JP2016189303A - battery - Google Patents

battery Download PDF

Info

Publication number
JP2016189303A
JP2016189303A JP2015069603A JP2015069603A JP2016189303A JP 2016189303 A JP2016189303 A JP 2016189303A JP 2015069603 A JP2015069603 A JP 2015069603A JP 2015069603 A JP2015069603 A JP 2015069603A JP 2016189303 A JP2016189303 A JP 2016189303A
Authority
JP
Japan
Prior art keywords
battery
insulating film
battery case
electrode body
static friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015069603A
Other languages
Japanese (ja)
Inventor
圭一郎 小林
Keiichiro Kobayashi
圭一郎 小林
洋一 松浦
Yoichi Matsuura
洋一 松浦
山田 聡
Satoshi Yamada
聡 山田
佳孝 深貝
Yoshitaka Fukagai
佳孝 深貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Advanced Film Co Ltd
Toyota Motor Corp
Original Assignee
Toray Advanced Film Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Advanced Film Co Ltd, Toyota Motor Corp filed Critical Toray Advanced Film Co Ltd
Priority to JP2015069603A priority Critical patent/JP2016189303A/en
Publication of JP2016189303A publication Critical patent/JP2016189303A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery having high reliability that can increase the static friction coefficient μa between the outer side surface of an insulation film and a battery case, and suppress a defect caused by increase of a constraint load Fc.SOLUTION: A battery 1 comprises a metallic rectangular parallelepiped battery case 10, an electrode body 20 housed in the battery case 10, and an insulating member 30 which is formed of an insulating film 31 and interposed between the battery case 10 and the electrode body 20 to insulate both the battery case and the electrode body from each other. In the insulating film 31, the three-dimensional average surface roughness SRaA of the outer surface 31a in contact with the battery case 10 satisfies SRaA≥0.15, and the three-dimensional average surface roughness SRaB of the inner surface 31b in contact with the electrode body 20 satisfies SRaB≥0.03 and satisfies SRaA≥SRaB.SELECTED DRAWING: Figure 1

Description

本発明は、金属製で直方体状の電池ケースと、これに収容された電極体と、絶縁フィルムからなり、電池ケースと電極体との間に介在して両者を絶縁する絶縁部材とを備える電池に関する。   The present invention relates to a battery comprising a metal, rectangular parallelepiped battery case, an electrode body accommodated in the battery case, an insulating film, and an insulating member interposed between the battery case and the electrode body to insulate the two. About.

従来より、金属製で直方体状の電池ケース内に電極体を収容する電池において、電池ケースと電極体との間を電気的に絶縁するために、両者の間に絶縁フィルムからなる絶縁部材を介在させることが知られている。例えば特許文献1には、扁平状捲回型の電極体を、絶縁フィルムを袋状にした絶縁部材内に収め、更にこれらを金属製で直方体状の電池ケース内に収容することで、電池ケースと電極体との間を絶縁部材で絶縁した電池が開示されている(特許文献1の特許請求の範囲、図2、図8等を参照)。   Conventionally, in a battery in which an electrode body is housed in a rectangular battery case made of metal, an insulating member made of an insulating film is interposed between the battery case and the electrode body in order to electrically insulate between the battery case and the electrode body. It is known to let For example, Patent Document 1 discloses a battery case in which a flat wound electrode body is housed in an insulating member made of an insulating film in a bag shape, and further housed in a metal rectangular battery case. There is disclosed a battery in which a battery and an electrode body are insulated by an insulating member (see claims of FIG. 2, FIG. 2, FIG. 8, etc.).

特開2010−287456号公報JP 2010-287456 A

一般に、車載用などの電池は、電池ケース及びその内部に収容された電極体を、それらの厚み方向に押圧し拘束した状態で使用される。これは、電池に外部から衝撃が掛かったときになどに、電極体が電池ケース内で移動しないように電極体を保持するなどの理由による。
上述の電池では、電極体は、絶縁部材(絶縁フィルム)を介して電池ケースに保持されている。電極体を保持するには、絶縁フィルムの外側面と電池ケースとの静摩擦係数μa、及び、絶縁フィルムの内側面と電極体表面との静摩擦係数μbのうち、小さい方に合わせて、電池の拘束荷重Fcを設定する必要がある。また、その小さい方の静摩擦係数の値が小さい電池ほど、拘束荷重Fcを大きく設定する必要がある。
Generally, a battery for in-vehicle use is used in a state in which a battery case and an electrode body accommodated therein are pressed and restrained in the thickness direction thereof. This is because the electrode body is held so that the electrode body does not move in the battery case when an external impact is applied to the battery.
In the battery described above, the electrode body is held in the battery case via an insulating member (insulating film). In order to hold the electrode body, the battery is restrained in accordance with the smaller one of the static friction coefficient μa between the outer surface of the insulating film and the battery case and the static friction coefficient μb between the inner surface of the insulating film and the electrode body surface. It is necessary to set the load Fc. In addition, the smaller the static friction coefficient value of the battery, the larger the restraining load Fc needs to be set.

また、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaと、絶縁フィルムの内側面と電極体表面との静摩擦係数μbとでは、前者の静摩擦係数μaの方が常に小さい値を取ることが判ってきた(μa<μb)。その理由は、以下であると考えられる。即ち、絶縁フィルムと電極体の表面をなすセパレータは共に樹脂製であり、柔らかく変形し易いため、比較的小さな拘束荷重Fcでも互いに密着して滑り難くなる。一方、電池ケースは金属製であるため、大きな拘束荷重Fcを掛けなければ絶縁フィルムと密着せず、滑り易い。このため、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaの方が、絶縁フィルムの内側面と電極体表面との静摩擦係数μbよりも小さくなると考えられる。
従って、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaが小さい電池ほど、電池の拘束荷重Fcを大きくする必要がある。
In addition, the static friction coefficient μa between the outer surface of the insulating film and the battery case and the static friction coefficient μb between the inner surface of the insulating film and the electrode body surface are found to be always smaller. (Μa <μb). The reason is considered as follows. That is, both the insulating film and the separator that forms the surface of the electrode body are made of resin and are soft and easily deformed. On the other hand, since the battery case is made of metal, it does not adhere to the insulating film unless it is subjected to a large restraining load Fc, and is easy to slide. For this reason, it is considered that the static friction coefficient μa between the outer surface of the insulating film and the battery case is smaller than the static friction coefficient μb between the inner surface of the insulating film and the electrode body surface.
Therefore, the battery having a smaller static friction coefficient μa between the outer surface of the insulating film and the battery case needs to increase the binding load Fc of the battery.

しかしながら、電池の拘束荷重Fcを大きくすると、後述するように、大きな電流値(例えば35C)での放電と、それよりも小さな電流値(例えば3C)での充電とを繰り返す「ハイレート放電サイクル試験」を行ったときに、電池抵抗が大きく上昇することが判った。
また、電池の拘束荷重Fcを大きくすると、電池の製造時に何らかの原因で電池ケース内に導電性の異物が混入している場合に、この導電性の異物が、絶縁フィルムを貫通して、電池ケースと電極体との間で短絡を生じるおそれが高くなる。また、電池の拘束荷重Fcを大きくすべく、電池を拘束するための拘束部材が大型化する。
However, when the restraint load Fc of the battery is increased, as will be described later, a “high rate discharge cycle test” in which discharging at a large current value (for example, 35 C) and charging at a smaller current value (for example, 3 C) are repeated. It was found that the battery resistance greatly increased when the test was performed.
In addition, when the battery restraint load Fc is increased, when conductive foreign matter is mixed in the battery case for some reason during the manufacture of the battery, the conductive foreign matter penetrates the insulating film, and the battery case There is a high risk that a short circuit will occur between the electrode body and the electrode body. Further, the restraining member for restraining the battery is increased in size in order to increase the restraining load Fc of the battery.

本発明は、かかる現状に鑑みてなされたものであって、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaを大きくでき、電池の拘束荷重Fcの増大に伴う不具合を抑制した信頼性の高い電池を提供することを目的とする。   The present invention has been made in view of the current situation, and can increase the static friction coefficient μa between the outer surface of the insulating film and the battery case, and has high reliability in which problems associated with an increase in the binding load Fc of the battery are suppressed. An object is to provide a battery.

上記課題を解決するための本発明の一態様は、金属製で直方体状の電池ケースと、上記電池ケース内に収容された電極体と、絶縁フィルムからなり、上記電池ケースと上記電極体との間に介在して両者を絶縁する絶縁部材と、を備える電池であって、上記絶縁フィルムは、上記電池ケースに接する外側面の三次元平均表面粗さSRaAが、SRaA≧0.15を満たし、上記電極体に接する内側面の三次元平均表面粗さSRaBが、SRaB≧0.03を満たし、かつ、SRaA≧SRaBを満たす電池である。   One aspect of the present invention for solving the above problems includes a metal rectangular parallelepiped battery case, an electrode body accommodated in the battery case, and an insulating film, and the battery case and the electrode body. An insulating member that is interposed between and insulates the battery, wherein the insulating film has a three-dimensional average surface roughness SRaA of an outer surface in contact with the battery case satisfying SRaA ≧ 0.15, The battery has a three-dimensional average surface roughness SRaB on the inner surface in contact with the electrode body that satisfies SRaB ≧ 0.03 and SRaA ≧ SRaB.

