JP2016186945A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2016186945A
JP2016186945A JP2016128231A JP2016128231A JP2016186945A JP 2016186945 A JP2016186945 A JP 2016186945A JP 2016128231 A JP2016128231 A JP 2016128231A JP 2016128231 A JP2016128231 A JP 2016128231A JP 2016186945 A JP2016186945 A JP 2016186945A
Authority
JP
Japan
Prior art keywords
current collector
active material
material layer
insulating material
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016128231A
Other languages
Japanese (ja)
Inventor
乙幡 牧宏
Makihiro Otohata
牧宏 乙幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automotive Energy Supply Corp
Original Assignee
Automotive Energy Supply Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Energy Supply Corp filed Critical Automotive Energy Supply Corp
Priority to JP2016128231A priority Critical patent/JP2016186945A/en
Publication of JP2016186945A publication Critical patent/JP2016186945A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery that can reduce the cost and enhance productivity by abolishing an insulation tape.SOLUTION: A lithium ion secondary battery 1 has a configuration that an electrode laminate M in which a positive electrode 2 and a negative electrode 3 are laminated while sandwiching a separator S therebetween and are encapsulated together with electrolytic solution in a laminate film 4. The positive electrode 2 includes a collector main body portion 5a, a narrow collector lead portion 5b, an active material layer 6, and a coating insulating material layer 7. The active material layer 6 contains an active material and binder, and the coating insulating material layer 7 contains the same binder as the binder contained in the active material layer 6. The active material 6 is formed so as to be overlapped with a part of the coating insulating material layer 7 from the upper side of the coating insulating layer 7 which is formed to straddle the boundary portion between the collector lead portion 5b and the collector main body portion 5a.SELECTED DRAWING: Figure 3

Description

本発明は、例えばラミネート型の薄型二次電池として代表的なリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery representative of, for example, a laminate-type thin secondary battery.

例えばラミネートフィルム外装体を使用した薄型リチウムイオン二次電池として、正極電極シートと負極電極シートをセパレータとともに複数組積層した電極積層体をラミネートフィルム外装体の内部に格納したものが知られている。そして、正極電極シートおよび負極電極シートは共にアルミニウムその他の金属箔からなる集電体であって、リード部となる集電体露出部を残して、正極電極シートについては集電体上に正極活物質層が、負極電極シートについては集電体上に負極活物質層がそれぞれ形成されている。   For example, as a thin lithium ion secondary battery using a laminate film outer package, a battery in which an electrode laminate in which a plurality of pairs of positive electrode sheets and negative electrode sheets are laminated together with a separator is stored inside the laminate film outer package is known. Each of the positive electrode sheet and the negative electrode sheet is a current collector made of aluminum or other metal foil, and the positive electrode sheet is left on the current collector while leaving a current collector exposed portion serving as a lead portion. For the negative electrode sheet, the negative electrode active material layer is formed on the current collector.

この場合において、ラミネートフィルム外装体を使用した薄型二次電池ではないものの、例えば特許文献1および特許文献2には、集電体露出部に、活物質層と接するように、短絡防止を目的として絶縁テープを貼着するようにした技術が記載されている。   In this case, although it is not a thin secondary battery using a laminate film outer package, for example, in Patent Document 1 and Patent Document 2, the current collector exposed part is in contact with the active material layer for the purpose of preventing a short circuit. A technique for applying an insulating tape is described.

特開2006−19199号公報JP 2006-19199 A 特開平11−86833号公報Japanese Patent Laid-Open No. 11-86833

しかしながら、絶縁テープの採用はコストが高くなるだけでなく、リード部となる幅狭の集電体と活物質層との境界部に正確に絶縁テープを貼着するには、製造ラインの高速化にも限界があり、生産性向上の面でなおも改善の余地を残している。   However, the use of insulating tape not only increases the cost, but it also increases the speed of the production line in order to attach the insulating tape accurately to the boundary between the narrow current collector and the active material layer. However, there is still a limit, and there is still room for improvement in terms of productivity improvement.

本発明はこのような課題に着目してなされたものであり、低コスト化とともに生産性向上を図ったリチウムイオン二次電池の構造を提供するものである。   The present invention has been made paying attention to such a problem, and provides a structure of a lithium ion secondary battery in which the cost is reduced and the productivity is improved.

本発明は、正極と負極との間にセパレータを挟み込みながらそれらを多数組積層した電極積層体を電解液とともに外装体内に封入してなるリチウムイオン二次電池の構造であって、上記正極および負極のうち少なくともいずれか一方の電極は、集電体本体部と、当該集電体本体部よりも幅狭の集電体リード部と、集電体本体部に塗布された活物質層と、集電体リード部と活物質層との境界部に形成された塗工絶縁材層と、を備えている。   The present invention is a structure of a lithium ion secondary battery in which an electrode laminate in which a large number of sets are laminated while sandwiching a separator between a positive electrode and a negative electrode and enclosed in an outer package together with an electrolytic solution, the positive electrode and the negative electrode At least one of the electrodes includes a current collector body, a current collector lead that is narrower than the current collector body, an active material layer applied to the current collector body, and a current collector. A coating insulating material layer formed at a boundary portion between the electric conductor lead portion and the active material layer.

そして、上記活物質層は活物質材とバインダを含んでいるとともに、塗工絶縁材層は活物質層に含まれるバインダと同じバインダを含んでいて、上記集電体リード部と集電体本体部との境界部に両者にまたがるように形成された塗工絶縁材層の上から当該塗工絶縁材層の一部と重なるように活物質層が形成されていることを特徴とするものである。   The active material layer includes an active material and a binder, and the coating insulating material layer includes the same binder as the binder included in the active material layer. The current collector lead portion and the current collector body The active material layer is formed so as to overlap a part of the coating insulating material layer from above the coating insulating material layer formed so as to straddle both at the boundary with the part. is there.

本発明によれば、絶縁テープに代えて絶縁材スラリを塗布し乾燥させることで塗工絶縁材層を形成するので、低コスト化が図れるほか、製造ラインの高速化にも対応することができ、生産性が向上する。   According to the present invention, a coating insulating material layer is formed by applying and drying an insulating material slurry instead of an insulating tape, so that the cost can be reduced and the production line can be increased in speed. , Improve productivity.

ラミネートフィルム外装体型の薄型リチウムイオン二次電池の概略構造を示す図で、(A)は平面図、(B)は同図(A)のa−a線に沿った拡大断面図。It is a figure which shows schematic structure of a laminated film exterior body type thin lithium ion secondary battery, (A) is a top view, (B) is an expanded sectional view along the aa line | wire of the same figure (A). 図1に示した電池における電極積層体の分解説明図。FIG. 2 is an exploded explanatory view of an electrode laminate in the battery shown in FIG. 1. 図1,2に示した電極積層体に使用される正極電極シートの構造を示す図で、(A)は平面説明図、(B)の同図(A)の正面説明図。It is a figure which shows the structure of the positive electrode sheet used for the electrode laminated body shown to FIG.1, 2, (A) is plane explanatory drawing, (B) The front explanatory drawing of the same figure (A). 正極電極シートの製造工程全体の模式的説明図。The typical explanatory view of the whole manufacturing process of a positive electrode sheet. 図4の要部拡大説明図。The principal part expansion explanatory drawing of FIG. 図5の塗工装置における塗工ヘッドの詳細を示す図で、(A)は同図(D)のa−a線に沿う断面説明図、(B)は同図(A)の平面説明図、(C)は同図(A)の下面図、(D)は同図(A)の右側面説明図。It is a figure which shows the detail of the coating head in the coating apparatus of FIG. 5, (A) is sectional explanatory drawing in alignment with the aa line of the figure (D), (B) is plane explanatory drawing of the figure (A). (C) is the bottom view of the same figure (A), (D) is right side explanatory drawing of the same figure (A). 図6の塗工ヘッドの構成要素である第1〜第3のダイプレートそれぞれの平面説明図。Plane explanatory drawing of each of the 1st-3rd die plate which is a component of the coating head of FIG. 図4の製造工程での進捗状況を示す説明図。Explanatory drawing which shows the progress in the manufacturing process of FIG. 図8に続く製造工程での進捗状況を示す説明図。Explanatory drawing which shows the progress in the manufacturing process following FIG. 図4の第1裁断機の詳細を示す要部斜視図。The principal part perspective view which shows the detail of the 1st cutting machine of FIG. 正極電極シートの他の製造方法を示す図で、図4の製造工程での進捗状況を示す説明図。It is a figure which shows the other manufacturing method of a positive electrode sheet, and is explanatory drawing which shows the progress in the manufacturing process of FIG. 図11に続く製造工程での進捗状況を示す説明図。Explanatory drawing which shows the progress in the manufacturing process following FIG.

