洗浄して、未反応のFmoc-OSuや副産物を除去する。氷浴中で、塩酸を用いて水画分のpHを4程度にまで下げることによって、Fmoc-ミモシンの結晶が析出する。
(Preparation of Fmoc-mimosine)
Mimosine and sodium carbonate are dissolved in distilled water, and a solution of Fmoc-OSu in dioxane is added dropwise to this solution and incubated overnight at room temperature. Then, after adding sodium carbonate solution and stirring, the solution is filtered and then washed with ethyl acetate to remove unreacted Fmoc-OSu and by-products. Crystals of Fmoc-mimosine are precipitated by lowering the pH of the water fraction to about 4 using hydrochloric acid in an ice bath.

(ミモシンジペプチドの固相合成)
Fmoc-アミノ酸(L体又はD体)、1-ヒドロキシ-1H-ベンゾトリアゾール(HOBt)およびN,N’-ジイソプロピルカルボジイミド(DIC)を添加したN,N-ジメチルホルムアミド(DMF)溶液に、ジクロロメタン中で膨張させたWang樹脂を添加し、攪拌する。この樹脂をろ過し、DMF、ジクロロメタンおよびメタノールで洗浄し、真空条件下で乾燥する。25%ピぺリジンによりFmocの脱保護を行った後、Fmoc-ミモシン、HOBt、HBTUおよびN,N-ジイソプロピルエチルアミン(DIEA)の混合溶液を添加し、攪拌してFmoc-ミモシンをアミノ酸に結合させてジペプチドを形成する。95%トリフルオロ酢酸(TFA)で振とうした後、樹脂をろ過し、TFAで洗浄し、得られたろ液から氷冷されたジエチルエーテルで沈殿を生じさせることによって、ミモシンジペプチドが得られる。
(Solid-phase synthesis of mimosine dipeptide)
Fmoc-amino acid (L-form or D-form), 1-hydroxy-1H-benzotriazole (HOBt) and N, N'-diisopropylcarbodiimide (DIC) added to N, N-dimethylformamide (DMF) solution in dichloromethane Add Wang resin swelled in, and stir. The resin is filtered, washed with DMF, dichloromethane and methanol and dried under vacuum conditions. After deprotection of Fmoc with 25% piperidine, a mixed solution of Fmoc-mimosine, HOBt, HBTU and N, N-diisopropylethylamine (DIEA) was added and stirred to bind Fmoc-mimosine to amino acids. To form a dipeptide. After shaking with 95% trifluoroacetic acid (TFA), the resin is filtered, washed with TFA, and the mimosine dipeptide is obtained from the resulting filtrate by precipitation with ice-cold diethyl ether.

以上のようにして得られた本発明のミモシン誘導体は、そのまま、あるいは必要に応じ、液体高速クロマトグラフィーなど公知の方法によって精製した後、シクロオキシゲナーゼ阻害剤、CPR阻害剤又はチロシナーゼ阻害剤として利用することができる。   The mimosine derivative of the present invention obtained as described above can be used as a cyclooxygenase inhibitor, CPR inhibitor or tyrosinase inhibitor as it is or after purification by a known method such as liquid high-performance chromatography as necessary. Can do.

一方、ミモシン誘導体だけでなく、ミモシン自体も優れたシクロオキシゲナーゼ阻害作用及びCPR阻害作用を有するため、本発明のシクロオキシゲナーゼ阻害剤又はCPR阻害剤の有効成分としてミモシンを用いることができる。   On the other hand, not only mimosine derivatives but also mimosine itself has excellent cyclooxygenase inhibitory action and CPR inhibitory action, so that mimosine can be used as an active ingredient of the cyclooxygenase inhibitor or CPR inhibitor of the present invention.

例えば、ミモシン又はミモシン誘導体を有効成分とするシクロオキシゲナーゼ阻害剤又はCPR阻害剤の調製は、治療有効量のミモシン又はミモシン誘導体を、製薬上許容される任意成分、例えば、慣用の賦形剤、結合剤、滑沢剤、水性溶剤、油性溶剤、乳化剤、懸濁化剤、保存剤、安定剤等と組み合わせ、混合することにより行うことができる。   For example, the preparation of a cyclooxygenase inhibitor or CPR inhibitor containing mimosine or a mimosine derivative as an active ingredient can be carried out by treating a therapeutically effective amount of mimosine or a mimosine derivative with any pharmaceutically acceptable ingredient such as a conventional excipient, binder. , A lubricant, an aqueous solvent, an oily solvent, an emulsifier, a suspending agent, a preservative, a stabilizer, and the like.

本発明のシクロオキシゲナーゼ阻害剤又はCPR阻害剤は、経口でも非経口でも投与することができる。経口投与による場合の本発明シクロオキシゲナーゼ阻害剤又はCPR阻害剤は、通常の経口投与製剤、例えば、錠剤、散剤、顆粒剤、カプセル剤等の固形剤;水剤;油性懸濁剤;又はシロップ剤もしくはエリキシル剤等の液剤のいずれかの剤形としても用いることができる。非経口投与による場合には、本発明のシクロオキシゲナーゼ阻害剤又はCPR阻害剤は、水性又は油性懸濁注射剤、点鼻液として用いることができる。   The cyclooxygenase inhibitor or CPR inhibitor of the present invention can be administered either orally or parenterally. In the case of oral administration, the cyclooxygenase inhibitor or CPR inhibitor of the present invention is a usual oral preparation, for example, solid preparations such as tablets, powders, granules, capsules, etc .; liquids; oily suspensions; or syrups or It can be used also as any dosage form of liquid agents, such as an elixir. In the case of parenteral administration, the cyclooxygenase inhibitor or CPR inhibitor of the present invention can be used as an aqueous or oily suspension injection or nasal solution.

本発明のシクロオキシゲナーゼ阻害剤又はCPR阻害剤は、投与方法、患者の年齢、体重、状態および疾患の種類によっても異なるが、通常、経口投与の場合、成人1日あたり約10〜200mgであり、好ましくは、約10〜20mgであり、これを必要に応じて数回に分け投与すれば良い。また、非経口投与の場合は、成人1日あたり約5〜100mg、好ましくは、約5〜10mgを投与すれば良い。   The cyclooxygenase inhibitor or CPR inhibitor of the present invention varies depending on the administration method, patient age, body weight, condition, and type of disease, but is usually about 10 to 200 mg per day for oral administration, preferably Is about 10 to 20 mg, and this may be divided into several doses as needed. In the case of parenteral administration, about 5 to 100 mg, preferably about 5 to 10 mg per day for an adult may be administered.

