JP2016188944A - 音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法、音響モデル学習プログラム及び音声認識プログラム - Google Patents

音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法、音響モデル学習プログラム及び音声認識プログラム Download PDF

Info

Publication number
JP2016188944A
JP2016188944A JP2015068915A JP2015068915A JP2016188944A JP 2016188944 A JP2016188944 A JP 2016188944A JP 2015068915 A JP2015068915 A JP 2015068915A JP 2015068915 A JP2015068915 A JP 2015068915A JP 2016188944 A JP2016188944 A JP 2016188944A
Authority
JP
Japan
Prior art keywords
acoustic
acoustic model
parameter
feature amount
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015068915A
Other languages
English (en)
Other versions
JP6506074B2 (ja
Inventor
マーク デルクロア
Marc Delcroix
マーク デルクロア
慶介 木下
Keisuke Kinoshita
慶介 木下
貴明 堀
Takaaki Hori
貴明 堀
智広 中谷
Tomohiro Nakatani
智広 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015068915A priority Critical patent/JP6506074B2/ja
Publication of JP2016188944A publication Critical patent/JP2016188944A/ja
Application granted granted Critical
Publication of JP6506074B2 publication Critical patent/JP6506074B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

【課題】音声認識の際に、音響モデルのパラメータ適応を高速に実現する。
【解決手段】音響モデルであるニューラルネットワークの隠れ層は、音響条件特徴量を示す音響条件特徴量ベクトルのうち、n番目のフレームから抽出された音響条件特徴量ベクトルyn∈RK(K次元実数空間)のk番目(kは1,2,・・・,Kなる自然数、Kは音響条件の数を示す自然数)の要素である音響条件特徴量yk,n毎に、重み行列Wi,k及びバイアスベクトルbi,kが分解された形になっている。音声認識時において、音響条件特徴量yk,nに基づき、分解された隠れ層毎に線形変換を行い、音響条件に自動適応する。
【選択図】図1

