JP2016183809A - Fluidized bed reactor - Google Patents

Fluidized bed reactor Download PDF

Info

Publication number
JP2016183809A
JP2016183809A JP2015063744A JP2015063744A JP2016183809A JP 2016183809 A JP2016183809 A JP 2016183809A JP 2015063744 A JP2015063744 A JP 2015063744A JP 2015063744 A JP2015063744 A JP 2015063744A JP 2016183809 A JP2016183809 A JP 2016183809A
Authority
JP
Japan
Prior art keywords
furnace wall
fluidized bed
reaction chamber
bed reactor
collision prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015063744A
Other languages
Japanese (ja)
Other versions
JP6612045B2 (en
Inventor
大貴 三津石
Daiki Mitsuishi
大貴 三津石
学 誉田
Manabu Yoda
学 誉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2015063744A priority Critical patent/JP6612045B2/en
Publication of JP2016183809A publication Critical patent/JP2016183809A/en
Application granted granted Critical
Publication of JP6612045B2 publication Critical patent/JP6612045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fluidized bed reactor such as a fluidized bed boiler that can suppress wear of a furnace wall.SOLUTION: A fluidized bed reactor includes a furnace wall 1 defining a reaction chamber 2, and causes reaction while a fluidizing material F is made to flow in the reaction chamber 2. The fluidized bed reactor further includes furnace wall collision prevention control means 7 for preventing the fluidizing material F from colliding with a furnace wall pipe constituting the furnace wall 1. The furnace wall collision prevention control means 7 controls a course of the fluidizing material F so that the fluidizing material F does not collide with the furnace wall pipe by supplying gas into the reaction chamber 2. Namely, since the course of the fluidizing material F is controlled so as to prevent the fluidizing material F from colliding with the furnace wall pipe by using the furnace wall collision prevention control means 7, the fluidized bed reactor inhibits the fluidizing material F from coming into contact with the furnace wall pipe, so as to enable suppression of wear of the furnace wall pipe.SELECTED DRAWING: Figure 3

Description

本発明は、流動床反応炉に関する。   The present invention relates to a fluidized bed reactor.

従来、反応室内において、燃料及び空気を固形物である流動材と混合して流動床(流動層)を形成しながら燃焼させ、この燃焼反応により、炉壁管内を流れる水と熱交換する流動床ボイラが知られている(例えば特許文献1)。この流動床ボイラでは、流動材の激しい撹拌や熱による炉壁管の摩耗減肉を防止すべく、耐火物を下部炉壁部分に内張りしている。   Conventionally, in a reaction chamber, fuel and air are mixed with a fluid material, which is a solid substance, and burned while forming a fluidized bed (fluidized bed), and by this combustion reaction, a fluidized bed that exchanges heat with water flowing in the furnace wall tube. A boiler is known (for example, Patent Document 1). In this fluidized bed boiler, a refractory is lined on the lower furnace wall portion in order to prevent the thinning of the wall of the furnace wall tube due to vigorous stirring of the fluidized material and heat.

特開2003−50003号公報JP 2003-50003 A

上記のような流動床ボイラにおいて、下部炉壁部分に比べて流動材の流れが安定している上部炉壁部分であっても摩耗減肉が発生する場合があった。   In the fluidized bed boiler as described above, wear thinning may occur even in the upper furnace wall portion where the flow of the fluidized material is more stable than in the lower furnace wall portion.

本発明は、このような課題を解決するために成されたものであり、炉壁管の損耗を抑制することができる流動床ボイラを始めとした流動床反応炉を提供することを目的とする。   The present invention has been made to solve such problems, and an object of the present invention is to provide a fluidized bed reactor including a fluidized bed boiler capable of suppressing the wear of the furnace wall tube. .

上記課題を解決すべく鋭意検討の結果、本願発明者らは、「炉壁に沿って落下し耐火物の上端面に衝突して弾かれた固形物が炉壁に衝突することで、炉壁管に損耗が発生する」ことを見出した。   As a result of diligent studies to solve the above problems, the inventors of the present application stated that “the solid wall that fell along the furnace wall and collided with the upper end surface of the refractory collided with the furnace wall collided with the furnace wall. It was found that the pipe is worn out.

そこで、本発明による流動床反応炉は、反応室を画成する炉壁を備え、反応室内で固形物を流動させながら反応を行わせる流動床反応炉であって、固形物が炉壁を構成する炉壁管に衝突しないように制御する炉壁衝突防止制御手段を備えることを特徴としている。   Therefore, the fluidized bed reactor according to the present invention is a fluidized bed reactor equipped with a furnace wall that defines a reaction chamber, and in which a reaction is performed while fluidizing the solid in the reaction chamber, and the solid constitutes the furnace wall. Furnace wall collision prevention control means for controlling so as not to collide with the furnace wall tube is provided.