本発明者が鋭意検討した結果、絶縁フィルムの両主面の表面粗さ(三次元平均表面粗さSRa)の大きさが、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaに大きく関係することが判った。具体的には、絶縁フィルムのうち電池ケースに接する外側面の三次元平均表面粗さSRaAを、SRaA≧0.15とすると共に、絶縁フィルムのうち電極体に接する内側面の三次元平均表面粗さSRaBを、SRaB≧0.03とし、かつ、SRaA≧SRaBとしたときに、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaが大きくなることが判った。   As a result of intensive studies by the inventors, the surface roughness (three-dimensional average surface roughness SRa) of both main surfaces of the insulating film is greatly related to the static friction coefficient μa between the outer surface of the insulating film and the battery case. I found out. Specifically, the three-dimensional average surface roughness SRaA of the outer surface in contact with the battery case in the insulating film is set to SRaA ≧ 0.15, and the three-dimensional average surface roughness of the inner surface in contact with the electrode body in the insulating film. It was found that when SRaB is set to SRaB ≧ 0.03 and SRaA ≧ SRaB, the static friction coefficient μa between the outer surface of the insulating film and the battery case increases.

その理由は、以下であると考えられる。即ち、SRaA≧0.15、SRaB≧0.03、かつ、SRaA≧SRaBとした場合には、絶縁フィルムの外側面と電池ケースとの間に生じる小さな隙間に電解液が入り込むことにより、電解液を介して絶縁フィルムと電池ケースとが密着し易くなる。このため、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaが大きくなり、絶縁フィルム及びその内側の保持される電極体が電池ケースに対し滑り難くなると考えられる。   The reason is considered as follows. That is, when SRaA ≧ 0.15, SRaB ≧ 0.03, and SRaA ≧ SRaB, the electrolyte enters the small gap generated between the outer surface of the insulating film and the battery case. It becomes easy for the insulating film and the battery case to be in close contact with each other. For this reason, it is considered that the static friction coefficient μa between the outer surface of the insulating film and the battery case is increased, and the insulating film and the electrode body held on the inner side thereof are less likely to slip with respect to the battery case.

一方、後述する比較例1のようにSRaAが小さく、SRaA<0.15である場合には、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaが小さい。その理由は、SRaAが小さいために、絶縁フィルムの外側面と電池ケースとの間に隙間が生じ難く、電解液が入り込み難い。このため、電解液を介して絶縁フィルムと電池ケースとが密着し難く、静摩擦係数μaが小さいと考えられる。従って、静摩擦係数μaを大きくするには、SRaA≧0.15とする必要がある。   On the other hand, when SRaA is small and SRaA <0.15 as in Comparative Example 1 described later, the static friction coefficient μa between the outer surface of the insulating film and the battery case is small. The reason is that SRaA is small, so that a gap is hardly formed between the outer surface of the insulating film and the battery case, and the electrolytic solution is difficult to enter. For this reason, it is considered that the insulating film and the battery case are hardly adhered to each other through the electrolytic solution, and the static friction coefficient μa is small. Therefore, SRaA ≧ 0.15 is required to increase the static friction coefficient μa.

また、後述する比較例2のように、SRaA<SRaBである場合にも、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaが小さい。その理由は、SRaA<SRaBになると、電解液が絶縁フィルムの内側面側(電極体側)に移動し易くなり、絶縁フィルムの外側面側(電池ケース側)で電解液が少なくなるので、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaが大きくならないと考えられる。従って、静摩擦係数μaを大きくするには、SRaA≧SRaBとする必要がある。   In addition, as in Comparative Example 2 described later, even when SRaA <SRaB, the static friction coefficient μa between the outer surface of the insulating film and the battery case is small. The reason is that when SRaA <SRaB, the electrolytic solution easily moves to the inner surface side (electrode body side) of the insulating film, and the electrolytic solution decreases on the outer surface side (battery case side) of the insulating film. It is considered that the static friction coefficient μa between the outer surface of the battery and the battery case does not increase. Therefore, in order to increase the static friction coefficient μa, it is necessary to satisfy SRaA ≧ SRaB.

また、後述する比較例3のようにSRaBが小さく、SRaB<0.03である場合にも、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaが小さいことが判った。従って、静摩擦係数μaを大きくするには、SRaB≧0.03とする必要がある。なお、SRaB<0.03である場合、絶縁フィルムの内側面の凹凸による引っ掛かりが少なく、絶縁フィルムの内側面と電極体表面との静摩擦係数μbが低下する傾向にある。
以上より、SRaA≧0.15、SRaB≧0.03、かつ、SRaA≧SRaBとすることで、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaを大きくできる。
It was also found that the static friction coefficient μa between the outer surface of the insulating film and the battery case was small even when SRaB was small and SRaB <0.03 as in Comparative Example 3 described later. Therefore, SRaB ≧ 0.03 is required to increase the static friction coefficient μa. In addition, when SRaB <0.03, there is little catch by the unevenness | corrugation of the inner surface of an insulating film, and it exists in the tendency for the static friction coefficient (micro | micron | mu) b between the inner surface of an insulating film and the electrode body surface to fall.
From the above, by setting SRaA ≧ 0.15, SRaB ≧ 0.03, and SRaA ≧ SRaB, the static friction coefficient μa between the outer surface of the insulating film and the battery case can be increased.

また、前述のように、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaと、絶縁フィルムの内側面と電極体表面との静摩擦係数μbとでは、前者の静摩擦係数μaの方が常に小さい値を取ることが判ってきた(μa<μb)。静摩擦係数μaの方が小さいため、電池の拘束荷重Fcは、静摩擦係数μaを考慮すれば足りる。また、静摩擦係数μaを大きくすることで、電池の拘束荷重Fcを小さくできる。   Further, as described above, the static friction coefficient μa between the outer surface of the insulating film and the battery case and the static friction coefficient μb between the inner surface of the insulating film and the surface of the electrode body are always smaller. (Μa <μb). Since the static friction coefficient μa is smaller, the binding load Fc of the battery is sufficient if the static friction coefficient μa is taken into consideration. Further, by increasing the static friction coefficient μa, the binding load Fc of the battery can be reduced.

具体的に説明すると、使用時に電池を拘束する目的の1つは、前述のように、電池に衝撃が掛かったときでも、電極体が電池ケース内で移動しないように電極体を保持することである。衝撃が掛かっても電極体を保持するために必要な拘束荷重Fcは、以下の式(1),(2)で求めることができる。即ち、電極体は、その厚み方向の両側でそれぞれ絶縁部材(絶縁フィルム)を介して電池ケースに保持されている。このため、電極体に加わる力(厚み方向に直交する方向の力)をFdとすると、電極体の厚み方向の両側には、それぞれFd/2の力が掛かる。従って、式(1)により、必要な拘束荷重Fcを求めることができる。また、電極体に加わる力Fdは、Fd=(電極体の質量M)×(電池に加わる加速度α)であるので、式(2)により、必要な拘束荷重Fcを求めることができる。
Fc≧(Fd/2)/μa ・・・(1)
Fc≧(M×α/2)/μa ・・・(2)
式(1),(2)から明らかなように、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaが大きいほど、電池の拘束荷重Fcを小さくできる。
Specifically, as described above, one of the purposes of restraining the battery during use is to hold the electrode body so that the electrode body does not move within the battery case even when an impact is applied to the battery. is there. The restraining load Fc required to hold the electrode body even when an impact is applied can be obtained by the following equations (1) and (2). That is, the electrode body is held by the battery case via the insulating member (insulating film) on both sides in the thickness direction. For this reason, when the force applied to the electrode body (force in the direction orthogonal to the thickness direction) is Fd, a force of Fd / 2 is applied to both sides of the electrode body in the thickness direction. Therefore, the necessary restraining load Fc can be obtained from the equation (1). Further, since the force Fd applied to the electrode body is Fd = (mass M of the electrode body) × (acceleration α applied to the battery), the necessary restraining load Fc can be obtained from the equation (2).
Fc ≧ (Fd / 2) / μa (1)
Fc ≧ (M × α / 2) / μa (2)
As is clear from the equations (1) and (2), the restraining load Fc of the battery can be reduced as the static friction coefficient μa between the outer surface of the insulating film and the battery case increases.