Description

本発明は、音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法、音響モデル学習プログラム及び音声認識プログラムに関する。
従来から、学習用の音声データを隠れマルコフモデル(以下、HMM(Hidden Markov Model)と称す)に基づき学習した音響モデルを用いて、認識用音声データから話者の音声を認識する技術がある(例えば非特許文献1参照)。
認識用音声データは、周囲の雑音や話者の多様性等のため、学習用の音声データと特徴が一致しないことが多い。つまり、学習用の音声データ及び認識用音声データそれぞれが置かれる周囲の雑音を含む音響環境や話者毎の特性である話者特性等の音響条件の不一致は、音声の認識精度を低下させる。このため、音声認識技術は、音響条件に対してロバストであることが求められる。ロバストな音声認識技術として、認識用音声データが音響モデルに適合するように、適応データを用いて音響モデルのパラメータを再推定により学習する技術が知られている(例えば非特許文献2参照)。また、パラメータの再推定方法としては、誤差逆伝搬法等が広く用いられている(例えば非特許文献3参照)。
G. Hinton et al., "Deep Neural Networks for Acoustic Modeling in Speech Recognition, "The shared views of four research groups," IEEE SIGNAL PROCESSING MAGAZINE, Vol. 29,No. 6, pp. 82−97, 2012. H. Liao, "SPEAKER ADAPTATION OF CONTEXT DEPENDENT DEEP NEURAL NETWORKS," in Proc. of ICASSP’13, 2013, pp. 7947−7951. S. Haykin, "NEURAL NETWORKS: A COMPREHENSIVE FOUNDATION," Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1999.
しかしながら、上記技術は、音響モデルの学習用の音声データが置かれる音響条件と、認識用音声データが置かれる音響条件が必ずしも同一ではないため、音響モデルと音声認識時の音声特徴量にミスマッチがあり、結果、音声認識の精度が低下する。
音声認識の精度の低下を抑制するため、例えば、認識用音声データと同様な音響条件の適応データを用いて音響モデルのパラメータを適応させる。しかし、大量の音響モデルのパラメータを精度よく推定するために、膨大な音声データ量が必要になる。また、パラメータ推定のために用いる音声には,その音声を表現するラベル(例えば話者IDやトランスクリプション等)が必要になる。そのため、観測した認識用音声データを音響モデルのパラメータを適応させる際に膨大な計算が必要になり、高速なパラメータ適応ができないという問題がある。
そこで、本願が開示する実施形態の一例は、音声認識の際に、音響モデルのパラメータ適応を高速に実現することを目的とする。
本願の実施形態の一例において、音響モデル学習装置は、1つ以上の隠れ層を有するニューラルネットワークで表される音響モデルを特徴付けるパラメータを記憶する第1の記憶部を有する。そして、音響モデル学習装置は、音響モデルを学習するための学習用音声データから、学習用音声データの特徴を示す第1の特徴量を抽出する。そして、音響モデル学習装置は、学習用音声データから、学習用音声データの音響条件を示す第1の音響条件特徴量を抽出する。そして、音響モデル学習装置は、パラメータを、第1の音響条件特徴量の成分毎のパラメータへ補正する。そして、音響モデル学習装置は、第1の特徴量と、第1の音響条件特徴量の成分毎のパラメータとをもとに、第1の記憶部に記憶されるパラメータを更新する。
また、本願の実施形態の一例において、音声認識装置は、上記音響モデル学習装置により更新されたパラメータと、候補単語列を含む言語モデルとを記憶する第2の記憶部を有する。そして、音声認識装置は、音声認識対象の認識用音声データから、認識用音声データの特徴を示す第2の特徴量を抽出する。そして、音声認識装置は、認識用音声データから、認識用音声データの音響条件を示す第2の音響条件特徴量を抽出する。そして、音声認識装置は、第2の記憶部に記憶される、更新されたパラメータを、第2の音響条件特徴量の成分毎のパラメータへ補正する。そして、第2の特徴量と、第2の音響条件特徴量の成分毎のパラメータとをもとに、認識用音声データと対応する1つ以上の対立候補音素系列を生成し、該対立候補音素系列をもとに言語モデルを検索し、言語モデルに含まれる、対立候補音素系列との適合尤度が最大である候補単語列を出力する。
本願が開示する実施形態の一例によれば、例えば、音声認識の際に、音響モデルのパラメータ適応を高速に実現することができる。
図1は、実施形態に係るCADNNの概要の一例を示す図である。 図2は、実施形態に係る音響モデル学習装置の構成の一例を示す図である。 図3は、実施形態に係る音響モデル学習処理の一例を示すフローチャートである。 図4は、実施形態に係る音声認識装置の構成の一例を示す図である。 図5は、実施形態に係る音声認識処理の一例を示すフローチャートである。 図6は、プログラムが実行されることにより、実施形態に係る音響モデル学習装置及び音声認識装置が実現されるコンピュータの一例を示す図である。 図7は、第1の従来技術に係る音声認識装置の構成の一例を示す図である。 図8は、第1の従来技術の処理の概要の一例を示す図である。 図9は、第1の従来技術に係る音声認識処理の一例を示すフローチャートである。 図10は、第2の従来技術に係る音声認識装置の構成の一例を示す図である。 図11は、第2の従来技術に係る音声認識処理の一例を示すフローチャートである。 図12は、第3の従来技術に係る音響モデル再学習装置の構成の一例を示す図である。 図13は、第3の従来技術に係る音声モデル再学習処理の一例を示すフローチャートである。
以下、本願が開示する音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法、音響モデル学習プログラム及び音声認識プログラムの実施形態の一例の説明に先立ち、実施形態の一例が前提とする従来技術を説明する。その後、本願が開示する音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法、音響モデル学習プログラム及び音声認識プログラムの実施形態の一例を説明する。
なお、以下では、例えばAがベクトルである場合には“ベクトルA”と表記し、例えばAがスカラーである場合には単に“A”と表記する。また、例えばAが集合である場合には、“集合A”と表記する。また、例えばベクトルAの関数fは、f(ベクトルA)と表記する。また、ベクトル又はスカラーであるAに対し、“^A”と記載する場合は「“A”の直上に“^”が記された記号」と同等であるとする。また、ベクトル又はスカラーであるAに対し、“−A”と記載する場合は「“A”の直上に“−” が記された記号」と同等であるとする。また、ベクトル又はスカラーであるAに対し、ATはAの転置を表す。
<第1の従来技術>
第1の従来技術は、例えば文献1「G. Hinton et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition, “The shared views of four research groups,” IEEE SIGNAL PROCESSING MAGAZINE, Vol. 29,No. 6, pp. 82−97, 2012.」に示される音声認識技術である。図7は、第1の従来技術に係る音声認識装置の構成の一例を示す図である。図7に示すように、第1の従来技術に係る音声認識装置200Aは、特徴量抽出部210A、HMM状態の出力確率計算部220A、単語列検索部230Aを有する。また、音声認識装置200Aは、記憶部300Aと接続される。
記憶部300Aは、音響モデル及び言語モデルを予め記憶する。音響モデルは、音声の音響的特徴をモデル化したものである。言語モデルは、音素や単語といった多数のシンボル系列から構成されている。一般的に、音声認識用の音響モデルは、各音素をLeft to rightのHMMであり、ニューラルネットワーク(以下、NN(Neural Network)と称す)で計算されたHMMの各状態の出力確率分布を含む。
すなわち、記憶部300Aに記憶されている音響モデルは、音素等の各シンボルにおけるHMMの状態遷移確率、i番目の隠れ層に関する重み行列Wi及びバイアスベクトルbi、アクティベーション関数のパラメータ等を含むNNのパラメータである。ここで、iは、隠れ層のインデックスである。これらを音響モデルパラメータと称し、その集合をΛ={W1,b1,・・・,WI,bI}(Iは、隠れ層の総数)とする。言語モデルは、音素や単語といった多数のシンボル系列Sjから構成されており、P(Sj)は言語モデルによって得られるシンボル系列Sjの確率(言語確率)である。なお、シンボル系列Sjとは、音声認識結果となりうる、音素や単語等からなるシンボルの系列である。
特徴量抽出部210Aは、認識用音声データを読み込み、認識用音声データから音声の特徴量を抽出する。特徴量としては、例えば、MFCC(Mel Frequency Cepstral Coefficient)、LMFC(log Mel Filterbank coefficients)、ΔMFCC(MFCCの1回微分)、ΔΔMFCC(MFCCの2回微分)、対数パワー、Δ対数パワー(対数パワーの1回微分)等がある。
そして、特徴量抽出部210Aは、フレーム毎に当該フレーム及びその前後5フレーム程度の連続する各フレームから得られる特徴量を連結し、10〜2000次元程度の時系列特徴量ベクトルon(nは、1,・・・,Nの自然数)を生成する。そして、特徴量抽出部210Aは、下記(1)式のように、全てのフレームについての時系列特徴量ベクトルonをまとめた特徴量ベクトルOを生成する。特徴量ベクトルOは、1からNフレーム目までのD次元ベクトルで表現されるデータである。例えば、フレーム長は、30ms程度、フレームシフト長は、10ms程度である。
Figure 2016188944
HMM状態の出力確率計算部220Aは、記憶部300Aから音響モデルパラメータΛを読み込み、読み込んだ音響モデルパラメータΛに基づき、特徴量ベクトルOの各フレームnに対する音響モデルの各HMM状態の出力確率を計算する。図8は、第1の従来技術の処理の概要の一例を示す図である。図8に示すように、従来技術の音声認識に音響モデルを表すニューラルネットワークは、入力と出力との間に、1以上の隠れ層を有する。ニューラルネットワークの入力は、時系列特徴量ベクトルonであり、最前段の隠れ層へ入力される。ニューラルネットワークの出力は、最後段の隠れ層によるHMM状態の出力確率である。HMM状態の出力確率計算部220Aが行う各隠れ層における計算は、線形変換による処理及びアクティベーション関数による処理の2つの処理を含む。各隠れ層における線形変換は、下記(2)式のようになる。
Figure 2016188944
ただし、上記(2)式において、ベクトルzi,nは、i番目(iは自然数であり、i=1,2,・・・,I(ただしIは隠れ層の総数))の隠れ層における線形変換の出力であり、ベクトルxi-1,nは(i−1)番目の隠れ層の出力である。なお、ベクトルx0,nは、ニューラルネットワークの入力である時系列特徴量ベクトルonである。また、アクティベーション関数の出力は、下記(3)式のようになる。
Figure 2016188944
ただし、上記(3)式において、ベクトルxi,nはi番目の隠れ層の出力であり、σは、例えばsigmoid関数等のアクティベーション関数であり、σ(ベクトルzi,n)ベクトルの要素毎に計算される。すなわち、HMM状態の出力確率計算部220Aは、i番目の隠れ層において、前段の隠れ層である(i−1)番目の隠れ層の出力であるベクトルxi-1,nに対し上記(2)式による線形変換を行った結果であるベクトルzi,nに対して、上記(2)式による処理を行った結果であるベクトルxi,nを出力する。そして、HMM状態の出力確率計算部220Aは、各ベクトルxi,n(i=1,2,・・・,I)に基づき、特徴量ベクトルOの各フレームnに対する音響モデルの各HMM状態の出力確率を計算する。