このような流動床反応炉によれば、炉壁衝突防止制御手段により、固形物が炉壁管に衝突しないように固形物の進路を制御するため、炉壁管に対する固形物の接触が抑制され、炉壁の損耗を抑制することができる。   According to such a fluidized bed reactor, the path of the solid material is controlled by the furnace wall collision prevention control means so that the solid material does not collide with the furnace wall tube, so that the contact of the solid material with the furnace wall tube is suppressed. Further, the wear of the furnace wall can be suppressed.

また、流動床反応炉によれば、炉壁衝突防止制御手段は、気体を反応室内に供給することにより固形物が炉壁管に衝突しないように固形物の進路を制御してもよい。これにより、炉壁管への固形物の衝突を抑制する部材等を反応室内に別途設けることなく、腐食のおそれのない簡易な構成で炉壁管の損耗を抑制することができる。   Further, according to the fluidized bed reactor, the furnace wall collision prevention control means may control the path of the solid material so that the solid material does not collide with the furnace wall tube by supplying gas into the reaction chamber. Accordingly, it is possible to suppress the wear of the furnace wall tube with a simple configuration without fear of corrosion without separately providing a member or the like for suppressing the collision of the solid matter with the furnace wall tube in the reaction chamber.

また、流動床反応炉によれば、炉壁に内張りされると共に炉壁よりも反応室内に張り出した耐火物を備え、炉壁衝突防止制御手段は、耐火物の上方の炉壁内から気体を供給してもよい。これにより、固形物が耐火物の上端面に衝突し弾かれて炉壁管に衝突する、ということがないように固形物の進路を制御することができる。   In addition, according to the fluidized bed reactor, the refractory is lined on the furnace wall and overhangs from the furnace wall into the reaction chamber, and the furnace wall collision prevention control means supplies gas from the furnace wall above the refractory. You may supply. Thereby, it is possible to control the path of the solid material so that the solid material does not collide with the upper end surface of the refractory and is bounced to collide with the furnace wall tube.

このように本発明による流動床反応炉によれば、炉壁管の損耗を抑制することができる。   As described above, according to the fluidized bed reactor according to the present invention, the wear of the furnace wall tube can be suppressed.

本発明の第1実施形態に係る流動床反応炉を示す概略断面構成図である。It is a schematic sectional lineblock diagram showing the fluidized bed reactor concerning a 1st embodiment of the present invention. 図1に示す流動床反応炉の要部を炉内側からみた図である。It is the figure which looked at the principal part of the fluidized bed reaction furnace shown in FIG. 1 from the furnace inner side. 炉壁衝突防止制御手段による流動材の動作の一例を説明する図である。It is a figure explaining an example of operation | movement of the fluidized material by a furnace wall collision prevention control means. 炉壁衝突防止制御手段による流動材の動作の他の例を説明する図である。It is a figure explaining the other example of operation | movement of the fluidized material by a furnace wall collision prevention control means. 第2実施形態に係る流動床反応炉の炉壁衝突防止制御手段による流動材の動作を説明する図である。It is a figure explaining operation | movement of the fluidized material by the furnace wall collision prevention control means of the fluidized bed reaction furnace which concerns on 2nd Embodiment.

以下、図面を参照しつつ本発明の好適な実施形態について詳細に説明する。なお、以下の説明において同一又は相当要素には同一符号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted.

[第1実施形態]
図1〜図3を用いて、本発明の第1実施形態に係る流動床反応炉について説明する。図1は、本発明の第1実施形態に係る流動床反応炉を示す概略断面構成図、図2は、図1に示す流動床反応炉の要部を炉内側からみた図、図3及び図4は、炉壁衝突防止制御手段による流動材の動作を説明する図である。ここでは、流動床反応炉を循環流動床(CFB;Circulating Fluidized Bed)ボイラとして説明する。
[First Embodiment]
The fluidized bed reactor according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic sectional view showing a fluidized bed reactor according to the first embodiment of the present invention. FIG. 2 is a view of the main part of the fluidized bed reactor shown in FIG. 4 is a diagram for explaining the operation of the fluidized material by the furnace wall collision prevention control means. Here, the fluidized bed reactor will be described as a circulating fluidized bed (CFB) boiler.