本発明のシクロオキシゲナーゼ阻害剤は、COX-1及び/又はCOX-2を有効に阻害する。特にMi-D-Ala、Mi-L-Pro、Mi-D-Pro、Mi-L-Val、Mi-L-Trp、Mi-D-Trp、ミモシンはCOX-1阻害剤として好適であり、COX-1阻害により治療、予防又は改善され得る疾患又は症状を治療、予防又は改善することができる。COX-1阻害により治療、予防又は改善され得る疾患又は症状としては、例えば、炎症や血栓形成の予防等が例示される。Mi-L-Pro、Mi-L-Val、Mi-L-Trp、Mi-D-Trp、ミモシンはCOX-2阻害剤として好適であり、特にMi-L-Val、MI-L-Trp、ミモシンが好適である。COX-2阻害により治療、予防又は改善され得る疾患又は症状を治療、予防又は改善することができる。COX-2阻害により治療、予防又は改善され得る疾患又は症状としては、例えば、炎症、関節炎、アルツハイマー、疼痛、大腸癌等が例示される。Mi-L-Val、ミモシンはCOX-2選択性が高いために消化管障害の少ない抗炎症剤として好適である。また本発明のCPR阻害剤は、シトクロムP450触媒反応の律速酵素であるCPRを有効に阻害し、CPRはヘムオキシゲナーゼ、スクアレンモノオキシゲナーゼ、シトクロムb5を含む多くのタンパク質や低分子化合物に対する電子供与体として働くものであるため、活性酸素消去剤の他、これらが関与する疾患や症状に対する治療、予防又は改善剤となる。CPR阻害剤として、Mi-D-Phe、Mi-D-Ala、Mi-D-Pro、Mi-D-Val、Mi-L-Trp、Mi-D-Trpが好適であり、特にMi-L-Trp、Mi-D-Trpが好ましい。   The cyclooxygenase inhibitor of the present invention effectively inhibits COX-1 and / or COX-2. In particular, Mi-D-Ala, Mi-L-Pro, Mi-D-Pro, Mi-L-Val, Mi-L-Trp, Mi-D-Trp, and mimosine are suitable as COX-1 inhibitors. -1 inhibition can treat, prevent, or ameliorate a disease or condition that can be treated, prevented, or ameliorated. Examples of diseases or symptoms that can be treated, prevented or ameliorated by COX-1 inhibition include prevention of inflammation and thrombus formation. Mi-L-Pro, Mi-L-Val, Mi-L-Trp, Mi-D-Trp, mimosine are suitable as COX-2 inhibitors, especially Mi-L-Val, MI-L-Trp, mimosine Is preferred. A disease or condition that can be treated, prevented, or ameliorated by COX-2 inhibition can be treated, prevented, or ameliorated. Examples of the disease or symptom that can be treated, prevented or ameliorated by COX-2 inhibition include inflammation, arthritis, Alzheimer, pain, colon cancer and the like. Mi-L-Val and mimosine are suitable as anti-inflammatory agents with little gastrointestinal disorder because of high COX-2 selectivity. The CPR inhibitor of the present invention effectively inhibits CPR, which is the rate-limiting enzyme of cytochrome P450 catalytic reaction, and CPR serves as an electron donor for many proteins and low molecular weight compounds including heme oxygenase, squalene monooxygenase, and cytochrome b5. Since it works, it becomes a therapeutic, preventive or ameliorating agent for diseases and symptoms involving these in addition to active oxygen scavengers. As the CPR inhibitor, Mi-D-Phe, Mi-D-Ala, Mi-D-Pro, Mi-D-Val, Mi-L-Trp, Mi-D-Trp are suitable, and especially Mi-L- Trp and Mi-D-Trp are preferred.

一方、本発明のチロシナーゼ阻害剤は上記ミモシン誘導体を有効成分とする。ミモシン誘導体として、Mi-D-Phe、Mi-D-Ala、Mi-L-Pro、Mi-D-Pro、Mi-L-Val、Mi-D-Val、Mi-L-Trp、Mi-D-Trpが好ましく、Mi-L-Pro、Mi-L-Val、Mi-D-Valがより好ましく、特にMi-D-Valが好ましい。チロシナーゼ阻害剤も上記シクロオキシゲナーゼ阻害剤又はCPR阻害剤と同様にして、色素沈着過剰、低色素沈着等の皮膚異常の治療用途のための経口あるいは非経口の医薬として製剤化することができる。また皮膚外用剤とすることもでき、例えば、精製水、アルコール類、水溶性高分子、油剤、界面活性剤、ゲル化剤、保湿剤、ビタミン類、抗菌剤、香料、塩類、pH調整剤等の成分を加えて調製することができる。   On the other hand, the tyrosinase inhibitor of the present invention contains the mimosine derivative as an active ingredient. Mimosin derivatives include Mi-D-Phe, Mi-D-Ala, Mi-L-Pro, Mi-D-Pro, Mi-L-Val, Mi-D-Val, Mi-L-Trp, Mi-D- Trp is preferable, Mi-L-Pro, Mi-L-Val, and Mi-D-Val are more preferable, and Mi-D-Val is particularly preferable. The tyrosinase inhibitor can be formulated as an oral or parenteral pharmaceutical for the treatment of skin abnormalities such as hyperpigmentation and hypopigmentation, in the same manner as the cyclooxygenase inhibitor or CPR inhibitor. It can also be used as an external preparation for skin, such as purified water, alcohols, water-soluble polymers, oils, surfactants, gelling agents, moisturizers, vitamins, antibacterial agents, fragrances, salts, pH adjusters, etc. It can be prepared by adding the above ingredients.

本発明のチロシナーゼ阻害剤の添加量は、添加対象物の種類、投与経路、剤形等の諸条件によって異なるが、例えば、医薬製剤(全重量)中に2質量%〜5質量%含有させることが好適である。   The amount of the tyrosinase inhibitor of the present invention to be added varies depending on various conditions such as the type of addition target, administration route, dosage form, etc., for example, 2 mass% to 5 mass% is contained in the pharmaceutical preparation (total weight). Is preferred.

また本発明のチロシナーゼ阻害剤の投与量は、特に限定されるものではなく、患者の年齢、性別、体重、症状の程度、又は投与方法などに応じて適宜決定することができるが、例えば、経口投与の場合には、成人1日あたり約10〜200mgであり、好ましくは、約10〜20mgである。また非経口投与の場合は、成人1日あたり約5〜100mg、好ましくは、約5〜10mgを投与すれば良い。   The dose of the tyrosinase inhibitor of the present invention is not particularly limited and can be appropriately determined according to the patient's age, sex, body weight, degree of symptoms, administration method, etc. In the case of administration, it is about 10 to 200 mg per day for an adult, preferably about 10 to 20 mg. In the case of parenteral administration, about 5 to 100 mg, preferably about 5 to 10 mg per day may be administered.

さらに、本発明のチロシナーゼ阻害剤は、メラニンの産生や沈着を抑制し、美白作用を有するため、化粧料に配合し美白化粧料とすることもできる。例えば、公知の化粧料基剤にチロシナーゼ阻害剤を、3〜5質量%程度配合し、常法に従って、溶液状、可溶化状、乳化状、粉末状、ペースト状、ムース状、ジェル状の形態とすることにより製造され、化粧水、乳液、クリーム、パック、軟膏等として提供される。   Furthermore, since the tyrosinase inhibitor of the present invention suppresses the production and deposition of melanin and has a whitening effect, it can be blended into cosmetics to obtain a whitening cosmetic. For example, about 3 to 5% by mass of a tyrosinase inhibitor is added to a known cosmetic base, and in the form of a solution, solubilized, emulsified, powdered, pasty, mousse or gel according to a conventional method And is provided as a lotion, emulsion, cream, pack, ointment and the like.

また、上記美白化粧料の製造にあたっては、必要に応じて本発明の効果を損なわない範囲で、通常、化粧料に使用される成分、すなわち、精製水、アルコール類、水溶性高分子、油剤、界面活性剤、ゲル化剤、保湿剤、ビタミン類、抗菌剤、香料、塩類、pH調整剤等を加えることができる。   Further, in the production of the above-mentioned whitening cosmetics, components that are usually used in cosmetics, that is, purified water, alcohols, water-soluble polymers, oils, as long as the effects of the present invention are not impaired as necessary. Surfactants, gelling agents, humectants, vitamins, antibacterial agents, fragrances, salts, pH adjusters and the like can be added.

次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.

