JP2016186608A - Production method of colored film exhibiting structural color - Google Patents

Production method of colored film exhibiting structural color Download PDF

Info

Publication number
JP2016186608A
JP2016186608A JP2015067399A JP2015067399A JP2016186608A JP 2016186608 A JP2016186608 A JP 2016186608A JP 2015067399 A JP2015067399 A JP 2015067399A JP 2015067399 A JP2015067399 A JP 2015067399A JP 2016186608 A JP2016186608 A JP 2016186608A
Authority
JP
Japan
Prior art keywords
spherical fine
structural color
colored film
meth
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015067399A
Other languages
Japanese (ja)
Other versions
JP6589330B2 (en
Inventor
一敏 大庭
Kazutoshi Oba
一敏 大庭
秀一 木村
Shuichi Kimura
秀一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2015067399A priority Critical patent/JP6589330B2/en
Publication of JP2016186608A publication Critical patent/JP2016186608A/en
Application granted granted Critical
Publication of JP6589330B2 publication Critical patent/JP6589330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide technology for forming a colored film exhibiting a structural color on a predetermined substrate so as to stably and regularly arrange and fix particles in a colored film in such a manner that particulate deposition comprising particles regularly conformed in a vertical direction can be formed while reducing brittleness of the film or cracks during drying, which are problems in conventional molding with a structural color, and that the colored film exhibiting a structural color can be inexpensively produced through a simple process.PROBLEM TO BE SOLVED: To provide a production method of a colored film exhibiting a structural color, the method comprising: applying a spherical particulate dispersion prepared by dispersing chargeable spherical particles in a medium on a substrate surface having charges in an opposite polarity to the spherical fine particles; and drying the dispersion of chargeable spherical particles so as to obtain a deposited layer having the spherical particles regularly conformed in a vertical direction.SELECTED DRAWING: None

Description

本発明は、光学素子材料となりうるコロイド粒子を用いた構造色を呈する着色膜の製造方法およびそれらから得られる着色膜に関するものである。   The present invention relates to a method for producing a colored film exhibiting a structural color using colloidal particles that can be an optical element material, and a colored film obtained therefrom.

構造色とは、光の波長あるいはそれ以下の微細構造による発色現象を指し、身近な構造色の例にはコンパクトディスクやシャボン玉、モルフォ蝶、玉虫などが挙げられる。上記例では、それ自身には色がついていないが、その微細な構造によって光が干渉するため、色づいて見える。構造色の発色は例えば目に見える色の範囲であれば、非常に小さな粒径の樹脂粒子、例えば粒子径が0.15〜0.35μmの範囲にある粒子を規則正しく周期的に並べても発現することも知られている。   The structural color refers to a coloring phenomenon due to a fine structure having a wavelength of light or less, and examples of familiar structural colors include compact discs, soap bubbles, morpho butterflies, and iridescents. In the above example, the color itself is not colored, but it appears colored because light interferes with its fine structure. For example, if the color of the structural color is in the range of visible colors, resin particles having a very small particle diameter, for example, particles having a particle diameter in the range of 0.15 to 0.35 μm are expressed evenly and regularly. It is also known.

このような簡単な構成で綺麗な外観が得られるので、小さな粒子を製造することにより、容易にしかも簡単に構造発色によるパール色の外観が得られる筈ではあるが、実際には簡単にパール色の外観を取り出すことは難しい。例えば、通常コロイド粒子による結晶構造
作成では、液中で作成した結晶構造を取り出そうと乾燥すると、一応構造色の外観が得られるのであるが、結晶状態がちょっとした力で簡単に崩れてしまう。
With such a simple structure, a beautiful appearance can be obtained. By producing small particles, it should be easy to obtain a pearl-colored appearance due to structural coloring. It is difficult to take out the appearance. For example, in the case of crystal structure creation using colloidal particles, for example, when a crystal structure created in a liquid is dried to obtain a crystal structure, a structural color appearance can be obtained. However, the crystal state can be easily broken with a slight force.

コロイドが配列して結晶構造を作ったときにそれを固定化する方法としては、いくつかの方法が提案されてきた。例えば、粒子表面に反応性の官能基を持たせた配列後に反応させる方法、粒子をコア・シェル構造にして配列後に加熱融着させる方法、配列した粒子の間隙に樹脂を浸透させる方法、配列した粒子を膜状にしたうえから樹脂コーティングすることにより樹脂粒子間隙には空気が入ったまま固定する方法などが存在する。   Several methods have been proposed as a method for immobilizing colloids when they are arranged to form a crystal structure. For example, a method of reacting after arraying with reactive functional groups on the particle surface, a method of making particles a core-shell structure and heat-sealing after the arraying, a method of infiltrating the resin into the gaps of the arrayed particles, and arranging There is a method in which the particles are formed into a film and then coated with resin to fix the resin particles with air in the gaps.

特開2004−73123号公報(特許文献1)には、有機又は無機の球状粒子が、縦および横方向に規則的に整合されて粒子状積層物を形成し、その粒子状積層物は少なくも樹脂バインダーで係止され、粒子状積層物面は、可視光波長領域光の照射下に視感される垂直反射光色が構造色として有採光色を呈するカラーシートが開示されている。この特許文献1のカラーシートは樹脂粒子から構成されるフォトニック結晶膜であって、粒子間にバインダー樹脂を塗布又は噴霧させることで、固定化している。   In JP-A-2004-73123 (Patent Document 1), organic or inorganic spherical particles are regularly aligned in the vertical and horizontal directions to form a particulate laminate, and the particulate laminate is at least A color sheet is disclosed in which the surface of the particulate laminate, which is locked with a resin binder, has a foreground color as a structural color of the vertically reflected light color that is perceived under irradiation with light in the visible wavelength region. The color sheet of Patent Document 1 is a photonic crystal film composed of resin particles, and is fixed by applying or spraying a binder resin between the particles.

特開2005−60654号公報(特許文献2)には、樹脂粒子サスペンジョンからグリーンシートを作成し、それを乾燥して、縦・横方向に規則的に配列する球状微細粒子の3次元粒子整合体を形成させ、次いでその表面および粒子間隙を満たすように重合性有機モノマー液、有機ポリマー液又は無機バインダー液のいずれかを塗布又は散布させた後、重合又は硬化させてなる球状微細粒子の3次元粒子整合体の製造方法を開示する。特許文献1および2両方とも、粒子結晶構造を形成した後、別に調製したモノマーやポリマー液を塗布あるいは噴霧する方法を用いており、塗布や噴霧時にフォトニック結晶構造が壊れることがある。また、形成されたフォトニック結晶構造の上から塗布や噴霧するので、粒子間に存在する空気がそのまま封入されたままになることが多い。   JP-A-2005-60654 (Patent Document 2) discloses a three-dimensional particle matching body of spherical fine particles in which a green sheet is prepared from a resin particle suspension, dried, and regularly arranged in the vertical and horizontal directions. Three-dimensional spherical fine particles formed by applying or dispersing a polymerizable organic monomer liquid, organic polymer liquid or inorganic binder liquid so as to fill the surface and particle gaps, and then polymerizing or curing. Disclosed is a method for producing a particle matched body. Both Patent Documents 1 and 2 use a method in which a separately prepared monomer or polymer solution is applied or sprayed after forming a particle crystal structure, and the photonic crystal structure may be broken during application or spraying. In addition, since coating or spraying is performed on the formed photonic crystal structure, the air present between the particles often remains encapsulated as it is.

特開2004−73123号公報JP 2004-73123 A 特開2005−60654号公報Japanese Patent Laying-Open No. 2005-60654

以上のような状況下にあって、構造色を呈する着色膜としては、以下のような固定化に向けた課題があった。
(a)粒子と粒子間の密着性が弱く、できあがった膜が強度的に脆いものであった。
(b)上記(a)と同じ理由で、乾燥時にひび割れ等が入りやすかった。
Under the circumstances as described above, the coloring film exhibiting a structural color has the following problems for immobilization.
(A) The adhesion between the particles was weak and the resulting film was brittle in strength.
(B) For the same reason as (a) above, cracks and the like were likely to occur during drying.

そこで、本発明の目的は、構造色を呈する着色膜が所定の基板上において、上記(a)、(b)のような強度的に脆く、ひび割れ等の問題が生じないような球状微粒子を安定的に規則正しく配列・固定化するとともに、簡易的なプロセスで低コストに構造色の着色膜を作成できる方法を提供することを解決すべき技術的課題とする。   Therefore, an object of the present invention is to stabilize spherical fine particles such as (a) and (b), which are brittle in strength and do not cause problems such as cracks, on a predetermined substrate. It is a technical problem to be solved to provide a method for arranging and fixing regularly and regularly and forming a colored film having a structural color at a low cost by a simple process.

すなわち本発明は、帯電性の球状微粒子を媒体に分散させた帯電性の球状微粒子分散体を、前記球状微粒子とは逆の電荷を持った基板表面上に塗布し、前記帯電性球状微粒子分散体を乾燥させることにより、前記球状微粒子が縦方向に規則的に整合した積層物にすることを特徴とする、構造色を呈する着色膜の製造方法に関する。   That is, the present invention applies a chargeable spherical fine particle dispersion in which chargeable spherical fine particles are dispersed in a medium onto a substrate surface having a charge opposite to that of the spherical fine particles. It is related with the manufacturing method of the colored film which exhibits a structural color characterized by making the laminated body into which the said spherical fine particle matched regularly in the vertical direction by drying.

また本発明は、帯電性の球状微粒子分散体がアクリル系有機ポリマー球状微粒子分散体であることを特徴とする上記構造色を呈する着色膜の製造方法に関する。   The present invention also relates to a method for producing a colored film exhibiting the above structural color, wherein the chargeable spherical fine particle dispersion is an acrylic organic polymer spherical fine particle dispersion.

また本発明は、帯電性球状微粒子の平均粒子径が100nm〜600nmの範囲にあり且つ粒子径の変動係数Cv値が30%以下のアクリル系有機ポリマー球状微粒子及び黒色系無彩物であることを特徴とする上記構造色を呈する着色膜の製造方法に関する。   Further, the present invention is an acrylic organic polymer spherical fine particle and black achromatic material having an average particle size of the chargeable spherical fine particles in the range of 100 nm to 600 nm and a coefficient of variation Cv of the particle size of 30% or less. It is related with the manufacturing method of the colored film which exhibits the said structural color characterized.

また本発明は、帯電性の球状微粒子分散体が球状微粒子に対して、黒色系無彩物を0.001質量%以上含有する球状微粒子分散体であることを特徴とする上記構造色を呈する着色膜の製造方法に関する。   According to the present invention, the charged spherical fine particle dispersion is a spherical fine particle dispersion containing 0.001% by mass or more of a black achromatic material with respect to the spherical fine particles. The present invention relates to a film manufacturing method.

また本発明は、帯電性の球状微粒子が、黒色系無彩色で着色させた球状微粒子であることを特徴とする上記構造色を呈する着色膜の製造方法に関する。   The present invention also relates to a method for producing a colored film having the above structural color, wherein the chargeable spherical fine particles are spherical fine particles colored with a black achromatic color.

また本発明は、帯電性アクリル系有機ポリマー球状微粒子のガラス転移温度が、20℃以上であることを特徴とする上記構造色を呈する着色膜の製造方法に関する。   The present invention also relates to a method for producing a colored film exhibiting the above structural color, wherein the glass transition temperature of the chargeable acrylic organic polymer spherical fine particles is 20 ° C. or higher.

また本発明は、上記構造色を呈する着色膜の製造方法により得られる着色膜に関する。   Moreover, this invention relates to the colored film obtained by the manufacturing method of the colored film which exhibits the said structural color.

本発明では、帯電性の球状微粒子分散体を前記球状微粒子とは逆の電荷を持った基板表面上に、前記帯電性球状微粒子分散体を塗布・乾燥させる簡便な操作法のみで、膜の脆さや乾燥時のひび割れ等を緩和し、縦方向に規則的に整合させてなる構造色を呈する粒子状積層物にすることを可能とする構造色を呈する着色膜を生成することができた。また、基材と球状微粒子の密着性の向上、更に、粒子配列の規則正向上により球状微粒子の粒子径に応じた目的の最大反射率が向上した着色膜を提供することができた。   In the present invention, the brittleness of the film can be obtained only by a simple operation method in which the chargeable spherical fine particle dispersion is coated and dried on the substrate surface having a charge opposite to that of the spherical fine particles. It was possible to relieve cracks and the like during drying and to produce a colored film exhibiting a structural color that makes it possible to form a particulate laminate exhibiting a structural color that is regularly aligned in the vertical direction. In addition, by improving the adhesion between the base material and the spherical fine particles, and further improving the regularity of the particle arrangement, it was possible to provide a colored film having an improved maximum reflectance according to the particle diameter of the spherical fine particles.