循環流動床ボイラ100は、矩形筒の上下端を閉じた形状を呈し、図1に示すように、その下部は、下方に行くに従って幅方向(図1の左右方向)に狭まり矩形筒が小さくなる形状とされている。この循環流動床ボイラ100は、上下端を閉じた矩形筒内が反応室2とされる。循環流動床ボイラ100は、この反応室2の底部に設けた複数の開口3から燃焼空気を導入すると共に反応室2の下部から燃料(又は、反応対象物)を導入し、当該燃料をケイ砂等の流動材と共に流動させながら反応室2で燃焼反応を行わせるものである。   The circulating fluidized bed boiler 100 has a shape in which the upper and lower ends of a rectangular cylinder are closed. As shown in FIG. 1, the lower part of the circulating fluidized bed boiler narrows in the width direction (the left-right direction in FIG. 1) and becomes smaller. It is made into a shape. In this circulating fluidized bed boiler 100, the reaction chamber 2 is formed in a rectangular cylinder whose upper and lower ends are closed. The circulating fluidized bed boiler 100 introduces combustion air from a plurality of openings 3 provided at the bottom of the reaction chamber 2 and introduces fuel (or a reaction target) from the lower portion of the reaction chamber 2, and the fuel is converted into silica sand. The combustion reaction is performed in the reaction chamber 2 while flowing together with a fluid material such as the above.

この循環流動床ボイラ100の炉壁1は、具体的には、図2に示すように、炉壁1の周方向(図2の左右方向)に並設した炉壁管4,4同士を平板状のフィン(連結板)5で連結して構成されている。この炉壁管4は、反応室2での燃焼反応による熱を、当該炉壁管4内に流れる水と熱交換する。炉壁管4及びフィン5からなる炉壁1は、上部炉壁部分Aと、この上部炉壁部分Aの下に位置する下部炉壁部分Bと、を有している。下部炉壁部分Bには、炉壁1の周方向に沿って耐火物6が内張りされ、炉壁1よりも反応室2内に張り出している。   Specifically, as shown in FIG. 2, the furnace wall 1 of the circulating fluidized bed boiler 100 is a flat plate of furnace wall tubes 4 and 4 arranged in parallel in the circumferential direction of the furnace wall 1 (left and right direction in FIG. 2). Are connected by a fin (connecting plate) 5. The furnace wall tube 4 exchanges heat from the combustion reaction in the reaction chamber 2 with water flowing in the furnace wall tube 4. The furnace wall 1 composed of the furnace wall tube 4 and the fins 5 has an upper furnace wall part A and a lower furnace wall part B located below the upper furnace wall part A. A refractory 6 is lined on the lower furnace wall portion B along the circumferential direction of the furnace wall 1, and projects beyond the furnace wall 1 into the reaction chamber 2.

なお、耐火物6は、ここでは、セラミック焼成物等の耐火ライニングとされている。また、水が流れる炉壁管4に代えて、水蒸気が流れる炉壁管を用いて熱交換を行うようにしても良い。   Here, the refractory 6 is a refractory lining such as a ceramic fired product. Further, instead of the furnace wall tube 4 through which water flows, heat exchange may be performed using a furnace wall tube through which water vapor flows.

特に、本実施形態の循環流動床ボイラ100は、図1〜図3に示すように、炉壁衝突防止制御手段7を備えている。炉壁衝突防止制御手段7は、反応室2内に気体を供給する気体供給部7a(図3参照)と、反応室2内に供給される当該気体の流量を制御(調整)する制御部(図示省略)と、を有している。気体供給部7aは、ノズルを有する構成で、フィン5における耐火物6の上方(より詳細には、耐火物6の上端面近傍)に取り付けられている。気体供給部7aは、炉壁1より内方へ突出しないように配置され、耐火物6の平坦な上端面に沿って(すなわち、水平方向に向けて)気体を供給する。当該気体としては、燃焼空気が用いられ、供給源(図示省略)から流路(図示省略)を介して気体供給部7aのそれぞれに供給される。制御部は、例えば上記の流路上に配置されたバルブを制御することで気体の流量を調整する。   In particular, the circulating fluidized bed boiler 100 of the present embodiment includes a furnace wall collision prevention control means 7 as shown in FIGS. The furnace wall collision prevention control means 7 includes a gas supply unit 7 a (see FIG. 3) that supplies gas into the reaction chamber 2 and a control unit that controls (adjusts) the flow rate of the gas supplied into the reaction chamber 2. (Not shown). The gas supply unit 7 a has a nozzle and is attached above the refractory 6 in the fin 5 (more specifically, near the upper end surface of the refractory 6). The gas supply part 7a is arrange | positioned so that it may not protrude inward from the furnace wall 1, and supplies gas along the flat upper end surface of the refractory 6 (namely, toward a horizontal direction). Combustion air is used as the gas, and the gas is supplied from a supply source (not shown) to each gas supply unit 7a via a flow path (not shown). A control part adjusts the flow volume of gas, for example by controlling the valve | bulb arrange | positioned on said flow path.