図1〜9は本発明に係るリチウムイオン二次電池を実施するためのより具体的な形態を示し、ここでは、図1に示すように、ラミネートフィルム外装体型の薄型リチウムイオン二次電池(以下、単に二次電池と言う。)1であって、端子(タブ)として機能する一対の集電体リード部5b,50bが外装体の同一辺から突出するように配置された電極積層体Mに使用される電極シートを製造する場合の例を示している。   FIGS. 1-9 show the more concrete form for implementing the lithium ion secondary battery which concerns on this invention, and here, as shown in FIG. The electrode stack M is a pair of current collector leads 5b and 50b that function as terminals (tabs) so as to protrude from the same side of the exterior body. The example in the case of manufacturing the electrode sheet used is shown.

そして、図1の(A)は二次電池1の平面図を、図1の(B)は同図(A)のa−a線に沿った拡大断面図をそれぞれ示している。また、図2は図1における電極積層体Mの分解説明図を、図3は図2における正極電極シート2単体での詳細をそれぞれ示している。   1A is a plan view of the secondary battery 1, and FIG. 1B is an enlarged cross-sectional view taken along the line aa of FIG. 1A. 2 shows an exploded explanatory view of the electrode laminate M in FIG. 1, and FIG. 3 shows details of the positive electrode sheet 2 alone in FIG.

図1,2に示すように、二次電池1は、共に矩形状をなす正極としての正極電極シート2と負極としての負極電極シート3との間にセパレータSを挟み込みながらそれらを多数組積層した電極積層体Mを主要素として、当該電極積層体Mを互いに接合された外装体としての複合構造の一対のラミネートフィルム4内に封入したものである。   As shown in FIGS. 1 and 2, the secondary battery 1 is formed by laminating a large number of sets of separators S sandwiched between a positive electrode sheet 2 as a positive electrode and a negative electrode sheet 3 as a negative electrode, both of which are rectangular. With the electrode laminate M as a main element, the electrode laminate M is enclosed in a pair of laminate films 4 having a composite structure as an exterior body joined together.

正極電極シート2および負極電極シート3は後述するように共にアルミニウムまたは銅その他の金属箔(集電箔)からなる集電体を母体とするものであって、いずれも幅狭のいわゆる集電体リード部5bまたは50bとなる集電体露出部(活物質未塗布部)を残して、正極電極シート2については集電体5のうち集電体本体部5a上に正極活物質層が、負極電極シート3については同じく集電体本体部上に負極活物質層がそれぞれ形成されているものである。そして、セパレータSを介して正極電極シート2と極電極シート3とを交互に積層してなる電極積層体Mは、集電体リード部5b,50bのそれぞれの一部が外装体である一対のラミネートフィルム4の同一辺から外部に端子(タブ)として突出するようにして、それらの一対のラミネートフィルム4の周縁部同士が重ね合わされた上で熱融着等の手段により互いに接合される。このように周縁部同士が互いに接合された袋状の一対のラミネートフィルム4により電極積層体Mが包囲され、内部には電解液が封入されることになる。   The positive electrode sheet 2 and the negative electrode sheet 3 are both so-called current collectors, each of which is based on a current collector made of aluminum, copper or other metal foil (current collector foil), as will be described later. For the positive electrode sheet 2, the positive electrode active material layer is formed on the current collector body 5a of the current collector 5 while leaving the current collector exposed portion (active material uncoated portion) to be the lead portion 5b or 50b. Similarly, the electrode sheet 3 has a negative electrode active material layer formed on the current collector body. And the electrode laminated body M formed by alternately laminating the positive electrode sheet 2 and the electrode electrode sheet 3 with the separator S interposed therebetween is a pair of current collector lead portions 5b, 50b each of which is an exterior body. The peripheral portions of the pair of laminate films 4 are overlapped with each other so as to protrude from the same side of the laminate film 4 to the outside as a terminal (tab), and then joined together by means such as heat fusion. In this way, the electrode laminate M is surrounded by the pair of bag-like laminate films 4 whose peripheral portions are joined to each other, and the electrolytic solution is enclosed inside.

なお、図1の例では、集電体リード部5b,50bのそれぞれの一部が端子(タブ)として外装体である一対のラミネートフィルム4の外部に突出しているが、この構造に代えて、正極側の集電体リード部5bに正極端子を、負極側の集電体リード部50bの負極端子をそれぞれ電気的に接続し、これらの正極端子および負極端子が外装体である一対のラミネートフィルム4の同一辺から外部に突出する構造としても良い。   In the example of FIG. 1, a part of each of the current collector lead parts 5 b and 50 b protrudes as a terminal (tab) to the outside of the pair of laminate films 4 as an exterior body, but instead of this structure, A positive electrode terminal is electrically connected to the positive electrode current collector lead portion 5b, and a negative electrode terminal of the negative electrode current collector lead portion 50b is electrically connected to each other, and a pair of laminate films in which the positive electrode terminal and the negative electrode terminal are exterior bodies. It is good also as a structure which protrudes outside from the same 4 side.

図3は図1,2における電極積層体Mのうち正極電極シート2単体での状態を示していて、この正極電極シート2は、例えばアルミニウム箔からなる集電体5を母体とし、集電体5は集電体本体部5aと当該集電体本体部5aから延長形成された集電体リード部5bとから構成されている。集電体5のうち集電体本体部5a上には正極活物質層6が形成されているとともに、この正極活物質層6が形成された集電体本体部5aよりも幅狭の集電体露出部(活物質未塗布部)が集電体リード部5bとして集電体本体部5aから延長されるかたちで付帯している。そして、正極活物質層6と集電体リード部5bとの境界部には、両者にまたがるようにして短絡防止のための塗工絶縁材層7が形成されている。なお、塗工絶縁材層7は、後述するように、絶縁材スラリ7Aを活物質スラリ6Aとともに塗工装置9により集電体シート5Aに塗布した上で乾燥させることで形成されることから、その工法を特定する意味で塗工絶縁材層7と称するが、以下では単に絶縁材層7と略称するものとする。   FIG. 3 shows a state of the positive electrode sheet 2 alone in the electrode laminate M in FIGS. 1 and 2. The positive electrode sheet 2 has a current collector 5 made of, for example, an aluminum foil as a base, and a current collector. Reference numeral 5 denotes a current collector body 5a and a current collector lead 5b extended from the current collector body 5a. A positive electrode active material layer 6 is formed on the current collector main body 5 a of the current collector 5, and the current collector is narrower than the current collector main body 5 a on which the positive electrode active material layer 6 is formed. The body exposed portion (active material uncoated portion) is attached as a current collector lead portion 5b extending from the current collector body portion 5a. A coating insulating material layer 7 for preventing a short circuit is formed at the boundary portion between the positive electrode active material layer 6 and the current collector lead portion 5b so as to straddle both. Since the coating insulating material layer 7 is formed by applying the insulating material slurry 7A to the current collector sheet 5A by the coating device 9 together with the active material slurry 6A and drying it, as will be described later. Although it is referred to as a coating insulating material layer 7 in the sense of specifying the construction method, it is hereinafter simply referred to as an insulating material layer 7.