そして、電池の拘束荷重Fcを小さくすることで、後述する「ハイレート放電サイクル試験」を行ったときに電池抵抗が上昇するのを抑制できる。
その理由は、以下であると考えられる。即ち、大電流の放電を行うと、活物質の膨張や電極体の熱膨張に伴い、電極体内に保持(保液)された電解液に圧力が掛かる。一方、放電に伴って負極活物質層付近の電解液中に含まれるリチウムイオンなど電気伝導を担うイオンの濃度が上がり、このイオン濃度の高い電解液が、電極体の内部から外部に押し出される。従って、大電流の放電を繰り返すと、電極体内部の電解液のイオン濃度が徐々に低くなる現象が生じる。そうすると、電極体内部で電池反応に寄与し得るイオンが少なくなるので、電池抵抗が増加すると考えられる。
電池の拘束荷重Fcを小さくすると、大電流の放電時に電極体内部の電解液に掛かる圧力が小さくなるので、電極体内から押し出されるイオン濃度の高い電解液の量が少なくなる。これにより、電極体内部の電解液のイオン濃度が低下するのを抑制できるので、「ハイレート放電サイクル試験」における電池抵抗の上昇を抑制できると考えられる。
And by making small the restraint load Fc of a battery, it can suppress that battery resistance raises, when the "high-rate discharge cycle test" mentioned later is performed.
The reason is considered as follows. That is, when a large current is discharged, pressure is applied to the electrolytic solution held (retained) in the electrode body with the expansion of the active material and the thermal expansion of the electrode body. On the other hand, with discharge, the concentration of ions responsible for electrical conduction such as lithium ions contained in the electrolyte near the negative electrode active material layer increases, and the electrolyte having a high ion concentration is pushed out from the inside of the electrode body. Therefore, when discharging with a large current is repeated, a phenomenon occurs in which the ion concentration of the electrolyte in the electrode body gradually decreases. If so, the number of ions that can contribute to the battery reaction in the electrode body is reduced, which is considered to increase the battery resistance.
When the battery restraint load Fc is reduced, the pressure applied to the electrolyte inside the electrode body during a large current discharge is reduced, so that the amount of electrolyte having a high ion concentration pushed out from the electrode body is reduced. Thereby, since it can suppress that the ion concentration of the electrolyte solution inside an electrode body falls, it is thought that the raise of battery resistance in a "high-rate discharge cycle test" can be suppressed.

また、電池の拘束荷重Fcを小さくできるので、電池ケース内に導電性の異物が混入している場合に、導電性の異物が絶縁フィルムを貫通して、電池ケースと電極体との間で短絡を生じるのを防止できる。また、電池を拘束するための拘束部材を小型化できる。なお、外側面の三次元平均表面粗さSRaAを、0.15≦SRaA≦0.25、内側面の三次元平均表面粗さSRaBを、0.03≦SRaB≦0.17とするのが特に好ましい。   In addition, since the battery restraint load Fc can be reduced, when conductive foreign matter is mixed in the battery case, the conductive foreign matter penetrates the insulating film and short-circuits between the battery case and the electrode body. Can be prevented. In addition, the restraining member for restraining the battery can be reduced in size. It is particularly preferable that the outer surface has a three-dimensional average surface roughness SRaA of 0.15 ≦ SRaA ≦ 0.25, and the inner surface has a three-dimensional average surface roughness SRaB of 0.03 ≦ SRaB ≦ 0.17. preferable.

なお、「三次元平均表面粗さSRa」は、「JIS B 0601−1982」に基づいて測定する。なお、測定長さは2.0mm、カットオフ波長は0.25mm、測定速度は0.3mm/sとする。また、測定装置としては、例えば、株式会社東洋精密社製のSURFCOM 1400A−3DF−12を用いる。   The “three-dimensional average surface roughness SRa” is measured based on “JIS B 0601-1982”. The measurement length is 2.0 mm, the cutoff wavelength is 0.25 mm, and the measurement speed is 0.3 mm / s. Moreover, as a measuring apparatus, SURFCOM 1400A-3DF-12 by Toyo Seimitsu Co., Ltd. is used, for example.

なお、「絶縁フィルム」としては、例えば、ポリプロピレン系樹脂を主成分とするフィルムや、ポリエチレンからなるフィルムなどが挙げられる。
このうち「ポリプロピレン系樹脂を主成分とする絶縁フィルム」とは、絶縁フィルムを構成する材質の中で、ポリプロピレン系樹脂の割合が50wt%を越えているものを言う。
「ポリプロピレン系樹脂」としては、例えば、プロピレンが単独重合したものや、プロピレンにエチレンやブテンが共重合したランダムコポリマー、プロピレン重合時にエチレン・プロピレンゴム等のエチレン系エラストマーを重合ブレンドしたブロックコポリマーなどが挙げられる。
Examples of the “insulating film” include a film mainly composed of a polypropylene resin and a film composed of polyethylene.
Among them, “insulating film mainly composed of polypropylene-based resin” refers to a material in which the proportion of polypropylene-based resin exceeds 50 wt% in the material constituting the insulating film.
Examples of the “polypropylene resin” include those obtained by homopolymerizing propylene, random copolymers obtained by copolymerizing propylene with ethylene or butene, and block copolymers obtained by polymerizing and blending ethylene elastomer such as ethylene / propylene rubber during propylene polymerization. Can be mentioned.

また、「絶縁フィルム」としては、エチレン−α−オレフィン共重合体を含ませたフィルム、具体的には、低結晶性エチレン−α−オレフィン共重合体及び非結晶性エチレン−α−オレフィン共重合体の少なくともいずれかを含ませたフィルムを用いることができる。この低結晶性エチレン−α−オレフィン共重合体及び非結晶性エチレン−α−オレフィン共重合体は、熱可塑性エラストマーであることが好ましい。特に、絶縁フィルムの主成分がポリプロピレン系樹脂の場合には、エチレン−α−オレフィン共重合体の熱可塑性エラストマーを含ませることで、ポリプロピレン系樹脂の低温衝撃性を改良できる。具体的には、低結晶性エチレン−α−オレフィン共重合体の熱可塑性エラストマーとして、エチレン・ブテンゴム(EBR)、非結晶性エチレン−α−オレフィン共重合体の熱可塑性エラストマーとして、エチレン・プロピレンゴム(EPR)などが挙げられる。   The “insulating film” includes a film containing an ethylene-α-olefin copolymer, specifically, a low crystalline ethylene-α-olefin copolymer and an amorphous ethylene-α-olefin copolymer. A film containing at least one of the coalesces can be used. The low crystalline ethylene-α-olefin copolymer and the amorphous ethylene-α-olefin copolymer are preferably thermoplastic elastomers. In particular, when the main component of the insulating film is a polypropylene resin, the low temperature impact property of the polypropylene resin can be improved by including a thermoplastic elastomer of an ethylene-α-olefin copolymer. Specifically, as a thermoplastic elastomer of a low crystalline ethylene-α-olefin copolymer, ethylene / butene rubber (EBR), as a thermoplastic elastomer of an amorphous ethylene-α-olefin copolymer, ethylene / propylene rubber (EPR).

「電極体」の形態は、特に限定されず、例えば、各々帯状をなす正極板及び負極板をセパレータを介して捲回してなる扁平状の捲回型の電極体や、矩形状等をなす正極板及び負極板をセパレータを介して複数積層した積層型の電極体などが挙げられる。   The form of the “electrode body” is not particularly limited. For example, a flat wound electrode body formed by winding a positive electrode plate and a negative electrode plate each having a band shape through a separator, or a positive electrode having a rectangular shape or the like Examples thereof include a laminated electrode body in which a plurality of plates and negative electrode plates are laminated via a separator.

また、他の態様は、複数の直方体状の電池と、これらの電池をその厚み方向に拘束する拘束部材とを備える組電池であって、上記電池は、金属製で直方体状の電池ケースと、上記電池ケース内に収容された電極体と、絶縁フィルムからなり、上記電池ケースと上記電極体との間に介在して両者を絶縁する絶縁部材と、を備え、上記絶縁フィルムは、上記拘束部材による拘束によって上記電池ケースと上記電極体との間で押圧されてなり、上記電池ケースに接する外側面の三次元平均表面粗さSRaAが、SRaA≧0.15を満たし、上記電極体に接する内側面の三次元平均表面粗さSRaBが、SRaB≧0.03を満たし、かつ、SRaA≧SRaBを満たす組電池である。   Further, another aspect is an assembled battery comprising a plurality of rectangular parallelepiped batteries and a restraining member that restrains these batteries in the thickness direction, and the battery is made of metal and a rectangular parallelepiped battery case; An electrode body accommodated in the battery case; and an insulating member that is made of an insulating film and is interposed between the battery case and the electrode body to insulate the two. The insulating film includes the restraining member. The three-dimensional average surface roughness SRaA of the outer surface in contact with the battery case satisfies SRaA ≧ 0.15 and is in contact with the electrode body. The battery pack has a side surface three-dimensional average surface roughness SRaB satisfying SRaB ≧ 0.03 and satisfying SRaA ≧ SRaB.

この組電池を構成する電池は、前述のように、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaを大きくでき、電池の拘束荷重Fcの増大に伴う不具合を抑制した信頼性の高い電池である。従って、この電池を用いることで、信頼性の高い組電池とすることができる。   As described above, the battery constituting this assembled battery is a highly reliable battery that can increase the static friction coefficient μa between the outer surface of the insulating film and the battery case, and suppresses problems associated with an increase in the binding load Fc of the battery. is there. Therefore, a highly reliable assembled battery can be obtained by using this battery.