そして、反応室2内で燃焼反応が行われると、炉壁衝突防止制御手段7は、気体の流量を最適に調整し、図3に示すように、反応室2内に当該気体の供給を開始する。これにより、反応室2内を流動する流動材(固形物)Fのうち炉壁1に沿い耐火物6の上端面に向かって下降する流動材Fの進路Rが、当該気体の供給によって耐火物6の上方位置から反応室2の内方に移動させられる。このように、炉壁衝突防止制御手段7は、気体を反応室2内に供給することにより、流動材Fが耐火物6の上端面に衝突し弾かれて炉壁管4に衝突する、ということがないように流動材Fの進路Rを制御する。なお、この気体の供給により、流動材Fと共に灰の進路も炉壁管4に衝突しないように制御する。   When a combustion reaction is performed in the reaction chamber 2, the furnace wall collision prevention control unit 7 optimally adjusts the gas flow rate and starts supplying the gas into the reaction chamber 2 as shown in FIG. 3. To do. Thereby, the path R of the fluidized material F that descends toward the upper end surface of the refractory 6 along the furnace wall 1 out of the fluidized material (solid matter) F flowing in the reaction chamber 2 is supplied to the refractory by supplying the gas. 6 is moved from the upper position of 6 to the inside of the reaction chamber 2. Thus, the furnace wall collision prevention control means 7 supplies the gas into the reaction chamber 2 so that the fluid F collides with the upper end surface of the refractory 6 and is bounced to collide with the furnace wall tube 4. The path R of the fluidized material F is controlled so as not to occur. In addition, it controls so that the course of ash with the fluid F may not collide with the furnace wall pipe 4 by supply of this gas.

また、図4に示すように、流動材Fが耐火物6の上端面に衝突した場合であっても、弾かれた流動材Fは、炉壁衝突防止制御手段7によって反応室2の内方に移動させられる。すなわち、炉壁衝突防止制御手段7は、弾かれた流動材Fが炉壁管4に衝突しないように流動材Fの進路Rを制御する。   Further, as shown in FIG. 4, even when the fluidized material F collides with the upper end surface of the refractory 6, the repelled fluidized material F is kept inside the reaction chamber 2 by the furnace wall collision prevention control means 7. Moved to. That is, the furnace wall collision prevention control means 7 controls the path R of the fluidized material F so that the repelled fluidized material F does not collide with the furnace wall tube 4.

このように、炉壁衝突防止制御手段7は、流動材Fの耐火物6に対する衝突の有無に関わらず、最終的に流動材Fが炉壁管4に衝突しないように(流動材Fが炉壁管4に向かってこないように)流動材Fの進路Rを制御する。   In this way, the furnace wall collision prevention control means 7 finally prevents the fluid material F from colliding with the furnace wall tube 4 regardless of whether or not the fluid material F collides with the refractory 6 (the fluid material F is in the furnace). The path R of the fluid F is controlled so that it does not face the wall tube 4.

ここで、気体供給部7aによる気体の供給が無い従来の場合には、流動材Fは耐火物6の上端面で弾かれて炉壁管4に衝突し、その結果、炉壁管4に損耗が発生し得る。この点、本実施形態の循環流動床ボイラ100では、気体供給部7aにより上記状況の発生を抑制することができる。   Here, in the conventional case where there is no gas supply by the gas supply part 7a, the fluidized material F is bounced at the upper end surface of the refractory 6 and collides with the furnace wall tube 4, resulting in wear on the furnace wall tube 4. Can occur. In this regard, in the circulating fluidized bed boiler 100 of the present embodiment, the occurrence of the above situation can be suppressed by the gas supply unit 7a.

以上説明したように、循環流動床ボイラ100によれば、炉壁衝突防止制御手段7により、流動材Fが炉壁管4に衝突しないように流動材Fの進路Rを制御するため、炉壁管4に対する流動材Fの接触が抑制され、炉壁管4の損耗を抑制することができる。   As described above, according to the circulating fluidized bed boiler 100, the furnace wall collision prevention control means 7 controls the path R of the fluidized material F so that the fluidized material F does not collide with the furnace wall tube 4. The contact of the fluid F with respect to the tube 4 is suppressed, and the wear of the furnace wall tube 4 can be suppressed.

また、循環流動床ボイラ100によれば、炉壁衝突防止制御手段7は、気体を反応室2内に供給することにより流動材Fが衝突しないように流動材Fの進路Rを制御しているため、炉壁管4への流動材Fの衝突を抑制する部材等を反応室2内に別途設けることなく、腐食のおそれのない簡易な構成で炉壁1の損耗を抑制することができる。   Further, according to the circulating fluidized bed boiler 100, the furnace wall collision prevention control means 7 controls the path R of the fluidized material F so that the fluidized material F does not collide by supplying gas into the reaction chamber 2. Therefore, it is possible to suppress the wear of the furnace wall 1 with a simple configuration that does not cause corrosion without separately providing a member for suppressing the collision of the fluid F to the furnace wall pipe 4 in the reaction chamber 2.