以下に、本発明の構造色を呈する着色膜の特徴について更に説明する。  Below, the characteristic of the colored film which exhibits the structural color of this invention is further demonstrated.

既に上述した如く、本発明の帯電性の球状微粒子分散体を前記球状微粒子とは逆の電荷を持った基板表面上に、前記帯電性球状微粒子分散体を塗布・乾燥させる簡便な操作法で
得られる着色膜は、従来課題であった膜の脆さや乾燥時のひび割れ等を緩和し、縦方向に規則的に整合させてなる構造色を呈する粒子状積層物にすることを可能とする構造色を呈する着色膜である。また、基材と球状微粒子の密着性の向上、更に、粒子配列の規則正向上により球状微粒子の粒子径に応じた目的の最大反射率が向上した着色膜を提供することができた。
As described above, the chargeable spherical fine particle dispersion of the present invention is obtained by a simple operation method of applying and drying the chargeable spherical fine particle dispersion on the substrate surface having a charge opposite to that of the spherical fine particles. The colored film is a structural color that reduces the brittleness of the film, cracks when dried, etc., which has been a conventional problem, and makes it possible to form a particulate laminate that exhibits a structural color that is regularly aligned in the vertical direction. It is a colored film exhibiting. In addition, by improving the adhesion between the base material and the spherical fine particles, and further improving the regularity of the particle arrangement, it was possible to provide a colored film having an improved maximum reflectance according to the particle diameter of the spherical fine particles.

本発明による構造色を呈する着色膜の製造方法では、有彩色の染料及び/又は顔料等で
着色されていない単分散の帯電性球状微粒子分散体において、上記分散体を所定の方法で塗布・乾燥させた膜の太陽光もしくは通常の可視光領域の光が照射されて視感される垂直反射光が、乳白色の淡い構造色のようなものではなく、赤(R)、青(B)、緑(G)及び黄(Y)等の色みの構造色を明確に視感させる着色膜の製造方法を構築することができるものである。
In the method for producing a colored film exhibiting a structural color according to the present invention, in a monodispersed chargeable spherical fine particle dispersion not colored with a chromatic dye and / or pigment, the dispersion is applied and dried by a predetermined method. The vertical reflected light that is perceived by the sunlight of the film or the light in the normal visible light region is not like the pale structural color of milky white, but red (R), blue (B), green It is possible to construct a manufacturing method of a colored film that clearly gives a visible structural color such as (G) and yellow (Y).

また、このような特徴を有する本発明の有彩光色種が、この帯電性球状微粒子の明確な所定の粒子径との係わりを有し、しかも、恰も光源色のように発色する構造色であることが顕著な特徴である。   In addition, the chromatic color type of the present invention having such characteristics has a relationship with a clear predetermined particle diameter of the chargeable spherical fine particles, and the wrinkle is a structural color that develops color like a light source color. It is a remarkable feature.

すなわち、既に上述したように、照射された可視光の一部が、この構造色を呈する着色膜の表面である粒子状積層物面で、その粒子の周辺で生ずる本発明が目的とする反射光以外に生じる散乱、透過等による迷光を適宜効果的に吸収し、削減させる効果を発揮させる。   That is, as already described above, a part of the irradiated visible light is the surface of the particulate laminate which is the surface of the colored film exhibiting this structural color, and the reflected light intended by the present invention is generated around the particles. Besides, stray light caused by scattering, transmission, etc., is effectively absorbed as appropriate, and the effect of reducing it is exhibited.

そこで、本発明において用いても良い黒色系無彩物は、この反射光色の色みをより鮮明にさせることから、好ましくは、マンセル色標におけるこの明度が5以下、更に好ましくは3以下の色みの無い黒色系無彩物である。   Therefore, the black achromatic material that may be used in the present invention preferably makes the brightness of the reflected light color clearer. Therefore, the lightness in the Munsell color chart is preferably 5 or less, more preferably 3 or less. It is a black achromatic object without color.

本発明において、黒色系無彩物とは、具体的に、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック)、油煙、黒鉛、黒染料(ニグロシン、アジン他)、イカ墨、墨汁、インスタントコーヒー粉末などが挙げられ、また、黒色系無彩色の有機ポリマー又は無機ポリマーの粒子なども含む。ただし、本発明で使用する黒色系無彩物は上記例のこれらに限定されるものではない。   In the present invention, black achromatic materials specifically include carbon black (acetylene black, ketjen black, furnace black), oil smoke, graphite, black dyes (nigrosine, azine, etc.), squid ink, ink, instant coffee Examples thereof include powder, and also include black achromatic organic polymer or inorganic polymer particles. However, the black achromatic material used in the present invention is not limited to these examples.

本発明において、帯電性球状微粒子分散体に対して、黒色系無彩物を添加する、もしくは黒色系無彩色で着色させた球状微粒子分散体を用いても良い理由は、媒体中にシリカ粒子やポリスチレン粒子などの微粒子を利用する系では、一般的にその構造により、レイリー散乱やミー散乱などの光の散乱で全体的に乳白色の淡い構造色となるため、カーボンブラック等の黒色系無彩物の添加、もしくは黒色系無彩色で着色させることによる彩度の顕著な向上を発揮させる。   In the present invention, the reason why the spherical fine particle dispersion in which a black achromatic material is added to the chargeable spherical fine particle dispersion or colored in a black achromatic color may be used is that silica particles or In systems using fine particles such as polystyrene particles, the structure is generally milky-white and pale due to light scattering such as Rayleigh scattering and Mie scattering, so black achromatic objects such as carbon black. Addition of a black color or a black achromatic color makes it possible to exhibit a remarkable improvement in saturation.

本発明において、「帯電性」とは、微粒子のゼータ電位の絶対値を意味する。球状微粒子が溶液中に存在するとき、粒子の表面電荷と逆符号のイオンが引き寄せられ、電気二重層を形成し、粒子の周りに集まったイオンは固定層と拡散層を形成する。粒子からある距離までの厚みの溶媒は粒子と共に動き、この境界面が滑り面である。また滑り面での電位がゼータ電位である。つまり、本発明での「帯電性」とはゼータ電位のことを意味し、ゼータ電位の絶対値が0mV以上である場合は帯電性を有することを意味する。また、本発明においてはゼータ電位の絶対値が10mV以上、より好ましくは20mV以上が着色膜の形成において好適である。   In the present invention, “chargeability” means the absolute value of the zeta potential of fine particles. When spherical fine particles are present in the solution, ions having the opposite sign to the surface charge of the particles are attracted to form an electric double layer, and the ions gathered around the particles form a fixed layer and a diffusion layer. Solvent with a thickness up to a distance from the particles moves with the particles, and this interface is a sliding surface. The potential at the sliding surface is the zeta potential. That is, “chargeability” in the present invention means a zeta potential, and when the absolute value of the zeta potential is 0 mV or more, it means that it has chargeability. In the present invention, the absolute value of the zeta potential is 10 mV or more, and more preferably 20 mV or more is suitable for forming the colored film.

また、このような特徴を有する本発明による帯電性の球状微粒子は、体積基準で表される平均粒子径が100〜600nmの範囲にある特定の粒子径を有している。その有彩光
色をより鮮明に発色させる観点から、好ましくは、この平均粒子径が150〜350nmの範囲にあることが好適である。
Further, the chargeable spherical fine particles according to the present invention having such characteristics have a specific particle size in which the average particle size represented by volume is in the range of 100 to 600 nm. From the viewpoint of more vividly developing the chromatic light color, it is preferable that the average particle diameter is in the range of 150 to 350 nm.

本発明において、帯電性球状微粒子分散体は、単分散で球状微粒子の分散濃度は70質量%を超えない範囲になるように調整することが好適である。また好ましくは、30〜60質量%、更に好ましくは30〜40質量%であることが本発明による構造色を呈する着色膜を形成しや
すい面で好適である。
In the present invention, the chargeable spherical fine particle dispersion is preferably monodispersed and adjusted so that the dispersion concentration of the spherical fine particles does not exceed 70 mass%. Further, it is preferably 30 to 60% by mass, more preferably 30 to 40% by mass, from the viewpoint of easily forming a colored film exhibiting a structural color according to the present invention.

また、既に上述する如く、このような特徴を有する本発明による帯電性の球状微粒子分散体もしくは積層物としての着色膜は、恰も規則的整合した粒子によって、結晶格子面を形成しているように観察される。従って、その表面に照射される可視光が、この粒子状格子面(粒子状積層物面)に係わって回折干渉して反射される反射効率が、光発色部材の発色する色みに及ぼすことから、好ましくは、この球状粒子が単分散粒子であることが好適である。   In addition, as already described above, the colored film as the chargeable spherical fine particle dispersion or laminate according to the present invention having the above-described characteristics is such that a crystal lattice plane is formed by regularly aligned particles. Observed. Therefore, the reflection efficiency that the visible light irradiated on the surface is reflected by diffraction interference on the particulate lattice surface (particulate laminate surface) affects the coloration of the light coloring member. Preferably, the spherical particles are monodisperse particles.

そこで、本発明においては、その単分散性を表す粒子径の均斉度であるCv値が、30%以下であって、反射光色の色みの濃さ、鮮明さから、より好ましくは20%以下の単分散粒子であることが好適である。   Therefore, in the present invention, the Cv value, which is the degree of uniformity of the particle diameter representing the monodispersity, is 30% or less, and more preferably 20% from the darkness and vividness of the reflected light color. The following monodisperse particles are preferred.

また、本発明で用いる黒色無彩色で着色させた帯電性球状微粒子は、体積基準で表される平均粒子径が100〜600nmの範囲にある球状微粒子に、予め黒色染料や顔料等の黒色系無彩物で着色された球状微粒子であっても良い。
ここで挙げる黒色系無彩物とは、既に上述した如く、マンセル色標におけるこの明度が5以下、更に好ましくは3以下の色みの無い黒色系無彩物である。ただし、本発明で使用する黒色系無彩色はこれらに限定されるものだけではない。
Further, the charging spherical fine particles colored in the black achromatic color used in the present invention are preliminarily added to the spherical fine particles having an average particle size in a range of 100 to 600 nm expressed on a volume basis without black-based non-colored pigments such as black dyes and pigments. It may be a spherical fine particle colored with a coloring matter.
As described above, the black achromatic material mentioned here is a black achromatic material having no color, which has a lightness of 5 or less, more preferably 3 or less, in the Munsell color target. However, the black achromatic colors used in the present invention are not limited to these.

また、本発明においては、この帯電性球状微粒子分散体もしくは積層物は、好ましくは厚さ方向の規則配列が、少なくとも2配列以上であることが、垂直反射光色をより鮮明に、より深みのある色みの構造色を呈するのに有効である。   In the present invention, the chargeable spherical fine particle dispersion or laminate preferably has a regular arrangement in the thickness direction of at least two or more, so that the vertical reflected light color becomes clearer and deeper. It is effective for exhibiting a certain structural color.

そこで、本発明による構造色を呈する着色膜に使用する、帯電性球状微粒子分散体もしくは積層物を形成する、例えば、帯電性球状微粒子に係わる表面に、可視光線が照射されて視感されるその垂直反射光色は、例えば、紫色系、青色系、緑色系、黄色系及び赤色系等の色みの垂直反射光色である。   Therefore, the charged spherical fine particle dispersion or laminate used for the colored film exhibiting the structural color according to the present invention is formed, for example, the surface related to the charged spherical fine particles is perceived by being irradiated with visible light. The vertically reflected light color is, for example, a vertically reflected light color having a color such as purple, blue, green, yellow, and red.

<Cv値:変動係数>
また、本発明においては、その単分散性を表す粒子径の均斉度であるCv値が、30%以下(より好ましくは10%以下、更に詳しくは1〜5%)である必要がある。このような粒子径のCv値が30%を超える微粒子は、粒径のばらつきが大きいため、アモルファス構造を形成した際の短距離秩序構造を形成することが困難となる傾向にある。また、ここにいう「粒子径のCv値」は、下記式で定義される値(単位:%)をいう。

[Cv値]=([粒子径の標準偏差]/[平均粒子径])×100
<Cv value: coefficient of variation>
In the present invention, the Cv value, which is the uniformity of the particle diameter representing the monodispersity, needs to be 30% or less (more preferably 10% or less, more specifically 1 to 5%). Such fine particles having a Cv value of more than 30% have a large variation in particle size, so that it is difficult to form a short-range ordered structure when an amorphous structure is formed. In addition, the “particle diameter Cv value” herein refers to a value (unit:%) defined by the following formula.