参 考 例 1
ミモシンの調製:
琉球大学農学部周辺で採取したギンネムの葉1.5kgを、5Lの水で10分間煮沸した。抽出液を冷却後、吸引濾過によって濾過し(アズワン社製、 Shaking Baths SB-20)、ろ液にイオン交換樹脂(アンバーライトIR120プラス(H))2kgを添加した。この抽出液・樹脂混合物を30分間撹拌した後一晩放置した。このイオン交換樹脂を蒸留水で5〜6回すすぎ、クロロフィルを取り除くために80%のエタノール5Lを滴下した。この樹脂を2N水酸化アンモニウム6Lで溶出して粗ミモシンを得た。この溶出物を40℃、減圧下で300mLまで濃縮し、pHを6N塩酸で4.5〜5.0に調節し、冷凍庫に一晩置いて結晶化させた。得られた結晶を5N NaOHを用いてpH9.0とした後、これに6N HClを加えてpH4.5〜5.0とすることで再結晶させ、さらに4℃で放置することで精製ミモシンを得た。ミモシンは-20℃で保管した。
Reference example 1
Preparation of mimosine:
Ginnemu leaves 1.5 kg collected around the Faculty of Agriculture, University of the Ryukyus were boiled in 5 L of water for 10 minutes. After cooling the extract, it was filtered by suction filtration (manufactured by AS ONE, Shaking Baths SB-20), and 2 kg of ion exchange resin (Amberlite IR120 plus (H)) was added to the filtrate. The extract / resin mixture was stirred for 30 minutes and then left overnight. The ion exchange resin was rinsed 5-6 times with distilled water, and 5 L of 80% ethanol was added dropwise to remove chlorophyll. This resin was eluted with 6 L of 2N ammonium hydroxide to obtain crude mimosine. The eluate was concentrated to 300 mL under reduced pressure at 40 ° C., pH was adjusted to 4.5-5.0 with 6N hydrochloric acid, and placed in a freezer overnight for crystallization. The obtained crystals were adjusted to pH 9.0 using 5N NaOH, and then recrystallized by adding 6N HCl to pH 4.5 to 5.0, and further left at 4 ° C. to obtain purified mimosine. . Mimosine was stored at -20 ° C.

製 造 例 1
ミモシン誘導体の調製(Mi-L-Phe):
Fmoc固相合成法により、ミモシン(Mi)にアミノ酸を結合してジペプチドの合成を行った。ハイペップ研究所から入手したFmoc L-アミノ酸を用いてジペプチドを形成した。より具体的な製法を以下に示す。
Manufacturing example 1
Preparation of mimosine derivatives (Mi-L-Phe):
Dipeptides were synthesized by binding amino acids to mimosine (Mi) by Fmoc solid phase synthesis. Dipeptides were formed using Fmoc L-amino acids obtained from Hypep Laboratories. A more specific production method is shown below.

(Fmoc-ミモシンの調製)
2.5gのミモシンおよび2.75gの炭酸ナトリウムを37.5mLの蒸留水に溶解した水溶液に、6.25gのFmoc-Osuを37.5mLのジオキサンに溶解した溶液を滴下した。混合液を室温で20時間撹拌し、次に150mLの炭酸ナトリウム溶液(0.1M)を添加した。25℃で7時間攪拌した後、得られた溶液をろ過し、75mLの酢酸エチルで洗浄してFmoc-OSu及び副産物を除去した。氷浴中で、6N塩酸を用いて水画分のpHを4に下げ、4℃で一夜放置した。結晶を濾過し、蒸留水で洗浄して減圧条件下で乾燥し精製Fmoc-ミモシンを得た。
(Preparation of Fmoc-mimosine)
A solution prepared by dissolving 6.25 g of Fmoc-Osu in 37.5 mL of dioxane was added dropwise to an aqueous solution prepared by dissolving 2.5 g of mimosine and 2.75 g of sodium carbonate in 37.5 mL of distilled water. The mixture was stirred at room temperature for 20 hours and then 150 mL of sodium carbonate solution (0.1 M) was added. After stirring at 25 ° C. for 7 hours, the resulting solution was filtered and washed with 75 mL of ethyl acetate to remove Fmoc-OSu and by-products. In an ice bath, the pH of the water fraction was lowered to 4 with 6N hydrochloric acid, and left overnight at 4 ° C. The crystals were filtered, washed with distilled water, and dried under reduced pressure to obtain purified Fmoc-mimosine.

(ミモシンジペプチドの固相合成)
Fmoc-L-Phe 2.35mmol、1-ヒドロキシ-1H-ベンゾトリアゾール(HOBt)2.35mmol(360mg)およびN,N’-ジイソプロピルカルボジイミド(DIC)2.35mmol(365μL)を5mLのDMF中で予め活性化し、この溶液に2mLのジクロロメタン中で30分膨張させたWang樹脂0.5gを添加し、次に500μL DMFに0.235mmol(29mg)のN,N-ジメチル-4-アミノピリジン(DMAP)を添加した溶液を加えた。この混合物を室温で3時間撹拌した。この操作を2回繰り返した。この樹脂をDMF,ジクロロメタン、メタノールで洗浄し、減圧条件下で乾燥した。樹脂(5mg)をFmoc基含有量の分析に使用した。室温で45分間浸透し、25%ピぺリジンによりFmocの脱保護を行った後、Fmocミモシン(樹脂のアミノ酸に対し4当量)、HOBt(4当量)、HBTU(3.6当量):N,N-ジイソプロピルエチルアミン(DIEA;8当量)を含む混合液に、アミノ酸-樹脂のDMF懸濁液を加え、室温で1時間撹拌した。
(Solid-phase synthesis of mimosine dipeptide)
Fmoc-L-Phe 2.35 mmol, 1-hydroxy-1H-benzotriazole (HOBt) 2.35 mmol (360 mg) and N, N′-diisopropylcarbodiimide (DIC) 2.35 mmol (365 μL) pre-activated in 5 mL DMF, To this solution was added 0.5 g of Wang resin expanded in 2 mL of dichloromethane for 30 minutes, and then a solution of 0.235 mmol (29 mg) N, N-dimethyl-4-aminopyridine (DMAP) in 500 μL DMF was added. added. The mixture was stirred at room temperature for 3 hours. This operation was repeated twice. This resin was washed with DMF, dichloromethane and methanol and dried under reduced pressure. Resin (5 mg) was used for analysis of Fmoc group content. After permeating at room temperature for 45 minutes and deprotecting Fmoc with 25% piperidine, Fmoc mimosine (4 equivalents to the amino acid of the resin), HOBt (4 equivalents), HBTU (3.6 equivalents): N, N- A DMF suspension of amino acid-resin was added to a mixture containing diisopropylethylamine (DIEA; 8 equivalents), and the mixture was stirred at room temperature for 1 hour.

結合の完全性を調べるために、カイザー試験を行った。最終的な開裂の後、樹脂を95%トリフルオロ酢酸を用いて90分間強く振とうし、濾過した後、TFAで洗浄した。洗浄液から氷冷したジエチルエーテルで沈殿を生じさせた。得られた沈殿物を濾過し、ジエチルエーテルで洗浄後、減圧乾燥し、目的のミモシンジペプチド(Mi-L-Phe)を得た。得られた粗ペプチドは白色固体であり、収量は132mgであった。この粗ペプチドをさらに下記条件の液体クロマトグラフィーによって精製した。   A Kaiser test was performed to examine the integrity of the binding. After final cleavage, the resin was shaken vigorously with 95% trifluoroacetic acid for 90 minutes, filtered and washed with TFA. The washing solution was precipitated with ice-cooled diethyl ether. The resulting precipitate was filtered, washed with diethyl ether, and then dried under reduced pressure to obtain the desired mimosine dipeptide (Mi-L-Phe). The obtained crude peptide was a white solid, and the yield was 132 mg. This crude peptide was further purified by liquid chromatography under the following conditions.