[第2実施形態]
次に、図5を用いて、本発明の第2実施形態について説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG.

図5は、第2実施形態に係る流動床反応炉の炉壁衝突防止制御手段7による流動材Fの動作を説明する図である。   FIG. 5 is a view for explaining the operation of the fluidized material F by the furnace wall collision prevention control means 7 of the fluidized bed reactor according to the second embodiment.

本実施形態が第1実施形態と違う点は、図5に示すように、炉壁衝突防止制御手段7、より詳細には気体供給部7aの位置である。   The difference of this embodiment from the first embodiment is the position of the furnace wall collision prevention control means 7, more specifically, the gas supply part 7a, as shown in FIG.

上述したように、気体供給部7aによる気体の供給が無い従来の場合においては、流動材Fが耐火物6の上端面で弾かれて炉壁1に衝突する。その結果、炉壁1に損耗が発生し得る。ここで、炉壁1の損耗は、炉壁1の材質によって異なるが、炉壁1に対して所定の角度θ傾いた方向から流動材Fが炉壁1に衝突した場合に、最も大きくなることを本願発明者らは見出している。例えば、所定の角度θは、炉壁1として延性材料(Ductile)を用いた場合、約30度である。そして、本実施形態にあっては、気体供給部7aは、炉壁1に対して角度30度傾いた方向から流動材Fが衝突する炉壁1の領域に取り付けられている。   As described above, in the conventional case where no gas is supplied by the gas supply unit 7 a, the fluidized material F is bounced at the upper end surface of the refractory 6 and collides with the furnace wall 1. As a result, the furnace wall 1 can be worn out. Here, although the wear of the furnace wall 1 varies depending on the material of the furnace wall 1, the wear is greatest when the fluidized material F collides with the furnace wall 1 from a direction inclined by a predetermined angle θ with respect to the furnace wall 1. The present inventors have found out. For example, the predetermined angle θ is about 30 degrees when a ductile material is used for the furnace wall 1. And in this embodiment, the gas supply part 7a is attached to the area | region of the furnace wall 1 which the fluidized material F collides from the direction inclined 30 degree | times with respect to the furnace wall 1. FIG.

より具体的には、気体供給部7aは、耐火物6の上端面より高さH上方の位置から気体が供給されるように、フィン5に取り付けられている。ここで、耐火物6の上端面の厚みをWとした場合、高さHの範囲は、0<H≦W/tanθとなっている。そして、上記延性材料の場合には、角度θ=30°となる。   More specifically, the gas supply unit 7 a is attached to the fin 5 so that gas is supplied from a position above the upper end surface of the refractory 6 by a height H. Here, when the thickness of the upper end surface of the refractory 6 is W, the range of the height H is 0 <H ≦ W / tan θ. In the case of the above ductile material, the angle θ = 30 °.

この実施形態でも、反応室2内で燃焼反応が行われると、炉壁衝突防止制御手段7は、気体の流量を最適に調整し、反応室2内に当該気体の供給を開始する。これにより、流動材Fが耐火物6の上端面に衝突した場合であっても、弾かれた流動材Fは、炉壁衝突防止制御手段7によって反応室2の内方に移動させられる。すなわち、流動材Fが炉壁管4に所定の角度(損耗の最も激しい角度)θで衝突するということが抑制され、その結果、炉壁管4の損耗を抑制することができる。   Also in this embodiment, when a combustion reaction is performed in the reaction chamber 2, the furnace wall collision prevention control unit 7 optimally adjusts the gas flow rate and starts supplying the gas into the reaction chamber 2. Thereby, even if the fluidized material F collides with the upper end surface of the refractory 6, the repelled fluidized material F is moved inward of the reaction chamber 2 by the furnace wall collision prevention control means 7. That is, the fluidized material F is prevented from colliding with the furnace wall tube 4 at a predetermined angle (the most severe angle of wear) θ, and as a result, the wear of the furnace wall tube 4 can be suppressed.

以上、本発明をその実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although this invention was concretely demonstrated based on the embodiment, this invention is not limited to the said embodiment.

例えば、上記実施形態においては、炉壁衝突防止制御手段7は、燃焼空気を供給していたが、これに限られず、例えば、水蒸気、二酸化炭素、液体(水)、又は固体(燃料)であってもよい。   For example, in the above embodiment, the furnace wall collision prevention control means 7 supplies combustion air, but is not limited thereto, and is, for example, water vapor, carbon dioxide, liquid (water), or solid (fuel). May be.