[Cv value] = ([Standard deviation of particle diameter] / [Average particle diameter]) × 100

このような単分散微粒子の平均粒子径及び粒子径の標準偏差は、日機装株式会社の粒度分布測定器Microtrac(ナノトラックWave)を用いて、粒径分布をヒストグラムで表し、粒径分布をCv値で算出して求めることが出来る。Cv値とは粒子径の均一さを表す値で、平均粒径dで標準偏差σを割った値、すなわち、変動係数である。   The average particle size and standard deviation of the particle size of such monodispersed fine particles are represented by a histogram using a particle size distribution measuring device Microtrac (Nanotrack Wave) manufactured by Nikkiso Co., Ltd. It can be calculated by The Cv value is a value representing the uniformity of the particle diameter, and is a value obtained by dividing the standard deviation σ by the average particle diameter d, that is, a variation coefficient.

<平均粒子径>
また、本発明における球状微粒子分散体の平均粒子径は、日機装株式会社の粒度分布測定器Microtrac (ナノトラックWave)を用いて、算出した値である。
具体的には、粉体の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径を50%径(μm)とし、その50%径は累積中位径(Median径)として一般的に粒子径分布を評価するパラメータであり、その値を平均粒子径として用いた。
<Average particle size>
Further, the average particle size of the spherical fine particle dispersion in the present invention is a value calculated using a particle size distribution measuring device Microtrac (Nanotrack Wave) manufactured by Nikkiso Co., Ltd.
Specifically, when the cumulative curve is obtained by setting the total volume of the powder group to 100%, the particle diameter at the point where the cumulative curve becomes 50% is 50% diameter (μm), and the 50% diameter is cumulative. The median diameter (Median diameter) is generally a parameter for evaluating the particle size distribution, and the value was used as the average particle size.

<有機ポリマー設計Tg算出方法>
調整されたエマルションのTg(以下、粒子Tgと表記する)は個々の樹脂Tgを用い、Foxの式(式1)で算出した。

1/Tg=w1/Tg1+w2/Tg2・・・・(式1)

Tg1,Tg2:成分1,2のTg(K)
w1、w2 :成分1,2の質量分率
例えば、モノマー組成として、アクリル酸-2-エチルヘキシル(50質量%、218K)、スチレン(45質量%、373K)、アクリル酸(5質量%、379K)での有機ポリマーの場合は、Tg(K)=275K=3℃
<Method for calculating organic polymer design Tg>
The Tg of the adjusted emulsion (hereinafter referred to as particle Tg) was calculated using the Fox equation (Equation 1) using individual resins Tg.

1 / Tg = w1 / Tg1 + w2 / Tg2 (Equation 1)

Tg1, Tg2: Tg (K) of components 1 and 2
w1, w2: mass fraction of components 1 and 2, for example, as monomer composition, 2-ethylhexyl acrylate (50% by mass, 218K), styrene (45% by mass, 373K), acrylic acid (5% by mass, 379K) In the case of the organic polymer at Tg (K) = 275K = 3 ° C.

<表面電位の測定方法 ゼータ電位測定>
また、本発明において「帯電性」の指標となるゼータ電位測定は、大塚電子株式会社製のELSZ−2000を用いて、球状微粒子濃度が0.005質量%、積算回数10回、測定温度10℃を測定条件にした。また、pHはHCl及びNaOHを用いての調整を行った。
ゼータ電位の測定原理は、電気泳動光散乱法(レーザードップラー法)である。
<Surface potential measurement method zeta potential measurement>
Further, in the present invention, zeta potential measurement, which is an index of “chargeability”, is performed by using ELSZ-2000 manufactured by Otsuka Electronics Co., Ltd., with a spherical fine particle concentration of 0.005% by mass, a cumulative number of 10 times, and a measurement temperature of 10 ° C. Was set as a measurement condition. The pH was adjusted using HCl and NaOH.
The measurement principle of the zeta potential is an electrophoretic light scattering method (laser Doppler method).

本発明で用いる帯電性球状微粒子は、液状の媒体が水である場合、静電斥力の強いアクリル系有機ポリマー球状微粒子分散体が好ましく、また同様の斥力の強いポリスチレンも好ましい。特に、カルボキシル基、スルホン基、アミノ基等を有するアクリル系有機ポリマー球状微粒子等、表面電荷を持った帯電性のアクリル系有機ポリマー球状微粒子が好ましい。   The chargeable spherical fine particles used in the present invention are preferably an acrylic organic polymer spherical fine particle dispersion having a strong electrostatic repulsion when the liquid medium is water, and a polystyrene having a similar repulsive force is also preferred. In particular, chargeable acrylic organic polymer spherical fine particles having a surface charge such as acrylic organic polymer spherical fine particles having a carboxyl group, a sulfone group, an amino group and the like are preferable.

以上のような特徴を発揮する本発明の構造色を呈する粒子状分散体もしくは積層物に係わって、上述する、アクリル系有機ポリマー球状微粒子分散体としては、必ずしも以下に記載するポリマー種に特定されないが、例えば、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸-2-エチルヘキシル、テトラフルオロエチレンン、ポリ-4-メチルペンテン-1、ポリベンジルメタアクリレート、ポリフェニレンメタクリレート、ポリシクロヘキシルメタクリレート、ポリエチレンテレフタレート、ポリスチレン、スチレン・アクリロニトリル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール等を挙げることができる。本発明においては、既に上述した如く太陽光等の自然光又は白色光の照射下に、その可視光波長領域光に係わる光発色部材の反射光色を視感することから、そのポリマー樹脂は、特に耐候性に優れて樹脂自体が、光劣化変色を起こし難い耐候性に優れていることも重要である。このような観点から、好ましくは、従来から周知の事実である耐候性に優れる(メタ)アクリル系、(メタ)アクリル−スチレン系、フッ素置換(メタ)アクリル系及びフッ素置換(メタ)アクリル−スチレン系から選ばれる何れかのアクリル系の有機ポリマー微粒子が適宜好適に使用される。   In relation to the particulate dispersion or laminate exhibiting the structural color of the present invention that exhibits the above characteristics, the acrylic organic polymer spherical fine particle dispersion described above is not necessarily specified by the polymer species described below. Are, for example, poly (meth) acrylic acid, poly (meth) acrylic acid methyl, poly (meth) acrylic acid-2-ethylhexyl, tetrafluoroethylene, poly-4-methylpentene-1, polybenzyl methacrylate, polyphenylene Examples thereof include methacrylate, polycyclohexyl methacrylate, polyethylene terephthalate, polystyrene, styrene / acrylonitrile copolymer, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, and polyvinyl alcohol. In the present invention, as already described above, since the reflected color of the light-coloring member related to the visible light wavelength region light is visually recognized under irradiation of natural light such as sunlight or white light, the polymer resin is particularly It is also important that the resin itself is excellent in weather resistance and has excellent weather resistance that hardly causes light deterioration and discoloration. From this point of view, (meth) acrylic, (meth) acrylic-styrene, fluorine-substituted (meth) acrylic, and fluorine-substituted (meth) acrylic-styrene, which are excellent in weather resistance, which is a well-known fact, are preferable. Any acrylic organic polymer fine particles selected from the systems are suitably used as appropriate.

そこで、モノマー種で表すアクリル系樹脂としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル,(メタ)アクリル酸エチル,(メタ)アクリル酸プロピル,(メタ)アクリル酸イソプロピル,(メタ)アクリル酸ブチル,(メタ)アクリル酸イソブチル,(メタ)アクリル酸ペンチル,(メタ)アクリル酸ヘキシル,(メタ)アクリル酸2−エチルヘキシル,(メタ)アクリル酸オクチル,(メタ)アクリル酸ラウリル,(メタ)アクリル酸ノニル,(メタ)アクリル酸デシル,(メタ)アクリル酸ドデシル,(メタ)アクリル酸フェニル,(メタ)アクリル酸メトキシエチル,(メタ)アクリル酸エトキシエチル,(メタ)アクリル酸プロポキシエチル,(メタ)アクリル酸ブトキシエチル,(メタ)アクリル酸エトキシプロピル等の(メタ)アクリル酸アルキルエステル;ジエチルアミノエチル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレート;(メタ)アクリルアミド,N-メチロール(メタ)アクリルアミド及びジアセトンアクリルアミド等の(メタ)アクリルアミド類並びにグリシジル(メタ)アクリレート;エチレングリコールのジ(メタ)アクリル酸エステル,ジエチルグリコールのジ(メタ)アクリル酸エステル,トリエチレングリコールのジ(メタ)アクリル酸エステル,ポリエチレングリコールのジ(メタ)アクリル酸エステル,ジプロピレングリコールのジ(メタ)アクリル酸エステル,トリプロピレングリコールのジ(メタ)アクリル酸エステル等の(ポリ)アルキレングリコールのジ(メタ)アクリル酸エステル類等を挙げることができる。また、上述する(メタ)アクリル系モノマー以外のその他のモノマーとしては、例えば、スチレン,メチルスチレン,ジメチルスチレン,トリメチルスチレン,エチルスチレン,ジエチルスチレン,トリエチルスチレン,プロピルスチレン,ブチルスチレン,ヘキシルスチレン,ヘプチルスチレン及びオクチルスチレン等のアルキルスチレン;フロロスチレン,クロルスチレン,ブロモスチレン,ジブロモスチレン,クロルメチルスチレン等のハロゲン化スチレン;ニトロスチレン,アセチルスチレン,メトキシスチレン等のスチレン系モノマーを挙げることができる。更に、スチレン系モノマー以外の他のモノマーとして、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;酢酸ビニル,プロピオン酸ビニル,n−酪酸ビニル,イソ酪酸ビニル,ピバリン酸ビニル,カプロン酸ビニル,パーサティック酸ビニル,ラウリル酸ビニル,ステアリン酸ビニル,安息香酸ビニル,p−t−ブチル安息香酸ビニル、サリチル酸ビニル等のビニルエステル類;塩化ビニリデン、クロロヘキサンカルボン酸ビニル等が挙げられる。更にはまた、必要に応じて、官能基を有するモノマーとして、例えば、(メタ)アクリル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸等の不飽和カルボン酸が挙げられ、また、これらの誘導体として、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2.2.1]ヘプト−2−エン−5,6−ジカルボン酸無水物、また、例えば、水酸基(OH;ヒドロキシル基)を有するモノマーとしては、1,1,1-トリヒドロキシメチルエタントリ(メタ)アクリレート,1,1,1-トリスヒドロキシメチルメチルエタントリ(メタ)アクリレート,1,1,1-トリスヒドロキシメチルプロパントリ(メタ)アクリレート,ヒドロキシビニルエーテル,ヒドロキシプロピルビニルエーテル,ヒドロキシブチルビニルエーテル等のヒドロキシアルキルビニルエーテル,2−ヒドロキシエチル(メタ)アクリレート,2−ヒドロキシプロピル(メタ)アクリレート,ジエチレングリコールモノ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート等が挙げられ、これらの単独又は2種以上の複合モノマーを適宜好適に使用することができる。更にはまた、(メタ)アクリル酸の部分又は完全フッ素置換系モノマーとして、例えば、(メタ)アクリル酸トリフルオロメチルメチル,(メタ)アクリル酸−2−トリフルオロメチルエチル,(メタ)アクリル酸−2−パ−フルオロメチルエチル,(メタ)アクリル酸−2−パ−フルオロエチル−2−パ−フルオロブチルエチル,(メタ)アクリル酸−2−パ−フルオロエチル,(メタ)アクリル酸パ−フルオロメチル,(メタ)アクリル酸ジパ−フルオロメチルメチル等のフッ素置換(メタ)アクリル酸モノマー(又はフルオロ(メタ)アルキルアクリレート)が挙げられ、また、フルオロエチレン、ビニリデンフルオリド、テトラフルオロエチレ
ン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等のフロオロオレフィンが挙げられる。本発明においては、これらの単独重合体、又は他の重合性モノマーとの共重合体であってもよい。
Therefore, examples of the acrylic resin represented by the monomer type include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, (meth ) Butyl acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, ( Nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate , Butoxyethyl (meth) acrylate, Ethoxy (meth) acrylate (Meth) acrylic acid alkyl esters such as lopy; dialkylaminoalkyl (meth) acrylates such as diethylaminoethyl (meth) acrylate; (meth) acrylamides such as (meth) acrylamide, N-methylol (meth) acrylamide and diacetone acrylamide Glycidyl (meth) acrylate; ethylene glycol di (meth) acrylic acid ester, diethyl glycol di (meth) acrylic acid ester, triethylene glycol di (meth) acrylic acid ester, polyethylene glycol di (meth) acrylic acid Di (meth) acrylic esters of (poly) alkylene glycols such as esters, di (meth) acrylic esters of dipropylene glycol, di (meth) acrylic esters of tripropylene glycol And the like. Examples of other monomers other than the (meth) acrylic monomer described above include styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, diethylstyrene, triethylstyrene, propylstyrene, butylstyrene, hexylstyrene, heptyl. Examples include alkyl styrenes such as styrene and octyl styrene; halogenated styrenes such as fluorostyrene, chlorostyrene, bromostyrene, dibromostyrene, and chloromethylstyrene; and styrene monomers such as nitrostyrene, acetylstyrene, and methoxystyrene. Further, as other monomers than styrene monomers, for example, silicon-containing vinyl monomers such as vinyltrimethoxysilane and vinyltriethoxysilane; vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl isobutyrate, vinyl pivalate , Vinyl esters such as vinyl caproate, vinyl caprosate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pt-butyl benzoate, vinyl salicylate; vinylidene chloride, vinyl chlorohexanecarboxylate, etc. It is done. Furthermore, if necessary, as a monomer having a functional group, for example, (meth) acrylic acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornene dicarboxylic acid, bicyclo [2,2, 1] Unsaturated carboxylic acids such as hept-2-ene-5,6-dicarboxylic acid and the like, and as derivatives thereof, maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [ 2.2.1] hept-2-ene-5,6-dicarboxylic anhydride, for example, as a monomer having a hydroxyl group (OH; hydroxyl group), 1,1,1-trihydroxymethylethanetri ( (Meth) acrylate, 1,1,1-trishydroxymethylmethylethane tri (meth) acrylate, 1,1,1-trishydroxymethyl Hydroxyalkyl vinyl ethers such as lopantri (meth) acrylate, hydroxy vinyl ether, hydroxypropyl vinyl ether, hydroxybutyl vinyl ether, hydroxyalkyl such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, diethylene glycol mono (meth) acrylate (Meth) acrylate etc. are mentioned, These single or 2 or more types of complex monomers can be used suitably suitably. Furthermore, as a (meth) acrylic acid moiety or a completely fluorine-substituted monomer, for example, (meth) acrylic acid trifluoromethylmethyl, (meth) acrylic acid-2-trifluoromethylethyl, (meth) acrylic acid- 2-perfluoromethylethyl, (meth) acrylic acid-2-perfluoroethyl-2-perfluorobutylethyl, (meth) acrylic acid-2-perfluoroethyl, (meth) acrylic acid perfluoro Fluorine-substituted (meth) acrylic acid monomer (or fluoro (meth) alkyl acrylate) such as methyl, (meth) acrylic acid diperfluoromethylmethyl, etc., and fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoro Ethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3- Fluoroolefins such as dioxoles are listed. In the present invention, these homopolymers or copolymers with other polymerizable monomers may be used.