正極活物質層6は、例えば溶剤で溶いたマンガン酸リチウム(LiMn24)とバインダであるPVDF(ポリフッ化ビニデリン)とを混合した流動性のある活物質スラリを集電体本体部5a上に所定厚みで塗布した上で、これを乾燥させて定着させることにより形成される。また、絶縁材層7としては、例えばアルミナ(Al23)と活物質スラリのバインダと同じPVDFとの混合物が用いられる。 The positive electrode active material layer 6 is made of, for example, a fluid active material slurry obtained by mixing lithium manganate (LiMn 2 O 4 ) dissolved in a solvent and PVDF (polyvinylidene fluoride) as a binder on the current collector main body 5a. It is formed by applying to a predetermined thickness and then drying and fixing. As the insulating material layer 7, for example, a mixture of alumina (Al 2 O 3 ) and the same PVDF as the binder of the active material slurry is used.

このような構造は、集電体5および活物質6の材質は異なるものの、負極電極シート3についても基本的に同様である。ここで、絶縁材層7は、正極電極シート2および負極電極シート3のうち少なくともいずれか一方に形成されていれば良い。また、図3では、集電体本体部5aの片面にのみ正極活物質層6および絶縁材層7を形成する場合の例を示しているが、集電体本体部5aの両面に正極活物質層6を絶縁材層7とともに形成しても良い。さらに、図3における集電体5、正極活物質層6および絶縁材層7のそれぞれの厚み寸法は、構造上の理解を容易にするために誇張して描いてあり、実際の製品の厚み寸法を示しているものではない。   Such a structure is basically the same for the negative electrode sheet 3 although the materials of the current collector 5 and the active material 6 are different. Here, the insulating material layer 7 may be formed on at least one of the positive electrode sheet 2 and the negative electrode sheet 3. FIG. 3 shows an example in which the positive electrode active material layer 6 and the insulating material layer 7 are formed only on one surface of the current collector main body 5a. However, the positive electrode active material is formed on both surfaces of the current collector main body 5a. The layer 6 may be formed together with the insulating material layer 7. Further, the thickness dimensions of the current collector 5, the positive electrode active material layer 6, and the insulating material layer 7 in FIG. 3 are exaggerated for easy understanding of the structure, and the actual product thickness dimensions are shown. It does not indicate.

図4は例えば正極電極シート2の製造工程全体の概略を模式的に示している。同図に示す製造工程では、集電体5の母体となる所定幅で且つ長尺箔状の集電体シート5Aが幾重にも巻かれたシートロールとしての集電体ロール(送り出しロール)8と、塗工装置9の塗工ヘッド(ダイコーター)10と、乾燥機11と、引き取りロール12と、第1裁断機13と、第2裁断機14と、回収エリア16と、仕上げ裁断機17と、を備えている。   FIG. 4 schematically shows, for example, the outline of the whole manufacturing process of the positive electrode sheet 2. In the manufacturing process shown in the figure, a current collector roll (feeding roll) 8 as a sheet roll in which a current collector sheet 5A having a predetermined width and a long foil shape as a base of the current collector 5 is wound several times. And a coating head (die coater) 10 of the coating apparatus 9, a dryer 11, a take-up roll 12, a first cutter 13, a second cutter 14, a recovery area 16, and a finish cutter 17. And.

集電体ロール8から送り出された長尺箔状の集電体シート5Aは、ガイドロール17,19やバックアップロール18および引き取りロール12に巻き掛けられるようにして案内される。そして、その巻き掛け状態をもって集電体シート5Aに所定の張力が付与されながら所定速度で走行して、第1裁断機13側に引き取られる。   The long foil-shaped current collector sheet 5A fed from the current collector roll 8 is guided so as to be wound around the guide rolls 17 and 19, the backup roll 18 and the take-up roll 12. Then, with the wound state, the current collector sheet 5A travels at a predetermined speed while being applied with a predetermined tension, and is taken up by the first cutter 13 side.

塗工装置9の塗工ヘッド10はバックアップロール18による集電体5Aの巻き掛け部位に近接するように配置される。集電体シート5Aがバックアップロール18にバックアップされながら走行する過程で、後述する塗工ヘッド10の吐出口から活物質スラリおよび絶縁材スラリが吐出されて、集電体シート5Aに所定厚みで塗布(塗工)される。集電体シート5Aに塗布された活物質スラリおよび絶縁材スラリは乾燥機11を通過する過程で乾燥されて活物質層6および絶縁材層7のそれぞれの塗膜として集電体シート5Aに定着し、ガイドロール19および引き取りロール12を経て第1裁断機13側に引き取られる。   The coating head 10 of the coating device 9 is disposed so as to be close to the portion where the current collector 5 </ b> A is wound by the backup roll 18. In the process in which the current collector sheet 5A travels while being backed up by the backup roll 18, an active material slurry and an insulating material slurry are discharged from a discharge port of the coating head 10 described later and applied to the current collector sheet 5A with a predetermined thickness. (Coating) The active material slurry and the insulating material slurry applied to the current collector sheet 5A are dried in the process of passing through the dryer 11, and fixed to the current collector sheet 5A as the respective coating films of the active material layer 6 and the insulating material layer 7. Then, it passes through the guide roll 19 and the take-up roll 12 and is taken to the first cutting machine 13 side.

ここで、正極電極シート2として、図3に示したように集電体5の片面に正極活物質層6および絶縁材層7を形成したタイプのほか、集電体5の両面に正極活物質層6および絶縁材層7を形成したタイプのものがあることは先に述べた。このような両面に正極活物質層6および絶縁材層7を有する正極電極シートを製造する場合には、乾燥機11を経ることで片面に正極活物質層6および絶縁材層7が形成された集電体シート5Aを引き取りロール12にて一旦巻き取ってロール状にした上で、当該ロールを図4の集電体ロール8として供給して、もう一方の面に正極活物質層6および絶縁材層7を形成することになる。   Here, as the positive electrode sheet 2, in addition to the type in which the positive electrode active material layer 6 and the insulating material layer 7 are formed on one surface of the current collector 5 as shown in FIG. 3, the positive electrode active material is formed on both surfaces of the current collector 5. As described above, there is a type in which the layer 6 and the insulating material layer 7 are formed. When manufacturing the positive electrode sheet having the positive electrode active material layer 6 and the insulating material layer 7 on both surfaces, the positive electrode active material layer 6 and the insulating material layer 7 were formed on one surface through the dryer 11. The current collector sheet 5A is once wound up by the take-up roll 12 to form a roll, and then the roll is supplied as the current collector roll 8 of FIG. 4, and the positive electrode active material layer 6 and the insulation are provided on the other surface. The material layer 7 is formed.

そして、引き取りロール12の後段の第1裁断機13、第2裁断機14および仕上げ裁断機16において、後述するように長尺な集電体シート5Aを複数の切断線で裁断することにより、図3に示したような短冊状の複数の正極電極シート2が得られることになる。   And in the 1st cutting machine 13, the 2nd cutting machine 14, and the finishing cutting machine 16 of the back | latter stage of the take-up roll 12, it cut | disconnects the elongate collector sheet 5A with a some cutting line so that it may mention later. A plurality of strip-like positive electrode sheets 2 as shown in FIG.