(HPLC条件)
カラム:Phenomenexカラム(150×14.6mm;4μm)
移動相:溶媒A:水/0.1%TFA、溶媒B:アセトニトリル/0.1%TFA
流量:1mL/分
吸収波長:210nm
(HPLC conditions)
Column: Phenomenex column (150 x 14.6 mm; 4 μm)
Mobile phase: solvent A: water / 0.1% TFA, solvent B: acetonitrile / 0.1% TFA
Flow rate: 1mL / min Absorption wavelength: 210nm

以下に得られたミモシンジペプチド(Mi-L-Phe)の1H及び13C NMRスペクトルを示す。なお、1H及び13Cスペクトルは、D2OのJEOL JNM-ECA400(JEOL、日本)で記録した。ケミカルシフトは、TMSに関連づけられたppm(δ)で表現した。 The 1 H and 13 C NMR spectra of the mimosine dipeptide (Mi-L-Phe) obtained are shown below. The 1 H and 13 C spectra were recorded with a D 2 O JEOL JNM-ECA400 (JEOL, Japan). Chemical shifts were expressed in ppm (δ) associated with TMS.

1H NMR (D2O, 400 MHz) δ 7.44 (s, 1H, OH), 7.32-7.37 (m, 4H, aromatic), 6.60 (s, 1H, OH), 4.57 (s, 1H, NH), 4.43 (s, 2H, NH2), 3.99-4.19 (q, 1H, CH), 3.31 (d, 2H, CH2), 3.26 (d, 2H, CH2), 3.15 (d, 2H, CH2), 3.09 (d, 2H, CH2). 13C NMR (D2O, 400 MHz) δ 181.52, 173.89, 148.2, 140.2, 135.05, 129.32, 129.07, 127.65, 114.79, 97.49, 71.12, 55.99, 36.30. ESI-MS: m/z 345.13. 1 H NMR (D 2 O, 400 MHz) δ 7.44 (s, 1H, OH), 7.32-7.37 (m, 4H, aromatic), 6.60 (s, 1H, OH), 4.57 (s, 1H, NH), 4.43 (s, 2H, NH 2 ), 3.99-4.19 (q, 1H, CH), 3.31 (d, 2H, CH 2 ), 3.26 (d, 2H, CH 2 ), 3.15 (d, 2H, CH 2 ) , 3.09 (d, 2H, CH 2 ). 13 C NMR (D 2 O, 400 MHz) δ 181.52, 173.89, 148.2, 140.2, 135.05, 129.32, 129.07, 127.65, 114.79, 97.49, 71.12, 55.99, 36.30. ESI- MS: m / z 345.13.

製 造 例 2
ミモシン誘導体の調製(Mi-D-Phe):
結合させるFmocアミノ酸としてFmoc-D-フェニルアラニン(Phe)を用いた以外は製造例1と同様にしてミモシンジペプチド(Mi-D-Phe)を得た(収量48.5mg)。
Manufacturing example 2
Preparation of mimosine derivatives (Mi-D-Phe):
Mimosine dipeptide (Mi-D-Phe) was obtained in the same manner as in Production Example 1 except that Fmoc-D-phenylalanine (Phe) was used as the Fmoc amino acid to be bound (yield 48.5 mg).

製 造 例 3
ミモシン誘導体の調製(Mi-L-Ala):
結合させるFmocアミノ酸としてFmoc-L-アラニン(Ala)を用いた以外は製造例1と同様にしてミモシンジペプチド(Mi-L-Ala)を得た(収量45mg)。得られたミモシンジペプチド(Mi-L-Phe)の1H及び13Cスペクトルを示す。
Manufacturing example 3
Preparation of mimosine derivatives (Mi-L-Ala):
A mimosine dipeptide (Mi-L-Ala) was obtained in the same manner as in Production Example 1 except that Fmoc-L-alanine (Ala) was used as the Fmoc amino acid to be bound (yield 45 mg). 1 H and 13 C spectra of the obtained mimosine dipeptide (Mi-L-Phe) are shown.

δ 7.70 (s, 1H, OH), 6.61 (s, 1H, OH), 4.64 (s, 1H, NH), 4.45 (s, 2H, NH2), 4.20 (q, 1H, CH), 3.79-3.81 (m, 4H, aromatic), 3.75 (q, 1H, CH), 1.65 (d, 2H, CH2), 1.49 (d, 2H, CH2), 1.30 (d, 2H, CH3). 13C NMR (D2O, 400 MHz) δ 181.55, 175.75, 148.2, 140.2, 138.52, 130.70, 129.07, 127.65, 114.82, 97.79, 50.47, 42.80, 16.08. ESI-MS: m/z 269.10. δ 7.70 (s, 1H, OH), 6.61 (s, 1H, OH), 4.64 (s, 1H, NH), 4.45 (s, 2H, NH 2 ), 4.20 (q, 1H, CH), 3.79-3.81 (m, 4H, aromatic), 3.75 (q, 1H, CH), 1.65 (d, 2H, CH 2 ), 1.49 (d, 2H, CH 2 ), 1.30 (d, 2H, CH 3 ). 13 C NMR (D 2 O, 400 MHz) δ 181.55, 175.75, 148.2, 140.2, 138.52, 130.70, 129.07, 127.65, 114.82, 97.79, 50.47, 42.80, 16.08. ESI- MS: m / z 269.10.

製 造 例 4
ミモシン誘導体の調製(Mi-D-Ala):
結合させるFmocアミノ酸としてFmoc-D-アラニン(Ala)を用いた以外は製造例1と同様にしてミモシンジペプチド(Mi-D-Ala)を得た(収量79mg)。
Manufacturing example 4
Preparation of mimosine derivatives (Mi-D-Ala):
Mimosine dipeptide (Mi-D-Ala) was obtained in the same manner as in Production Example 1 except that Fmoc-D-alanine (Ala) was used as the Fmoc amino acid to be bound (yield 79 mg).

製 造 例 5
ミモシン誘導体の調製(Mi-L-Pro):
結合させるFmocアミノ酸としてFmoc-L-プロリン(Pro)を用いた以外は製造例1と同様にしてミモシンジペプチド(Mi-L-Pro)を得た(収量105.5mg)。
Manufacturing example 5
Preparation of mimosine derivatives (Mi-L-Pro):
A mimosine dipeptide (Mi-L-Pro) was obtained in the same manner as in Production Example 1 except that Fmoc-L-proline (Pro) was used as the Fmoc amino acid to be bound (yield 105.5 mg).

製 造 例 6
ミモシン誘導体の調製(Mi-D-Pro):
結合させるFmocアミノ酸としてFmoc-D-プロリン(Pro)を用いた以外は製造例1と同様にしてミモシンジペプチド(Mi-D-Pro)を得た(収量43mg)。
Manufacturing Example 6
Preparation of mimosine derivatives (Mi-D-Pro):
Mimosine dipeptide (Mi-D-Pro) was obtained in the same manner as in Production Example 1 except that Fmoc-D-proline (Pro) was used as the Fmoc amino acid to be bound (yield 43 mg).

製 造 例 7
ミモシン誘導体の調製(Mi-L-Val):
結合させるFmocアミノ酸としてFmoc-L-バリン(Val)を用いた以外は製造例1と同様にしてミモシンジペプチド(Mi-L-Val)を得た(収量17mg)。
Manufacturing example 7
Preparation of mimosine derivatives (Mi-L-Val):
A mimosin dipeptide (Mi-L-Val) was obtained in the same manner as in Production Example 1 except that Fmoc-L-valine (Val) was used as the Fmoc amino acid to be bound (yield 17 mg).