また、本発明に用いても良いアクリル系有機ポリマー球状微粒子は、上述する如く、黒色系無彩物をアクリル系有機ポリマー微粒子に対して、0.001質量%以上添加する以外に、必要に応じて予め、帯電性微粒子に影響を与えない程度で他の添加剤として、例えば、滑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、帯電付与剤、界面活性剤、分散安定剤、消泡剤、安定剤、等を目的用途等に応じて適宜添加させることができる。   In addition, the acrylic organic polymer spherical fine particles that may be used in the present invention are, as described above, as required, in addition to adding 0.001% by mass or more of black achromatic material to the acrylic organic polymer fine particles. As other additives, such as lubricants, ultraviolet absorbers, antioxidants, antistatic agents, charge imparting agents, surfactants, dispersion stabilizers, antifoaming agents, etc. , Stabilizers, and the like can be appropriately added depending on the intended use.

そこで、これらの重合性モノマーを用いて本発明による光発色部材を調製させる平均粒子径(d)が100〜600nmの範囲にあるアクリル系有機ポリマーの単分散球状微粒子は、通常、一般的に用いられているソープフリー乳化重合、乳化重合、懸濁重合等で適宜調製することができる。   Therefore, monodispersed spherical fine particles of an acrylic organic polymer having an average particle diameter (d) in the range of 100 to 600 nm for preparing the photochromic member according to the present invention using these polymerizable monomers are generally used. It can be suitably prepared by the soap-free emulsion polymerization, emulsion polymerization, suspension polymerization and the like.

例えば、ソープフリー乳化重合では、通常、用いる重合開始剤として、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩が重合時に水性媒体に可溶であればよい。通常、重合単量体100質量部に対して、重合開始剤を0.1〜10質量部、好ましくは0.2〜2質量部の範囲で添加すればよい。また、乳化重合法の場合では、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、ポリエチレングリコールノニルフェニルエーテル等のポリエチレングリコールアルキルエーテル等の乳化剤を重合単量体100質量部に対して、通常、0.01〜5質量部、好ましくは0.1〜2質量部で水性媒体に混合させて乳化状態にし、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩の重合開始剤を、重合単量体100質量部に対して、0.1〜10質量部、好ましくは0.2〜2質量部で添加すればよい。また、懸濁重合を含め、上記する乳化剤も特に特定する必要がなく、通常に使用されているアニオン系界面活性剤、カチオン系界面活性剤又は必要に応じてノニオン系界面活性剤等から選んで、その単独又は組合わせて使用することができる。例えば、アニオン系界面活性剤としてはドデシルベンゼンスルホネート、ウンデシルベンゼンスルホネート、トリデシルベンゼンスルホネート、ノニルベンゼンスルホネート、これらのナトリウム、カリウム塩等が挙げられ、また、カチオン系界面活性剤としてはセチルトリメチルアンモニウムプロミド、塩化ヘキサデシルピリジニウム、塩化ヘキサデシルトリメチルアンモニウム等が挙げられ、また、ノニオン系界面活性剤としては、リピリジニウム等が挙げられる。また、反応性乳化剤(例えば、アクリロイル基、メタクロイル基等の重合性基を有する乳化剤)としては、例えば、アニオン性、カチオン性又はノニオン性の反応性乳化剤が挙げられ、特に限定することなく使用される。また、乳化剤に係わって従来から、分散性や、着色粒子の粒子径が大きくなる傾向からアニオン性の反応性乳化剤が好適に使用され、例えば、スルホン酸(塩)型、カルボン酸(塩)型、リン酸エステル型等が挙げられ、具体的には、例えば、ポリオキシエチレンアリルグリシジルノニルフェニルエーテルの硫酸塩、ポリオキシエチレンノニルプロペニルエーテルの硫酸エステル塩等が挙げられる。   For example, in soap-free emulsion polymerization, a persulfate such as potassium persulfate or ammonium persulfate is usually soluble in an aqueous medium during polymerization as a polymerization initiator to be used. Usually, the polymerization initiator may be added in an amount of 0.1 to 10 parts by mass, preferably 0.2 to 2 parts by mass with respect to 100 parts by mass of the polymerization monomer. In the case of the emulsion polymerization method, an emulsifier such as an alkylbenzene sulfonate such as sodium dodecylbenzenesulfonate or a polyethylene glycol alkyl ether such as polyethylene glycol nonylphenyl ether is usually added to 100 parts by mass of the polymerization monomer. 0.01 to 5 parts by weight, preferably 0.1 to 2 parts by weight, mixed with an aqueous medium to make an emulsified state, and a polymerization initiator of a persulfate such as potassium persulfate or ammonium persulfate is added to 100 parts by weight of a polymerization monomer. 0.1 to 10 parts by mass, preferably 0.2 to 2 parts by mass with respect to parts. In addition, it is not necessary to particularly specify the above-mentioned emulsifiers including suspension polymerization, and it is selected from commonly used anionic surfactants, cationic surfactants or nonionic surfactants as necessary. These can be used alone or in combination. Examples of anionic surfactants include dodecyl benzene sulfonate, undecyl benzene sulfonate, tridecyl benzene sulfonate, nonyl benzene sulfonate, sodium and potassium salts thereof, and cationic surfactants include cetyl trimethyl ammonium. Promide, hexadecylpyridinium chloride, hexadecyltrimethylammonium chloride and the like can be mentioned, and examples of the nonionic surfactant include lipidinium and the like. Examples of reactive emulsifiers (for example, emulsifiers having a polymerizable group such as acryloyl group, methacryloyl group) include anionic, cationic or nonionic reactive emulsifiers, and are used without particular limitation. The Further, conventionally, anionic reactive emulsifiers are preferably used because of their tendency to increase dispersibility and the particle size of colored particles, such as sulfonic acid (salt) type and carboxylic acid (salt) type. And phosphoric acid ester type. Specific examples include sulfate of polyoxyethylene allyl glycidyl nonyl phenyl ether, sulfate of polyoxyethylene nonyl propenyl ether, and the like.

また、本発明での帯電性球状微粒子は、粒径が約1nm〜約1000nmで、略球形になる材料であれば、どのような材料を用いてもよく、例えば、二酸化珪素、ホウ珪酸ガラス、アルミン酸カルシウム、ニオブ酸リチウム、カルサイト、二酸化チタン、チタン酸ストロンチウム、酸化アルミニウム、フッ化リチウム、フッ化マグネシウム、酸化イットリウム、フッ化カルシウム、フッ化バリウム、セレン化亜鉛、臭ヨウ化タリウム、ダイアモンド、珪素、ゲルマニウム、各種強誘電体(チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛(PLZT)など)などを用いても良い。   In addition, the chargeable spherical fine particles in the present invention may be any material as long as it has a particle diameter of about 1 nm to about 1000 nm and becomes a substantially spherical shape. For example, silicon dioxide, borosilicate glass, Calcium aluminate, lithium niobate, calcite, titanium dioxide, strontium titanate, aluminum oxide, lithium fluoride, magnesium fluoride, yttrium oxide, calcium fluoride, barium fluoride, zinc selenide, thallium bromoiodide, diamond Silicon, germanium, various ferroelectrics (lead zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT), etc.) may be used.

また、本発明の球状微粒子には、ポリスチレン,ポリメタクリル酸メチル,二酸化珪素
,二酸化チタンの内のいずれか2種以上の混合体や、これらの内の1種をコアとして他の1種以上によりコアを被覆したコアシェル構造なども用いることができる。
In addition, the spherical fine particles of the present invention include a mixture of any two or more of polystyrene, polymethyl methacrylate, silicon dioxide, and titanium dioxide, and one or more of these as a core and the other one or more. A core-shell structure coated with a core can also be used.

球状微粒子の製造方法には、例えば、UV(紫外線)重合法、乳化重合法、懸濁重合法、二段階鋳型重合法、化学気相反応法、電気炉加熱法、熱プラズマ法、レーザ加熱法、ガス中蒸発法、共沈法、均一沈殿法、化合物沈殿法、金属アルコキシド法、水熱合成法、ゾルゲル法、噴霧法、凍結法、硝酸塩分解法などがある。   Examples of the method for producing spherical fine particles include UV (ultraviolet) polymerization, emulsion polymerization, suspension polymerization, two-stage template polymerization, chemical vapor reaction, electric furnace heating, thermal plasma, and laser heating. Gas evaporation method, coprecipitation method, homogeneous precipitation method, compound precipitation method, metal alkoxide method, hydrothermal synthesis method, sol-gel method, spray method, freezing method, nitrate decomposition method and the like.

ただし、本発明は、前記各局面および前記実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。本明細書の中で明示した論文、公開特許公報、特許公報などの内容は、その全ての内容を援用によって引用することとする。   However, the present invention is not limited to the description of each aspect and the embodiment. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims. The contents of papers, published patent gazettes, patent gazettes, etc. specified in this specification are incorporated by reference in their entirety.

本発明で使用する黒色系無彩物は、反射光色の色みをより鮮明にさせることから、好ましくは、この明度が5以下、更に好ましくは3以下の色みの無い黒色系無彩物である。具体的には、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック)、油煙、黒鉛、黒染料(ニグロシン、アジン他)、イカ墨、墨汁、インスタントコーヒー粉末などが挙げられ、また、黒色系無彩色の有機ポリマー又は無機ポリマーの粒子なども含む。ただし、本発明で使用する黒色系無彩物は上記例のこれらに限定されるものではない。   Since the black achromatic material used in the present invention makes the reflected light color clearer, the lightness is preferably 5 or less, more preferably 3 or less. It is. Specific examples include carbon black (acetylene black, ketjen black, furnace black), oil smoke, graphite, black dyes (nigrosine, azine, etc.), squid ink, ink, instant coffee powder, etc. Also includes colored organic polymer or inorganic polymer particles. However, the black achromatic material used in the present invention is not limited to these examples.

また、本発明で用いることができる構造色を呈する着色膜を形成させる基板材料として、上述するが如く、前記帯電性の球状微粒子とは逆の電荷を持った基板であれば良い。
例えば、負に帯電させた球状微粒子を用いる場合、基板としてはカチオン性(正)を有した性質を示す基板であれば良く、上記それとは逆の場合も含む。
具体的には、市販品で、ガラス表面が高密度にアミノ基で覆われた(カチオン性)のMASコート、APSコート、PLLコートのスライドグラス(全て松浪硝子社製)などがその一例である。ただし、本発明で使用する基板としては上記例のこれらに限定されるものではない。
Further, as described above, the substrate material for forming the colored film exhibiting the structural color that can be used in the present invention may be any substrate having a charge opposite to that of the chargeable spherical fine particles.
For example, in the case of using negatively charged spherical fine particles, the substrate may be a substrate exhibiting a property having a cationic property (positive), and includes the opposite case.
Specifically, commercially available products such as MAS coat, APS coat, and PLL coat slide glass (all made by Matsunami Glass Co., Ltd.) whose glass surface is densely covered with amino groups are examples. . However, the substrate used in the present invention is not limited to these in the above example.