図5は図4における塗工装置9の詳細を示していて、本実施の形態では、共通且つ単一の塗工ヘッド10にて図3の正極活物質層6となる活物質スラリおよび絶縁材層7となる絶縁材スラリの双方を同時またはほぼ同時に集電体シート5A(5)に塗布するところに特徴がある。   FIG. 5 shows the details of the coating apparatus 9 in FIG. 4. In this embodiment, the active material slurry and the insulating material that become the positive electrode active material layer 6 of FIG. 3 with a common and single coating head 10. A characteristic is that both of the insulating material slurry to be the layer 7 are applied to the current collector sheet 5A (5) simultaneously or substantially simultaneously.

図5に示すように、塗工装置9は、塗工ヘッド10のほか、活物質スラリ6Aと絶縁材スラリ7Aとが個別に貯留されたスラリ状物質供給源としてのスラリタンク20,21を有しており、塗工ヘッド10に対して一方のスラリタンク20から活物質スラリ6Aがポンプ22にて供給されるほか、他方のスラリタンク21から絶縁材スラリ7Aがポンプ23にて供給されることになる。なお、それぞれのスラリ供給経路24,25には開閉バルブ26または27を設けてある。そして、塗工ヘッド10からの活物質スラリ6Aおよび絶縁材スラリ7Aのそれぞれの吐出および吐出停止のタイミングは、図示外のコントローラによって制御される。   As shown in FIG. 5, the coating apparatus 9 includes slurry tanks 20 and 21 as slurry-like substance supply sources in which an active material slurry 6A and an insulating material slurry 7A are separately stored, in addition to the coating head 10. The active material slurry 6A is supplied from the one slurry tank 20 to the coating head 10 by the pump 22 and the insulating material slurry 7A is supplied from the other slurry tank 21 by the pump 23. become. Each slurry supply path 24, 25 is provided with an open / close valve 26 or 27. The timings of discharge and discharge stop of the active material slurry 6A and the insulating material slurry 7A from the coating head 10 are controlled by a controller (not shown).

また、図6は塗工ヘッド10の詳細を示していて、この塗工ヘッド10は、図7に示した第1〜第3のダイプレート28,29,30同士を重ね合わせるとともに、アッパー側およびロア側のホルダープレート31,32間にそれらのダイプレート28〜30を挟み込んだ上で、図示外のボルト等にて締結することにより構成されている。   FIG. 6 shows details of the coating head 10. The coating head 10 superimposes the first to third die plates 28, 29, 30 shown in FIG. The die plates 28 to 30 are sandwiched between the holder plates 31 and 32 on the lower side, and then fastened with bolts or the like not shown.

アッパー側のホルダープレート31には、図6に示すように断面が半円状で第1のダイプレート28から見て長方形状のチャンバー部41とともにエア抜き穴42が開口形成されていて、このエア抜き穴42は塗工ヘッド10内の活物質スラリの通路33に連通しているとともに、エア抜き穴42の開放側には開閉弁43を付帯させてある。   As shown in FIG. 6, the upper side holder plate 31 has a semicircular cross section and a rectangular chamber portion 41 as viewed from the first die plate 28, and an air vent hole 42 is formed therein. The vent hole 42 communicates with the active material slurry passage 33 in the coating head 10, and an open / close valve 43 is attached to the open side of the air vent hole 42.

また、ロア側のホルダープレート32には、図6に示すように断面が半円状で第3のダイプレート30から見て長方形状のチャンバー部37,38とともに活物質スラリの流入口39と絶縁材スラリの流入口40とがそれぞれ開口形成されていて、図5に示すように、活物質スラリの流入口39は活物質スラリの供給経路24に、絶縁材スラリの流入口40は絶縁材スラリの供給経路25にそれぞれ接続されることになる。   Further, the lower side holder plate 32 is insulated from the inlet 39 of the active material slurry together with the chamber portions 37 and 38 which are semicircular in cross section and rectangular as viewed from the third die plate 30 as shown in FIG. As shown in FIG. 5, the active material slurry inlet 39 is provided in the active material slurry supply path 24, and the insulating material slurry inlet 40 is provided in the insulating material slurry. Are respectively connected to the supply path 25.

最上段の第1のダイプレート28は、図7の(A)に示すように、その中央部に比較的大きな矩形状の開口部28aが形成されていることにより、第1のダイプレート28自体がいわゆる中抜き枠状のものとして形成されている。この開口部28の大きさはアッパー側のホルダープレート31のチャンバー41を包含するようにしている。また、中央部の第2のダイプレート29は、同図(B)に示すように、第1のダイプレート28側の開口部28aと重なり合う比較的小さな開口部29aが形成されている。さらに、最下段の第3のダイプレート30には、同図(C)に示すように、第2のダイプレート29側の開口部29aと同じ大きさで且つロア側のホルダープレート32のチャンバー部37と重なり合う開口部30aが設けられているとともに、ロア側のホルダープレート32のチャンバー部38と重なり合う比較的小さな二つの開口部30bが形成されている。さらに、これらの二つの開口部30bの一辺部には当該開口部30bよりも幅狭のスロット部30cが延長形成されている。なお、幅狭でなく同じ幅でも良い。   As shown in FIG. 7A, the uppermost first die plate 28 has a relatively large rectangular opening 28a formed at the center thereof, so that the first die plate 28 itself is formed. Is formed as a so-called hollow frame shape. The size of the opening 28 includes the chamber 41 of the holder plate 31 on the upper side. The second die plate 29 at the center is formed with a relatively small opening 29a that overlaps the opening 28a on the first die plate 28 side, as shown in FIG. Further, the lowermost third die plate 30 has a chamber portion of the lower side holder plate 32 having the same size as the opening 29a on the second die plate 29 side, as shown in FIG. 37 is provided with an opening 30a that overlaps 37, and two relatively small openings 30b that overlap with the chamber 38 of the lower holder plate 32 are formed. Further, a slot portion 30c having a width narrower than that of the opening portion 30b is formed to extend on one side portion of the two opening portions 30b. The same width may be used instead of the narrow width.

そして、先に述べたように、図7に示した第1〜第3のダイプレート28〜30同士を重ね合わせるとともに、図6に示すように、アッパー側およびロア側のホルダープレート31,32間にそれらのダイプレート28〜30を挟み込んだ上で、図示外のボルト等にて締結することにより、同図から明らかなように、塗工ヘッド10の内部には活物質スラリの通路33と絶縁材スラリの通路34とが形成されるとともに、塗工ヘッド10の先端面には、第2のダイプレート29を挟んでその下方側に上記絶縁材スラリの通路34に連通する左右一対の絶縁材スラリの吐出口35が、第2のダイプレート29の上方側に上記活物質スラリの通路33に連通する活物質スラリの吐出口36がそれぞれ開口形成される。   Then, as described above, the first to third die plates 28 to 30 shown in FIG. 7 are overlapped with each other, and as shown in FIG. The die plates 28 to 30 are sandwiched between them and fastened with bolts or the like not shown in the figure, and as is apparent from the figure, the coating head 10 is insulated from the passage 33 of the active material slurry. And a pair of left and right insulating materials communicating with the insulating material slurry passage 34 below the second die plate 29 on the front end surface of the coating head 10. A slurry discharge port 35 is formed on the upper side of the second die plate 29, and an active material slurry discharge port 36 communicating with the active material slurry passage 33 is opened.