製 造 例 8
ミモシン誘導体の調製(Mi-D-Val):
結合させるFmocアミノ酸としてFmoc-D-バリン(Val)を用いた以外は製造例1と同様にしてミモシンジペプチド(Mi-D-Val)を得た(収量25mg)。
Manufacturing Example 8
Preparation of mimosine derivatives (Mi-D-Val):
A mimosin dipeptide (Mi-D-Val) was obtained in the same manner as in Production Example 1 except that Fmoc-D-valine (Val) was used as the Fmoc amino acid to be bound (yield 25 mg).

製 造 例 9
ミモシン誘導体の調製(Mi-L-Trp):
結合させるFmocアミノ酸としてFmoc-L-トリプトファン(Trp)を用いた以外は製造例1と同様にしてミモシンジペプチド(Mi-L-Trp)を得た(収量98mg)。得られたミモシンジペプチド(Mi-L-Trp)の1H及び13Cスペクトルを示す。
Manufacturing example 9
Preparation of mimosine derivatives (Mi-L-Trp):
Mimosine dipeptide (Mi-L-Trp) was obtained in the same manner as in Production Example 1 except that Fmoc-L-tryptophan (Trp) was used as the Fmoc amino acid to be bound (yield 98 mg). 1 H and 13 C spectra of the obtained mimosine dipeptide (Mi-L-Trp) are shown.

δ 7.52 (s, 1H, OH), 7.31 (s, 1H, NH), 7.28 (s, 1H, OH), 7.17-7.26 (s, 1H, CH), 6.58 (d, 1H, NH), 4.52 (s, 2H, CH), 4.40 (s, 1H, CH), 4.16 (s, 1H, CH), 4.03 (m, 1H, CH), 3.51 (t, 2H, NH2), 3.49 (s, 1H, CH), 3.46 (m, 2H, CH2), 3.27 (m, 2H, CH2). 13C NMR (D2O, 400 MHz) δ 181.52, 174.43, 148.2, 138.31, 136.34, 132.77, 124.97, 122.08, 119.41, 118.39, 111.89, 107.04, 98.99, 90.77, 68.44, 55.00, 48.07, 26.32. ESI-MS: m/z 384.14. δ 7.52 (s, 1H, OH), 7.31 (s, 1H, NH), 7.28 (s, 1H, OH), 7.17-7.26 (s, 1H, CH), 6.58 (d, 1H, NH), 4.52 ( s, 2H, CH), 4.40 (s, 1H, CH), 4.16 (s, 1H, CH), 4.03 (m, 1H, CH), 3.51 (t, 2H, NH 2 ), 3.49 (s, 1H, CH), 3.46 (m, 2H, CH 2 ), 3.27 (m, 2H, CH 2 ). 13 C NMR (D 2 O, 400 MHz) δ 181.52, 174.43, 148.2, 138.31, 136.34, 132.77, 124.97, 122.08, 119.41, 118.39, 111.89, 107.04, 98.99, 90.77, 68.44, 55.00, 48.07, 26.32. ESI-MS: m / z 384.14.

製 造 例 10
ミモシン誘導体の調製(Mi-D-Trp):
結合させるFmocアミノ酸としてFmoc-D-トリプトファン(Trp)を用いた以外は製造例1と同様にしてミモシンジペプチド(Mi-D-Trp)を得た(収量71.5mg)。
Manufacturing example 10
Preparation of mimosine derivatives (Mi-D-Trp):
Mimosine dipeptide (Mi-D-Trp) was obtained in the same manner as in Production Example 1 except that Fmoc-D-tryptophan (Trp) was used as the Fmoc amino acid to be bound (yield 71.5 mg).

実 施 例 1
シクロオキシゲナーゼ(COX)阻害試験:
実験には、Colorimetric COX (ovine) Inhibitor Screening Assay(cat.760111,Cayman)を用いた。抗ウサギIgG抗体でコートした96ウェルマイクロタイタプレートにAssay Buffer(0.1 M Tris-HCl、pH8.0)を150μL、ヘムを10μL及び酵素(COX-1又はCOX-2)を10μL添加した。直ちに参考例1で得たミモシン又は製造例で調製したミモシンジペプチド試料10μLをinhibitor wellに添加し、100%活性wellとBackground wellには溶媒又は Bufferを10μL添加した。25℃で5分間インキュベートした後、colorimetric substrateを全てのwellに20μLずつ添加し、22mM アラキドン酸を20μLずつ添加した。混合物を振とうした後、さらに25℃で5分間インキュベートした。マイクロプレートリーダー(ベンチマーク プラス、ビオラッド社、イギリス)を使用し590nmの吸光度を測定した。インドメタシンを陽性コントロールとした。全ての試料と100%活性wellの補正後の吸光度は、back ground wellの吸光度を減じて計算し、下記の式で阻害率を算出した。結果を表1に示す。
阻害(%) =(Ao-As)/Ao×100
Ao:補正後の100%活性の吸光度
As:補正後の試料の吸光度
Example 1
Cyclooxygenase (COX) inhibition test:
In the experiment, Colorimetric COX (ovine) Inhibitor Screening Assay (cat. 760111, Cayman) was used. To a 96-well microtiter plate coated with an anti-rabbit IgG antibody, 150 μL of Assay Buffer (0.1 M Tris-HCl, pH 8.0), 10 μL of hem and 10 μL of enzyme (COX-1 or COX-2) were added. Immediately, 10 μL of the mimosine obtained in Reference Example 1 or the mimosine dipeptide sample prepared in Production Example was added to the inhibitor well, and 10 μL of the solvent or Buffer was added to the 100% active well and the background well. After incubation at 25 ° C. for 5 minutes, 20 μL of colorimetric substrate was added to all wells, and 20 μL of 22 mM arachidonic acid was added. The mixture was shaken and then further incubated at 25 ° C. for 5 minutes. Absorbance at 590 nm was measured using a microplate reader (Benchmark Plus, Biorad, UK). Indomethacin was used as a positive control. The absorbance after correction of all samples and 100% active well was calculated by subtracting the absorbance of the back ground well, and the inhibition rate was calculated by the following formula. The results are shown in Table 1.
Inhibition (%) = (Ao-As) / Ao x 100
Ao: Absorbance of 100% activity after correction
As: Absorbance of the sample after correction

なお、全ての試験において、統計処理は、statistical analysis sysytem(SAS)software Version 9.1.3(SAS Institute Inc.)を用いて行った。有意性分析においては、データを一元配置分散分析ANOVAで分析し、ダンカンテスト(P≦0.05)により平均値の有意差を判別した。IC50は各試料が50%の阻害活性を示すために必要とされる濃度としてグラフから求めた。 In all tests, statistical processing was performed using statistical analysis system (SAS) software Version 9.1.3 (SAS Institute Inc.). In significance analysis, data was analyzed by one-way analysis of variance ANOVA, and significant differences in mean values were determined by Duncan test (P ≦ 0.05). IC 50 was determined from the graph as the concentration required for each sample to exhibit 50% inhibitory activity.