また、本発明では、構造色を呈する着色膜を形成させる基板材料に予めカチオン基やアニオン基を含んだ樹脂をスピンコート等で表面塗工した基板に対して、前記帯電性の球状微粒子分散体を塗布・乾燥しても良い。   Further, in the present invention, the above-mentioned chargeable spherical fine particle dispersion is applied to a substrate in which a resin containing a cationic group or an anionic group is previously coated on a substrate material on which a colored film exhibiting a structural color is formed by spin coating or the like. May be applied and dried.

上述するカチオン基とは、カチオン性基を有するモノマーを含み、アニオン基とはアニオン性基を有するモノマーに分けられ、上記モノマーを含んだ重合体、共重合体である。ただし、本発明で使用する重合体としては上記例のこれらに限定されるものではない。   The cationic group described above includes a monomer having a cationic group, and the anionic group is divided into monomers having an anionic group, and is a polymer or copolymer including the monomer. However, the polymer used in the present invention is not limited to those in the above examples.

カチオン性基を有するモノマーとしては、分子中に重合可能な官能基、例えばビニル基を有し、同一分子中に1級、2級、3級アミノ基や4級アンモニウム基を含むモノマーが代表的である。
3級アミノ基を有する単量体の具体例としては、(メタ)アクリル酸ジメチルアミノエチル〔以下、(メタ)アクリルはアクリルとメタクリルを表す〕、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸ジプロピルアミノエチル等の(メタ)アクリル酸ジアルキルアミノアルキル化合物、ジメチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド等のジアルキルアミノアルキル(メタ)アクリルアミド化合物等が挙げられる。
Typical examples of the monomer having a cationic group include monomers having a polymerizable functional group in the molecule, such as a vinyl group, and a primary, secondary, tertiary amino group or quaternary ammonium group in the same molecule. It is.
Specific examples of the monomer having a tertiary amino group include dimethylaminoethyl (meth) acrylate (hereinafter (meth) acryl represents acryl and methacryl), diethylaminoethyl (meth) acrylate, and (meth) acrylic. Dialkylaminoalkyl compounds such as (meth) acrylic acid dialkylaminoalkyl compounds such as dipropylaminoethyl acid, dialkylaminoalkyl (meth) acrylamide compounds such as dimethylaminoethyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, etc. Is mentioned.

4級アンモニウム基を有する単量体としては、(メタ)アクリル酸ジメチルアミノエチルメチルクロライド、(メタ)アクリル酸ジメチルアミノエチルエチルクロライド、(メタ)アクリル酸ジメチルアミノエチルエチル硫酸、(メタ)アクリル酸ジメチルアミノエチルメチルリン酸、(メタ)アクリル酸ジメチルアミノエチルエチルリン酸、(メタ)アクリル酸ジエチルアミノエチルメチルクロライド、(メタ)アクリル酸ジエチルアミノエチルエチルクロライド、(メタ)アクリル酸ジエチルアミノエチルエチル硫酸、(メタ)アクリル酸ジエチルアミノエチルメチルリン酸、(メタ)アクリル酸ジエチルアミノエチルエチルリン酸、ジメチルアミノプロピル(メタ)アクリルアミドメチルクロライド、ジメチルアミノプロピル(メタ)アクリルアミドエチルクロライド、ジメチルアミノプロピル(メタ)アクリルアミドエチル硫酸、ジメチルアミノプロピル(メタ)アクリルアミドメチルリン酸、ジメチルアミノプロピル(メタ)アクリルアミドエチルリン酸、アリルアミン、N−メチルアリルアミン、ジアリルアミン、N−メチルジアリルアミン、N,N−ジメチルアリルアンモニウム塩酸塩、(3−アクリルアミドプロピル)トリメチルアンモニウムクロリド、メタクロイルコリンクロリド、ビニルピリジンなどを挙げることができる。またN−ビニルホルムアミドのように重合反応後アミノ基や置換アミノ基、更には4級アンモニウム基に変換できるモノマーもこれに含まれる。カチオン性モノマーは、単独で用いても良いし、2種以上を組み合わせて用いても良い。   Monomers having a quaternary ammonium group include (meth) acrylic acid dimethylaminoethyl methyl chloride, (meth) acrylic acid dimethylaminoethyl ethyl chloride, (meth) acrylic acid dimethylaminoethyl ethyl sulfate, and (meth) acrylic acid. Dimethylaminoethylmethyl phosphoric acid, (meth) acrylic acid dimethylaminoethyl ethyl phosphoric acid, (meth) acrylic acid diethylaminoethyl methyl chloride, (meth) acrylic acid diethylaminoethyl ethyl chloride, (meth) acrylic acid diethylaminoethyl ethyl sulfate, ( (Meth) acrylic acid diethylaminoethylmethyl phosphoric acid, (meth) acrylic acid diethylaminoethylethyl phosphoric acid, dimethylaminopropyl (meth) acrylamide methyl chloride, dimethylaminopropyl (meth) Kurylamidoethyl chloride, dimethylaminopropyl (meth) acrylamide ethyl sulfate, dimethylaminopropyl (meth) acrylamide methyl phosphate, dimethylaminopropyl (meth) acrylamide ethyl phosphate, allylamine, N-methylallylamine, diallylamine, N-methyldiallylamine N, N-dimethylallylammonium hydrochloride, (3-acrylamidopropyl) trimethylammonium chloride, methacryloylcholine chloride, vinylpyridine and the like. Also included are monomers such as N-vinylformamide that can be converted into an amino group, a substituted amino group, or a quaternary ammonium group after the polymerization reaction. A cationic monomer may be used independently and may be used in combination of 2 or more type.

アニオン性モノマーとしては、ビニルスルホン酸、アリルスルホン酸、メタクリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸等のスルホン酸類、アクリル酸、メタクリル酸、ビニルベンゼンスルホン酸、ビニルナフタレンスルホン酸クロトン酸、マレイン酸、等のビニル基を有するカルボン酸類、ビニルホスホン酸、ビニルホスフェート、アシッドホスホキシエチル(メタ)アクリレート等のリン酸類などが挙げられる。アニオン性ビニルモノマーは、単独で用いても良いし、2種以上を組み合わせて用いても良い。また、本発明で用いられているアニオンモノマーは、その塩または酸との混合物の形で用いることもできる。これらの塩には、アルカリ金属塩の他、アンモニアやトリエチルアミン、トリエタノールアミン等の塩基性化合物との塩を挙げることができる。また、本発明で得られる共重合体のアニオン性ビニルモノマーをアルカリ剤で中和して本発明の両性両親媒性高分子共重合体としてもよい。   Examples of anionic monomers include sulfonic acids such as vinyl sulfonic acid, allyl sulfonic acid, methacryl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, acrylic acid, methacrylic acid, vinyl benzene sulfonic acid, vinyl naphthalene. Examples thereof include carboxylic acids having a vinyl group such as sulfonic acid crotonic acid and maleic acid, and phosphoric acids such as vinylphosphonic acid, vinyl phosphate and acid phosphoxyethyl (meth) acrylate. An anionic vinyl monomer may be used independently and may be used in combination of 2 or more type. The anionic monomer used in the present invention can also be used in the form of a salt or acid mixture. These salts include salts with basic compounds such as ammonia, triethylamine and triethanolamine in addition to alkali metal salts. Further, the anionic vinyl monomer of the copolymer obtained in the present invention may be neutralized with an alkali agent to form the amphoteric amphiphilic polymer copolymer of the present invention.

以上から、本発明によって作成される構造色を呈する着色膜は、帯電性の球状微粒子分散体を前記球状微粒子とは逆の電荷を持った基板表面上に、前記帯電性球状微粒子分散体を塗布・乾燥させるだけの非常に簡便な操作法で、従来からの構造色成形体の課題であった、膜の脆さや乾燥時のひび割れ等を緩和し、縦方向に規則的に整合させてなる構造色を呈する粒子状積層物にすることを可能とする構造色を呈する着色膜である。また、基材と球状微粒子の密着性の向上、更に、粒子配列の規則性向上により球状微粒子の粒子径に応じた目的の最大反射率が向上した着色膜を提供することができる。   From the above, the colored film having the structural color produced by the present invention is obtained by coating the chargeable spherical fine particle dispersion on the substrate surface having a charge opposite to that of the spherical fine particles.・ A structure with regular alignment in the vertical direction, with a very simple operation method that only dries, alleviating the fragility of the film and cracks during drying, which were problems with conventional structural color moldings. It is a colored film exhibiting a structural color that makes it possible to form a particulate laminate exhibiting a color. Further, it is possible to provide a colored film having improved target maximum reflectance according to the particle diameter of the spherical fine particles by improving the adhesion between the base material and the spherical fine particles and further improving the regularity of the particle arrangement.

本発明による構造色を呈する着色膜の製造方法では、有彩色の染料及び/又は顔料等で
着色されていない単分散の帯電性球状微粒子分散体において、上記分散体を所定の方法で塗布・乾燥させた膜の太陽光もしくは通常の可視光領域の光が照射されて視感される垂直反射光が、乳白色の淡い構造色のようなものではなく、赤(R)、青(B)、緑(G)及び黄(Y)等の色みの構造色を明確に視感させる着色膜の製造方法を構築することができるものである。その構造色を有する着色膜は、各種の用途に着色材もしくは赤外反射等の光学材料として好適に用いられる。従って、この光発色部材を単独又は二次加工材として、例えば、電着カラー板、カラーシート、カラーフィルター、偏光フィルム、インクジェット記録用インク、グラビア印刷用インク、ホログラム部材、顔料として用いることができる。
In the method for producing a colored film exhibiting a structural color according to the present invention, in a monodispersed chargeable spherical fine particle dispersion not colored with a chromatic dye and / or pigment, the dispersion is applied and dried by a predetermined method. The vertical reflected light that is perceived by the sunlight of the film or the light in the normal visible light region is not like the pale structural color of milky white, but red (R), blue (B), green It is possible to construct a manufacturing method of a colored film that clearly gives a visible structural color such as (G) and yellow (Y). The colored film having the structural color is suitably used as a coloring material or an optical material such as infrared reflection for various applications. Accordingly, this photochromic member can be used alone or as a secondary processing material, for example, as an electrodeposition color plate, color sheet, color filter, polarizing film, ink for ink jet recording, ink for gravure printing, hologram member, pigment. .

以下に、本発明を実施例により説明するが、本発明は以下の実施例にいささかも限定されるものではない。なお、特に、断らない限り「部」は「質量部」を、「%」は「質量%」を表す。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples. Unless otherwise specified, “part” represents “part by mass” and “%” represents “% by mass”.

<S−1(分散液);光学発色体の分散体の調整(アクリル系微粒子分散体)>
容量2リットルの四つ口フラスコに、純水300部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.55部仕込み、撹拌しながら80℃に加温した。次いで、開始剤として過硫酸カリウム1.2部を用い、モノマーとしてスチレン142.6部、アクリル酸2-エチルヘキシル45.8部、アクリル酸8.6部、アクリル酸アミド3.0部の混合液を、微粒子を形成する重合性モノマー混合物として100分間かけて滴下した。滴下終了後、さらに2時間重合反応を行った。この乳化重合で得られた分散液(S−1)中には、体積基準で表す平均粒子径212.5nmの均一な粒子径を有する球状の白色重合体粒子を得た。また、重合終了時の水分散体のpHは3.8であった。その後、28%アンモニア水溶液(関東化学社製)を約0.13ml添加し、pH=9.5の分散体に調整を行った。また、調整した分散体の表面電位(ゼータ電位)を測定したところ-55.6mVの負に帯電しているアクリル系球状微粒子分散体である
ことを確認した。
その後、黒色系無彩物(CB:BONJETBLACKCW−1 オリエント化学工業社製)を上記pH調整後のpH=9.5のアクリル系有機ポリマー球状微粒子及び黒色系無彩物をアクリル系有機ポリマー球状微粒子に対して、1.0質量%添加した後、10回手振り分散を行うことで構造色を呈する着色膜を製造するための原料となるアクリル系微粒子分散体を得た。
<S-1 (Dispersion); Adjustment of Optical Coloring Body Dispersion (Acrylic Fine Particle Dispersion)>
A 4-liter flask having a volume of 2 liters was charged with 300 parts of pure water and 0.55 parts of sodium dodecylbenzenesulfonate as an emulsifier, and heated to 80 ° C. with stirring. Next, 1.2 parts of potassium persulfate is used as an initiator, and 142.6 parts of styrene, 45.8 parts of 2-ethylhexyl acrylate, 8.6 parts of acrylic acid, and 3.0 parts of acrylic amide are used as monomers. Was dropped over 100 minutes as a polymerizable monomer mixture forming fine particles. After completion of the dropping, a polymerization reaction was further performed for 2 hours. In the dispersion (S-1) obtained by this emulsion polymerization, spherical white polymer particles having a uniform particle diameter of 212.5 nm in average particle diameter expressed on a volume basis were obtained. The pH of the aqueous dispersion at the end of the polymerization was 3.8. Thereafter, about 0.13 ml of 28% aqueous ammonia solution (manufactured by Kanto Chemical Co., Inc.) was added to adjust the dispersion to pH = 9.5. Further, when the surface potential (zeta potential) of the prepared dispersion was measured, it was confirmed that it was a negatively charged acrylic spherical fine particle dispersion of −55.6 mV.
Thereafter, the black achromatic product (CB: BONJETBLACKCW-1 manufactured by Orient Chemical Industries Co., Ltd.) was adjusted to pH = 9.5 acrylic organic polymer spherical fine particles and the black achromatic product was made of acrylic organic polymer spherical fine particles. On the other hand, after adding 1.0% by mass, an acrylic fine particle dispersion serving as a raw material for producing a colored film exhibiting a structural color was obtained by performing hand shaking dispersion 10 times.