活物質スラリは絶縁材スラリよりも高い精度で安定して吐出させる必要があるため、該当するチャンバー部の容量を大きく確保する必要がある。そこで、一つの塗工ヘッド10で活物質スラリおよび絶縁材スラリの二種類のスラリをほぼ同時に吐出する場合に、アッパー側のホルダープレート31およびロア側のホルダープレート32のうちいずれか一方のホルダープレートから活物質スラリを流入させ、他方のホルダープレートから絶縁材スラリを流入させようとすると、チャンバー部は片側のみとなりチャンバー部の容積が不足することが考えられる。   Since the active material slurry needs to be stably discharged with higher accuracy than the insulating material slurry, it is necessary to secure a large capacity of the corresponding chamber portion. Therefore, when two types of slurry, that is, an active material slurry and an insulating material slurry are discharged almost simultaneously by a single coating head 10, one of the upper side holder plate 31 and the lower side holder plate 32 is used. If the active material slurry is caused to flow from the other side and the insulating material slurry is caused to flow from the other holder plate, the chamber portion may be only on one side, and the volume of the chamber portion may be insufficient.

そのため、図6,7に示す塗工ヘッド10では、アッパー側のホルダープレート31のチャンバー部41とロア側のホルダープレート32のチャンバー部37との間に、第1のダイプレート28の開口部28a、第2のダイプレート29の開口部29a、第3のダイプレート30の開口部30aをそれぞれ設け、これらを連結することで十分な容量を確保するようにしている。このような構造では、アッパー側のホルダープレート31のチャンバー部41にエアが溜まってしまうことも考えられるため、エア抜き穴42と開閉弁43を設けている。   Therefore, in the coating head 10 shown in FIGS. 6 and 7, the opening 28a of the first die plate 28 is provided between the chamber portion 41 of the upper holder plate 31 and the chamber portion 37 of the lower holder plate 32. An opening 29a of the second die plate 29 and an opening 30a of the third die plate 30 are provided, and a sufficient capacity is secured by connecting them. In such a structure, air may be accumulated in the chamber portion 41 of the upper side holder plate 31, so the air vent hole 42 and the on-off valve 43 are provided.

図8は図4,5に示した塗工装置9による塗工工程の詳細を示している。同図に示すように、図4の集電体ロール8から引き出された所定幅で且つ長尺な集電体シート5Aがバックアップロール18にてバックアップされながら矢印Q1方向に所定速度で連続的に走行している。また、図4,5に示すように、集電体シート5Aをはさんでバックアップロール18と対向配置された塗工ヘッド10は定位置固定式のものとなっていて、塗工ヘッド10からは活物質スラリと絶縁材スラリとが同時に吐出されるようになっている。ただし、後述するように、活物質スラリが連続吐出であるのに対して、絶縁材スラリは間歇吐出となっている。   FIG. 8 shows the details of the coating process by the coating apparatus 9 shown in FIGS. As shown in the figure, a long current collector sheet 5A having a predetermined width and drawn from the current collector roll 8 of FIG. 4 is continuously backed up by a backup roll 18 at a predetermined speed in the arrow Q1 direction. Running. In addition, as shown in FIGS. 4 and 5, the coating head 10 disposed opposite to the backup roll 18 with the current collector sheet 5 </ b> A interposed therebetween is of a fixed position type. The active material slurry and the insulating material slurry are discharged simultaneously. However, as will be described later, while the active material slurry is continuously discharged, the insulating material slurry is intermittently discharged.

なお、図6の(A),(D)に示した塗工ヘッド10に対する集電体シート5Aの走行方向は上向きとなるが、図8,9では、説明の都合上、集電体シート5Aの走行方向を下向きとしてある。   The traveling direction of the current collector sheet 5A with respect to the coating head 10 shown in FIGS. 6A and 6D is upward, but in FIGS. 8 and 9, the current collector sheet 5A is shown for convenience of explanation. The direction of travel is downward.

図8の(a)〜(f)に示すように、バックアップロール18にバップアップされている長尺な集電体シート5Aが連続的に走行している過程で、塗工ヘッド10から図5のように活物質スラリ6Aおよび絶縁材スラリ7Aの双方を吐出すると、活物質スラリ6Aが集電体シート5Aの長手方向に所定幅で連続的に塗布されるとともに、活物質スラリ6Aの塗布幅の両端部において絶縁材スラリ7Aが所定の間隔(ピッチ)で集電体シート5Aの長手方向に間歇的に塗布される。   As shown in FIGS. 8A to 8F, in the process in which the long current collector sheet 5A, which is backed up by the backup roll 18, is continuously running, the coating head 10 removes FIG. When both the active material slurry 6A and the insulating material slurry 7A are discharged as described above, the active material slurry 6A is continuously applied with a predetermined width in the longitudinal direction of the current collector sheet 5A, and the application width of the active material slurry 6A. The insulating material slurry 7A is intermittently applied in the longitudinal direction of the current collector sheet 5A at predetermined intervals (pitch) at both ends of the current collector.

この場合において、絶縁材スラリ7Aの塗布位置においてその絶縁材スラリ7Aの吐出タイミングを活物質スラリ6Aのそれよりもわずかに先行させることで、活物質スラリ6Aと絶縁材スラリ7Aとは集電体シート5Aの幅方向で所定量だけ互いにオーバーラップするかたちとなる。また、絶縁材スラリ7Aを含む活物質スラリ6Aの塗布幅は集電体シート5Aの幅寸法よりも小さいものとされる。   In this case, the active material slurry 6A and the insulating material slurry 7A are made current collectors by causing the discharge timing of the insulating material slurry 7A to slightly precede the active material slurry 6A at the application position of the insulating material slurry 7A. The sheets overlap each other by a predetermined amount in the width direction of the sheet 5A. The application width of the active material slurry 6A including the insulating material slurry 7A is set to be smaller than the width dimension of the current collector sheet 5A.

こうして活物質スラリ6Aおよび絶縁材スラリ7Aの双方が塗布された集電体シート5Aは、図4に示した乾燥機11を経ることにより、それらの活物質スラリ6Aおよび絶縁材スラリ7Aがそれぞれ乾燥・固化することにより集電体シート5Aに定着して、活物質層6および絶縁材層7となる。   The current collector sheet 5A thus coated with both the active material slurry 6A and the insulating material slurry 7A passes through the dryer 11 shown in FIG. 4 so that the active material slurry 6A and the insulating material slurry 7A are dried. -By solidifying, it is fixed to the current collector sheet 5 </ b> A to become the active material layer 6 and the insulating material layer 7.

なお、図8では集電体シート5A上の一条の連続塗工の例を示したが、これに限るものではなく、二条以上の複数条の塗工も可能である。   In addition, although FIG. 8 shows an example of a single continuous coating on the current collector sheet 5A, the present invention is not limited to this, and two or more multiple coatings are also possible.

図9は図4の乾燥機11を経た後の第1裁断機13、第2裁断機14および仕上げ裁断機16での裁断工程の詳細を示している。   FIG. 9 shows the details of the cutting process in the first cutting machine 13, the second cutting machine 14 and the finishing cutting machine 16 after passing through the dryer 11 of FIG.