また、他の態様は、金属製で直方体状の電池ケースと、上記電池ケース内に収容された電極体と、絶縁フィルムからなり、上記電池ケースと上記電極体との間に介在して両者を絶縁する絶縁部材と、を備える電池に用いる上記絶縁フィルムであって、上記絶縁フィルムは、上記電池ケースに接する外側面の三次元平均表面粗さSRaAが、SRaA≧0.15を満たし、上記電極体に接する内側面の三次元平均表面粗さSRaBが、SRaB≧0.03を満たし、かつ、SRaA≧SRaBを満たす絶縁フィルムである。   In another aspect, the battery case is a rectangular parallelepiped battery case, an electrode body housed in the battery case, and an insulating film, and is interposed between the battery case and the electrode body. An insulating member that insulates, the insulating film used in a battery, wherein the insulating film has a three-dimensional average surface roughness SRaA of an outer surface in contact with the battery case satisfying SRaA ≧ 0.15, and the electrode The three-dimensional average surface roughness SRaB of the inner surface that is in contact with the body satisfies SRaB ≧ 0.03 and is an insulating film satisfying SRaA ≧ SRaB.

この絶縁フィルムを用いて絶縁部材を形成し、更にこれを用いて電池を製造すれば、前述のように、絶縁フィルムの外側面と電池ケースとの静摩擦係数μaを大きくでき、電池の拘束荷重Fcの増大に伴う不具合を抑制した信頼性の高い電池とすることができる。   If an insulating member is formed using this insulating film and a battery is manufactured using the insulating member, the static friction coefficient μa between the outer surface of the insulating film and the battery case can be increased as described above, and the binding load Fc of the battery can be increased. It is possible to provide a highly reliable battery that suppresses problems associated with an increase in battery life.

実施形態に係るリチウムイオン二次電池の縦断面図である。It is a longitudinal cross-sectional view of the lithium ion secondary battery which concerns on embodiment. 実施形態に係る袋状絶縁部材の斜視図である。It is a perspective view of the bag-shaped insulating member concerning an embodiment. 実施形態に係る組電池の側面図である。It is a side view of the assembled battery which concerns on embodiment. 静摩擦係数μa,μbの測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of static friction coefficient (mu) a and (mu) b. 実施例1及び比較例1に係る各電池について、ハイレート放電サイクル試験における電池抵抗の抵抗上昇率を示すグラフである。It is a graph which shows the resistance increase rate of the battery resistance in a high-rate discharge cycle test about each battery which concerns on Example 1 and Comparative Example 1. FIG.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態に係るリチウムイオン二次電池(非水電解質二次電池)1(以下、単に「電池1」とも言う)を示す。また、図2に、本実施形態に係る袋状絶縁部材(絶縁部材)30を示す。なお、本明細書では、図1における上方を電池1の上側UW、下方を電池1の下側DWとして説明する。
この電池1は、ハイブリッド自動車や電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10と電極体20との間に配置された袋状絶縁部材30と、電池ケース10に支持された正極端子40及び負極端子41等から構成されている。また、電池ケース10内には、非水系の電解液17が保持されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a lithium ion secondary battery (nonaqueous electrolyte secondary battery) 1 (hereinafter also simply referred to as “battery 1”) according to the present embodiment. FIG. 2 shows a bag-like insulating member (insulating member) 30 according to this embodiment. In the present specification, the upper side in FIG. 1 is described as the upper side UW of the battery 1, and the lower side is described as the lower side DW of the battery 1.
The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle. The battery 1 includes a battery case 10, an electrode body 20 accommodated therein, a bag-like insulating member 30 disposed between the battery case 10 and the electrode body 20, and a positive electrode terminal supported by the battery case 10. 40, a negative electrode terminal 41, and the like. Further, a non-aqueous electrolyte solution 17 is held in the battery case 10.

このうち電池ケース10は、直方体状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側UWのみが開口した直方体箱状のケース本体部材11と、このケース本体部材11の開口11hを閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、電池ケース10の内圧が所定圧力に達した際に破断開弁する安全弁14が設けられている。また、このケース蓋部材13には、電池ケース10の内外を連通する注液孔13hが形成され、リベット15で気密に封止されている。   Among these, the battery case 10 has a rectangular parallelepiped shape and is made of metal (in this embodiment, aluminum). The battery case 10 includes a rectangular parallelepiped box-shaped case main body member 11 in which only the upper UW is opened, and a rectangular plate-shaped case cover member 13 which is welded so as to close the opening 11h of the case main body member 11. The The case lid member 13 is provided with a safety valve 14 that opens when the internal pressure of the battery case 10 reaches a predetermined pressure. The case lid member 13 is formed with a liquid injection hole 13 h that communicates the inside and outside of the battery case 10 and is hermetically sealed with a rivet 15.

また、ケース蓋部材13には、それぞれ延出端子部材43及びボルト44により構成される正極端子40及び負極端子41が、樹脂からなる絶縁樹脂部材47を介して固設されている。なお、正極端子40はアルミニウムからなり、負極端子41は銅からなる。電池ケース10内において、正極端子40は、後述する電極体20のうち正極板21の正極集電部21mに接続し導通している。また、負極端子41は、電極体20のうち負極板25の負極集電部25mに接続し導通している。   The case lid member 13 is fixedly provided with a positive electrode terminal 40 and a negative electrode terminal 41 each formed of an extended terminal member 43 and a bolt 44 via an insulating resin member 47 made of resin. The positive terminal 40 is made of aluminum, and the negative terminal 41 is made of copper. In the battery case 10, the positive electrode terminal 40 is connected and connected to the positive electrode current collector 21 m of the positive electrode plate 21 in the electrode body 20 described later. Further, the negative electrode terminal 41 is connected to and electrically connected to the negative electrode current collector 25m of the negative electrode plate 25 in the electrode body 20.

次に、電極体20について説明する。この電極体20は、扁平状をなし、後述する袋状絶縁部材30内に収められた状態で、電池ケース10内に収容されている。電極体20は、帯状の正極板21と帯状の負極板25とを、帯状の一対のセパレータ29を介して互いに重ねて捲回し、扁平状に圧縮したものである。この電極体20の最外周には、セパレータ29が巻かれている(セパレータ29が電極体20の表面をなしている)。   Next, the electrode body 20 will be described. The electrode body 20 has a flat shape and is accommodated in the battery case 10 in a state of being accommodated in a bag-like insulating member 30 described later. The electrode body 20 is obtained by winding a belt-like positive electrode plate 21 and a belt-like negative electrode plate 25 on each other via a pair of belt-like separators 29 and compressing them in a flat shape. A separator 29 is wound around the outermost periphery of the electrode body 20 (the separator 29 forms the surface of the electrode body 20).

正極板21は、帯状のアルミニウム箔からなる正極集電箔22の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上に、正極活物質層23を帯状に設けてなる。正極活物質層23には、正極活物質、導電剤及び結着剤が含まれる。また、正極集電箔22のうち、幅方向の片方の端部は、自身の厚み方向に正極活物質層23が存在せず、正極集電箔22が露出した正極集電部21mとなっている。前述の正極端子40は、この正極集電部21mに溶接されている。   The positive electrode plate 21 is formed by providing a positive electrode active material layer 23 in a band shape on a region extending in a part of the width direction and extending in the longitudinal direction among both main surfaces of a positive electrode current collector foil 22 made of a band-shaped aluminum foil. The positive electrode active material layer 23 includes a positive electrode active material, a conductive agent, and a binder. Also, one end of the positive electrode current collector foil 22 in the width direction is a positive electrode current collector part 21 m where the positive electrode current collector foil 22 is exposed without the positive electrode active material layer 23 in the thickness direction of the positive electrode current collector foil 22. Yes. The positive electrode terminal 40 is welded to the positive electrode current collector 21m.

また、負極板25は、帯状の銅箔からなる負極集電箔26の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上に、負極活物質層27を帯状に設けてなる。負極活物質層27には、負極活物質、結着剤及び増粘剤が含まれる。また、負極集電箔26のうち、幅方向の片方の端部は、自身の厚み方向に負極活物質層27が存在せず、負極集電箔26が露出した負極集電部25mとなっている。前述の負極端子41は、この負極集電部25mに溶接されている。
セパレータ29は、樹脂からなる多孔質膜であり、帯状をなす。具体的には、このセパレータ29は、ポリプロピレン(PP)製の2枚の多孔質樹脂フィルムの間にポリエチレン(PE)製の1枚の多孔質樹脂フィルムを重ね合わせた3層構造を有する。
The negative electrode plate 25 has a negative electrode active material layer 27 formed in a band shape on a part of the width direction and extending in the longitudinal direction of both main surfaces of the negative electrode current collector foil 26 made of a strip-shaped copper foil. Become. The negative electrode active material layer 27 includes a negative electrode active material, a binder, and a thickener. Also, one end of the negative electrode current collector foil 26 in the width direction is a negative electrode current collector 25m where the negative electrode active material layer 27 is not present in the thickness direction of the negative electrode current collector foil 26 and the negative electrode current collector foil 26 is exposed. Yes. The negative electrode terminal 41 is welded to the negative electrode current collector 25m.
The separator 29 is a porous film made of resin and has a strip shape. Specifically, the separator 29 has a three-layer structure in which one porous resin film made of polyethylene (PE) is overlapped between two porous resin films made of polypropylene (PP).