<S−2(共重合体);カチオン性樹脂の合成>
容量2リットルの四つ口フラスコに、2−プロパノール300部、メタクロイルコリンクロリド80%水溶液10部、メタクリル酸メチル54.5部、メタクリル酸ブチル55部、メタクリル酸2−エチルヘキシル44.8部を仕込み、撹拌しながら、窒素気流下、200rpmで80℃に加温した。その後、80℃で4時間保つことによりモノマーを重合させた。次いで、モノマーを重合させた後の前記溶液を30℃まで冷却した後、メタノールで希釈し、この溶液を10倍当量のアセトン/ヘキサン(50%/50%)混合溶媒に注ぎ込み、再沈殿により精製を行い、乾燥により溶媒を留去して共重合体(S−2)を得た。更に、乾燥後の共重合体(S−2)を適量の2−プロパノールで希釈し、超音波で完全に溶解させた後、共重合体(S−2)10%溶解液を得た。
<S-2 (Copolymer); Synthesis of Cationic Resin>
In a 2 liter four-necked flask, 300 parts of 2-propanol, 10 parts of 80% aqueous solution of methacryloylcholine chloride, 54.5 parts of methyl methacrylate, 55 parts of butyl methacrylate, and 44.8 parts of 2-ethylhexyl methacrylate. While charging and stirring, the mixture was heated to 80 ° C. at 200 rpm under a nitrogen stream. Thereafter, the monomer was polymerized by maintaining at 80 ° C. for 4 hours. Next, the solution after polymerizing the monomer is cooled to 30 ° C., diluted with methanol, and this solution is poured into a mixed solvent of 10 times equivalent of acetone / hexane (50% / 50%) and purified by reprecipitation. And the solvent was removed by drying to obtain a copolymer (S-2). Furthermore, after the copolymer (S-2) after drying was diluted with an appropriate amount of 2-propanol and completely dissolved by ultrasonic waves, a 10% solution of the copolymer (S-2) was obtained.

<実施例1:構造発色基板準備工程 ガラス基板>
構造発色基板材料として、前記調整後のS−1(分散液)を所定のカチオン性に表面処理されたガラス基板上に、基板上全表面を覆うように塗布した後、スピンコーター(ミカサ社製 MSA−150)にて2000rpmで10秒、更に1000rpmで8秒の回転数と時間でコーティングを行った。次いで、70℃で3分間、乾燥及び熱処理に供することにより、実施例1の構造発色基板を作成した。また、上記ガラス基板としては、表面が高密度アミノ基で覆われた剥離防止用MASコートスライドグラス(松浪硝子社製)を用いた。
<実施例2:構造発色基板準備工程 ガラス基板>
構造発色基板材料として、前記S−2(共重合体)樹脂溶解液を未処理のスライドガラス基板上(松浪硝子社製)に、基板上全表面を覆うように塗布した後、スピンコーターにて2000rpmで10秒の回転数と時間でコーティングを行った。その後、70℃で5分間、乾燥及び熱処理に供することにより、前処理基板(4級アミンモノマー含有・カチオン性樹脂で表面コート)を作成した。
更に、前記調整後のS−1(分散液)を前記、前処理ガラス基板(4級アミンモノマー含有・カチオン性樹脂で表面コート)上に、基板上全表面を覆うように塗布した後、スピンコーターにて2000rpmで10秒、更に1000rpmで8秒の回転数と時間でコーティングを行った。次いで、70℃で3分間、乾燥及び熱処理に供することにより、実
施例2の構造発色基板を作成した。
<Example 1: Structural color development substrate preparation step Glass substrate>
After applying the adjusted S-1 (dispersion liquid) as a structural coloring substrate material on a glass substrate surface-treated to a predetermined cationic surface so as to cover the entire surface of the substrate, a spin coater (manufactured by Mikasa) MSA-150) was coated at 2000 rpm for 10 seconds, and further at 1000 rpm for 8 seconds at a rotation speed and time. Next, the structural color substrate of Example 1 was prepared by subjecting it to drying and heat treatment at 70 ° C. for 3 minutes. Moreover, as the glass substrate, a MAS-coated slide glass (manufactured by Matsunami Glass Co., Ltd.) for preventing peeling whose surface was covered with high-density amino groups was used.
<Example 2: Structural color development substrate preparation step Glass substrate>
As a structural coloring substrate material, the S-2 (copolymer) resin solution was applied on an untreated slide glass substrate (manufactured by Matsunami Glass Co., Ltd.) so as to cover the entire surface of the substrate, and then with a spin coater. Coating was carried out at 2000 rpm with a rotation speed and time of 10 seconds. Thereafter, the substrate was subjected to drying and heat treatment at 70 ° C. for 5 minutes to prepare a pretreated substrate (containing a quaternary amine monomer and a surface coat with a cationic resin).
Further, the adjusted S-1 (dispersion liquid) was applied on the pretreated glass substrate (containing a quaternary amine monomer / surface-coated with a cationic resin) so as to cover the entire surface of the substrate, and then spin. Coating was performed with a coater at 2000 rpm for 10 seconds, and further at 1000 rpm for 8 seconds with a rotation speed and time. Subsequently, the structural color development board | substrate of Example 2 was created by providing to 70 degreeC for 3 minutes by drying and heat processing.

<実施例3:構造発色基板準備工程 ガラス基板>
構造発色基板材料として、前記調整後のS−1(分散液)を所定のカチオン性に表面処理されたガラス基板上に、基板上全表面を覆うように塗布した後、スピンコーターにて500rpmで8秒、更に1000rpmで10秒の回転数と時間でコーティングを行った。次いで、70℃で3分間、乾燥及び熱処理に供することにより、実施例3の構造発色基板を作成した。また、上記ガラス基板としては、表面が高密度アミノ基で覆われた剥離防止用MASコートスライドグラスを用いた。
<Example 3: Structural color development substrate preparation step Glass substrate>
After applying the adjusted S-1 (dispersion liquid) as a structural coloring substrate material on a glass substrate that has been surface-treated to a predetermined cationic surface so as to cover the entire surface of the substrate, the spin coater is used at 500 rpm. Coating was performed for 8 seconds, and further at 1000 rpm for 10 seconds with a rotation speed and time. Next, the structural color substrate of Example 3 was prepared by subjecting it to drying and heat treatment at 70 ° C. for 3 minutes. Moreover, as the glass substrate, a MAS-coated slide glass for peeling prevention whose surface was covered with high-density amino groups was used.

<実施例4:構造発色基板準備工程 ガラス基板>
構造発色基板材料として、前記S−2(共重合体)樹脂溶解液を未処理のスライドガラス基板上(レギュラースライドグラス 松浪硝子社製)に、基板上全表面を覆うように塗布した後、スピンコーターにて2000rpmで10秒の回転数と時間でコーティングを行った。その後、70℃で5分間、乾燥及び熱処理に供することにより、前処理基板(4級アミンモノマー含有・カチオン性樹脂で表面コート)を作成した。
更に、前記調整後のS−1(分散液)を前記、前処理ガラス基板(4級アミンモノマー含有・カチオン性樹脂で表面コート)上に、基板上全表面を覆うように塗布した後、スピンコーターにて500rpmで8秒、更に1000rpmで10秒の回転数と時間でコーティングを行った。次いで、70℃で3分間、乾燥及び熱処理に供することにより、実施例4の構造発色基板を作成した。
<Example 4: Structural color development substrate preparation step Glass substrate>
After applying the S-2 (copolymer) resin solution as a structural coloring substrate material on an untreated slide glass substrate (regular slide glass manufactured by Matsunami Glass Co., Ltd.) so as to cover the entire surface of the substrate, spin Coating was performed with a coater at 2000 rpm for 10 seconds. Thereafter, the substrate was subjected to drying and heat treatment at 70 ° C. for 5 minutes to prepare a pretreated substrate (containing a quaternary amine monomer and a surface coat with a cationic resin).
Further, the adjusted S-1 (dispersion liquid) was applied on the pretreated glass substrate (containing a quaternary amine monomer / surface-coated with a cationic resin) so as to cover the entire surface of the substrate, and then spin. Coating was performed with a coater at 500 rpm for 8 seconds, and further at 1000 rpm for 10 seconds. Subsequently, the structural color development board | substrate of Example 4 was created by using for 3 minutes at 70 degreeC drying and heat processing.

<実施例5:構造発色基板準備工程 PET基板>
構造発色基板材料として、前記S−2(共重合体)樹脂溶解液をポリエステルフィルム上に塗布した後、フィルムアプリケーター装置(DKSHジャパン株式会社製)を用いて、ポリエステルフィルム上に乾燥塗膜が約2.0μmとなるようにS−2(共重合体)樹脂溶解液をバーコーターNo.3(第一理化社製)で塗布し、オーブンで70℃5分加熱し、前処理の樹脂塗工された試験基板を得た。更に、上記、樹脂塗工されたポリエステルフィルム上に、構造発色基板材料として、前記調整後のS−1(分散液)を基板上表面に塗布した後、フィルムアプリケーター装置を用いて、前記樹脂塗工物を除いたポリエステルフィルム上の乾燥塗膜が約2.0μmとなるように着色組成物をバーコーターNo.3で塗布し、オーブンで70℃5分加熱し、実施例5の構造発色基板を作成した。
<Example 5: Structural color development substrate preparation step PET substrate>
After applying the S-2 (copolymer) resin solution on the polyester film as a structural color-developing substrate material, using a film applicator device (manufactured by DKSH Japan Co., Ltd.), a dry coating film is formed on the polyester film. The S-2 (copolymer) resin solution was added to the bar coater No. 2 so as to be 2.0 μm. 3 (manufactured by Daiichi Rika Co., Ltd.) and heated in an oven at 70 ° C. for 5 minutes to obtain a pretreated resin-coated test substrate. Furthermore, after applying the adjusted S-1 (dispersion liquid) on the surface of the substrate as a structural coloring substrate material on the resin-coated polyester film, the resin coating is performed using a film applicator device. The colored composition was coated with a bar coater No. 2 so that the dry coating film on the polyester film excluding the work was about 2.0 μm. 3 and heated in an oven at 70 ° C. for 5 minutes to prepare a structural color substrate of Example 5.

<比較例1:構造発色基板準備工程 ガラス基板>
構造発色基板材料として、前記調整後のS−1(分散体)を未処理品のスライドガラス基板上(レギュラースライドグラス/松浪硝子社製)に、基板上全表面を覆うように塗布
した後、スピンコーターにて2000rpmで10秒、更に1000rpmで8秒の回転数と時間でコーティングを行った。次いで、70℃で3分間、乾燥及び熱処理に供することにより、比較例1の構造発色基板を作成した。
<Comparative Example 1: Structural Coloring Substrate Preparation Step Glass Substrate>
After applying the adjusted S-1 (dispersion) as a structural coloring substrate material on an untreated slide glass substrate (regular slide glass / Matsunami Glass Co., Ltd.) so as to cover the entire surface of the substrate, Coating was performed with a spin coater at 2000 rpm for 10 seconds, and further at 1000 rpm for 8 seconds with a rotation speed and time. Subsequently, the structural color development board | substrate of the comparative example 1 was created by using for 70 minutes at 70 degreeC and drying and heat processing.