図9の(a),(b)のほか図10に示すように、第1裁断機13ではガイドロール44,45,46のほかロータリーカッター47が用意されており、所定速度で走行する集電体シート5Aにロータリーカッター47を当てることで、集電体シート5Aの長手方向に沿った切断線、すなわち集電体シート5Aを幅方向に二分する切断線C1にて当該集電体シート5Aを幅狭の二つの幅狭集電体シート5Bに切断する。そして、二分された幅狭集電体シート5Bは後段の第2裁断機14側に引き取られる。なお、二分しない実施の形態、つまり図9の左側だけの一条の場合には切断線C1は必要ない。   In addition to (a) and (b) of FIG. 9 and as shown in FIG. 10, the first cutter 13 is provided with a rotary cutter 47 in addition to guide rolls 44, 45, and 46, and collects current at a predetermined speed. By applying the rotary cutter 47 to the body sheet 5A, the current collector sheet 5A is cut along a cutting line along the longitudinal direction of the current collector sheet 5A, that is, a cutting line C1 that bisects the current collector sheet 5A in the width direction. Cut into two narrow current collector sheets 5B. Then, the bisected narrow current collector sheet 5B is taken to the second cutting machine 14 side in the subsequent stage. Note that the cutting line C1 is not necessary in the case of an embodiment that does not bisect, that is, in the case of only one line on the left side of FIG.

一方、第2裁断機14では図示しない直刃式の複数のカッターが用意されており、図9の(b),(c)に示すように、先の集電体シート5Aの長手方向に沿った切断線C1に直交する切断線、すなわち集電体シート5Aの幅方向に沿った複数(4本)の切断線C2にてそれぞれの幅狭集電体シート5Bをその長手方向で切断・分割して、それぞれの幅狭集電体シート5Bから三つの短冊状の電極シート素片5Cを個別に切り出す。これにより、当初の集電体シート5Aの長手方向の連続性が断たれて、第2裁断機14を経ることで当初の幅寸法Wの集電体シート5Aから合計で6枚の短冊状の電極シート素片5Cが同時に切り出されたことになる。そして、第2裁断機14にて得られた合計6枚の短冊状の電極シート素片5Cは、整列・積層されて後段の回収エリア15に一旦回収される。   On the other hand, a plurality of straight blade type cutters (not shown) are prepared in the second cutter 14 and, as shown in FIGS. 9B and 9C, along the longitudinal direction of the current collector sheet 5A. Each of the narrow current collector sheets 5B is cut and divided in the longitudinal direction at a plurality of (four) cutting lines C2 along the width direction of the current collector sheet 5A. Then, three strip-shaped electrode sheet pieces 5C are cut out individually from each narrow current collector sheet 5B. Thereby, the continuity in the longitudinal direction of the initial current collector sheet 5A is cut off, and a total of six strip-shaped sheets are collected from the current collector sheet 5A having the initial width W by passing through the second cutter 14. The electrode sheet piece 5C is cut out simultaneously. Then, a total of six strip-shaped electrode sheet pieces 5C obtained by the second cutting machine 14 are aligned and stacked, and are temporarily collected in the subsequent collection area 15.

ここで、図9の(d)に示すように、それぞれの短冊状の電極シート素片5Cには、活物質層6と同じ幅の集電体露出部または活物資未塗布部が不完全集電体リード部(集電体延長部)2Aとして付帯している。そこで、図4の回収エリア15に回収された複数枚の短冊状の電極シート素片5Cは、さらに後段の仕上げ裁断機16に送られ、図9の(d),(e)に示すように、互いに直交する2本の切断線C3にて不完全集電体リード部2Aの一部を切断除去する。こうすることにより、図3に示したように、正極活物質層6が表面に形成された集電体本体部5aと、集電体本体部5aの一辺側で接続され当該一辺部より幅狭の集電体リード部5bと、を有する正極電極シート2が初めて得られることになる。   Here, as shown in FIG. 9D, each strip-shaped electrode sheet piece 5 </ b> C has incompletely collected current collector exposed portions or active material uncoated portions having the same width as the active material layer 6. It is attached as an electrical lead part (current collector extension part) 2A. Therefore, the plurality of strip-shaped electrode sheet pieces 5C collected in the collection area 15 in FIG. 4 are further sent to the finishing cutter 16 in the subsequent stage, as shown in FIGS. 9 (d) and 9 (e). Then, a part of the incomplete current collector lead 2A is cut and removed by two cutting lines C3 orthogonal to each other. By doing so, as shown in FIG. 3, the current collector body 5a having the positive electrode active material layer 6 formed on the surface thereof is connected to one side of the current collector body 5a and is narrower than the one side. The positive electrode sheet 2 having the current collector lead portion 5b is obtained for the first time.

以上の説明から明らかなように、図4,5の塗工装置9での作業が活物質スラリ6Aおよび絶縁材スラリ7Aの塗工のための塗工工程に相当し、乾燥機11での乾燥作業が乾燥工程に相当する。また、図4の第1裁断機13および第2裁断機14での裁断(切断)作業が複数枚の電極シート素片5Cを形成する切断工程に相当し、同様に図4の仕上げ切断機16での裁断(切断)作業が上記電極シート素片5Cを電極シート2に仕上げる仕上げ切断工程に相当する。   As is clear from the above description, the operation in the coating apparatus 9 in FIGS. 4 and 5 corresponds to a coating process for coating the active material slurry 6A and the insulating material slurry 7A, and drying in the dryer 11 is performed. The work corresponds to a drying process. Further, the cutting (cutting) work by the first cutting machine 13 and the second cutting machine 14 in FIG. 4 corresponds to a cutting process for forming a plurality of electrode sheet pieces 5C. Similarly, the finishing cutting machine 16 in FIG. The cutting (cutting) operation in step 1 corresponds to a finish cutting step of finishing the electrode sheet piece 5C into the electrode sheet 2.

このように本実施の形態によれば、絶縁テープに代えて絶縁材スラリ7Aを塗布し乾燥することで、正極電極シート2における正極活物質層6と集電体リード部5bとの境界部に絶縁材層7を形成するようにしているので、絶縁テープを用いる場合と比べて低コスト化とともに製造ラインの高速化を図ることができ、生産性に優れたものとなる。特に、絶縁材スラリ7Aを活物質スラリ6Aとともに塗布した上で双方のスラリ6A,7Aを実質的に同時に乾燥させることで、絶縁材スラリ7A単独での乾燥工程を廃止できるから、製造工程の簡略化とともに製造コストの一層の低減化が図れるようになる。その上、不完全集電体リード部2Aの一部を絶縁材層7の幅寸法に略合わせて切断するため、絶縁材層7の切断が抑制されるので、それらの絶縁材スラリ7Aの無駄がなく、これによってもまた一段と低コスト化に寄与できる。また、絶縁材層7と活物質スラリ6Aとの重なりを少なくできるので、活物質スラリの有効面積の減少を最小化することができる。   As described above, according to the present embodiment, instead of the insulating tape, the insulating material slurry 7A is applied and dried, so that the boundary between the positive electrode active material layer 6 and the current collector lead portion 5b in the positive electrode sheet 2 is obtained. Since the insulating material layer 7 is formed, the cost can be reduced and the production line speed can be increased as compared with the case of using the insulating tape, and the productivity is excellent. In particular, by applying the insulating material slurry 7A together with the active material slurry 6A and drying both of the slurries 6A and 7A substantially simultaneously, the drying process of the insulating material slurry 7A alone can be eliminated, thus simplifying the manufacturing process. As a result, manufacturing costs can be further reduced. In addition, since a part of the incomplete current collector lead portion 2A is cut substantially in accordance with the width dimension of the insulating material layer 7, the cutting of the insulating material layer 7 is suppressed, so that the waste of the insulating material slurry 7A is wasted. This also contributes to further cost reduction. Further, since the overlap between the insulating material layer 7 and the active material slurry 6A can be reduced, the reduction in the effective area of the active material slurry can be minimized.

なお、本実施の形態の電極シートの製法は、先に述べたように、集電体5の両面に絶縁材層7とともに活物質層6を有するタイプの電極シートの製造にも適用できるほか、図1,2に示した負極電極シート3の製造にも同様に適用できることは言うまでもない。   The electrode sheet manufacturing method of the present embodiment can be applied to the manufacture of an electrode sheet having the active material layer 6 together with the insulating material layer 7 on both sides of the current collector 5 as described above. Needless to say, the present invention can also be applied to the production of the negative electrode sheet 3 shown in FIGS.