単語列検索部230Aは、HMM状態の出力確率計算部220Aにより計算された各HMM状態の出力確率に基づき、J個(Jは自然数)の対立候補シンボル系列Sjを生成し、対立候補シンボル系列Sj毎に、音響モデルとの適合尤度を示す音響スコアを計算する。シンボルは、例えば、音素である。ここで、j=1,2,…,Jである。次に、単語列検索部230Aは、記憶部300Aから読み込んだ言語モデルに基づき、対立候補シンボル系列Sj毎に、言語モデルとの適合尤度を示す言語スコアを計算する。そして、単語列検索部230Aは、計算した音響スコア及び言語スコアに基づき、J個の対立候補シンボル系列Sjの中から、認識用音声データに対応する単語列として最も確からしい、つまり、音響スコア及び言語スコアを統合したスコアが最も高い対立候補シンボル系列を、記憶部300Aに記憶される言語モデルから検索し、検索した対立候補シンボル系列を、認識結果である単語列^Sとして出力する。
図9は、第1の従来技術に係る音声認識処理の一例を示すフローチャートである。先ず、音声認識装置200Aは、記憶部300Aから、音響モデルパラメータΛを読み込む(ステップS210A)。次に、音声認識装置200Aは、記憶部300Aから、言語モデルを読み込む(ステップS220A)。次に、音声認識装置200Aは、認識用音声データを読み込む(ステップS230A)。次に、音声認識装置200Aは、読み込んだ認識用音声データから音声の特徴量を抽出し、特徴量ベクトルOを生成する(ステップS240A)。次に、音声認識装置200Aは、読み込んだ音響モデルパラメータΛに基づき、特徴量ベクトルOの各フレームnに対する音響モデルの各HMM状態の出力確率を計算する(ステップS250A)。次に、音声認識装置200Aは、HMM状態の出力確率計算部220Aにより計算された各HMM状態の出力確率に基づき、対立候補シンボル系列Sjを生成し、対立候補シンボル系列Sj毎の音響スコア及び言語スコアを統合したスコアが最も高い対立候補シンボル系列を、記憶部300Aに記憶される言語モデルから検索する(ステップS260A)。次に、音声認識装置200Aは、ステップS260Aの検索結果を、認識結果である単語列^Sとして出力する(ステップS270A)。
<第2の従来技術>
ここで、一般的に、音響モデルの学習時と認識時とでは、音響環境や話者特性等の音響条件が異なる。そのため、第1の従来技術の音声認識は、音響モデルと認識時の特徴量とが合致せず、十分な認識性能が得られない。そこで、音響モデルを認識時の特徴量と合致させるため、音響モデルのパラメータを補正(再推定)(以下、音響モデル補正と称す)して音声認識を行う第2の従来技術がある。第2の従来技術は、例えば文献2「H. Liao, “SPEAKER ADAPTATION OF CONTEXT DEPENDENT DEEP NEURAL NETWORKS,” in Proc. of ICASSP’13, 2013, pp. 7947−7951.」に示される音声認識技術である。以下、音響モデル補正を行う第2の従来技術について、第1の従来技術との差異部分を説明する。
図10は、第2の従来技術に係る音声認識装置の構成の一例を示す図である。音響モデル補正を行う第2の従来技術に係る音声認識装置200Bは、特徴量抽出部210B、HMM状態の出力確率計算部220B、単語列検索部230Bを有する。また、音声認識装置200Bは、記憶部300Bと接続される。
記憶部300Bは、第1の従来技術の記憶部300Aと同様であるが、記憶されている音響モデルに関しては、補正された音響モデルパラメータを記憶する。特徴量抽出部210Bは、認識用音声データを読み込み、特徴量ベクトルOを生成する。HMM状態の出力確率計算部220Bは、事前に補正された音響モデルパラメータ^Λと、特徴量抽出部210Bにより生成された特徴量ベクトルOに基づき、各HMM状態の出力確率を計算する。単語列検索部230Bは、各HMM状態の出力確率と、記憶部300Bから読み込んだ言語モデルを入力とし、認識結果である単語列^Sを出力する。
図11は、第2の従来技術に係る音声認識処理の一例を示すフローチャートである。図11に示すように、音声認識装置200Bの具体的な処理は、第1の従来技術の音声認識装置200Aと比較して、ステップS210Bで読み込む音響モデルが、補正された音響モデルである点以外は、第1の従来技術の音声認識装置200Aと同様である。
<第3の従来技術>
以下、第2の従来技術に係る音声認識装置200Bに、第3の従来技術に係る音響モデル補正(再推定)機能を有する音響モデル再学習装置100Cを適用した場合を説明する。図12は、第3の従来技術に係る音響モデル再学習装置の構成の一例を示す図である。音響モデル再学習装置100Cは、特徴量抽出部110C、音響モデル再学習部120Cを有する。また、音響モデル再学習装置100Cは、記憶部300Cと接続される。
記憶部300Cは、言語モデルは記憶せず、音響モデルパラメータΛのみを記憶する。特徴量抽出部110Cは、適応用音声データを読み込み、特徴量ベクトルOを生成する。特徴量抽出部110Cは、音声認識装置200Bの特徴量抽出部210Bと同様の処理を行う。
音響モデル再学習装置100Cが計算する、補正された音響モデルパラメータ^Λは、認識音声データと同じ音響条件の適応用音声データと、適応用音声データに関するラベルとを用いて、音響モデルパラメータΛが補正されることにより計算される。ここで、ラベルとは、手作業により書き起こされたもの(教師あり)である場合、第1又は第2の従来技術の音声認識により自動的に得られたもの(教師なし)である場合がある。教師ありのラベルを用いた音響モデルパラメータΛの補正を、教師あり補正という。また、教師なしのラベルを用いた音響モデルパラメータΛの補正を、教師なし補正という。以下、ラベルを−Srと表記する。
音響モデル再学習部120Cは、記憶部300Cから読み込んだ音響モデルパラメータΛ、特徴量抽出部110Cにより生成された特徴量ベクトルO、入力されたラベル−Srを用い、音響モデルパラメータΛを補正(再推定)する。具体的には、音響モデル再学習部120Cは、適応データ(適応用音声データの特徴量ベクトルO)と、特徴量ベクトルOと対応する正解シンボル系列Srを用い、下記(4)式の目的関数FΛが最大となるよう音響モデルパラメータ^Λを再推定する。そして、再推定された音響モデルパラメータ^Λは、例えば、第2の従来技術に係る音声認識装置200BのHMM状態の出力確率計算部220B(図10参照)で用いられる。
Figure 2016188944
ここで、音響モデル再学習部120Cが用いる音響モデルは、NNである。また、一般的に、目的関数FΛは、例えばCross Entropyが用いられる。または、例えば、上記(4)式の最適化問題は、Stochastic Gradient Descent(SGD)法で解き、そのための補正パラメータに対する微分は、文献3「S. Haykin, “NEURAL NETWORKS: A COMPREHENSIVE FOUNDATION,” Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1999.」に示されるように、Error Backpropagationアルゴリズムにより計算できる。この場合、SGDの変数であるLearning Rateとして、例えば0.0001等の微小値がしばしば用いられる。
図13は、第3の従来技術に係る音声モデル再学習処理の一例を示すフローチャートである。先ず、音響モデル再学習装置100Cは、記憶部300Cから、音響モデルパラメータΛを読み込む(ステップS110C)。次に、音響モデル再学習装置100Cは、図示しない記憶部、例えば音声認識装置200Bの記憶部300B(図10参照)から、言語モデルを読み込む(ステップS120C)。次に、音響モデル再学習装置100Cは、適応用音声データを読み込む(ステップS130C)。次に、音響モデル再学習装置100Cは、正解シンボル系列Srを読み込む(ステップS140C)。次に、音響モデル再学習装置100Cは、適応用音声データから特徴量を抽出し、特徴量ベクトルOを生成する(ステップS150C)。次に、音響モデル再学習装置100Cは、特徴量ベクトルO、入力されたラベル−Srを用い、音響モデルパラメータΛを補正(再推定)する(ステップS160C)。次に、音響モデル再学習装置100Cは、音響モデルパラメータΛを補正した音響モデルパラメータ^Λを再推定し、出力する(ステップS170C)。
[実施形態]
以下、本願が開示する音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法、音響モデル学習プログラム及び音声認識プログラムの実施形態を説明する。以下の実施形態は、一例を示すに過ぎず、本願が開示する技術を限定するものではない。また、以下に示す実施形態及びその他の実施形態は、矛盾しない範囲で適宜組合せてもよい。
<実施形態の数理的背景>
実施形態は、音響モデルパラメータの高速適応を可能とするために、音響モデル(CADNN(Context Adaptive Deep Neural Network))のパラメータを、音響条件特徴量と関連付けて学習する。そして、実施形態は、音声認識時に、認識用音声データから計算した音響条件特徴量を与えるだけで、大量の音響モデルパラメータが自動的に音響条件特徴量と対応付けられる。以下、CADNNについて述べる。
(CADNNの概要)
図1は、実施形態に係るCADNNの概要の一例を示す図である。CADNNは、従来技術とは異なり、図1に示すように、NNの隠れ層は、音響条件特徴量を示すベクトル(以下、「音響条件特徴量ベクトル」と称す)の要素毎に分解された形になっている。図1では、例示として、1つの隠れ層(i番目の隠れ層)が分解されている状態を示すが、少なくとも1つの隠れ層又は全ての隠れ層を分解するとしてもよい。分解された隠れ層の線形変換後の出力は、下記(5)式のように計算する。
Figure 2016188944
ただし、上記(5)式におけるyk,nは、詳しくは後述するが、n番目のフレームから抽出された音響条件特徴量ベクトルyn∈RK(K次元実数空間)のk番目(kは1,2,・・・,Kなる自然数、Kは音響条件の数を示す自然数)の要素である。以下、音響条件特徴量yk,nと称す。また、上記(5)式における重み行列Wi,kは、i番目の隠れ層における音響条件特徴量yk,nに対する線形変換行列である。また、上記(5)式におけるバイアスベクトルbi,kは、i番目の隠れ層における音響条件特徴量yk,nに関するバイアスベクトルである。このように、CADNNは、隠れ層をK個の音響条件の要素に分解して表現する。なお、音響条件特徴量毎の隠れ層の分解として、下記(6)式又は下記(7)式に示すものであってもよい。
Figure 2016188944
Figure 2016188944
音声認識時の音響モデルパラメータは、下記(8−1)式及び(8−2)式のように計算され、音声認識時において、音響条件特徴量yk,nに基づき、音響条件に自動適応することになる。
Figure 2016188944
音響条件特徴量yk,nは、音響条件を表す。例えば、話者適応の場合には、学習時の音声データを話者クラス毎に分割すれば、各話者クラスのモデルが学習可能になる(文献4「N. Dehak et al., “Front-End Factor Analysis for Speaker Verification,” IEEE Trans. Audio, Speech, Language Process., Vol. 19, No. 4, pp. 788−798, 2011.」参照)。その場合には、音響条件特徴量yk,nを話者クラスの事後確率とする。または、音響条件特徴量yk,nは、話者認識によく使われているi-vector等とすることもできる。i-vectorは、上記文献4に詳述されるとおりである。
また、音響条件として雑音環境等を表したい場合は、音響条件特徴量yk,nは雑音環境クラスkの事後確率とする。音響条件特徴量yk,nは、基本的に数秒の音声データで計算できる特徴量であるため、数秒の音声データを用いれば大量の音響モデルパラメータΛ={Wi,n,bi,n|1≦i≦K}を音響条件に適応させることになる。
各隠れ層の出力は、従来技術と同様に、線形変換の出力ベクトルzi,nに対してアクティベーション関数を適用し、下記(9)式のように計算される。
Figure 2016188944
音響条件特徴量yk,n毎に分解された各隠れ層の線形変換のパラメータである重み行列Wi,kとバイアスベクトルbi,kは、従来技術のNNの学習手順(誤差逆伝搬(Error backpropagation)及びSGD)(文献5「D. Yu and L. Deng, “Automatic Speech Recognition:A Deep Learning Approach,”Springer,2015.」参照)と同様に学習できる。この場合の隠れ層の線形変換のパラメータの微分は、下記(10−1)式及び(10−2)式のようになる。