また、上記実施形態においては、気体供給部7aは、フィン5における耐火物6の上端面近傍に取り付けられていたが、フィン5における他の位置に取り付けられてもよい。   Moreover, in the said embodiment, although the gas supply part 7a was attached to the upper end surface vicinity of the refractory 6 in the fin 5, you may attach to the other position in the fin 5. FIG.

また、炉壁1の内側に例えばセンサ等の何らかの突出物が設けられている場合には、当該突出物の上方に保護用の耐火物を設けることとなるため、この耐火物の上方に気体供給部7aを取り付けることとなる。   Further, when any protrusion such as a sensor is provided inside the furnace wall 1, a protective refractory is provided above the protrusion, so that gas is supplied above the refractory. The part 7a will be attached.

また、上記実施形態においては、気体供給部7aは、すべてのフィン5に取り付けられているが、必ずしもすべてのフィン5に取り付けられる必要はない。   Moreover, in the said embodiment, although the gas supply part 7a is attached to all the fins 5, it does not necessarily need to be attached to all the fins 5. FIG.

また、上記実施形態においては、炉壁衝突防止制御手段7は、気体供給部7aと制御部(図示省略)とを有しているが、それらの代わりに、各フィン5のそれぞれから反応室2の内方に向かって立設すると共に、炉壁管4に沿って延在する複数の板状の側板を有していてもよい。この場合、各炉壁管4は、一対の側板の間に位置することになる。側板は、流動材Fが炉壁管4に所定の角度θで衝突するということが抑制されるように配置されている。すなわち、側板は、流動材Fが炉壁管4に衝突しないように流動材Fの進路を制御すべく配置されている。所定の角度θは、上述したように、炉壁1として延性材料(Ductile)を用いた場合、約30度である。   Moreover, in the said embodiment, although the furnace wall collision prevention control means 7 has the gas supply part 7a and the control part (illustration omitted), reaction chamber 2 from each of each fin 5 instead of them. And may have a plurality of plate-like side plates extending along the furnace wall tube 4. In this case, each furnace wall tube 4 is located between a pair of side plates. The side plate is arranged so that the fluidized material F is prevented from colliding with the furnace wall tube 4 at a predetermined angle θ. That is, the side plate is arranged to control the course of the fluid material F so that the fluid material F does not collide with the furnace wall tube 4. As described above, the predetermined angle θ is about 30 degrees when a ductile material is used as the furnace wall 1.

また、炉壁衝突防止制御手段7は、上述した一対の側板の突出している側の端部同士を連結すると共に、炉壁管4に沿って延在する蓋板を有していてもよい。この場合、炉壁管4は、蓋板及び一対の側板によって、上下が開放されると共に、三方から柵状に囲まれる。これにより、流動材Fが炉壁管4に所定の角度θで衝突することをより一層抑制できる。   Further, the furnace wall collision prevention control means 7 may have a cover plate that extends along the furnace wall tube 4 while connecting the protruding ends of the pair of side plates described above. In this case, the furnace wall tube 4 is opened up and down by the lid plate and the pair of side plates, and is surrounded by a fence from three sides. Thereby, it can further suppress that fluidized material F collides with furnace wall pipe 4 at predetermined angle theta.

また、上記実施形態においては、循環流動床ボイラ100を矩形筒形状としているが、例えば、円筒形状等であっても良い。   Moreover, in the said embodiment, although the circulating fluidized bed boiler 100 is made into the rectangular cylinder shape, a cylindrical shape etc. may be sufficient, for example.

また、上記実施形態においては、特に好適であるとして、循環流動床ボイラ100に対する適用を述べているが、循環しない流動床ボイラに対しても適用でき、さらには、燃焼反応ではなく発熱を伴う化学反応を行う炉に対しても適用でき、要は、反応室で反応を行わせる流動床反応炉に対して適用できる。   Moreover, in the said embodiment, although application to the circulating fluidized bed boiler 100 is described as being especially suitable, it is applicable also to the fluidized bed boiler which does not circulate, Furthermore, it is not a combustion reaction but is a chemical with heat generation. The present invention can also be applied to a furnace that performs a reaction, and in short, can be applied to a fluidized bed reactor that performs a reaction in a reaction chamber.

1…炉壁、2…反応室、4…炉壁管、6…耐火物、7…炉壁衝突防止制御手段、100…循環流動床ボイラ(流動床反応炉)、F…流動材(固形物)、R…進路。   DESCRIPTION OF SYMBOLS 1 ... Furnace wall, 2 ... Reaction chamber, 4 ... Furnace wall pipe, 6 ... Refractory material, 7 ... Furnace wall collision prevention control means, 100 ... Circulating fluidized bed boiler (fluidized bed reactor), F ... Fluidized material (solid matter) ), R ... course.