また、上記実施の形態では、図9に示すように、絶縁材スラリ7Aは集電体シート5Aの長手方向に沿って間歇的に塗布する一方で、活物質スラリ6Aは集電体シート5Aの長手方向に沿って連続的に塗布するようにしているが、図9の(c)の絶縁材スラリ7Aを含む6枚分の活物質スラリ6Aを集電体シート5Aの長手方向に沿って間歇的に塗布することも可能である。   In the above embodiment, as shown in FIG. 9, the insulating material slurry 7A is intermittently applied along the longitudinal direction of the current collector sheet 5A, while the active material slurry 6A is formed on the current collector sheet 5A. Although continuous application is performed along the longitudinal direction, six active material slurries 6A including the insulating material slurry 7A of FIG. 9C are intermittently applied along the longitudinal direction of the current collector sheet 5A. It is also possible to apply it.

図11,12は図4とほぼ同様の製造工程を前提とした電極シートの製造方法の別の例を示している。   11 and 12 show another example of the electrode sheet manufacturing method based on the manufacturing process substantially similar to that shown in FIG.

図11において、符号Q1は図4の集電体ロール8から引き出された長尺な集電体シート5Aの走行方向を示していて、同図(a)に示すように、最初に集電体シート5Aの幅方向の三箇所に間歇的に絶縁材スラリ7Aを塗布し、次いで同図(b)に示すように、複数の絶縁材スラリ7Aとオーバーラップするように活物質スラリ6Aを集電体シート5Aの幅方向全幅にわたってストライプ状に塗布する。このような複数の絶縁材スラリ7Aの塗布と活物質スラリ6Aのストライプ状の塗布とを1サイクルとして、同図(c),(d)に示すように、上記サイクルを集電体シート5Aの長手方向で間歇的に繰り返す。   In FIG. 11, reference sign Q1 indicates the traveling direction of the long current collector sheet 5A drawn from the current collector roll 8 in FIG. 4, and as shown in FIG. Insulating material slurry 7A is intermittently applied to three positions in the width direction of sheet 5A, and then active material slurry 6A is collected so as to overlap with a plurality of insulating material slurries 7A as shown in FIG. It is applied in the form of stripes over the entire width of the body sheet 5A. The application of the plurality of insulating material slurries 7A and the striped application of the active material slurry 6A are defined as one cycle, and the above cycle is performed on the current collector sheet 5A as shown in FIGS. Repeat intermittently in the longitudinal direction.

ここで、上記のような活物質スラリ6Aおよび絶縁材スラリ7Aの塗工は、図6に示したような塗工ヘッド10を活物質スラリ6A用のものと絶縁材スラリ7A用のものとにそれぞれ独立させ、それら二つの塗工ヘッドを集電体シート5Aの走行方向において直列に配置することで容易に実施可能である。   Here, the coating of the active material slurry 6A and the insulating material slurry 7A as described above is performed by changing the coating head 10 as shown in FIG. 6 into one for the active material slurry 6A and one for the insulating material slurry 7A. Each of the two coating heads can be easily implemented by arranging them in series in the running direction of the current collector sheet 5A.

なお、図8のように幅方向に二つの絶縁材を配置する場合には、図7で示した第3のダイプレート30のように二本のスロット30cで良いが、図11で示すように幅方向に三つの絶縁材を配置するには、図7の第3のダイプレート30のスロット30cを3本とすることで実現可能となる。   When two insulating materials are arranged in the width direction as shown in FIG. 8, two slots 30c may be used as in the third die plate 30 shown in FIG. 7, but as shown in FIG. The arrangement of the three insulating materials in the width direction can be realized by providing three slots 30c in the third die plate 30 in FIG.

続いて、図12の(a),(b)に示すように、図4の第1裁断機13にて、集電体シート5Aの長手方向に沿った切断線、すなわち集電体シート5Aを幅方向に三等分する二本の切断線C4にて当該集電体シート5Aを幅狭の三つの幅狭集電体シート5Dに切断する。   Subsequently, as shown in FIGS. 12A and 12B, the cutting line along the longitudinal direction of the current collector sheet 5 </ b> A, that is, the current collector sheet 5 </ b> A is obtained by the first cutter 13 of FIG. 4. The current collector sheet 5A is cut into three narrow current collector sheets 5D having a narrow width at two cutting lines C4 that are divided into three equal parts in the width direction.

さらに、図12の(c)に示すように、図4の第2裁断機14にて、先の集電体シート5Aの長手方向に沿った切断線C4に直交する切断線、すなわち集電体シート5Aの幅方向に沿った複数の切断線C5にて長手方向で三つの幅狭電極シート素片5Dをそれぞれ切断・分割して、それぞれの幅狭集電体シート5Dから三つの短冊状の電極シート素片5Eを個別に切り出す。これにより、当初の集電体シート5Aの長手方向の連続性が断たれて、第2裁断機14を経ることで当初の幅寸法Wの集電体シート5Aから合計で6枚の短冊状の電極シート素片5Eが同時に切り出されたことになる。そして、第2裁断機14にて得られた合計6枚の短冊状の電極シート素片5Eは、整列・積層されて後段の回収エリア15に一旦回収される。   Further, as shown in FIG. 12 (c), in the second cutting machine 14 in FIG. 4, a cutting line orthogonal to the cutting line C4 along the longitudinal direction of the current collector sheet 5A, that is, the current collector Three narrow electrode sheet pieces 5D are cut and divided in the longitudinal direction at a plurality of cutting lines C5 along the width direction of the sheet 5A, respectively, and three strip-shaped strips are formed from each narrow current collector sheet 5D. The electrode sheet piece 5E is cut out individually. Thereby, the continuity in the longitudinal direction of the initial current collector sheet 5A is cut off, and a total of six strip-shaped sheets are collected from the current collector sheet 5A having the initial width W by passing through the second cutter 14. The electrode sheet piece 5E is cut out simultaneously. Then, a total of six strip-shaped electrode sheet pieces 5E obtained by the second cutting machine 14 are aligned and stacked, and are temporarily collected in the collection area 15 at the subsequent stage.

続いて、図4の回収エリア15に回収された複数枚の短冊状の電極シート素片5Eは、さらに後段の仕上げ裁断機16に送られ、図12の(c),(d)に示すように、互いに直交する2本の切断線C6にて不完全集電体リード部(集電体延部)2Aの一部を切断除去する。こうすることにより、図3に示したような正極電極シート2が得られることになる。   Subsequently, the plurality of strip-shaped electrode sheet pieces 5E collected in the collection area 15 of FIG. 4 are further sent to the finishing cutter 16 at the subsequent stage, as shown in FIGS. 12 (c) and 12 (d). Then, a part of the incomplete current collector lead part (current collector extension part) 2A is cut and removed by two cutting lines C6 orthogonal to each other. By doing so, the positive electrode sheet 2 as shown in FIG. 3 is obtained.

このような電極シートの製造方法においても先の第1の実施の形態と同様の効果が得られることは言うまでもない。   It goes without saying that the same effects as those of the first embodiment can be obtained also in such an electrode sheet manufacturing method.