<比較例2:構造発色基板準備工程 ガラス基板>
構造発色基板材料として、前記調整後のS−1(分散液)を未処理品のスライドガラス基板上(レギュラースライドグラス/松浪硝子社製)に、基板上全表面を覆うように塗布
した後、スピンコーターにて500rpmで8秒、更に1000rpmで10秒の回転数と時間でコーティングを行った。次いで、70℃で3分間、乾燥及び熱処理に供することにより、比較例2の構造発色基板を作成した。
<Comparative Example 2: Structural Coloring Substrate Preparation Step Glass Substrate>
After applying the adjusted S-1 (dispersion liquid) as a structural coloring substrate material on an untreated slide glass substrate (regular slide glass / Matsunami Glass Co., Ltd.) so as to cover the entire surface of the substrate, Coating was performed with a spin coater at 500 rpm for 8 seconds, and further at 1000 rpm for 10 seconds with a rotation speed and time. Subsequently, the structural color development board | substrate of the comparative example 2 was created by using for 70 minutes at 70 degreeC and drying and heat processing.

<比較例3:構造発色基板準備工程 PET基板>
構造発色基板材料として、前記調整後のS−1(分散液)をポリエステルフィルム上に塗布した後、フィルムアプリケーター装置を用いて、ポリエステルフィルム上の乾燥塗膜
が約2.0μmとなるように着色組成物をバーコーターNo.3で塗布し、オーブンで70℃5分加熱し、構造発色基板を得た。
<Comparative Example 3: Structural Coloring Substrate Preparation Step PET Substrate>
After applying the adjusted S-1 (dispersion liquid) on the polyester film as a structural color substrate material, the film is applied using a film applicator device so that the dried coating on the polyester film is about 2.0 μm. The composition was applied to bar coater no. 3 and heated in an oven at 70 ° C. for 5 minutes to obtain a structural color substrate.

<発色評価試験>
評価は、上記で調整した実施例1〜5、比較例1〜3の構造発色基板における発色性を分光反射スペクトルで評価した。具体的には、分光光度計(日立分光光度計/U−410
0 日立ハイテクノロジーズ社製)で、上記作成した構造発色基板の反射スペクトルの測
定を行った。発色度合いの評価方法は次の通りである。上記作成した基板を粒子径に応じた目的の最大反射スペクトルの反射率/分光反射率のベースラインの反射率比を最大反射
率(R%)として算出した。
分光反射率のベースラインの反射率は、検出器が設置された球の内面に直径30mmの円状、厚さ10mmの硫酸バリウムの白色を用いてベースライン補正を行い、粒子径に応じた目的の最大反射スペクトルの反射率をそれとした。
<Color evaluation test>
In the evaluation, the color developability of the structural color development substrates of Examples 1 to 5 and Comparative Examples 1 to 3 adjusted as described above was evaluated by a spectral reflection spectrum. Specifically, a spectrophotometer (Hitachi spectrophotometer / U-410
(Manufactured by Hitachi High-Technologies Corporation), the reflection spectrum of the structural coloring substrate prepared above was measured. The evaluation method of the degree of color development is as follows. The reflectance of the target maximum reflection spectrum according to the particle diameter and the reflectance ratio of the baseline of the spectral reflectance was calculated as the maximum reflectance (R%).
The reflectance of the baseline of the spectral reflectance is adjusted according to the particle diameter by correcting the baseline using a white circle of 30 mm in diameter and 10 mm in thickness of barium sulfate on the inner surface of the sphere on which the detector is installed. The reflectance of the maximum reflection spectrum was taken as that.

<付着性(クロスカット法)試験>
試験は、上記で調整した実施例1〜5、比較例1〜3の構造発色基板における碁盤目テープ試験(旧 JIS K5400)に沿って、下記の通り評価を行った。
1)試験面にカッターナイフを用いて、
素地に達する11本の切り傷をつけ100個の碁盤目を作る。
切り傷の間隔は1mm、2mm、5mm等が用いられる。
2)碁盤目部分にセロハンテープを強く圧着させ、テープの端を45°の角度で
一気に引き剥がし、碁盤目の状態を標準図と比較して評価する。
どの格子の目もはがれがない◎、カットの交差点における塗膜の小さなはがれ。明確に5%を上回らない○、塗膜がカットの線に沿って、交差点においてはがれている。5%以上30%未満△、塗膜がカットの線に沿って部分的、全面的にはがれている。30%以上×として評価を行った。
<Adhesion (cross-cut method) test>
The test was evaluated as follows along the cross cut tape test (former JIS K5400) on the structural color development substrates of Examples 1 to 5 and Comparative Examples 1 to 3 prepared above.
1) Using a cutter knife on the test surface,
Make 100 grids with 11 cuts that reach the substrate.
The interval between the cuts is 1 mm, 2 mm, 5 mm, or the like.
2) Strongly press the cellophane tape on the cross section and place the end of the tape at an angle of 45 °.
Peel off at a stretch and evaluate the cross-cut state compared to the standard drawing.
There is no peeling of any lattice, ◎, small peeling of the coating film at the intersection of cuts. Clearly not exceeding 5%, the coating film is peeled off at the intersection along the cut line. 5% or more and less than 30% Δ, the coating film is partially or entirely peeled along the cut line. Evaluation was performed with 30% or more.

<耐屈曲性試験>
試験は、上記で調整した実施例5、比較例3の塗装された構造発色基板(PET塗工物)を折り曲げて割れや剥離を調べた。
使用した基材(PET)の塗装膜を平面に対して170°以上 折り曲げた時の塗膜の割れ
および剥がれを以下の指標で評価した。(目視判断)
塗膜の割れや剥離が全く無い◎、折り曲げ面における塗膜の剥離が明確に5%を上回らな
い○、5%以上20%未満△、20%以上×として評価を行った。
<Bend resistance test>
In the test, the coated structural coloring substrate (PET coated product) of Example 5 and Comparative Example 3 prepared above was bent and examined for cracking and peeling.
The crack and peeling of the coating film when the coating film of the used substrate (PET) was bent at 170 ° or more with respect to the plane were evaluated by the following indices. (Visual judgment)
The evaluation was made with no cracking or peeling of the coating film ◎, peeling of the coating film on the folded surface clearly not exceeding 5%, 5% or more but less than 20% Δ, or 20% or more ×.

以上の構造発色基板の発色評価試験結果と付着性試験、耐屈曲性試験結果を表1に示した。(実施例1〜5、比較例1〜3)   Table 1 shows the results of the color development evaluation test, the adhesion test, and the bending resistance test of the structural color development substrate. (Examples 1-5, Comparative Examples 1-3)

Figure 2016186608
Figure 2016186608

<実施例1〜5及び比較例1〜3発色評価試験>
得られた構造発色基板、表1の実施例1〜5、比較例1〜3の発色評価結果より、同様のスピンコート塗工条件化(初期が2000rpm回転数)で比較した場合、例えば、実施例1、2と比較例1では、ガラス基板上の表面が高密度アミノ基で覆われたMASコート(松浪硝子社製)実施例1とガラス基板表面を前処理で4級アミンモノマーを含んだカチオン性樹脂で表面コートした実施例2では、どちらの場合においても比較例1(未処理
ガラス)に対して、負に帯電したアクリル系微粒子球状微粒子分散体(S−1)を塗工、
乾燥後の構造発色基板の発色評価試験の結果が約5〜6%反射率が向上し、良好な結果で
あった。
同様に、スピンコート塗工条件化(初期が500rpm回転数)を変更した実施例3、4、比較例2を比較してみたところ、上記同様、実施例3、4では、未処理のガラスを用いた比較例2よりも負に帯電したアクリル系微粒子球状微粒子分散体(S−1)を塗工、乾燥後の構造発色基板の発色評価試験の結果が約1〜5%反射率が向上し、良好な結果であった。
更に、ポリエステルフィルム上に塗工した実施例5、比較例3においても同様に、負に帯電したアクリル系微粒子球状微粒子分散体(S−1)をポリエステルフィルム上に塗工、乾燥後の構造発色基板の発色評価試験の結果がカチオン性樹脂で前処理塗工した実施例5の方が未処理ポリエステルフィルム上に塗工した比較例2よりも約4〜5%反射率が向上し、良好な結果でとなった。
<Examples 1 to 5 and Comparative Examples 1 to 3 Color Evaluation Test>
From the results of color development evaluation of the obtained structural coloring substrate, Examples 1 to 5 and Comparative Examples 1 to 3 in Table 1, when compared under the same spin coat coating conditions (initially 2000 rpm rotation speed), for example, In Examples 1 and 2 and Comparative Example 1, MAS coating (manufactured by Matsunami Glass Co., Ltd.) in which the surface on the glass substrate was covered with high-density amino groups and quaternary amine monomer were included in the pretreatment of the glass substrate surface. In Example 2 where the surface was coated with a cationic resin, negatively charged acrylic fine particle spherical particle dispersion (S-1) was applied to Comparative Example 1 (untreated glass) in either case.
The result of the color development evaluation test of the structural color development substrate after drying improved the reflectivity by about 5 to 6% and was a good result.
Similarly, when Examples 3 and 4 and Comparative Example 2 in which the spin coat coating conditions were changed (the initial rotation speed was 500 rpm) were compared, in Examples 3 and 4 as above, untreated glass was used. The result of the color development evaluation test of the structural color substrate after coating and drying the acrylic fine particle spherical particle dispersion (S-1) which is more negatively charged than Comparative Example 2 used is improved by about 1 to 5%. It was a good result.
Further, in Example 5 and Comparative Example 3 coated on the polyester film, similarly, the negatively charged acrylic fine particle spherical particle dispersion (S-1) was coated on the polyester film and the structural color after drying. The result of the color development evaluation test of the substrate is about 4 to 5% higher in reflectivity in Example 5 in which pretreatment coating was performed with a cationic resin than in Comparative Example 2 in which coating was performed on an untreated polyester film. As a result.

<実施例1〜5及び比較例1〜3 付着性試験>
実施例1〜5、比較例1〜3の付着性試験結果を比較すると、実施例1〜5では全てにおいて比較例1〜3より塗装膜の付着性が良好であった。これは基材(MASコート、カチオン系樹脂)と負に帯電したアクリル系微粒子分散体(S−1)がプラスマイナスの電荷作用で球状微粒子が高密着していると考えられる。
<Examples 1-5 and Comparative Examples 1-3 Adhesion Test>
When the adhesion test results of Examples 1 to 5 and Comparative Examples 1 to 3 were compared, in all of Examples 1 to 5, the adhesion of the coating film was better than those of Comparative Examples 1 to 3. This is presumably because the spherical fine particles are in close contact with the base material (MAS coat, cationic resin) and the negatively charged acrylic fine particle dispersion (S-1) due to positive and negative charge action.

<実施例5及び比較例3 耐屈曲性試験>
上記同様、耐屈曲性試験においても塗工したポリエステルフィルムを170°以上折り曲げた際に、負に帯電したアクリル系球状微粒子分散体とは逆の電荷で表面処理された基材を用いた実施例5では、塗膜の割れや剥離が全く無く、良好な結果であった。これも上記同様、電荷作用で基材との密着性が顕著に向上した結果であると推測される。
<Example 5 and Comparative Example 3 Flexibility Test>
Similarly to the above, in the bending resistance test, when the coated polyester film was bent by 170 ° or more, an example using a substrate surface-treated with a charge opposite to that of the negatively charged acrylic spherical fine particle dispersion was used. In No. 5, there was no cracking or peeling of the coating film, and the result was good. Similarly to the above, this is presumed to be a result of a marked improvement in the adhesion to the substrate due to the charge action.

以上から、本発明によって作成される構造色を呈する着色膜は、帯電性の球状微粒子分散体を前記球状微粒子とは逆の電荷を持った基板表面上に、前記帯電性球状微粒子分散体を塗布・乾燥させるだけの非常に簡便な操作法で、従来からの構造色成形体の課題であった、膜の脆さや乾燥時のひび割れ等を緩和し、縦方向に規則的に整合させてなる構造色を呈する粒子状積層物にすることを可能とする構造色を呈する着色膜である。また、基材と球状微粒子の密着性の向上、更に、粒子配列の規則正向上により球状微粒子の粒子径に応じた目的の最大反射率が飛躍的に向上した着色膜を提供することができる。   From the above, the colored film having the structural color produced by the present invention is obtained by coating the chargeable spherical fine particle dispersion on the substrate surface having a charge opposite to that of the spherical fine particles.・ A structure with regular alignment in the vertical direction, with a very simple operation method that only dries, alleviating the fragility of the film and cracks during drying, which were problems with conventional structural color moldings. It is a colored film exhibiting a structural color that makes it possible to form a particulate laminate exhibiting a color. In addition, a colored film in which the target maximum reflectance according to the particle diameter of the spherical fine particles is dramatically improved by improving the adhesion between the base material and the spherical fine particles and further improving the regularity of the particle arrangement can be provided.