Figure 2016188944
ただし、上記(10−1)式及び(10−2)式におけるFは、最適化基準を表す(例えばCross Entropy)。また、ベクトルδi,nは逆伝搬した誤差を表し、下記(11)式のように計算する。Hadamard積は、行列又はベクトルの要素毎の積である。
Figure 2016188944
上記(11)式は、従来技術の誤差逆伝搬の式と同じであるが、上記(11)式で用いられる重み行列Wi+1,nとベクトルzi,nは、CADNNで新たに導入した上記(8−1)式及び(8−2)式と、上記(5)式(あるいは上記(6)式もしくは上記(7)式)に基づき計算される。エラーベクトルδI,nはエラー項である。エラーベクトルδI,nは、入力特徴量ベクトルYとNNに基づき計算されるネットワークの出力(HMM状態の出力確率)であるベクトルxI,nと、入力正解シンボル系列Srとから得られる正解HMM状態dnに基づき、従来技術と同様に、逆伝搬した誤差として、下記(12)式のように計算される。
Figure 2016188944
<実施形態の一例>
(実施形態に係る音響モデル学習装置の構成)
上記実施形態の数理的背景を踏まえ、以下、実施形態の一例を説明する。図2は、実施形態に係る音響モデル学習装置の構成の一例を示す図である。図2に示すように、実施形態に係る音響モデル学習装置10は、特徴量抽出部11、音響条件特徴量抽出部12、音響モデルパラメータ補正部13、HMM状態の出力確率計算部14、エラー計算部15、音響モデルパラメータ微分値計算部16、音響モデルパラメータ更新部17、収束判定部18を有する。また、音響モデル学習装置10は、記憶部30−1及び記憶部30−2と接続される。
記憶部30−1は、音響モデルを特徴付けるパラメータとして、音響モデルパラメータΛ={W1,n,b1,n|nは、1,2,・・・,Nなる自然数}を記憶する。ただし、Nは、後述のフレーム毎の音響条件特徴量ベクトルynを計算する対象である一発話の総フレーム数である。また、記憶部30−1は、音響条件抽出用モデルを記憶する。音響条件抽出用モデルは、後述の音響条件特徴量ベクトルYを生成するためのモデルである。例えば、音響条件特徴量は、話者別の特徴、話者の性別、雑音及び/又は残響の音響環境等である。
特徴量抽出部11は、マイク等で観測した学習用音声データを読み込み、学習用音声データから特徴量ベクトルOを生成する。すなわち、特徴量抽出部11は、学習用音声データから特徴量を抽出する。特徴量抽出部11の具体的な処理は、第1の従来技術の特徴量抽出部210A、第2の従来技術の特徴量抽出部210B、第3の従来技術の特徴量抽出部110Cと同様である。
音響条件特徴量抽出部12は、学習用音声データ及び音響条件抽出用モデルを読み込み、下記(13)式により、学習用音声データ及び音響条件抽出用モデルから音響条件特徴量ベクトルYを生成する。すなわち、音響条件特徴量抽出部12は、学習用音声データ及び音響条件抽出用モデルから音響条件特徴量を抽出する。
Figure 2016188944
ただし、上記(13)式において、Nは、フレーム毎の音響条件特徴量ベクトルynを計算する対象である一発話の総フレーム数であり、nは1からNの自然数である。つまり、音響条件特徴量ベクトルYは、1からNフレーム目までの各フレームの音響条件特徴量ベクトルynを含み、各フレームの音響条件特徴量ベクトルynはK次元のベクトルで表現される。なお、各フレームの音響条件特徴量ベクトルynは各フレームで異なる値を取るのではなく、数秒間は同一の値に固定したり、一発話の間は同一の値に固定したりしてもよい。
音響モデルパラメータ補正部13は、記憶部30−1から読み込んだ音響モデルパラメータΛを、音響条件特徴量抽出部12により生成された音響条件特徴量ベクトルYに基づき、上記(8−1)式及び(8−2)式により補正する。なお、音響モデルパラメータ補正部13により補正される音響モデルパラメータΛの初期値は、乱数で決めたパラメータ又は第1乃至第3の従来技術により学習された音響モデルのパラメータ等とする。
HMM状態の出力確率計算部14は、音響モデルパラメータ補正部13により補正された音響モデルパラメータΛと、特徴量抽出部11により生成された特徴量ベクトルOに基づき、各HMM状態の出力確率を計算する。HMM状態の出力確率計算部14の具体的な処理は、第1の従来技術のHMM状態の出力確率計算部220A、第2の従来技術のHMM状態の出力確率計算部220Bと同様である。
エラー計算部15は、HMM状態の出力確率計算部14により計算された各HMM状態の出力確率と、入力された正解シンボル系列−Sr(正解HMM状態)とに基づき、上記(12)式によりエラーベクトルδI,nを計算する。
音響モデルパラメータ微分値計算部16は、エラー計算部15の計算によるエラーベクトルδI,nと、音響モデルパラメータ補正部13により補正された音響モデルパラメータΛに基づき、音響モデルパラメータ微分値を計算する。音響モデルパラメータ微分値計算部16は、逆伝搬した誤差を示す上記(10)式及び(11)式により音響モデルパラメータ微分値を計算する。または、音響モデルパラメータ微分値計算部16は、従来のStochastic Gradient Descent(SGD)法で計算することもできる(上記文献5参照)。また、パラメータ学習の高速化のためによく用いられるmomentumやL2 Regularizationをあわせて用いることもできる。
音響モデルパラメータ更新部17は、記憶部30−1から読み込んだ音響モデルパラメータΛと、音響モデルパラメータ微分値計算部16により計算された音響モデルパラメータ微分値とに基づき、下記(14−1)式及び(14−2)式により音響モデルパラメータΛを更新する。
Figure 2016188944
ただし、上記(14−1)式及び(14−2)式において、重み行列^Wi,k及びバイアスベクトル^bi,kは、更新したモデルパラメータ^Λであり、重み行列−Wi,k及びバイアスベクトル−bi,kは1つ前のステップで得られた音響モデルパラメータ−Λである。また、上記(14−1)式及び(14−2)式において、ηはSGDの変数であるLearning Rateであり、例えば0.1〜0.0001等の微小値である。ηは、音響モデルパラメータ補正用パラメータである。
収束判定部18は、音響モデルパラメータ更新部17により更新された音響モデルパラメータ^Λについて、音響モデルパラメータΛの学習(推定)が所定の収束条件を満たすか否かを判定する。収束判定部18は、所定の収束条件を満たすと判定した場合には、収束条件充足判定時の音響モデルパラメータ^Λを、音響モデル学習装置10の出力値として出力する。音響モデル学習装置10から出力された音響モデルパラメータ^Λは、例えば、記憶部30−2に記憶される。
一方、収束判定部18は、所定の収束条件を満たさないと判定した場合には、収束条件充足判定時の音響モデルパラメータ^Λを音響モデルパラメータ補正部13に出力し、音響モデルパラメータ補正部13、HMM状態の出力確率計算部14、エラー計算部15、音響モデルパラメータ微分値計算部16、音響モデルパラメータ更新部17、収束判定部18が処理を繰り返す。収束判定部18は、例えば、(1)1つ前のステップで得られた音響モデルパラメータ−Λと、音響モデルパラメータ更新部17により更新された音響モデルパラメータ^Λとの差分が閾値以下になった場合、(2)収束条件充足判定の繰り返し回数が所定の回数以上になった場合、(3)学習用音声データの一部を用いて性能を評価した際に、所定の性能指標が所定値以上悪化した場合等のいずれかの所定条件に基づき、収束条件充足判定を行う。
(実施形態に係る音響モデル学習処理)
図3は、実施形態に係る音響モデル学習処理の一例を示すフローチャートである。先ず、音響モデル学習装置10は、記憶部30−1から音響モデル(音響モデルパラメータΛ)を読み込む(ステップS11)。次に、音響モデル学習装置10は、記憶部30−1から音響条件抽出用モデルを読み込む(ステップS12)。次に、音響モデル学習装置10は、学習用音声データを読み込む(ステップS13)。次に、音響モデル学習装置10は、正解シンボル系列−Srを読み込む(ステップS14)。
次に、音響モデル学習装置10は、学習用音声データから特徴量ベクトルOを抽出する(ステップS15)。次に、音響モデル学習装置10は、上記(13)式により、学習用音声データから音響条件特徴量ベクトルYを抽出する(ステップS16)。次に、音響モデル学習装置10は、記憶部30−1から読み込んだ音響モデルパラメータΛを、音響条件特徴量ベクトルYに基づき、上記(8−1)式及び(8−2)式により補正する(ステップS17)。次に、音響モデル学習装置10は、補正された音響モデルパラメータΛと、特徴量ベクトルOに基づき、各HMM状態の出力確率を計算する(ステップS18)。
次に、音響モデル学習装置10は、各HMM状態の出力確率と、入力された正解シンボル系列−Srとに基づき、上記(12)式によりエラーベクトルδI,nを計算する(ステップS19)。次に、音響モデル学習装置10は、エラーベクトルδI,nと、補正された音響モデルパラメータΛに基づき、音響モデルパラメータ微分値を計算する(ステップS20)。次に、音響モデル学習装置10は、記憶部30−1から読み込んだ音響モデルパラメータΛと、音響モデルパラメータ微分値とに基づき、上記(14−1)式及び(14−2)式により音響モデルパラメータΛを更新する(ステップS21)。
次に、音響モデル学習装置10は、更新された音響モデルパラメータ^Λについて、音響モデルパラメータΛの学習が所定の収束条件を満たすか否かを判定する(ステップS22)。音響モデル学習装置10は、音響モデルパラメータΛの学習が所定の収束条件を満たす場合(ステップS22Yes)、ステップS23へ処理を移す。一方、音響モデル学習装置10は、音響モデルパラメータΛの学習が所定の収束条件を満たさない場合(ステップS22No)、ステップS17へ処理を移す。ステップS23では、音響モデル学習装置10は、所定の収束条件を満たすと判定した時の音響モデルパラメータ^Λを、音響モデル学習装置10の出力値として出力する(ステップS23)。
(実施形態に係る音声認識装置の構成)
図4は、実施形態に係る音声認識装置の構成の一例を示す図である。図4に示すように、実施形態に係る音声認識装置20は、特徴量抽出部21、音響条件特徴量抽出部22、音響モデルパラメータ補正部23、HMM状態の出力確率計算部24、単語列検索部25を有する。また、音声認識装置20は、記憶部30−2と接続される。
記憶部30−2は、音響モデル学習装置10により更新された音響モデル(音響モデルパラメータ^Λ)、言語モデル、音響条件抽出用モデル、音響モデルパラメータ補正用パラメータηを予め記憶する。
特徴量抽出部21は、マイク等で観測した認識用音声データを読み込み、認識用音声データから特徴量を抽出し、特徴量ベクトルOを生成する。すなわち、特徴量抽出部21は、認識用音声データから特徴量を抽出する。特徴量抽出部21の具体的な処理は、音響モデル学習装置10の特徴量抽出部11と同様である。
音響条件特徴量抽出部22は、認識用音声データ及び音響条件抽出用モデルを読み込み、上記(13)式により、学習用音声データ及び音響条件抽出用モデルから音響条件特徴量ベクトルYを生成する。すなわち、音響条件特徴量抽出部22は、認識用音声データ及び音響条件抽出用モデルから音響条件特徴量を抽出する。音響条件特徴量抽出部22の具体的な処理は、音響モデル学習装置10の音響条件特徴量抽出部12と同様である。
音響モデルパラメータ補正部23は、記憶部30−2から読み込んだ音響モデルパラメータ^Λと、音響条件特徴量抽出部22によりで生成された音響条件特徴量ベクトルYとに基づき、上記(8−1)式及び(8−2)式により、音響モデルパラメータ^Λを補正する。
HMM状態の出力確率計算部24は、音響モデルパラメータ補正部23により補正された音響モデルパラメータ^Λと、特徴量抽出部21により生成された特徴量ベクトルOに基づき、各HMM状態の出力確率を計算する。HMM状態の出力確率計算部24の具体的な処理は、音響モデル学習装置10のHMM状態の出力確率計算部14と同様である。
単語列検索部25は、HMM状態の出力確率計算部24により計算された各HMM状態の出力確率をもとに、記憶部30−2から読み込んだ言語モデルを検索し、音声認識結果として単語列^Sを出力する。単語列検索部25の具体的な処理は、第1の従来技術の音声認識装置200Aの単語列検索部230A、第2の従来技術の音声認識装置200Bの単語列検索部230Bと同様である。