次に、袋状絶縁部材30について説明する(図2も参照)。この袋状絶縁部材30は、所定形状に切断した絶縁フィルム31を折り畳み、絶縁フィルム31同士を複数箇所で溶着して固定し、上側UWのみに開口部30hを有する袋状に形成したものである。この袋状絶縁部材30は、電極体20を包囲した状態で、電池ケース10内に収容されており、電池ケース10と電極体20との間に介在して両者を電気的に絶縁している。   Next, the bag-like insulating member 30 will be described (see also FIG. 2). This bag-like insulating member 30 is formed in a bag shape in which an insulating film 31 cut into a predetermined shape is folded, the insulating films 31 are welded and fixed to each other at a plurality of locations, and an opening 30h is provided only on the upper UW. . The bag-shaped insulating member 30 is housed in the battery case 10 in a state of surrounding the electrode body 20 and is interposed between the battery case 10 and the electrode body 20 to electrically insulate them. .

袋状絶縁部材30を構成する絶縁フィルム31は、ポリプロピレン系樹脂を主成分としている。具体的には、プロピレンが単独重合したホモのポリプロピレン樹脂、プロピレンにエチレンやブテンを共重合したランダムコポリマー樹脂、及び、プロピレンにエチレン系エラストマーをブレンドしたブロックコポリマー樹脂を使用している。また、この絶縁フィルム31は、エチレン−α−オレフィン共重合体の熱可塑性エラストマー、具体的には、非結晶性エチレン−α−オレフィン共重合体の熱可塑性エラストマー、更に具体的には、エチレン・プロピレンゴム(EPR)を含有している。   The insulating film 31 constituting the bag-like insulating member 30 is mainly composed of polypropylene resin. Specifically, a homopolypropylene resin obtained by homopolymerizing propylene, a random copolymer resin obtained by copolymerizing propylene with ethylene or butene, and a block copolymer resin obtained by blending propylene with an ethylene-based elastomer are used. The insulating film 31 is made of an ethylene-α-olefin copolymer thermoplastic elastomer, specifically, a non-crystalline ethylene-α-olefin copolymer thermoplastic elastomer, more specifically, ethylene Contains propylene rubber (EPR).

また、本実施形態の絶縁フィルム31は、電池ケース10に接する外側面31aの三次元平均表面粗さSRaA(μm)が、SRaA≧0.15を満たす。SRaA=0.227(μm)である。また、絶縁フィルム31は、電極体20に接する内側面31bの三次元平均表面粗さSRaB(μm)が、SRaB≧0.03を満たす。SRaB=0.058(μm)である。従って、本実施形態の絶縁フィルム31は、SRaA≧SRaBを満たしている。   In addition, in the insulating film 31 of the present embodiment, the three-dimensional average surface roughness SRaA (μm) of the outer surface 31a in contact with the battery case 10 satisfies SRaA ≧ 0.15. SRaA = 0.227 (μm). In addition, in the insulating film 31, the three-dimensional average surface roughness SRaB (μm) of the inner side surface 31b in contact with the electrode body 20 satisfies SRaB ≧ 0.03. SRaB = 0.058 (μm). Therefore, the insulating film 31 of the present embodiment satisfies SRaA ≧ SRaB.

なお、この絶縁フィルム31は、T−ダイ法やインフレーション法などの共押し出し製法で、2種類のポリマーを共押出しすることにより製造できる。共押出しするそれぞれの層は、ポリエチレンなどの非相溶の樹脂をブレンドすることで、上述のように外側面31aの三次元平均表面粗さをSRaA=0.227(μm)とする一方、内側面31bの三次元平均表面粗さをSRaB=0.058(μm)とすることができる。   The insulating film 31 can be manufactured by co-extrusion of two types of polymers by a co-extrusion manufacturing method such as a T-die method or an inflation method. Each layer to be coextruded is blended with an incompatible resin such as polyethylene so that the three-dimensional average surface roughness of the outer surface 31a is SRaA = 0.227 (μm) as described above. The three-dimensional average surface roughness of the side surface 31b can be set to SRaB = 0.058 (μm).

次いで、上記電池1を用いた組電池200について説明する(図3参照)。この組電池200は、列置された複数の直方体状の電池1と、隣り合う電池1同士の間にそれぞれ介在する複数のスペーサ210と、これら電池1及びスペーサ210を電池厚み方向BHに押圧しつつ拘束する拘束部材220とを備える。なお、図3においては、電池1の正極端子40及び負極端子41の記載を省略してある。   Next, an assembled battery 200 using the battery 1 will be described (see FIG. 3). The assembled battery 200 includes a plurality of cuboid batteries 1 arranged in a row, a plurality of spacers 210 interposed between adjacent batteries 1, and the battery 1 and the spacer 210 pressed in the battery thickness direction BH. And a restraining member 220 that restrains while restraining. In FIG. 3, the positive electrode terminal 40 and the negative electrode terminal 41 of the battery 1 are not shown.

複数の電池1は、それぞれスペーサ210を介して、電池厚み方向BHに列置されており、隣り合う電池1同士は、図示しないバスバにより電気的に接続されている。スペーサ210は、矩形板状であり、樹脂により形成されている。そして、これら交互に列置された電池1及びスペーサ210は、拘束部材220により電池厚み方向BHに押圧され圧縮された状態で拘束されている。これにより、電池1の内部において、袋状絶縁部材30をなす絶縁フィルム31は、電池ケース10と電極体20との間で押圧されている。   The plurality of batteries 1 are arranged in the battery thickness direction BH via spacers 210, respectively, and adjacent batteries 1 are electrically connected by a bus bar (not shown). The spacer 210 has a rectangular plate shape and is made of resin. The alternately arranged batteries 1 and spacers 210 are restrained in a state where they are pressed and compressed by the restraining member 220 in the battery thickness direction BH. Thereby, in the inside of the battery 1, the insulating film 31 that forms the bag-like insulating member 30 is pressed between the battery case 10 and the electrode body 20.

拘束部材220は、一対のエンドプレート221と、4本の拘束ロッド223とを有する。エンドプレート221は、矩形板状をなし、列置された電池1及びスペーサ210の両側にそれぞれ配置されている。拘束ロッド223は、一対のエンドプレート221の間にそれぞれ配置されて、締結ボルト225によりエンドプレート221にそれぞれ固定されている。   The restraining member 220 has a pair of end plates 221 and four restraining rods 223. The end plate 221 has a rectangular plate shape and is disposed on both sides of the batteries 1 and the spacers 210 arranged in a row. The restraining rods 223 are respectively disposed between the pair of end plates 221 and are fixed to the end plates 221 by fastening bolts 225, respectively.

(実施例及び比較例)
次いで、本発明の効果を検証するために行った試験の結果について説明する。実施例1〜4及び比較例1〜3として、外側面の三次元平均表面粗さSRaAと内側面の三次元平均表面粗さSRaBを、表1に示すようにそれぞれ変更した7種類の絶縁フィルムを用意した。なお、実施例1の絶縁フィルムは、前述した実施形態の電池1に用いた絶縁フィルム31と同じである。
(Examples and Comparative Examples)
Subsequently, the result of the test conducted in order to verify the effect of this invention is demonstrated. As Examples 1 to 4 and Comparative Examples 1 to 3, seven types of insulating films were obtained by changing the three-dimensional average surface roughness SRaA of the outer surface and the three-dimensional average surface roughness SRaB of the inner surface as shown in Table 1. Prepared. In addition, the insulating film of Example 1 is the same as the insulating film 31 used for the battery 1 of the embodiment described above.