本発明による構造色を呈する着色膜の製造方法では、有彩色の染料及び/又は顔料等で
着色されていない単分散の帯電性球状微粒子分散体において、上記分散体を所定の方法で塗布・乾燥させた膜の太陽光もしくは通常の可視光領域の光が照射されて視感される垂直反射光が、乳白色の淡い構造色のようなものではなく、赤(R)、青(B)、緑(G)及び黄(Y)等の色みの構造色を明確に視感させる着色膜の製造方法を構築することができるものである。その構造色を有する着色膜は、各種の用途に着色材もしくは赤外反射等の光学材料として好適に用いられる。従って、この光発色部材を単独又は二次加工材として、例えば、電着カラー板、カラーシート、カラーフィルター、偏光フィルム、インクジェット記録用インク、グラビア印刷用インク、ホログラム部材、顔料として用いることができる。
In the method for producing a colored film exhibiting a structural color according to the present invention, in a monodispersed chargeable spherical fine particle dispersion not colored with a chromatic dye and / or pigment, the dispersion is applied and dried by a predetermined method. The vertical reflected light that is perceived by the sunlight of the film or the light in the normal visible light region is not like the pale structural color of milky white, but red (R), blue (B), green It is possible to construct a manufacturing method of a colored film that clearly gives a visible structural color such as (G) and yellow (Y). The colored film having the structural color is suitably used as a coloring material or an optical material such as infrared reflection for various applications. Accordingly, this photochromic member can be used alone or as a secondary processing material, for example, as an electrodeposition color plate, color sheet, color filter, polarizing film, ink for ink jet recording, ink for gravure printing, hologram member, pigment. .

また、特に、本発明の製造方法によって得られる特定の粒子サイズを有する構造色を有する着色膜は、紫外線又は赤外線照射に対する特性反射スペクトルに基づく紫外線又は赤外線反射を発揮させることから、各種の形状の新規な紫外線又は赤外線遮熱材料を提供することができる。   In particular, the colored film having a structural color having a specific particle size obtained by the production method of the present invention exhibits ultraviolet or infrared reflection based on a characteristic reflection spectrum with respect to ultraviolet or infrared irradiation, and thus has various shapes. A novel ultraviolet or infrared heat shielding material can be provided.

Claims (7)

帯電性の球状微粒子を媒体に分散させた帯電性の球状微粒子分散体を、前記球状微粒子とは逆の電荷を持った基板表面上に塗布し、前記帯電性球状微粒子分散体を乾燥させることにより、前記球状微粒子が縦方向に規則的に整合した積層物にすることを特徴とする、構造色を呈する着色膜の製造方法。   By applying a chargeable spherical fine particle dispersion in which chargeable spherical fine particles are dispersed in a medium on a substrate surface having a charge opposite to that of the spherical fine particles, and drying the chargeable spherical fine particle dispersion. A method for producing a colored film exhibiting a structural color, characterized in that a laminate in which the spherical fine particles are regularly aligned in the longitudinal direction is used. 帯電性の球状微粒子分散体が、アクリル系有機ポリマー球状微粒子分散体であることを特徴とする請求項1記載の構造色を呈する着色膜の製造方法。   The method for producing a colored film exhibiting a structural color according to claim 1, wherein the chargeable spherical fine particle dispersion is an acrylic organic polymer spherical fine particle dispersion. 帯電性球状微粒子の平均粒子径が100nm〜600nmの範囲にあり且つ粒子径の変動係数Cv値が30%以下のアクリル系有機ポリマー球状微粒子であることを特徴とする請求項2記載の構造色を呈する着色膜の製造方法。   3. The structural color according to claim 2, wherein the chargeable spherical fine particles are acrylic organic polymer spherical fine particles having an average particle diameter in the range of 100 nm to 600 nm and a coefficient of variation Cv of the particle diameter of 30% or less. A method for producing a colored film. 帯電性の球状微粒子分散体が、球状微粒子に対して黒色系無彩物を0.001質量%以上含有する球状微粒子分散体であることを特徴とする請求項1〜3いずれか記載の構造色を呈する着色膜の製造方法造方法。   The structural color according to any one of claims 1 to 3, wherein the chargeable spherical fine particle dispersion is a spherical fine particle dispersion containing 0.001% by mass or more of a black achromatic material with respect to the spherical fine particles. A method for producing a colored film exhibiting 帯電性の球状微粒子が、黒色系無彩色で着色させた球状微粒子であることを特徴とする請求項1〜3いずれか記載の構造色を呈する着色膜の製造方法。   The method for producing a colored film exhibiting a structural color according to any one of claims 1 to 3, wherein the chargeable spherical fine particles are spherical fine particles colored with a black achromatic color. 帯電性アクリル系有機ポリマー球状微粒子のガラス転移温度が、20℃以上であることを特徴とする請求項2〜5いずれか記載の構造色を呈する着色膜の製造方法。   6. The method for producing a colored film having a structural color according to claim 2, wherein the glass transition temperature of the chargeable acrylic organic polymer spherical fine particles is 20 ° C. or higher. 請求項1〜6いずれか記載の構造色を呈する着色膜の製造方法により得られる着色膜。   The colored film obtained by the manufacturing method of the colored film which exhibits the structural color in any one of Claims 1-6.
JP2015067399A 2015-03-27 2015-03-27 Method for producing colored film exhibiting structural color Active JP6589330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015067399A JP6589330B2 (en) 2015-03-27 2015-03-27 Method for producing colored film exhibiting structural color

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015067399A JP6589330B2 (en) 2015-03-27 2015-03-27 Method for producing colored film exhibiting structural color

Publications (2)

Publication Number Publication Date
JP2016186608A true JP2016186608A (en) 2016-10-27
JP6589330B2 JP6589330B2 (en) 2019-10-16

Family

ID=57203587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015067399A Active JP6589330B2 (en) 2015-03-27 2015-03-27 Method for producing colored film exhibiting structural color

Country Status (1)

Country Link
JP (1) JP6589330B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020006458A (en) * 2018-07-05 2020-01-16 一般財団法人ファインセラミックスセンター Ferroelectric nanoparticle accumulation method, ferroelectric nanoparticle accumulation device, and electronic component manufacturing method
CN113637362A (en) * 2021-09-09 2021-11-12 浙江理工大学 Photocurable liquid photonic crystal color paste, preparation method and application thereof in construction of structural color generation film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286962A (en) * 2001-03-26 2002-10-03 Mitsubishi Chemicals Corp Method for manufacturing particle thin film
JP2002341161A (en) * 2001-05-21 2002-11-27 Kunihito Kawamoto Photonic crystal and method for producing the same
JP2002361767A (en) * 2001-04-06 2002-12-18 Dainippon Printing Co Ltd Fine particle layer laminated film and optically functional material using the same
JP2005060654A (en) * 2003-07-31 2005-03-10 Soken Chem & Eng Co Ltd Method for producing 3-dimensional particle-conformed material of spherical fine particle, the 3-dimensional particle-conformed material, and method for producing 3-dimensional particle-conformed material-coated film
US20060182968A1 (en) * 2003-07-31 2006-08-17 Tetsuya Yoshida Fluid colloid crystal and process for producing three-dimensionsl aligned particle mass therefrom
JP2006224231A (en) * 2005-02-16 2006-08-31 National Institute For Materials Science Method for producing monolayer array structure of metal nanoparticle with no surface modification
WO2006090705A1 (en) * 2005-02-22 2006-08-31 Asahi Glass Company, Limited Pressure-sensitive adhesive composition, pressure-sensitive adhesive film, and optical filter
JP2007126646A (en) * 2005-10-04 2007-05-24 Soken Chem & Eng Co Ltd Aqueous suspension-type particle dispersion for formation of continuous phase of three-dimensionally ordered particle association
JP2007256528A (en) * 2006-03-22 2007-10-04 Murata Mfg Co Ltd Method of manufacturing ceramic hyper-fine particle film
JP2008094861A (en) * 2006-10-05 2008-04-24 Soken Chem & Eng Co Ltd Aqueous particle dispersion for forming three-dimensional particle crystal phase, method for producing the same and use of three-dimensional particle crystal phase

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286962A (en) * 2001-03-26 2002-10-03 Mitsubishi Chemicals Corp Method for manufacturing particle thin film
JP2002361767A (en) * 2001-04-06 2002-12-18 Dainippon Printing Co Ltd Fine particle layer laminated film and optically functional material using the same
JP2002341161A (en) * 2001-05-21 2002-11-27 Kunihito Kawamoto Photonic crystal and method for producing the same
JP2005060654A (en) * 2003-07-31 2005-03-10 Soken Chem & Eng Co Ltd Method for producing 3-dimensional particle-conformed material of spherical fine particle, the 3-dimensional particle-conformed material, and method for producing 3-dimensional particle-conformed material-coated film
US20060182968A1 (en) * 2003-07-31 2006-08-17 Tetsuya Yoshida Fluid colloid crystal and process for producing three-dimensionsl aligned particle mass therefrom
JP2006224231A (en) * 2005-02-16 2006-08-31 National Institute For Materials Science Method for producing monolayer array structure of metal nanoparticle with no surface modification
WO2006090705A1 (en) * 2005-02-22 2006-08-31 Asahi Glass Company, Limited Pressure-sensitive adhesive composition, pressure-sensitive adhesive film, and optical filter
JP2007126646A (en) * 2005-10-04 2007-05-24 Soken Chem & Eng Co Ltd Aqueous suspension-type particle dispersion for formation of continuous phase of three-dimensionally ordered particle association
JP2007256528A (en) * 2006-03-22 2007-10-04 Murata Mfg Co Ltd Method of manufacturing ceramic hyper-fine particle film
JP2008094861A (en) * 2006-10-05 2008-04-24 Soken Chem & Eng Co Ltd Aqueous particle dispersion for forming three-dimensional particle crystal phase, method for producing the same and use of three-dimensional particle crystal phase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020006458A (en) * 2018-07-05 2020-01-16 一般財団法人ファインセラミックスセンター Ferroelectric nanoparticle accumulation method, ferroelectric nanoparticle accumulation device, and electronic component manufacturing method
JP7209952B2 (en) 2018-07-05 2023-01-23 一般財団法人ファインセラミックスセンター Method for assembling ferroelectric nanoparticles and method for manufacturing electronic components
CN113637362A (en) * 2021-09-09 2021-11-12 浙江理工大学 Photocurable liquid photonic crystal color paste, preparation method and application thereof in construction of structural color generation film

Also Published As

Publication number Publication date
JP6589330B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
KR102114866B1 (en) Composite system comprising a polymer matrix and core-shell nanoparticles, process for preparing it and use thereof
EP1653256B1 (en) Fluid colloid crystal and process for producing three-dimensional aligned particle mass therefrom
US20070154709A1 (en) Nanoparticles
TWI249547B (en) Polymer particle coated with silica, method for producing the same and use of the same
TW200905252A (en) Curable resin composition for antiglare layer and antiglare layer
CN102012532A (en) Optical laminate, polarizing plate, and display apparatus using the same
JP6589330B2 (en) Method for producing colored film exhibiting structural color
TW201639628A (en) Metallo ionomer polymers
JP2004269922A (en) Photochromophoric member presenting visible chromatic color as structural color, manufacturing method therefor, and process for manufacturing electrodeposited color sheet using the method
CN105694652B (en) Film used for solar batteries
JP4663990B2 (en) A manufacturing method of a three-dimensional particle matching body of spherical fine particles, a three-dimensional particle matching body, and a manufacturing method of the three-dimensional particle matching body coating film.
JP6597291B2 (en) Chromatic colored member with structural color
US20070282075A1 (en) Use Of Statistical Copolymers
JP2014047233A (en) Composition for structural color expression and structural color expression membrane
WO2016157742A1 (en) Particle assembly
US20190375946A1 (en) Polymer dispersion
JP2006299096A (en) Emulsion type organic resin composition of high refraction index imparting material and its application
JP2005060653A (en) New fluid colloidal crystalline material consisting of solid-liquid colloidal dispersion
JP2016172821A (en) Production method of dispersion of acidic functional group-containing acrylic organic polymer spherical particle which develops structural color
JP2007126646A (en) Aqueous suspension-type particle dispersion for formation of continuous phase of three-dimensionally ordered particle association
JP6511915B2 (en) Method of manufacturing fine particle film
JP2017003811A (en) Structural coloring member using absorbent
JP2005298622A (en) Powder coated with titanium oxide film and its manufacturing method
JP2020024382A (en) Optical devices with functional molecules
TW201315745A (en) Resin particles and method for making resin particles, anti-glare film, and optical dispersion resin composition and external agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R151 Written notification of patent or utility model registration

Ref document number: 6589330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350