(実施形態に係る音声認識処理)
図5は、実施形態に係る音声認識処理の一例を示すフローチャートである。先ず、音声認識装置20は、記憶部30−2から音響モデル(音響モデルパラメータΛ)を読み込む(ステップS21)。次に、音声認識装置20は、記憶部30−2から音響条件抽出用モデルを読み込む(ステップS22)。次に、音声認識装置20は、記憶部30−2から言語モデルを読み込む(ステップS23)。次に、音声認識装置20は、認識用音声データを読み込む(ステップS24)。次に、音声認識装置20は、記憶部30−2から音響モデルパラメータ補正用パラメータηを読み込む(ステップS25)。
次に、音声認識装置20は、認識用音声データから特徴量ベクトルOを抽出する(ステップS26)。次に、音声認識装置20は、上記(13)式により、音声認識装置20から音響条件特徴量ベクトルYを抽出する(ステップS27)。次に、音声認識装置20は、記憶部30−2から読み込んだ音響モデルパラメータ^Λを、音響条件特徴量ベクトルYに基づき、上記(8−1)式及び(8−2)式により補正する(ステップS28)。
次に、音声認識装置20は、補正された音響モデルパラメータ^Λと、特徴量ベクトルOに基づき、各HMM状態の出力確率を計算する(ステップS29)。次に、音声認識装置20は、各HMM状態の出力確率をもとに、記憶部30−2から読み込んだ言語モデルを検索する(ステップS30)。次に、音声認識装置20は、ステップS30の検索結果から、音声認識結果として単語列^Sを出力する(ステップS31)。
(その他の実施形態)
実施形態では、DNN(CADNN)に基づく音響モデルを用いる場合を説明したが、DNNに限らず、CNN(Convolutional Neural Network)、RNN(Recurrent Neural Network)、BLSTM(Bidirectional Long Short-Term Memory)のニューラルネットワーク等、種々のニューラルネットワークに基づく音響モデルを用いても、同様の定式化が可能である。
(実施形態による効果)
実施形態は、入力データから特徴量を抽出し,その特徴量を用いて入力データを予め定義されたクラスタに分類するパターン認識において、クラスタ分類精度を向上させる。例えば、入力音声から特徴量を抽出し、その特徴量を用いて入力音声を単語列に変換する音声認識において、音響モデルパラメータ補正を行ってクラスタ分類精度を向上させる。実施形態は、音声認識時の音響条件に音響モデルを高速に適応させ、その処理の際にCADNNを音響モデルとして用いる。実施形態の音響モデルパラメータは、外部から与えられる音響条件を表す音響条件特徴量に関係付けられ、音響条件特徴量に依存して変化するという特性を有する。その特性を有するため、音響モデルの学習時には、音声の特徴量と音響条件特徴量とを用いて、各音響条件と対応する音響モデルパラメータを学習する。そして、認識時には、認識対象の音声の音響条件特徴量を計算し、事前に学習した音響モデルパラメータを用い、音響条件に合うような新たな音響モデルパラメータを自動的に推定して決定する。
よって、実施形態は、音響条件特徴量を、正解ラベル(話者IDやトランスクリプション)を用いず計算でき、また、少ない音声データ(数秒程度)から計算することができるという特長を持つため、結果として高速な音響モデル適応が可能となる。
すなわち、実施形態は、少ない音声データを用いて音響モデルを音響条件に適応させることができ、従来技術のように音響モデルを音響条件毎に切り替えることなく、従来技術より高い音声認識性能を達成できる。下記(1)表は、連続音素認識処理の実験において、従来技術及び実施形態を用い、音響モデルを各性別に対して教師なしで適応させた実験の結果である音素誤り率(PER:Phone Error Rate)を表す。実験条件として、音響モデルの性別毎のDNNは、隠れ層毎に2048個の隠れユニットを持つ6個の隠れ層、及び144個の出力層を有した。また、実験条件として、入力音声の特徴量は、39次元のMFCC+ΔMFCC+ΔΔMFCCとした。また、実験条件として、DNNへ入力する特徴量は、連続する11フレームを連結した連結フレームを用いた。すなわち、実験条件として、DNNへ入力する特徴量は、39×11=429個を入力単位とした。
また、実験条件として、従来技術において、DNNへ入力する特徴量は、学習用音声データのデータセットを用いた計算された平均分散モデルの正規化パラメータを用いて正規化した。また、実験条件として、従来技術において、DNNは、文献6「A. Mohamed et al.,“Acoustic Modeling Using Deep Belief Networks,” IEEE Trans. Audio, Speech, Language Process., Vol. 20, No. 1, pp. 14-22, 2012.」及び文献7「G. Hinton, “A practical guide to training restricted Boltzmann machines,” Tech. Rep., 2010.」に示されるSGD法により微調整されたRBM(Restricted Boltzmann Machine)を用いて隠れ層毎に事前学習した。この微調整において、Learning Rateの初期値は0.1、モメンタムは0.9、バッチサイズは128とした。さらに、実験条件として、従来技術において、Learning Rateは、認識用音声データのフレームが明確に確認できなくなるにつれて小さくなるとした。また、実験条件として、従来技術において、単音素のHMMを用い、音声認識の際に音素のバイグラム言語モデルを用い、この言語モデルを全ての実験において重み1に固定した。
実施形態は、一発話(数秒程度)毎に音響条件特徴量を計算するため、少量データを基に高速な音響モデル適応を行うことになる。下記(1)表は、上記実験条件下で、実施形態が、従来技術に基づく音声認識よりも高い性能、つまり従来技術に基づく音声認識よりも低い音素誤り率を達成していることを示す。
Figure 2016188944
(音響モデル学習装置及び音声認識装置の装置構成について)
図2に示す音響モデル学習装置10及び図4に示す音声認識装置20の各構成要素は機能概念的なものであり、必ずしも物理的に図示のように構成されていることを要さない。すなわち、音響モデル学習装置10及び音声認識装置20の機能の分散及び統合の具体的形態は図示のものに限られず、全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散又は統合して構成することができる。例えば、実施形態における記憶部30−1及び30−2は、一体の記憶装置であってもよい。また、例えば、音響モデル学習装置10及び音声認識装置20は、一体の装置であってもよい。
音響モデル学習装置10及び音声認識装置20が一体の装置である場合には、音響モデル学習装置10と音声認識装置20において同様の機能を有する特徴抽出部11と特徴量抽出部21、音響条件特徴抽出部12と音響条件特徴量抽出部22、音響モデルパラメータ補正部13と音響モデルパラメータ補正部23、HMM状態の出力確率計算部14とHMM状態の出力確率計算部24が同一の機能部であってもよい。
また、音響モデル学習装置10及び音声認識装置20における各処理は図示のものに限られず、処理順序及び処理の統合もしくは分離することができる。例えば、実施形態におけるステップS11〜S14ならびにステップS21〜S25は処理順序を入れ替えてもよい。
また、音響モデル学習装置10及び音声認識装置20において行われる各処理は、全部又は任意の一部が、CPU等の処理装置及び処理装置により解析実行されるプログラムにて実現されてもよい。音響モデル学習装置10及び音声認識装置20において行われる各処理は、ワイヤードロジックによるハードウェアとして実現されてもよい。
また、実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともできる。もしくは、実施形態において説明した各処理のうち、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上述及び図示の処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて適宜変更することができる。
(プログラムについて)
図6は、プログラムが実行されることにより、音響モデル学習装置及び音声認識装置が実現されるコンピュータの一例を示す図である。コンピュータ1000は、例えば、メモリ1010、CPU1020を有する。また、コンピュータ1000は、ハードディスクドライブインタフェース1030、ディスクドライブインタフェース1040、シリアルポートインタフェース1050、ビデオアダプタ1060、ネットワークインタフェース1070を有する。コンピュータ1000において、これらの各部はバス1080によって接続される。
メモリ1010は、ROM(Read Only Memory)1011及びRAM1012を含む。ROM1011は、例えば、BIOS(Basic Input Output System)等のブートプログラムを記憶する。ハードディスクドライブインタフェース1030は、ハードディスクドライブ1031に接続される。ディスクドライブインタフェース1040は、ディスクドライブ1041に接続される。例えば磁気ディスクや光ディスク等の着脱可能な記憶媒体が、ディスクドライブ1041に挿入される。シリアルポートインタフェース1050は、例えばマウス1051、キーボード1052に接続される。ビデオアダプタ1060は、例えばディスプレイ1061に接続される。
ハードディスクドライブ1031は、例えば、OS1091、アプリケーションプログラム1092、プログラムモジュール1093、プログラムデータ1094を記憶する。すなわち、音響モデル学習装置10及び/又は音声認識装置20の各処理を規定するプログラムは、コンピュータ1000によって実行される指令が記述されたプログラムモジュール1093として、例えばハードディスクドライブ1031に記憶される。例えば、音響モデル学習装置10及び/又は音声認識装置20における機能構成と同様の情報処理を実行するためのプログラムモジュール1093が、ハードディスクドライブ1031に記憶される。
また、実施形態の処理で用いられる設定データは、プログラムデータ1094として、例えばメモリ1010やハードディスクドライブ1031に記憶される。そして、CPU1020が、メモリ1010やハードディスクドライブ1031に記憶されたプログラムモジュール1093やプログラムデータ1094を必要に応じてRAM1012に読み出して実行する。
なお、プログラムモジュール1093やプログラムデータ1094は、ハードディスクドライブ1031に記憶される場合に限らず、例えば着脱可能な記憶媒体に記憶され、ディスクドライブ1041等を介してCPU1020によって読み出されてもよい。あるいは、プログラムモジュール1093やプログラムデータ1094は、ネットワーク(LAN(Local Area Network)、WAN(Wide Area Network)等)を介して接続された他のコンピュータに記憶されてもよい。そして、プログラムモジュール1093やプログラムデータ1094は、ネットワークインタフェース1070を介してCPU1020によって読み出されてもよい。
実施形態及びその他の実施形態は、本願が開示する技術に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
10 音響モデル学習装置
11 特徴量抽出部
12 音響条件特徴量抽出部
13 音響モデルパラメータ補正部
14 HMM状態の出力確率計算部
15 エラー計算部
16 音響モデルパラメータ微分値計算部
17 音響モデルパラメータ更新部
18 収束判定部
20 音声認識装置
21 特徴量抽出部
22 音響条件特徴量抽出部
23 音響モデルパラメータ補正部
24 HMM状態の出力確率計算部
25 単語列検索部
30−1、30−2 記憶部
100C 音響モデル再学習装置
110C 特徴量抽出部
120C 音響モデル再学習部
200A、200B 音声認識装置
210A、210B 特徴量抽出部
220A、220B 出力確率計算部
230A、230B 単語列検索部
300A、300B、300C 記憶部
1000 コンピュータ
1010 メモリ
1020 CPU