Figure 2016189303
Figure 2016189303

次に、電池ケース10と同じアルミニウム板AB(図4参照)を用意し、実施例1〜5及び比較例1〜3の各絶縁フィルムZFとアルミニウム板ABとの静摩擦係数μaを、JIS K7125:プラスチック−フィルム及びシート−摩擦係数試験方法に準じて測定した。具体的には、図4に示すように、平坦な第1治具TG1の上に、アルミニウム板ABを載置して固定する。また、重さ130gの矩形状の第2治具TG2の一方の主面に、63mm×63mmの大きさに切断した絶縁フィルムZFを貼り付けておく。なお、絶縁フィルムZFは、電池1に用いたときに電極体20に接する内側面を、第2治具TG2に貼り付ける。そして、絶縁フィルムZFの外側面(電池1に用いたときに電池ケース10に接する面)が、アルミニウム板ABと接するように、アルミニウム板AB上に絶縁フィルムZF及び第2治具TG2を載置する。その後、第2治具TG2を水平方向(図4中、左側)に引っ張り、そのときに生じる静摩擦力を測定して静摩擦係数μaを算出する。その結果を表1の静摩擦係数μaの「乾燥状態」に示す。   Next, the same aluminum plate AB (see FIG. 4) as the battery case 10 is prepared, and the static friction coefficient μa between each of the insulating films ZF and the aluminum plate AB in Examples 1 to 5 and Comparative Examples 1 to 3 is defined as JIS K7125: Plastic-film and sheet-measured according to the friction coefficient test method. Specifically, as shown in FIG. 4, the aluminum plate AB is placed and fixed on the flat first jig TG1. Further, an insulating film ZF cut to a size of 63 mm × 63 mm is attached to one main surface of the rectangular second jig TG2 having a weight of 130 g. In addition, the insulating film ZF affixes the inner surface which contacts the electrode body 20 when used for the battery 1 to the second jig TG2. Then, the insulating film ZF and the second jig TG2 are placed on the aluminum plate AB so that the outer surface of the insulating film ZF (the surface that contacts the battery case 10 when used in the battery 1) is in contact with the aluminum plate AB. To do. Thereafter, the second jig TG2 is pulled in the horizontal direction (left side in FIG. 4), and the static friction force generated at that time is measured to calculate the static friction coefficient μa. The results are shown in “Dry state” of the static friction coefficient μa in Table 1.

次に、電解液17が存在する状態での各絶縁フィルムZFとアルミニウム板ABとの静摩擦係数μaを求めた。具体的には、絶縁フィルムZFとアルミニウム板ABとの間に、予めスポイトで電解液17を約20cc滴下しておき、この状態で第2治具TG2を水平方向に引っ張り、そのときに生じる静摩擦力を測定して静摩擦係数μaを算出する。その結果を表1の静摩擦係数μaの「電解液浸漬状態」に示す。   Next, the static friction coefficient μa between each insulating film ZF and the aluminum plate AB in the presence of the electrolytic solution 17 was obtained. Specifically, about 20 cc of the electrolytic solution 17 is dropped in advance between the insulating film ZF and the aluminum plate AB with a dropper in advance, and the second jig TG2 is pulled in the horizontal direction in this state, and the static friction generated at that time The static friction coefficient μa is calculated by measuring the force. The results are shown in “Electrolyte immersion state” of the static friction coefficient μa in Table 1.

また、電極体20を構成するセパレータ29と同じ樹脂フィルムJFを用意し、実施例1〜5及び比較例1〜3の各絶縁フィルムZFと樹脂フィルムJFとの静摩擦係数μbを求めた。具体的には、図4に示すように、前述の第1治具TG1の上に、樹脂フィルムJFを載置して固定する。また、前述のように、第2治具TG2の一方の主面に絶縁フィルムZFを貼り付けておく。但し、絶縁フィルムZFの外側面を、第2治具TG2に貼り付ける。そして、絶縁フィルムZFの内側面が樹脂フィルムJFと接するように、樹脂フィルムJF上に絶縁フィルムZF及び第2治具TG2を載置する。その後、前述のように、第2治具TG2を水平方向に引っ張り、そのときに生じる静摩擦力を測定して静摩擦係数μbを算出する。その結果を表1の静摩擦係数μbの「乾燥状態」に示す。   Moreover, the same resin film JF as the separator 29 which comprises the electrode body 20 was prepared, and the static friction coefficient (micro | micron | mu) b of each insulating film ZF of Examples 1-5 and Comparative Examples 1-3 and the resin film JF was calculated | required. Specifically, as shown in FIG. 4, the resin film JF is placed and fixed on the first jig TG1 described above. Further, as described above, the insulating film ZF is attached to one main surface of the second jig TG2. However, the outer surface of the insulating film ZF is attached to the second jig TG2. Then, the insulating film ZF and the second jig TG2 are placed on the resin film JF so that the inner side surface of the insulating film ZF is in contact with the resin film JF. Thereafter, as described above, the second jig TG2 is pulled in the horizontal direction, the static friction force generated at that time is measured, and the static friction coefficient μb is calculated. The results are shown in “Dry state” of the static friction coefficient μb in Table 1.

次に、電解液17が存在する状態での各絶縁フィルムZFと樹脂フィルムJFとの静摩擦係数μbを求めた。具体的には、絶縁フィルムZFと樹脂フィルムJFとの間に、予めスポイトで電解液17を約20cc滴下しておき、この状態で第2治具TG2を水平方向に引っ張り、そのときに生じる静摩擦力を測定して静摩擦係数μbを算出する。その結果を表1の静摩擦係数μbの「電解液浸漬状態」に示す。   Next, the static friction coefficient μb between each insulating film ZF and the resin film JF in the state where the electrolytic solution 17 exists was obtained. Specifically, about 20 cc of the electrolytic solution 17 is dropped in advance with a dropper between the insulating film ZF and the resin film JF, and the second jig TG2 is pulled in the horizontal direction in this state, and static friction generated at that time is generated. The static friction coefficient μb is calculated by measuring the force. The results are shown in “Electrolyte immersion state” of the static friction coefficient μb in Table 1.

表1から判るように、実施例1〜4及び比較例1〜3のいずれの絶縁フィルムZFも、「電解液浸漬状態」において、絶縁フィルムZFの内側面と電極体表面を模した樹脂フィルムJFとの静摩擦係数μbよりも、絶縁フィルムZFの外側面と電池ケースを模した金属板ABとの静摩擦係数μaの方が小さい(μa<μb)。従って、電池の拘束荷重Fcを小さくするには、小さい方の静摩擦係数である「静摩擦係数μa」を大きくすることを検討すれば良いことが判る。   As can be seen from Table 1, in any of the insulating films ZF of Examples 1 to 4 and Comparative Examples 1 to 3, the resin film JF imitating the inner surface of the insulating film ZF and the electrode body surface in the “electrolyte immersion state” The static friction coefficient μa between the outer surface of the insulating film ZF and the metal plate AB imitating the battery case is smaller (μa <μb). Therefore, it can be seen that in order to reduce the binding load Fc of the battery, it is sufficient to consider increasing the “static friction coefficient μa” which is the smaller static friction coefficient.

次に、絶縁フィルムZFの外側面と電池ケースを模した金属板ABとの静摩擦係数μaについて、実施例1〜4と比較例1〜3とを比較すると、比較例1〜3の絶縁フィルムZFでは、静摩擦係数μaが「乾燥状態」と「電解液浸漬状態」とで殆ど差がない(差が最大で0.02しかない)。これに対し、実施例1〜4の絶縁フィルムZFでは、静摩擦係数μaが「乾燥状態」に比して「電解液浸漬状態」で大きく(0.15〜0.20)なることが判る。
なお、絶縁フィルムZFの内側面と電極体表面を模した樹脂フィルムJFとの静摩擦係数μbについては、実施例1〜4及び比較例1〜3のいずれの絶縁フィルムZFでも、「乾燥状態」と「電解液浸漬状態」とで殆ど差がなかった(差が最大で0.03しかない)。
Next, with respect to the static friction coefficient μa between the outer surface of the insulating film ZF and the metal plate AB simulating a battery case, when comparing Examples 1-4 and Comparative Examples 1-3, the insulating film ZF of Comparative Examples 1-3 Then, there is almost no difference in the static friction coefficient μa between the “dry state” and the “electrolyte immersion state” (the difference is only 0.02 at the maximum). On the other hand, in the insulating films ZF of Examples 1 to 4, the static friction coefficient μa is larger (0.15 to 0.20) in the “electrolyte immersion state” than in the “dry state”.
In addition, about the static friction coefficient (micro | micron | mu) b of the resin film JF imitating the inner surface of the insulating film ZF and the electrode body surface, in any insulating film ZF of Examples 1-4 and Comparative Examples 1-3, it is "dry state". There was almost no difference between the “electrolyte immersion state” (the difference was only 0.03 at the maximum).

比較例1の絶縁フィルムZFで「電解液浸漬状態」の静摩擦係数μaが「乾燥状態」に比して大きくならないのは、以下の理由によると考えられる。即ち、比較例1では、絶縁フィルムZFの外側面の三次元平均表面粗さSRaAが小さく、SRaA<0.15であるため、絶縁フィルムZFの外側面と金属板ABとの間に隙間が生じ難く、電解液17が入り込み難い。このため、電解液17を介して絶縁フィルムZFと金属板ABとが密着し難いので、「電解液浸漬状態」においても静摩擦係数μaが大きくならないと考えられる。   The reason why the static friction coefficient μa in the “electrolyte immersion state” does not become larger than that in the “dry state” in the insulating film ZF of Comparative Example 1 is considered to be as follows. That is, in Comparative Example 1, since the three-dimensional average surface roughness SRaA of the outer surface of the insulating film ZF is small and SRaA <0.15, a gap is generated between the outer surface of the insulating film ZF and the metal plate AB. It is difficult and the electrolytic solution 17 is difficult to enter. For this reason, it is difficult for the insulating film ZF and the metal plate AB to be in close contact with each other through the electrolytic solution 17, so that it is considered that the static friction coefficient μa does not increase even in the “electrolyte immersed state”.