Claims (3)

反応室を画成する炉壁を備え、前記反応室内で固形物を流動させながら反応を行わせる流動床反応炉であって、
前記固形物が前記炉壁を構成する炉壁管に衝突しないように前記固形物の進路を制御する炉壁衝突防止制御手段を備えることを特徴とする流動床反応炉。
A fluidized bed reactor comprising a furnace wall defining a reaction chamber, wherein the reaction is carried out while flowing solids in the reaction chamber;
A fluidized bed reactor comprising: a furnace wall collision prevention control means for controlling a path of the solid substance so that the solid substance does not collide with a furnace wall tube constituting the furnace wall.
前記炉壁衝突防止制御手段は、気体を前記反応室内に供給することにより前記固形物が前記炉壁管に衝突しないように制御することを特徴とする請求項1に記載の流動床反応炉。   2. The fluidized bed reactor according to claim 1, wherein the furnace wall collision prevention control unit controls the solid material not to collide with the furnace wall tube by supplying a gas into the reaction chamber. 前記炉壁に内張りされると共に前記炉壁よりも前記反応室内に張り出した耐火物を備え、
前記炉壁衝突防止制御手段は、前記耐火物の上方の前記炉壁内から気体を供給することを特徴とする請求項2に記載の流動床反応炉。
A refractory that is lined on the furnace wall and overhangs the reaction chamber from the furnace wall;
The fluidized bed reactor according to claim 2, wherein the furnace wall collision prevention control means supplies gas from the inside of the furnace wall above the refractory.
JP2015063744A 2015-03-26 2015-03-26 Fluidized bed reactor Active JP6612045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063744A JP6612045B2 (en) 2015-03-26 2015-03-26 Fluidized bed reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063744A JP6612045B2 (en) 2015-03-26 2015-03-26 Fluidized bed reactor

Publications (2)

Publication Number Publication Date
JP2016183809A true JP2016183809A (en) 2016-10-20
JP6612045B2 JP6612045B2 (en) 2019-11-27

Family

ID=57241760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063744A Active JP6612045B2 (en) 2015-03-26 2015-03-26 Fluidized bed reactor

Country Status (1)

Country Link
JP (1) JP6612045B2 (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252808A (en) * 1986-04-23 1987-11-04 Babcock Hitachi Kk Fluidized bed combustion device
JPH02238203A (en) * 1989-02-23 1990-09-20 Metallges Ag Fluid combustion chamber
US5239945A (en) * 1991-11-13 1993-08-31 Tampella Power Corporation Apparatus to reduce or eliminate combustor perimeter wall erosion in fluidized bed boilers or reactors
JPH0646103U (en) * 1992-11-19 1994-06-24 新日本製鐵株式会社 Inner wall structure in combustion chamber of circulating fluidized bed equipment
JPH0791631A (en) * 1992-12-11 1995-04-04 Kobe Steel Ltd Method and apparatus for incineration
US5893340A (en) * 1997-06-16 1999-04-13 The Babcock & Wilcox Company Erosion protection at line discontinuity for enclosure and internal walls in fluidized bed combustors and reactors
JP2000146105A (en) * 1998-11-13 2000-05-26 Mitsubishi Heavy Ind Ltd Circulation fluidized bed combustion furnace and method of preventing wear of evaporation tube
JP2000274630A (en) * 1999-03-24 2000-10-03 Tokyo Gas Co Ltd Fluidized-bed incinerator
JP2001165409A (en) * 1999-12-10 2001-06-22 Mitsubishi Heavy Ind Ltd Circulating fluidized bed combustion furnace
JP2001304502A (en) * 2000-04-21 2001-10-31 Nkk Corp Method for preventing corrosion of boiler tube and structure of boiler tube
JP2002195506A (en) * 2000-12-20 2002-07-10 Sumitomo Chem Co Ltd Waste heat boiler
JP2003050003A (en) * 2001-08-07 2003-02-21 Mitsubishi Heavy Ind Ltd Abrasion-resistant treatment method for furnace wall tube of boiler
JP2004333042A (en) * 2003-05-09 2004-11-25 Takuma Co Ltd Furnace wall structure of fluid bed boiler
EP1640660A2 (en) * 2004-09-24 2006-03-29 Kvaerner Power Oy Erosion shielding for a circulating fluidized bed boiler
JP2006292262A (en) * 2005-04-08 2006-10-26 Nippon Steel Engineering Co Ltd Fluidized bed dryer, and drying method of wet raw material by fluidized bed dryer
JP2011141089A (en) * 2010-01-07 2011-07-21 Sumitomo Heavy Ind Ltd Fluidized bed reactor
JP2011141086A (en) * 2010-01-07 2011-07-21 Sumitomo Heavy Ind Ltd Fluidized bed reactor
US8518496B2 (en) * 2003-06-06 2013-08-27 Alstom Technology Ltd Preventing tube failure in boilers