Claims (8)

  1. 1つ以上の隠れ層を有するニューラルネットワークで表される音響モデルを特徴付けるパラメータを記憶する第1の記憶部と、
    前記音響モデルを学習するための学習用音声データから、前記学習用音声データの特徴を示す第1の特徴量を抽出する第1の特徴量抽出部と、
    前記学習用音声データから、前記学習用音声データの音響条件を示す第1の音響条件特徴量を抽出する第1の音響条件特徴量抽出部と、
    前記パラメータを、前記第1の音響条件特徴量の成分毎のパラメータへ補正する第1の音響モデルパラメータ補正部と、
    前記第1の特徴量と、前記第1の音響条件特徴量の成分毎のパラメータとをもとに、前記第1の記憶部に記憶される前記パラメータを更新する音響モデルパラメータ更新部と
    を備えることを特徴とする音響モデル学習装置。
  2. 前記第1の音響モデルパラメータ補正部は、
    前記第1の記憶部に記憶される前記音響モデルを特徴付けるパラメータを、前記第1の音響条件特徴量抽出部により抽出された前記第1の音響条件特徴量による重み付け和へ分解することにより、前記第1の音響条件特徴量の成分毎のパラメータを計算する
    ことを特徴とする請求項1に記載の音響モデル学習装置。
  3. 請求項1に記載の音響モデル学習装置により更新された前記パラメータと、候補単語列を含む言語モデルとを記憶する第2の記憶部と、
    音声認識対象の認識用音声データから、前記認識用音声データの特徴を示す第2の特徴量を抽出する第2の特徴量抽出部と、
    前記認識用音声データから、前記認識用音声データの音響条件を示す第2の音響条件特徴量を抽出する第2の音響条件特徴量抽出部と、
    前記第2の記憶部に記憶される、更新された前記パラメータを、前記第2の音響条件特徴量の成分毎のパラメータへ補正する第2の音響モデルパラメータ補正部と、
    前記第2の特徴量と、前記第2の音響条件特徴量の成分毎のパラメータとをもとに、前記認識用音声データと対応する1つ以上の対立候補音素系列を生成し、該対立候補音素系列をもとに前記言語モデルを検索し、該言語モデルに含まれる、該対立候補音素系列との適合尤度が最大である候補単語列を出力する単語列検索部と
    を備えることを特徴とする音声認識装置。
  4. 前記第2の音響モデルパラメータ補正部は、
    前記第2の記憶部に記憶される前記音響モデルを特徴付けるパラメータを、前記第2の音響条件特徴量抽出部により抽出された前記第2の音響条件特徴量による重み付け和へ分解することにより、前記第2の音響条件特徴量の成分毎のパラメータを計算する
    ことを特徴とする請求項3に記載の音声認識装置。
  5. 音響モデル学習装置が実行する音響モデル学習方法であって、
    前記音響モデル学習装置は、1つ以上の隠れ層を有するニューラルネットワークで表される音響モデルを特徴付けるパラメータを記憶する第1の記憶部を有し、
    前記音響モデルを学習するための学習用音声データから、前記学習用音声データの特徴を示す第1の特徴量を抽出する第1の特徴量抽出工程と、
    前記学習用音声データから、前記学習用音声データの音響条件を示す第1の音響条件特徴量を抽出する第1の音響条件特徴量抽出工程と、
    前記パラメータを、前記第1の音響条件特徴量の成分毎のパラメータへ補正する第1の音響モデルパラメータ補正工程と、
    前記第1の特徴量と、前記第1の音響条件特徴量の成分毎のパラメータとをもとに、前記第1の記憶部に記憶される前記パラメータを更新する音響モデルパラメータ更新工程と
    を含むことを特徴とする音響モデル学習方法。
  6. 音声認識装置が実行する音声認識方法であって、
    前記音声認識装置は、請求項5に記載の音響モデル学習方法により更新された前記パラメータと、候補単語列を含む言語モデルとを記憶する第2の記憶部を有し、
    音声認識対象の認識用音声データから、前記認識用音声データの特徴を示す第2の特徴量を抽出する第2の特徴量抽出工程と、
    前記認識用音声データから、前記認識用音声データの音響条件を示す第2の音響条件特徴量を抽出する第2の音響条件特徴量抽出工程と、
    前記第2の記憶部に記憶される、更新された前記パラメータを、前記第2の音響条件特徴量の成分毎のパラメータへ補正する第2の音響モデルパラメータ補正工程と、
    前記第2の特徴量と、前記第2の音響条件特徴量の成分毎のパラメータとをもとに、前記認識用音声データと対応する1つ以上の対立候補音素系列を生成し、該対立候補音素系列をもとに前記言語モデルを検索し、該言語モデルに含まれる、該対立候補音素系列との適合尤度が最大である候補単語列を出力する単語列検索工程と
    を含むことを特徴とする音声認識方法。
  7. 請求項1に記載の音響モデル学習装置としてコンピュータを機能させる音響モデル学習プログラム。
  8. 請求項3に記載の音声認識装置としてコンピュータを機能させる音声認識プログラム。
JP2015068915A 2015-03-30 2015-03-30 音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法及びプログラム Active JP6506074B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015068915A JP6506074B2 (ja) 2015-03-30 2015-03-30 音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015068915A JP6506074B2 (ja) 2015-03-30 2015-03-30 音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2016188944A true JP2016188944A (ja) 2016-11-04
JP6506074B2 JP6506074B2 (ja) 2019-04-24