Figure 2016193866
Figure 2016193866

ミモシンは、COX-1とCOX-2に対し強い阻害活性を示したが、IC50はそれぞれ28.86μM,20.93μMであり、COX-1よりもCOX-2に対しより強い阻害剤であることが示された。ミモシンは、IC50が27.70μMであるインドメタシンに匹敵するCOX-2阻害活性を有している。したがってミモシンは、選択的COX-2阻害剤として胃腸障害を軽減した抗炎症剤あるいは炎症関連疾患の治療・予防剤として有用である。またすべてのミモシンジペプチドはミモシンよりも優れたCOX-1阻害作用を示し、そのIC50はミモシンが28.86μMであるのに対し、17.91〜26.18μMの範囲であった。Mi-L-Val(IC50 21.72μM)及びMi-L-Trp(IC50 19.31μM)はインドメタシンよりも優れたCOX-2阻害作用を示した。COX-1とCOX-2に対し、Mi-L-Trpが最も高い阻害活性を示し、ミモシンよりも高いものであった。 Mimosine showed strong inhibitory activity against COX-1 and COX-2, but IC 50 was 28.86 μM and 20.93 μM, respectively, indicating that it is a stronger inhibitor against COX-2 than COX-1. Indicated. Mimosine has COX-2 inhibitory activity comparable to indomethacin with an IC 50 of 27.70 μM. Therefore, mimosine is useful as a selective COX-2 inhibitor, an anti-inflammatory agent that reduces gastrointestinal disorders, or a therapeutic / preventive agent for inflammation-related diseases. All mimosine dipeptides showed COX-1 inhibitory action superior to mimosine, and their IC 50 ranged from 17.91 to 26.18 μM, compared to 28.86 μM for mimosine. Mi-L-Val (IC 50 21.72 μM) and Mi-L-Trp (IC 50 19.31 μM) showed COX-2 inhibitory action superior to indomethacin. Mi-L-Trp showed the highest inhibitory activity against COX-1 and COX-2, and was higher than mimosine.

実 施 例 2
NADPH-シトクロムP450リダクターゼ阻害試験:
阻害活性はcytochrome c reductase assay kit(Sigmaaldrich,Japan)を使って測定された。分析原理は、NADPHの存在下CPRによるシトクロムcの測定に基づく。分析は、基質としてシトクロムcを使って25℃で行った。すなわち、0.3Mリン酸カリウムバッファ(pH 7.8)、0.1mM EDTA、0.45mg/mLシトクロムcを含有する希釈標準950μLを1mLキュベットに移し、20μLのCPRと試料として参考例1のミモシン又は製造例のミモシンジペプチドを30μL添加した。その後、50mM青酸カリ水溶液20μLを反応液に添加して反応を停止させた。反応は、100μLのNADPH溶液(0.85mg/mL)の添加によって開始された。分光光度計にて550nmの吸光度を測定した。酵素無添加の場合に与えられた値をブランクとした。阻害活性は、1%の水を使用したブランクを100%としてこれに対する割合として測定し、その結果からIC50を求めた。結果を表2に示す。
Example 2
NADPH-cytochrome P450 reductase inhibition test:
Inhibitory activity was measured using a cytochrome c reductase assay kit (Sigmaaldrich, Japan). The analytical principle is based on the measurement of cytochrome c by CPR in the presence of NADPH. Analysis was performed at 25 ° C. using cytochrome c as a substrate. Specifically, 950 μL of a diluted standard containing 0.3 M potassium phosphate buffer (pH 7.8), 0.1 mM EDTA, 0.45 mg / mL cytochrome c was transferred to a 1 mL cuvette, and 20 μL of CPR and the sample of mimosine of Reference Example 1 or the production example were used. 30 μL of mimosine dipeptide was added. Thereafter, 20 μL of 50 mM potassium cyanide aqueous solution was added to the reaction solution to stop the reaction. The reaction was initiated by the addition of 100 μL NADPH solution (0.85 mg / mL). Absorbance at 550 nm was measured with a spectrophotometer. The value given when no enzyme was added was used as a blank. Inhibitory activity was measured as a percentage relative to a blank using 1% water as 100%, and IC 50 was determined from the result. The results are shown in Table 2.

Figure 2016193866
Figure 2016193866

ミモシンはCPRに対しIC50 5.19μMと高い阻害作用を示した。またすべてのミモシンジペプチドがIC50 8.06〜31.08μMの範囲の強いCPR阻害活性を示した。いずれのアミノ酸についても、CPR阻害活性については、L-アミノ酸よりもD-アミノ酸の方が高い阻害活性を示した。
シトクロムP450触媒反応の律速酵素であるCPRは、ヘムオキシゲナーゼ、スクアレンモノオキシゲナーゼ、シトクロムb5を含む多くのタンパク質や低分子化合物に対する電子供与体として働く。このため、ミモシンが医薬、ステロイド、脂肪酸代謝、ヘム異化作用、ステロール生体合成において新規な役割を持ち得ると考えられる。
Mimosine showed a high inhibitory effect on CPR with an IC 50 of 5.19 μM. All mimosine dipeptides showed strong CPR inhibitory activity in the IC 50 range of 8.06 to 31.08 μM. For any amino acid, the CPR inhibitory activity of D-amino acid was higher than that of L-amino acid.
CPR, the rate-limiting enzyme for cytochrome P450 catalysis, acts as an electron donor for many proteins and small molecules including heme oxygenase, squalene monooxygenase, and cytochrome b5. For this reason, it is considered that mimosine may have a novel role in medicine, steroids, fatty acid metabolism, heme catabolism, and sterol biosynthesis.

実 施 例 3
チロシナーゼ阻害試験:
まず種々の濃度の試料(20μL)を、96ウェルプレートの各々のウエルに取り、これに20mMリン酸ナトリウムバッファ(pH6.8)120μLおよびバッファに溶解した20μLの500U/mLきのこチロシナーゼ酵素20μLを加え混合した。混合物を25℃で15分間インキュベートし、次に、0.85mM L-チロシン溶液20μLを加えた。マイクロプレートリーダー(ベンチマーク プラス、ビオラッド社、イギリス)を使用し、470nmでの吸光度を記録した。なお陽性コントロールとしてコウジ酸を使用した。
また強い活性を示した試料化合物について、反応速度論的な研究のために、いくつかの阻害剤濃度に対し、一定の基質濃度(L-チロシン)の範囲で反応させた。プレインキュベーションと測定時間は上記と同様にした。酵素の阻害様式はラインウィーバー・バークプロットによって決定した。また阻害定数Kiは阻害剤濃度に対するKm/Vmaxを再プロットして決定した。阻害率を下記式により算出し、これからIC50を求めた。
Example 3
Tyrosinase inhibition test:
First, samples (20 μL) of various concentrations are taken into each well of a 96-well plate, and 120 μL of 20 mM sodium phosphate buffer (pH 6.8) and 20 μL of 500 U / mL mushroom tyrosinase enzyme dissolved in the buffer are added thereto. Mixed. The mixture was incubated at 25 ° C. for 15 minutes, then 20 μL of 0.85 mM L-tyrosine solution was added. Absorbance at 470 nm was recorded using a microplate reader (Benchmark Plus, Violad, UK). Kojic acid was used as a positive control.
Sample compounds that showed strong activity were reacted in a range of constant substrate concentrations (L-tyrosine) for several inhibitor concentrations for kinetic studies. The preincubation and measurement time were the same as described above. The inhibition mode of the enzyme was determined by the Lineweaver-Burk plot. The inhibition constant Ki was determined by replotting the Km / Vmax against the inhibitor concentration. The inhibition rate was calculated by the following formula, and IC 50 was determined from this.