一方、実施例1〜4の絶縁フィルムZFでは、絶縁フィルムZFの外側面の三次元平均表面粗さSRaAが大きく、SRaA≧0.15であるため、絶縁フィルムZFの外側面と金属板ABとの間に小さな隙間が生じ、ここに電解液17が入り込むことにより、電解液17を介して絶縁フィルムZFと金属板ABとが密着し易くなる。このため、「乾燥状態」に比して「電解液浸漬状態」で静摩擦係数μaが大きくなると考えられる。
この結果から、「電解液浸漬状態」の静摩擦係数μaを大きくするには、SRaA≧0.15とする必要があることが判る。
On the other hand, in the insulating films ZF of Examples 1 to 4, since the three-dimensional average surface roughness SRaA of the outer surface of the insulating film ZF is large and SRaA ≧ 0.15, the outer surface of the insulating film ZF and the metal plate AB A small gap is generated between the insulating film ZF and the insulating film ZF and the metal plate AB are easily brought into close contact with each other through the electrolytic solution 17. For this reason, it is considered that the static friction coefficient μa is larger in the “electrolyte immersion state” than in the “dry state”.
From this result, it can be seen that SRaA ≧ 0.15 is required to increase the static friction coefficient μa in the “electrolyte immersion state”.

次に、比較例2の絶縁フィルムZFでは、「電解液浸漬状態」の静摩擦係数μaが「乾燥状態」に比して大きくならない。即ち、この比較例2のように、SRaA<SRaBである場合は、「電解液浸漬状態」の静摩擦係数μaが小さい。このことから、「電解液浸漬状態」の静摩擦係数μaを大きくするには、SRaA≧SRaBとする必要があることが判る。
また、比較例3の絶縁フィルムZFでは、「電解液浸漬状態」の静摩擦係数μaが「乾燥状態」に比して大きくならない。即ち、この比較例3のように、SRaB<0.03である場合は、「電解液浸漬状態」の静摩擦係数μaが小さい。このことから、「電解液浸漬状態」の静摩擦係数μaを大きくするには、SRaB≧0.03とする必要があることが判る。
以上より、「電解液浸漬状態」の静摩擦係数μaを大きくするには、SRaA≧0.15、SRaB≧0.03、かつ、SRaA≧SRaBとする必要があることが判る。
Next, in the insulating film ZF of Comparative Example 2, the static friction coefficient μa in the “electrolyte immersion state” does not become larger than that in the “dry state”. That is, as in Comparative Example 2, when SRaA <SRaB, the static friction coefficient μa in the “electrolyte immersion state” is small. From this, it can be seen that SRaA ≧ SRaB is required to increase the static friction coefficient μa in the “electrolyte immersion state”.
Further, in the insulating film ZF of Comparative Example 3, the static friction coefficient μa in the “electrolyte immersion state” does not become larger than that in the “dry state”. That is, as in Comparative Example 3, when SRaB <0.03, the static friction coefficient μa in the “electrolyte immersion state” is small. From this, it can be seen that SRaB ≧ 0.03 is necessary to increase the static friction coefficient μa in the “electrolyte immersion state”.
From the above, it can be seen that SRaA ≧ 0.15, SRaB ≧ 0.03, and SRaA ≧ SRaB must be satisfied in order to increase the static friction coefficient μa in the “electrolyte immersion state”.

次に、実施例1及び比較例1の各絶縁フィルムZFを用いて、それ以外は実施形態と同様にして電池をそれぞれ作製した。そして、各電池について、「ハイレート放電サイクル試験」を行って、試験前後での電池抵抗の「抵抗上昇率(%)」をそれぞれ求めた。まず、試験を開始するにあたり、各電池をそれぞれ2枚の矩形板状の拘束板で電池厚み方向BHに挟んで拘束して、前述の組電池200と同様に、絶縁フィルムZFが電池ケース10と電極体20との間で押圧された状態とする。   Next, batteries were produced in the same manner as in the embodiment except that each insulating film ZF of Example 1 and Comparative Example 1 was used. And about each battery, the "high-rate discharge cycle test" was done and "resistance increase rate (%)" of the battery resistance before and behind a test was calculated | required, respectively. First, when starting the test, each battery is restrained by being sandwiched between two rectangular plate-like restraining plates in the battery thickness direction BH, and the insulating film ZF is connected to the battery case 10 in the same manner as the assembled battery 200 described above. It is set as the state pressed between the electrode bodies 20.

なお、各電池の拘束に必要な拘束荷重Fcは、前述の式(1)から得られる。実施例1に係る絶縁フィルムZFの「電解液浸漬状態」での静摩擦係数μa1=0.67であり、比較例1に係る絶縁フィルムZFの「電解液浸漬状態」での静摩擦係数μa2=0.32である。従って、下記の式(3)〜(5)から、実施例1の電池1に必要な拘束荷重Fc1は、比較例1の電池に必要な拘束荷重Fc2を基準(100%)とすると、47.8%の大きさで足りることが判る。
Fc1=(Fd/2)/μa1 ・・・(3)
Fc2=(Fd/2)/μa2 ・・・(4)
(Fc1/Fc2)×100=(μa2/μa1)×100=47.8(%)・・・(5)
The restraining load Fc necessary for restraining each battery is obtained from the above-described equation (1). The coefficient of static friction μa1 in the “electrolyte immersion state” of the insulating film ZF according to Example 1 is 0.67, and the coefficient of static friction μa2 in the “electrolyte immersion state” of the insulating film ZF according to Comparative Example 1 = 0. 32. Therefore, from the following formulas (3) to (5), if the restraining load Fc1 necessary for the battery 1 of Example 1 is based on the restraining load Fc2 necessary for the battery of Comparative Example 1 (100%), 47. It can be seen that 8% is sufficient.
Fc1 = (Fd / 2) / μa1 (3)
Fc2 = (Fd / 2) / μa2 (4)
(Fc1 / Fc2) × 100 = (μa2 / μa1) × 100 = 47.8 (%) (5)

次に、各電池について、初期の電池抵抗(mΩ)をそれぞれ測定した。具体的には、SOC60%に調整した各電池について、25℃の温度環境下において、規定の電流(例えば60・90・120Aなど)及び時間(10秒など)にて充放電を行い、そのときの電圧変動量及びオームの法則(R=V/I)より、電池IV抵抗を算出し、これを初期の電池抵抗とした。   Next, the initial battery resistance (mΩ) was measured for each battery. Specifically, each battery adjusted to SOC 60% is charged and discharged at a specified current (for example, 60, 90, 120 A, etc.) and time (for example, 10 seconds) in a temperature environment of 25 ° C. The battery IV resistance was calculated from the voltage fluctuation amount and Ohm's law (R = V / I), and this was used as the initial battery resistance.

その後、各電池について、「ハイレート放電サイクル試験」を行った。具体的には、SOC60%に調整した各電池について、25℃の温度環境下において、約35Cの定電流で10秒間放電した後、5秒間休止した。その後、約3Cの定電流で125秒間充電した後、5秒間休止した。これを約1000サイクル行った。その後、「ハイレート放電サイクル試験」を終えた各電池について、前述のようにして試験後の電池抵抗(mΩ)を求めた。そして、初期の電池抵抗と試験後の電池抵抗とから、抵抗上昇率(%)をそれぞれ算出した。その結果を図5に示す。   Thereafter, a “high rate discharge cycle test” was performed for each battery. Specifically, each battery adjusted to SOC 60% was discharged at a constant current of about 35 C for 10 seconds in a temperature environment of 25 ° C. and then rested for 5 seconds. Thereafter, the battery was charged with a constant current of about 3 C for 125 seconds and then rested for 5 seconds. This was carried out for about 1000 cycles. Thereafter, the battery resistance (mΩ) after the test was determined as described above for each battery for which the “high-rate discharge cycle test” was completed. Then, the rate of increase in resistance (%) was calculated from the initial battery resistance and the battery resistance after the test. The result is shown in FIG.

図5から判るように、比較例1の電池では、抵抗上昇率が大きく約133%であったのに対し、実施例1の電池1では、抵抗上昇率が小さく約105%であった。
このような結果を生じる理由は、以下であると考えられる。即ち、「ハイレート放電サイクル試験」において、大電流の放電を行うと、活物質の膨張や電極体20の熱膨張に伴い、電極体20内に保持された電解液17に圧力が掛かる。一方、放電に伴って負極活物質層27付近の電解液17中に含まれるリチウムイオンの濃度が上がり、このイオン濃度の高い電解液17が、電極体20の内部から外部に押し出される。従って、大電流の放電を繰り返すと、電極体20内部の電解液17のイオン濃度が徐々に低くなる現象が生じる。そうすると、電極体20内部で電池反応に寄与し得るリチウムイオンが少なくなるので、電池抵抗が増加すると考えられる。
As can be seen from FIG. 5, in the battery of Comparative Example 1, the rate of increase in resistance was large and about 133%, whereas in Battery 1 of Example 1, the rate of increase in resistance was small and about 105%.
The reason for such a result is considered as follows. That is, in the “high-rate discharge cycle test”, when a large current is discharged, pressure is applied to the electrolytic solution 17 held in the electrode body 20 with the expansion of the active material and the thermal expansion of the electrode body 20. On the other hand, along with the discharge, the concentration of lithium ions contained in the electrolyte solution 17 near the negative electrode active material layer 27 increases, and the electrolyte solution 17 having a high ion concentration is pushed out of the electrode body 20 to the outside. Therefore, when large current discharge is repeated, a phenomenon occurs in which the ion concentration of the electrolyte solution 17 inside the electrode body 20 gradually decreases. Then, since lithium ions that can contribute to the battery reaction in the electrode body 20 are reduced, it is considered that the battery resistance is increased.