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252808A (en) * 1986-04-23 1987-11-04 Babcock Hitachi Kk Fluidized bed combustion device
JPH02238203A (en) * 1989-02-23 1990-09-20 Metallges Ag Fluid combustion chamber
US5239945A (en) * 1991-11-13 1993-08-31 Tampella Power Corporation Apparatus to reduce or eliminate combustor perimeter wall erosion in fluidized bed boilers or reactors
JPH0646103U (en) * 1992-11-19 1994-06-24 新日本製鐵株式会社 Inner wall structure in combustion chamber of circulating fluidized bed equipment
JPH0791631A (en) * 1992-12-11 1995-04-04 Kobe Steel Ltd Method and apparatus for incineration
US5893340A (en) * 1997-06-16 1999-04-13 The Babcock & Wilcox Company Erosion protection at line discontinuity for enclosure and internal walls in fluidized bed combustors and reactors
JP2000146105A (en) * 1998-11-13 2000-05-26 Mitsubishi Heavy Ind Ltd Circulation fluidized bed combustion furnace and method of preventing wear of evaporation tube
JP2000274630A (en) * 1999-03-24 2000-10-03 Tokyo Gas Co Ltd Fluidized-bed incinerator
JP2001165409A (en) * 1999-12-10 2001-06-22 Mitsubishi Heavy Ind Ltd Circulating fluidized bed combustion furnace
JP2001304502A (en) * 2000-04-21 2001-10-31 Nkk Corp Method for preventing corrosion of boiler tube and structure of boiler tube
JP2002195506A (en) * 2000-12-20 2002-07-10 Sumitomo Chem Co Ltd Waste heat boiler
JP2003050003A (en) * 2001-08-07 2003-02-21 Mitsubishi Heavy Ind Ltd Abrasion-resistant treatment method for furnace wall tube of boiler
JP2004333042A (en) * 2003-05-09 2004-11-25 Takuma Co Ltd Furnace wall structure of fluid bed boiler
US8518496B2 (en) * 2003-06-06 2013-08-27 Alstom Technology Ltd Preventing tube failure in boilers
EP1640660A2 (en) * 2004-09-24 2006-03-29 Kvaerner Power Oy Erosion shielding for a circulating fluidized bed boiler
JP2006292262A (en) * 2005-04-08 2006-10-26 Nippon Steel Engineering Co Ltd Fluidized bed dryer, and drying method of wet raw material by fluidized bed dryer
JP2011141089A (en) * 2010-01-07 2011-07-21 Sumitomo Heavy Ind Ltd Fluidized bed reactor
JP2011141086A (en) * 2010-01-07 2011-07-21 Sumitomo Heavy Ind Ltd Fluidized bed reactor

Also Published As

Publication number Publication date
JP6612045B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
RU2232939C2 (en) Circulating fluidized bed reactor
JP6763085B2 (en) Circulating fluidized bed boiler with loop seal heat exchanger
KR102222667B1 (en) Immersed heat transfer tube for fluidized bed boiler, and fluidized bed boiler
RU2537482C2 (en) Circulating fluidised bed with secondary air supply nozzles to furnace chamber
JP5496689B2 (en) Fluidized bed reactor
AU2010219391B2 (en) In-bed solids control valve
JP2009198065A (en) Circulating fluidized bed boiler
JP6612045B2 (en) Fluidized bed reactor
KR102052140B1 (en) Circulating fluidized bed boiler
JP5496688B2 (en) Fluidized bed reactor
RU2495712C2 (en) Boiling bed reactor
JP2011127818A (en) Furnace wall structure of fluidized bed boiler
JP2009204196A (en) Fluidized bed boiler structure
KR101377245B1 (en) Fluidized bed reactor arrangement
JP5040413B2 (en) Auxiliary boiler
JP5844021B1 (en) Fluidized bed heat exchanger
US20170356642A1 (en) Circulating fluidized bed boiler with bottom-supported in-bed heat exchanger
JP2013527905A (en) Wall structure for boiler equipment
JP5215834B2 (en) Circulating fluidized bed combustion furnace
JP2010038491A (en) Circulating fluidized bed combustion furnace
JP2013160489A (en) Circulating fluidized bed boiler
JP2022161026A (en) Heat exchanger for loop seal of circulation flow layer boiler and circulation flow layer boiler
JP2006084163A (en) Circulating fluidized bed combustion furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191030

R150 Certificate of patent or registration of utility model

Ref document number: 6612045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150