阻害(%) =[(CE-CO)-(SE-SO)]/(CE-CO)×100
CE:酵素を含むコントロールの吸光度
CO:酵素を含まないコントロールの吸光度
SE:酵素を含む試料の吸光度
SO:酵素を含まない試料の吸光度
Inhibition (%) = [(C E -C O )-(S E -S O )] / (C E -C O ) × 100
C E : Absorbance of control containing enzyme
C O : Absorbance of control without enzyme
S E : Absorbance of sample containing enzyme
S O : Absorbance of sample without enzyme

Figure 2016193866
Figure 2016193866

全ての合成ミモシンジペプチドは、ミモシンよりも良好なチロシナーゼ阻害活性を示した。アミノ酸の中でもトリプトファン、バリン又はプロリンとのジペプチドは、L体、D体とも高いチロシナーゼ阻害活性を示した。またいずれのアミノ酸についても、L体よりもD体の方が阻害活性が高くなる傾向にあった。特にMi-L-Pro、Mi-D-Trp、Mi-L-Val及びMi-D-Valの4つのミモシンジペプチドが優れた阻害活性を示し、IC50はそれぞれ13.11、16.91、11.52、10.39 μMであった。
これらの4つのミモシンジペプチドについて反応速度論的検討を行った。基質濃度の逆数1/[S]を横軸に、その時の反応速度の逆数1/vを縦軸にしたラインウィーバー・バークプロットを図2に示す。阻害剤の濃度の増加に伴いKm値が増大したが、Vmaxは変化しなかったことから、競合阻害剤であると考えられた。これらの化合物のKi値を表4に示す。Mi-D-Val(0.021 mM)の阻害定数は,Mi-L-Val、Mi-L-Pro、Mi-D-Trpよりも低く、Mi-D-Valはもっとも強力な効果を有することが示された。
All synthetic mimosine dipeptides showed better tyrosinase inhibitory activity than mimosine. Among amino acids, tryptophan, valine or proline dipeptides showed high tyrosinase inhibitory activity in both L and D forms. For all amino acids, the D-form tended to have higher inhibitory activity than the L-form. In particular, four mimosin dipeptides, Mi-L-Pro, Mi-D-Trp, Mi-L-Val and Mi-D-Val, showed excellent inhibitory activity, with IC 50 of 13.11, 16.91, 11.52 and 10.39 μM, respectively. there were.
The kinetics of these four mimosine dipeptides were investigated. FIG. 2 shows a line weaver-Burk plot in which the horizontal axis represents the reciprocal 1 / [S] of the substrate concentration and the vertical axis represents the inverse 1 / v of the reaction rate at that time. The Km value increased with increasing inhibitor concentration, but Vmax did not change, so it was considered to be a competitive inhibitor. Table 4 shows the Ki values of these compounds. The inhibition constant of Mi-D-Val (0.021 mM) is lower than Mi-L-Val, Mi-L-Pro and Mi-D-Trp, indicating that Mi-D-Val has the most potent effect. It was done.

Figure 2016193866
Figure 2016193866

実 施 例 4
細胞毒性試験:
(B16F10細胞の培養)
B16F10細胞は、温度37℃、CO2濃度5%、飽和湿度の環境下で、10%ウシ胎仔血清(FBS)及び1%のペニシリン/ストレプトマイシンを含むダルベッコ変法最小必須培地(DMEM)中で培養した。
Example 4
Cytotoxicity test:
(B16F10 cell culture)
B16F10 cells are cultured in Dulbecco's Modified Minimum Essential Medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% penicillin / streptomycin in an environment with a temperature of 37 ° C, CO 2 concentration of 5%, and saturated humidity. did.

(細胞生存率分析)
B16F10細胞生存率について、文献記載(Tada, H.; Shiho, O.; Kuroshima, K.-I.; Koyama, M.; Tsukamoto, K. An improved colorimetric assay for interleukin 2. J Immunol Methods. 1986, 93, 157-165.)の方法に従って試験を行った。この方法は、黄色のテトラゾリウム化合物である3-(4,5-ジメチルチアゾール-2-イル)-2,5-ジフェニルテトラゾリウムブロマイド(MTT)が酵素により開裂され紫色のホルマザン結晶に変化することに基づく。B16F10細胞を、5×103cells/wellの密度で各ウェルに播種し、24時間培養後、試料化合物を10%FBS及び1%のペニシリン/ストレプトマイシンを含むDMEMに添加した。B16F10細胞は、温度37℃、CO2濃度5%、飽和湿度の環境下で40時間培養した。その後、各ウェルに0.5mg/mLのMTT溶液20μLを加え、3時間培養した。培地を除去し、ホルマザンを200μLのDMSOに溶解した。プレートを10分間振とうし、マイクロプレートリーダー(ベンチマーク プラス、ビオラッド社、イギリス)を使用し、590nmでの吸収を測定した。ミモシン(100μM)及びコウジ酸(500μM)を陽性コントロールとした。ジメチルスルホキシド(DMSO)をブランクとした。試料及びコントロールの吸光度からブランクの吸光度を減じ、補正後の試料の吸光度を補正後のコントロールの吸光度で割り、100を乗じて細胞生存率の割合を求めた。結果を図3に示す。ほとんどのミモシンジペプチドは200μMの濃度まで細胞毒性を示さなかった。
(Cell viability analysis)
B16F10 cell viability is described in the literature (Tada, H .; Shiho, O .; Kuroshima, K.-I .; Koyama, M .; Tsukamoto, K. An improved colorimetric assay for interleukin 2. J Immunol Methods. 1986, 93, 157-165.). This method is based on the fact that 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT), a yellow tetrazolium compound, is cleaved by an enzyme and converted into purple formazan crystals. . B16F10 cells were seeded in each well at a density of 5 × 10 3 cells / well. After culturing for 24 hours, the sample compound was added to DMEM containing 10% FBS and 1% penicillin / streptomycin. B16F10 cells were cultured for 40 hours in an environment of a temperature of 37 ° C., a CO 2 concentration of 5%, and a saturated humidity. Thereafter, 20 μL of 0.5 mg / mL MTT solution was added to each well and cultured for 3 hours. The medium was removed and formazan was dissolved in 200 μL DMSO. The plate was shaken for 10 minutes and the absorbance at 590 nm was measured using a microplate reader (Benchmark Plus, Violad, UK). Mimosine (100 μM) and kojic acid (500 μM) were used as positive controls. Dimethyl sulfoxide (DMSO) was used as a blank. The absorbance of the blank was subtracted from the absorbance of the sample and control, the absorbance of the corrected sample was divided by the absorbance of the corrected control, and multiplied by 100 to determine the percentage of cell viability. The results are shown in Figure 3. Most mimosin dipeptides did not show cytotoxicity up to a concentration of 200 μM.

実 施 例 5
細胞内チロシナーゼ阻害試験:
B16F10細胞を5×103cells/wellの密度で96ウェルプレートに播種し、24時間培養した後、試料化合物(10-500μM)を添加した。48時間培養後、50mMの氷冷したリン酸バッファ(pH6.8)で2回洗浄し、50mMの1%Triton-X含有リン酸緩衝液(pH6.8)90μLで溶解し、-80℃で30分間冷凍した。解凍、混合後、各ウェルに5%L-DOPA 20μLを添加した。この混合物を37℃で2時間培養後、490nmで吸光度を測定した。ミモシン(100μM)とコウジ酸(500μM)を陽性コントロールとした。結果を図4に示す。
Example 5
Intracellular tyrosinase inhibition test:
B16F10 cells were seeded in a 96-well plate at a density of 5 × 10 3 cells / well, cultured for 24 hours, and then a sample compound (10-500 μM) was added. After 48 hours of incubation, wash twice with 50 mM ice-cold phosphate buffer (pH 6.8), dissolve in 90 μL of 50 mM phosphate buffer (pH 6.8) containing 1% Triton-X, and at -80 ° C. Frozen for 30 minutes. After thawing and mixing, 20 μL of 5% L-DOPA was added to each well. This mixture was incubated at 37 ° C. for 2 hours, and the absorbance was measured at 490 nm. Mimosine (100 μM) and kojic acid (500 μM) served as positive controls. The results are shown in FIG.

図4に示すとおり、すべてのミモシンジペプチドは200μMで細胞内のチロシナーゼ活性を56〜72%抑制した。   As shown in FIG. 4, all mimosine dipeptides suppressed intracellular tyrosinase activity by 56-72% at 200 μM.