1…リチウムイオン二次電池
2…正極電極シート
3…負極電極シート
4…ラミネートフィルム(外装体)
5…集電体
5a…集電体本体部
5b…集電体リード部
6…正極活物質層
7…塗工絶縁材層
50b…集電体リード部
M…電極積層体
S…セパレータ
DESCRIPTION OF SYMBOLS 1 ... Lithium ion secondary battery 2 ... Positive electrode sheet 3 ... Negative electrode sheet 4 ... Laminate film (exterior body)
DESCRIPTION OF SYMBOLS 5 ... Current collector 5a ... Current collector main body part 5b ... Current collector lead part 6 ... Positive electrode active material layer 7 ... Coating insulating material layer 50b ... Current collector lead part M ... Electrode laminated body S ... Separator

Claims (2)

正極と負極との間にセパレータを挟み込みながらそれらを多数組積層した電極積層体を電解液とともに外装体内に封入してなるリチウムイオン二次電池の構造であって、
上記正極および負極のうち少なくともいずれか一方の電極は、集電体本体部と、当該集電体本体部よりも幅狭の集電体リード部と、集電体本体部に塗布された活物質層と、集電体リード部と活物質層との境界部に形成された塗工絶縁材層と、を備えていて、
上記活物質層は活物質材とバインダを含んでいるとともに、塗工絶縁材層は活物質層に含まれるバインダと同じバインダを含んでいて、
上記集電体リード部と集電体本体部との境界部に両者にまたがるように形成された塗工絶縁材層の上から当該塗工絶縁材層の一部と重なるように活物質層が形成されていることを特徴とするリチウムイオン二次電池。
A structure of a lithium ion secondary battery in which an electrode laminate in which a large number of sets are laminated while sandwiching a separator between a positive electrode and a negative electrode and enclosed in an outer package together with an electrolyte,
At least one of the positive electrode and the negative electrode includes a current collector main body, a current collector lead narrower than the current collector main body, and an active material applied to the current collector main body. And a coating insulating material layer formed at a boundary portion between the current collector lead portion and the active material layer,
The active material layer includes an active material and a binder, and the coating insulating material layer includes the same binder as the binder included in the active material layer.
The active material layer overlaps a part of the coating insulating material layer from above the coating insulating material layer formed so as to straddle the boundary portion between the current collector lead portion and the current collector main body portion. A lithium ion secondary battery characterized by being formed.
上記集電体本体部と集電体リード部、活物質層および塗工絶縁材層とを備えている電極が正極であることを特徴とする請求項1に記載のリチウムイオン二次電池。   2. The lithium ion secondary battery according to claim 1, wherein the electrode including the current collector main body, the current collector lead, the active material layer, and the coating insulating material layer is a positive electrode.
JP2016128231A 2016-06-29 2016-06-29 Lithium ion secondary battery Pending JP2016186945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016128231A JP2016186945A (en) 2016-06-29 2016-06-29 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128231A JP2016186945A (en) 2016-06-29 2016-06-29 Lithium ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013006916A Division JP5964253B2 (en) 2013-01-18 2013-01-18 Manufacturing method of electrode sheet for secondary battery and coating apparatus used therefor

Publications (1)

Publication Number Publication Date
JP2016186945A true JP2016186945A (en) 2016-10-27

Family

ID=57203364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128231A Pending JP2016186945A (en) 2016-06-29 2016-06-29 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2016186945A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202973A1 (en) 2019-03-29 2020-10-08 株式会社エンビジョンAescエナジーデバイス Positive electrode for lithium ion secondary battery, positive electrode sheet for lithium ion secondary battery, and manufacturing method thereof
WO2020203658A1 (en) 2019-03-29 2020-10-08 株式会社エンビジョンAescエナジーデバイス Positive electrode for lithium ion secondary battery, positive electrode sheet for lithium ion secondary battery, and method for producing same
CN113632314A (en) * 2019-03-12 2021-11-09 株式会社Lg新能源 Battery module and method for manufacturing same
WO2021233214A1 (en) * 2020-05-19 2021-11-25 东莞塔菲尔新能源科技有限公司 Pole piece and preparation method therefor and lithium ion battery
WO2024021061A1 (en) * 2022-07-29 2024-02-01 宁德时代新能源科技股份有限公司 Electrode plate and preparation method therefor, and related device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259625A (en) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and method of manufacturing electrode used for the same
JP2012204334A (en) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd Nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202928A1 (en) * 2003-01-26 2004-10-14 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and manufacturing methods of an electrode used therein
JP2004259625A (en) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and method of manufacturing electrode used for the same
JP2012204334A (en) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd Nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632314A (en) * 2019-03-12 2021-11-09 株式会社Lg新能源 Battery module and method for manufacturing same
CN113632314B (en) * 2019-03-12 2023-06-23 株式会社Lg新能源 Battery module and method for manufacturing same
WO2020202973A1 (en) 2019-03-29 2020-10-08 株式会社エンビジョンAescエナジーデバイス Positive electrode for lithium ion secondary battery, positive electrode sheet for lithium ion secondary battery, and manufacturing method thereof
WO2020203658A1 (en) 2019-03-29 2020-10-08 株式会社エンビジョンAescエナジーデバイス Positive electrode for lithium ion secondary battery, positive electrode sheet for lithium ion secondary battery, and method for producing same
CN113711381A (en) * 2019-03-29 2021-11-26 远景Aesc日本有限公司 Positive electrode for lithium ion secondary battery, positive electrode tab for lithium ion secondary battery, and method for producing same
EP3951929A4 (en) * 2019-03-29 2022-08-24 Envision AESC Japan Ltd. Positive electrode for lithium ion secondary battery, positive electrode sheet for lithium ion secondary battery, and method for producing same
WO2021233214A1 (en) * 2020-05-19 2021-11-25 东莞塔菲尔新能源科技有限公司 Pole piece and preparation method therefor and lithium ion battery
WO2024021061A1 (en) * 2022-07-29 2024-02-01 宁德时代新能源科技股份有限公司 Electrode plate and preparation method therefor, and related device

Similar Documents

Publication Publication Date Title
JP5964253B2 (en) Manufacturing method of electrode sheet for secondary battery and coating apparatus used therefor
JP6096077B2 (en) Coating head and coating apparatus using the same
JP2016186945A (en) Lithium ion secondary battery
KR101084075B1 (en) Rechargeable battery and manufacturing method of the same
KR101108118B1 (en) Secondary battery manufacturing method and secondary batter thereby
JP6336748B2 (en) Co-extrusion print head for multilayer battery construction
JP2013507732A (en) Battery electrode assembly and method of manufacturing the same
JP2019145514A (en) Electrochemical cell including folded electrode and separator, battery including the cell, and method of forming them
JP4402134B2 (en) Multilayer secondary battery and manufacturing method thereof
JP5057726B2 (en) Method and apparatus for manufacturing electrode plate for lithium secondary battery
KR20140035646A (en) Cell stacking method for secondary battery and cell stack for using the same
EP3836271B1 (en) Separator sealing apparatus and method for preventing bending of separator of secondary battery
EP2866290B1 (en) Electrode assembly for polymer secondary battery cell
JP2021010867A (en) Coating apparatus and manufacturing method of electrode for battery
KR101291063B1 (en) Stacking system and method for Secondary Battery
US20200280104A1 (en) Anode Subassemblies for Lithium-Metal Batteries, Lithium-Metal Batteries Made Therewith, and Related Methods
CN202495538U (en) Lithium ion battery
US20140050956A1 (en) Single winding core, lithium cell with single winding core and successive winding method for single winding core
JP2018198161A (en) Coating device
JP2014026852A (en) Power storage device and secondary battery and manufacturing method for electrode
JP2014102897A (en) Power storage device and manufacturing method for power storage device
JPH09219189A (en) Manufacture of sheet electrode
JP6206222B2 (en) Electrode manufacturing method
CN108140804B (en) Method for manufacturing electrode plate for electricity storage device and coating device
JP2018018678A (en) Method for manufacturing power storage device and power storage device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109