実施例1の電池1では、比較例1の電池に比して、前述のように電池の拘束荷重Fcが小さい。電池の拘束荷重Fcを小さくすると、大電流の放電時に電極体20内部の電解液17に掛かる圧力が小さくなるので、電極体20内から押し出されるイオン濃度の高い電解液17の量が少なくなる。これにより、電極体20内の電解液17のイオン濃度が低下するのを抑制できるので、「ハイレート放電サイクル試験」における電池抵抗の上昇を抑制できると考えられる。   In the battery 1 of Example 1, as compared with the battery of Comparative Example 1, the binding load Fc of the battery is small as described above. When the battery restraint load Fc is reduced, the pressure applied to the electrolyte solution 17 in the electrode body 20 during a large current discharge is reduced, so that the amount of the electrolyte solution 17 having a high ion concentration pushed out from the electrode body 20 is reduced. Thereby, since it can suppress that the ion concentration of the electrolyte solution 17 in the electrode body 20 falls, it is thought that the raise of the battery resistance in a "high-rate discharge cycle test" can be suppressed.

以上で説明したように、前述の電池1では、絶縁フィルム31が、電池ケース10に接する外側面31aの三次元平均表面粗さSRaA(μm)が、SRaA≧0.15を満たす。本実施形態では、SRaA=0.227(μm)である。また、絶縁フィルム31は、電極体20に接する内側面31bの三次元平均表面粗さSRaB(μm)が、SRaB≧0.03、かつ、SRaA≧SRaBを満たす。本実施形態では、SRaB=0.058(μm)である。これにより、絶縁フィルム31の外側面31aと電池ケース10との静摩擦係数μaを大きくでき、電池1の拘束荷重Fcの増大に伴う不具合を抑制して信頼性を高くできる。具体的には、電池1の拘束荷重Fcを小さくすることで、「ハイレート放電サイクル試験」を行ったときに電池抵抗が上昇するのを抑制できる。また、電池1の拘束荷重Fcを小さくすることで、電池ケース10内に導電性の異物が混入している場合に、導電性の異物が絶縁フィルム31を貫通して、電池ケース10と電極体20との間で短絡を生じるのを防止できる。また、電池1を拘束するための拘束部材220を小型化できる。   As described above, in the battery 1 described above, the three-dimensional average surface roughness SRaA (μm) of the outer surface 31a of the insulating film 31 in contact with the battery case 10 satisfies SRaA ≧ 0.15. In this embodiment, SRaA = 0.227 (μm). In addition, in the insulating film 31, the three-dimensional average surface roughness SRaB (μm) of the inner side surface 31b in contact with the electrode body 20 satisfies SRaB ≧ 0.03 and SRaA ≧ SRaB. In the present embodiment, SRaB = 0.058 (μm). As a result, the static friction coefficient μa between the outer surface 31a of the insulating film 31 and the battery case 10 can be increased, and defects associated with an increase in the binding load Fc of the battery 1 can be suppressed and reliability can be increased. Specifically, by reducing the binding load Fc of the battery 1, it is possible to suppress an increase in battery resistance when the “high rate discharge cycle test” is performed. Further, by reducing the restraining load Fc of the battery 1, when conductive foreign matter is mixed in the battery case 10, the conductive foreign matter penetrates the insulating film 31, and the battery case 10 and the electrode body. It is possible to prevent a short circuit from occurring with 20. Further, the restraining member 220 for restraining the battery 1 can be reduced in size.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、溶着によって絶縁フィルム31同士を固定して袋状絶縁部材30を形成したが、これに限られない。例えば粘着テープや接着剤を用いて、絶縁フィルム31同士を固定して袋状絶縁部材30を形成してもよい。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the insulating films 31 are fixed to each other by welding to form the bag-shaped insulating member 30, but the present invention is not limited to this. For example, the bag-shaped insulating member 30 may be formed by fixing the insulating films 31 using an adhesive tape or an adhesive.

1 電池(リチウムイオン二次電池)
10 電池ケース
20 電極体
30 袋状絶縁部材(絶縁部材)
31 絶縁フィルム
31a (絶縁フィルムの)外側面
31b (絶縁フィルムの)内側面
40 正極端子
41 負極端子
200 組電池
220 拘束部材
1 Battery (Lithium ion secondary battery)
10 battery case 20 electrode body 30 bag-like insulating member (insulating member)
31 Insulating film 31a Outer surface 31b (of insulating film) Inner surface 40 (of insulating film) 40 Positive electrode terminal 41 Negative electrode terminal 200 Battery pack 220 Restraint member

Claims (1)

金属製で直方体状の電池ケースと、
上記電池ケース内に収容された電極体と、
絶縁フィルムからなり、上記電池ケースと上記電極体との間に介在して両者を絶縁する絶縁部材と、を備える
電池であって、
上記絶縁フィルムは、
上記電池ケースに接する外側面の三次元平均表面粗さSRaAが、SRaA≧0.15を満たし、
上記電極体に接する内側面の三次元平均表面粗さSRaBが、SRaB≧0.03を満たし、かつ、
SRaA≧SRaBを満たす
電池。
A rectangular battery case made of metal,
An electrode body housed in the battery case;
An insulating film comprising an insulating film and interposed between the battery case and the electrode body to insulate the battery,
The insulating film is
Three-dimensional average surface roughness SRaA of the outer surface in contact with the battery case satisfies SRaA ≧ 0.15,
The three-dimensional average surface roughness SRaB of the inner surface in contact with the electrode body satisfies SRaB ≧ 0.03, and
A battery that satisfies SRaA ≧ SRaB.
JP2015069603A 2015-03-30 2015-03-30 battery Pending JP2016189303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069603A JP2016189303A (en) 2015-03-30 2015-03-30 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069603A JP2016189303A (en) 2015-03-30 2015-03-30 battery

Publications (1)

Publication Number Publication Date
JP2016189303A true JP2016189303A (en) 2016-11-04

Family

ID=57239910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069603A Pending JP2016189303A (en) 2015-03-30 2015-03-30 battery

Country Status (1)

Country Link
JP (1) JP2016189303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189302A (en) * 2015-03-30 2016-11-04 トヨタ自動車株式会社 Battery and insulation film
JP7482069B2 (en) 2020-03-25 2024-05-13 株式会社Gsユアサ Energy storage element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189302A (en) * 2015-03-30 2016-11-04 トヨタ自動車株式会社 Battery and insulation film
JP7482069B2 (en) 2020-03-25 2024-05-13 株式会社Gsユアサ Energy storage element

Similar Documents

Publication Publication Date Title
US20200235360A1 (en) Battery Cell of Venting Structure Using Taping
US9911949B2 (en) Secondary battery having pouch type exterior member with downwardly folded sealing part
KR101872083B1 (en) Producing method of assembled battery
US20180097254A1 (en) Electrode body for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
EP2680361A1 (en) Jelly roll-type electrode assembly with active material pattern-coated thereon, and secondary battery having same
KR101874181B1 (en) Battery assembly
JP5459742B2 (en) Secondary battery and manufacturing method thereof
US10164233B2 (en) Lithium ion secondary battery comprising a heat sealed separator
CN103227311A (en) Sealed secondary battery
JP2006173095A (en) Battery structure
KR20130139026A (en) Pouch typed battery having a non-exposure sealing portion
KR20130097881A (en) Method for manufacturing a secondary battery and the secondary battery manufactured thereby
KR101302075B1 (en) Couple structure of electrode tab and terminal for secondary battery and Secondary battery having the same
JP5821652B2 (en) Storage element module
US20150221946A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, method for manufacturing negative electrode for nonaqueous electrolyte secondary batteries, and method for manufacturing nonaqueouselectrolyte secondary battery
KR101486623B1 (en) Pouch type secondary battery and method for manufacturing the same
JP2016189303A (en) battery
JP6359995B2 (en) battery
US10693120B2 (en) Energy storage device
JP5459139B2 (en) Assembled battery
JP6219873B2 (en) Battery and insulation film
CN111146505B (en) Non-aqueous electrolyte secondary battery
KR101527256B1 (en) Secondary battery
KR101488056B1 (en) Battery module improved safety
KR20140013134A (en) Secondary battery