本発明のミモシン誘導体又はミモシンは、優れたシクロオキシゲナーゼ阻害活性及びNADPH-シトクロムP450リダクターゼ阻害活性を示すため、抗炎症剤、活性酸素消去剤やこれらが関連する疾患を治療・予防する医薬等として利用可能なものである。   Since the mimosine derivative or mimosine of the present invention exhibits excellent cyclooxygenase inhibitory activity and NADPH-cytochrome P450 reductase inhibitory activity, it can be used as an anti-inflammatory agent, an active oxygen scavenger, or a medicine for treating or preventing a disease associated with them. It is a thing.

また、本発明のミモシン誘導体は優れたチロシナーゼ阻害活性を有するため、皮膚障害を予防・治療するための医薬や美白化粧料等として利用できるものである。   In addition, since the mimosine derivative of the present invention has an excellent tyrosinase inhibitory activity, it can be used as a pharmaceutical or a whitening cosmetic for preventing or treating skin disorders.

Claims (5)

下記一般式(1);
Figure 2016193866
(式中、XはL又はD体のフェニルアラニン(Phe)、アラニン(Ala)、プロリン(Pro)
、バリン(Val)及びトリプトファン(Trp)よりなる群から選ばれるアミノ酸残基を示
す)
で表されるミモシン誘導体。
The following general formula (1);
Figure 2016193866
(Wherein X is L or D form phenylalanine (Phe), alanine (Ala), proline (Pro)
, Amino acid residues selected from the group consisting of valine (Val) and tryptophan (Trp)
A mimosine derivative represented by:
請求項1記載のミモシン誘導体又はミモシンを有効成分として含有するシクロオキシゲナーゼ阻害剤。   A cyclooxygenase inhibitor comprising the mimosine derivative or mimosine according to claim 1 as an active ingredient. 請求項1記載のミモシン誘導体又はミモシンを有効成分として含有するNADPH-シトクロムP450レダクターゼ阻害剤。   A NADPH-cytochrome P450 reductase inhibitor comprising the mimosine derivative or mimosine according to claim 1 as an active ingredient. 請求項1記載のミモシン誘導体を有効成分として含有するチロシナーゼ阻害剤。   A tyrosinase inhibitor comprising the mimosine derivative according to claim 1 as an active ingredient. 請求項4記載のチロシナーゼ阻害剤を含有する美白剤。
A whitening agent comprising the tyrosinase inhibitor according to claim 4.
JP2015074723A 2015-04-01 2015-04-01 Cyclooxygenase inhibitor containing mimosine or its derivative, NADPH-cytochrome P450 reductase inhibitor and tyrosinase inhibitor Active JP6512546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015074723A JP6512546B2 (en) 2015-04-01 2015-04-01 Cyclooxygenase inhibitor containing mimosine or its derivative, NADPH-cytochrome P450 reductase inhibitor and tyrosinase inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015074723A JP6512546B2 (en) 2015-04-01 2015-04-01 Cyclooxygenase inhibitor containing mimosine or its derivative, NADPH-cytochrome P450 reductase inhibitor and tyrosinase inhibitor

Publications (2)

Publication Number Publication Date
JP2016193866A true JP2016193866A (en) 2016-11-17
JP6512546B2 JP6512546B2 (en) 2019-05-15

Family

ID=57322643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015074723A Active JP6512546B2 (en) 2015-04-01 2015-04-01 Cyclooxygenase inhibitor containing mimosine or its derivative, NADPH-cytochrome P450 reductase inhibitor and tyrosinase inhibitor

Country Status (1)

Country Link
JP (1) JP6512546B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113806A (en) * 1974-07-24 1976-02-03 Tanabe Seiyaku Co KOSANKAZAI
JP2007217358A (en) * 2006-02-17 2007-08-30 Nippon Meat Packers Inc Anti-oxidizing peptide
WO2010104147A1 (en) * 2009-03-11 2010-09-16 株式会社ハイペップ研究所 Antioxidant agent
JP2013199446A (en) * 2012-03-26 2013-10-03 Univ Of Ryukyus Novel mimosine derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113806A (en) * 1974-07-24 1976-02-03 Tanabe Seiyaku Co KOSANKAZAI
JP2007217358A (en) * 2006-02-17 2007-08-30 Nippon Meat Packers Inc Anti-oxidizing peptide
WO2010104147A1 (en) * 2009-03-11 2010-09-16 株式会社ハイペップ研究所 Antioxidant agent
JP2013199446A (en) * 2012-03-26 2013-10-03 Univ Of Ryukyus Novel mimosine derivative

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AMINO ACIDS, vol. 43, JPN6019001985, 2012, pages 475 - 482, ISSN: 0003962373 *
AMYOTROPH LATERAL SCLER OTHER MOTOR NEURON DISORD, vol. 6, no. 1, JPN6019001981, 2005, pages 29 - 36, ISSN: 0003962374 *
APOPTOSIS, vol. 13, JPN6019001984, 2008, pages 147 - 155, ISSN: 0003962372 *
AUSTRALIAN JOURNAL OF CHEMISTRY, vol. 49, no. 12, JPN6019001982, 1996, pages 1345 - 1347, ISSN: 0003962370 *
生化学, vol. 抄録CD, JPN6019001983, 2009, pages 3 - 344, ISSN: 0003962371 *

Also Published As

Publication number Publication date
JP6512546B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
US9511010B2 (en) Compounds useful in the treatment and/or care of the skin, hair and/or mucous membranes and their cosmetic or pharmaceutical compositions
EP1371640B1 (en) Novel a-lipoic acid derivative and use thereof
US10344061B2 (en) Peptide exhibiting hair growth promoting activity and/or melanin production promoting activity and use thereof
US10526373B2 (en) Peptide showing melanin generation-promoting activity and use thereof
CN101268093B (en) Age inhibitors
Sasaki et al. Revised structure and structure–activity relationship of bisebromoamide and structure of norbisebromoamide from the marine cyanobacterium Lyngbya sp.
US20240033318A1 (en) Peptidyl inhibitors of calcineurin-nfat interaction
US10508140B2 (en) Peptide having hair growth-promoting activity and/or melanin generation-promoting activity, and use thereof
JP5950390B2 (en) New mimosine derivatives
JP6512546B2 (en) Cyclooxygenase inhibitor containing mimosine or its derivative, NADPH-cytochrome P450 reductase inhibitor and tyrosinase inhibitor
US20170349548A1 (en) P21-activated kinase inhibitor
KR20180128553A (en) Peptides Having Activity for Promoting Melanin Synthesis and Uses Thereof
US11007273B2 (en) Prochelators as targeted prodrugs for prostate cancer and methods of making and using same
Jeong et al. Synthesis and neuroprotective effects of H2S-donor-peptide hybrids on hippocampal neuronal cells
EP3583944A1 (en) Conjugate of salicylic acid and peptide
KR20130113996A (en) Novel peptide with collagenase inhibitory activity and use thereof
CN110612125B (en) Conjugates of isotretinoin and peptides
KR101433419B1 (en) Hydroxycinnamoyl-amino acidyl-hydroxamic acid derivatives
KR101250812B1 (en) Undecenoyl dipeptide derivatives and skin whitening composition containing the same
KR20230139978A (en) Composition for whitening skin comprising hydrosol prepared from Camellia japonica seed as an active ingredient
KR100847694B1 (en) Peptides inhibiting the binding of proline-hydroxylated hif-1a with vbc and a method for preparing thereof
WO2001096369A1 (en) Gluthione analogues and their use as antioxidants
Jeong et al. Design, Synthesis, and Neuroprotective Effects of H2S-Donor-Peptide Hybrids on Hippocampal Neuronal Cells
KR101079291B1 (en) Tyrosinase inhibiting compound isolated from Lespedeza cyrtobotrya MIQ, pharmaceutical compositions the same and use thereof
CN109134295A (en) Amerantrone derivative and its preparation method and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6512546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250