Family

ID=57239759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068915A Active JP6506074B2 (ja) 2015-03-30 2015-03-30 音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法及びプログラム

Country Status (1)

Country Link
JP (1) JP6506074B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031812A (ja) * 2016-08-22 2018-03-01 日本電信電話株式会社 音声データ処理装置、音声データ処理方法および音声データ処理プログラム
CN107910008A (zh) * 2017-11-13 2018-04-13 河海大学 一种用于个人设备的基于多声学模型的语音识别方法
JP2018128647A (ja) * 2017-02-10 2018-08-16 日本電信電話株式会社 音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法、音響モデル学習プログラム及び音声認識プログラム
JP2018128574A (ja) * 2017-02-08 2018-08-16 日本電信電話株式会社 中間特徴量計算装置、音響モデル学習装置、音声認識装置、中間特徴量計算方法、音響モデル学習方法、音声認識方法、プログラム
JP2019021071A (ja) * 2017-07-18 2019-02-07 株式会社竹中工務店 調整係数推定装置、モデル学習装置、及び方法
KR20190062008A (ko) * 2017-11-28 2019-06-05 한국전자통신연구원 음성인식용 음향모델을 위한 심층 신경망 기반 상태 결정 장치 및 방법
CN110060691A (zh) * 2019-04-16 2019-07-26 南京邮电大学 基于i向量和VARSGAN的多对多语音转换方法
JP2019219574A (ja) * 2018-06-21 2019-12-26 株式会社東芝 話者モデル作成システム、認識システム、プログラムおよび制御装置
JP2020510862A (ja) * 2017-02-24 2020-04-09 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 周期的表示を用いる音識別
JP2021032909A (ja) * 2019-08-13 2021-03-01 日本電信電話株式会社 予測装置、予測方法及び予測プログラム
US10957308B2 (en) 2018-05-11 2021-03-23 Samsung Electronics Co., Ltd. Device and method to personalize speech recognition model
WO2021137637A1 (en) * 2020-01-02 2021-07-08 Samsung Electronics Co., Ltd. Server, client device, and operation methods thereof for training natural language understanding model
JP2022534390A (ja) * 2019-05-28 2022-07-29 グーグル エルエルシー ストリーミングエンドツーエンドモデルを用いる大規模多言語音声認識

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267300A (ja) * 1991-02-22 1992-09-22 A T R Jido Honyaku Denwa Kenkyusho:Kk 雑音除去と話者適応の機能を有する音声認識装置
JPH0566795A (ja) * 1991-09-06 1993-03-19 Gijutsu Kenkyu Kumiai Iryo Fukushi Kiki Kenkyusho 雑音抑圧装置とその調整装置
JPH10282986A (ja) * 1997-04-04 1998-10-23 Hitachi Ltd 音声認識方法およびそのモデル設計方法
JP2014157323A (ja) * 2013-02-18 2014-08-28 Nippon Telegr & Teleph Corp <Ntt> 音声認識装置、音響モデル学習装置、その方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267300A (ja) * 1991-02-22 1992-09-22 A T R Jido Honyaku Denwa Kenkyusho:Kk 雑音除去と話者適応の機能を有する音声認識装置
JPH0566795A (ja) * 1991-09-06 1993-03-19 Gijutsu Kenkyu Kumiai Iryo Fukushi Kiki Kenkyusho 雑音抑圧装置とその調整装置
JPH10282986A (ja) * 1997-04-04 1998-10-23 Hitachi Ltd 音声認識方法およびそのモデル設計方法
JP2014157323A (ja) * 2013-02-18 2014-08-28 Nippon Telegr & Teleph Corp <Ntt> 音声認識装置、音響モデル学習装置、その方法及びプログラム

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031812A (ja) * 2016-08-22 2018-03-01 日本電信電話株式会社 音声データ処理装置、音声データ処理方法および音声データ処理プログラム
JP2018128574A (ja) * 2017-02-08 2018-08-16 日本電信電話株式会社 中間特徴量計算装置、音響モデル学習装置、音声認識装置、中間特徴量計算方法、音響モデル学習方法、音声認識方法、プログラム
JP2018128647A (ja) * 2017-02-10 2018-08-16 日本電信電話株式会社 音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法、音響モデル学習プログラム及び音声認識プログラム
JP7100855B2 (ja) 2017-02-24 2022-07-14 インターナショナル・ビジネス・マシーンズ・コーポレーション 周期的表示を用いる音識別
JP2020510862A (ja) * 2017-02-24 2020-04-09 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 周期的表示を用いる音識別
JP2019021071A (ja) * 2017-07-18 2019-02-07 株式会社竹中工務店 調整係数推定装置、モデル学習装置、及び方法
JP7019982B2 (ja) 2017-07-18 2022-02-16 株式会社竹中工務店 調整係数推定装置、モデル学習装置、及び方法
CN107910008B (zh) * 2017-11-13 2021-06-11 河海大学 一种用于个人设备的基于多声学模型的语音识别方法
CN107910008A (zh) * 2017-11-13 2018-04-13 河海大学 一种用于个人设备的基于多声学模型的语音识别方法
KR20190062008A (ko) * 2017-11-28 2019-06-05 한국전자통신연구원 음성인식용 음향모델을 위한 심층 신경망 기반 상태 결정 장치 및 방법
KR102218046B1 (ko) * 2017-11-28 2021-02-22 한국전자통신연구원 음성인식용 음향모델을 위한 심층 신경망 기반 상태 결정 장치 및 방법
US10957308B2 (en) 2018-05-11 2021-03-23 Samsung Electronics Co., Ltd. Device and method to personalize speech recognition model
JP2019219574A (ja) * 2018-06-21 2019-12-26 株式会社東芝 話者モデル作成システム、認識システム、プログラムおよび制御装置
CN110060691A (zh) * 2019-04-16 2019-07-26 南京邮电大学 基于i向量和VARSGAN的多对多语音转换方法
CN110060691B (zh) * 2019-04-16 2023-02-28 南京邮电大学 基于i向量和VARSGAN的多对多语音转换方法
JP2022534390A (ja) * 2019-05-28 2022-07-29 グーグル エルエルシー ストリーミングエンドツーエンドモデルを用いる大規模多言語音声認識
JP7343615B2 (ja) 2019-05-28 2023-09-12 グーグル エルエルシー ストリーミングエンドツーエンドモデルを用いる大規模多言語音声認識
JP2021032909A (ja) * 2019-08-13 2021-03-01 日本電信電話株式会社 予測装置、予測方法及び予測プログラム
JP7306626B2 (ja) 2019-08-13 2023-07-11 日本電信電話株式会社 予測装置、予測方法及び予測プログラム
WO2021137637A1 (en) * 2020-01-02 2021-07-08 Samsung Electronics Co., Ltd. Server, client device, and operation methods thereof for training natural language understanding model
US11868725B2 (en) 2020-01-02 2024-01-09 Samsung Electronics Co., Ltd. Server, client device, and operation methods thereof for training natural language understanding model

Also Published As

Publication number Publication date
JP6506074B2 (ja) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6637078B2 (ja) 音響モデル学習装置、音響モデル学習方法及びプログラム
JP6506074B2 (ja) 音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法及びプログラム
Abdel-Hamid et al. Fast speaker adaptation of hybrid NN/HMM model for speech recognition based on discriminative learning of speaker code
Zhang et al. DNN speaker adaptation using parameterised sigmoid and ReLU hidden activation functions
US10629185B2 (en) Statistical acoustic model adaptation method, acoustic model learning method suitable for statistical acoustic model adaptation, storage medium storing parameters for building deep neural network, and computer program for adapting statistical acoustic model
Miao et al. Towards speaker adaptive training of deep neural network acoustic models
JP6831343B2 (ja) 学習装置、学習方法及び学習プログラム
US8494847B2 (en) Weighting factor learning system and audio recognition system
JP2014157323A (ja) 音声認識装置、音響モデル学習装置、その方法及びプログラム
Price et al. Speaker adaptation of deep neural networks using a hierarchy of output layers
Bacchiani et al. Context dependent state tying for speech recognition using deep neural network acoustic models
Huang et al. Feature space maximum a posteriori linear regression for adaptation of deep neural networks
Zhang et al. Joint optimisation of tandem systems using Gaussian mixture density neural network discriminative sequence training
Nguyen et al. Optimizing deep bottleneck feature extraction
Huang et al. Hierarchical Bayesian combination of plug-in maximum a posteriori decoders in deep neural networks-based speech recognition and speaker adaptation
Tang et al. Discriminative pronunciation modeling: A large-margin, feature-rich approach
JP3920749B2 (ja) 音声認識用音響モデル作成方法、その装置、そのプログラムおよびその記録媒体、上記音響モデルを用いる音声認識装置
JP6158105B2 (ja) 言語モデル作成装置、音声認識装置、その方法及びプログラム
Zhu et al. Gaussian free cluster tree construction using deep neural network.
Zorrilla et al. Some asr experiments using deep neural networks on spanish databases
JP6646337B2 (ja) 音声データ処理装置、音声データ処理方法および音声データ処理プログラム
JP6612796B2 (ja) 音響モデル学習装置、音声認識装置、音響モデル学習方法、音声認識方法、音響モデル学習プログラム及び音声認識プログラム
Li et al. DNN online adaptation for automatic speech recognition
Becerra et al. Speech recognition using deep neural networks trained with non-uniform frame-level cost functions
Mimura et al. Unsupervised speaker adaptation of DNN-HMM by selecting similar speakers for lecture transcription

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R150 Certificate of patent or registration of utility model

Ref document number: 6506074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150