JP2016182921A - Beam structure member - Google Patents

Beam structure member Download PDF

Info

Publication number
JP2016182921A
JP2016182921A JP2015065143A JP2015065143A JP2016182921A JP 2016182921 A JP2016182921 A JP 2016182921A JP 2015065143 A JP2015065143 A JP 2015065143A JP 2015065143 A JP2015065143 A JP 2015065143A JP 2016182921 A JP2016182921 A JP 2016182921A
Authority
JP
Japan
Prior art keywords
resin layer
beam structure
main body
peripheral surface
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015065143A
Other languages
Japanese (ja)
Other versions
JP6429696B2 (en
Inventor
崇志 後藤
Takashi Goto
崇志 後藤
恭兵 前田
Kyohei Maeda
恭兵 前田
明彦 巽
Akihiko Tatsumi
明彦 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015065143A priority Critical patent/JP6429696B2/en
Publication of JP2016182921A publication Critical patent/JP2016182921A/en
Application granted granted Critical
Publication of JP6429696B2 publication Critical patent/JP6429696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a beam structure member which prevents occurrence of electric corrosion etc., achieves excellent joint strength, and prevents a complicated manufacturing process.SOLUTION: A beam structure member 100 includes: a first cylindrical member 11; a first resin layer 15 which is laminated on an outer peripheral surface of the first member 11 by injection molding; and a second member 17 which is disposed overlapping with the first resin layer 15, made of a light alloy material, and has a cylindrical part. The second member 17 is fixedly swaged to the first member 11 through the first resin layer 15 by electromagnetic forming.SELECTED DRAWING: Figure 1

Description

本発明は、ビーム構造部材に関する。   The present invention relates to a beam structural member.

自動車のドアビーム等の構造部材は、本体部と、本体部を他部材に取り付けるブラケット部材と、を備えたものが多い。例えば、筒状の部材を他の筒状の部材に挿入して、溶接やボルト・ナット等の機械的締結手段を用いて接合された構造部材が特許文献1に開示されている。上記のような自動車のドアビーム等の構造部材においては、エネルギー消費低減の観点から軽量化が進められており、従来からの鋼製部材に加えて、高張力鋼、アルミニウム又はアルミニウム合金、マグネシウム合金等の軽量の金属も採用されている。このような状況から、ブラケット部材とビーム部材との電位が異なるケースが増えている。   Many structural members such as automobile door beams include a main body and a bracket member for attaching the main body to another member. For example, Patent Document 1 discloses a structural member in which a cylindrical member is inserted into another cylindrical member and joined using mechanical fastening means such as welding or bolts and nuts. In structural members such as automobile door beams as described above, weight reduction has been promoted from the viewpoint of reducing energy consumption. In addition to conventional steel members, high-strength steel, aluminum or aluminum alloys, magnesium alloys, etc. The lightweight metal is also adopted. From such a situation, cases where the potentials of the bracket member and the beam member are different are increasing.

ブラケット部材とドアビームとが夫々電位差の異なる金属である場合、電食が発生しやすくなるため、双方の金属が直接接触しないように絶縁層等を設けることが検討されている。例えば、両者を締結する部材(鋼製ボルト等)を、表面にジオメット(登録商標)等の耐食処理を施したインサートナットを用いて保持する技術が検討されている(特許文献2)。しかし、このような耐食処理皮膜は、密着性が弱く、部材取り付け時に剥がれることがある。そのため、電食を十分に防止できないという問題がある。   When the bracket member and the door beam are made of metals having different potential differences, galvanic corrosion is likely to occur. Therefore, it has been studied to provide an insulating layer or the like so that the two metals are not in direct contact with each other. For example, a technique for holding a member (steel bolt or the like) that fastens both of them using an insert nut whose surface is subjected to corrosion resistance treatment such as Geomet (registered trademark) has been studied (Patent Document 2). However, such a corrosion-resistant film has poor adhesion and may be peeled off when the member is attached. Therefore, there is a problem that electric corrosion cannot be sufficiently prevented.

また、ビーム材としてCFRP(炭素繊維強化プラスチック)等の繊維強化樹脂を採用することも検討されている。ところが、ブラケット部材とビーム部材との接合部分は溶接できず、接着剤を使用して両部材を接合せざるを得ないことがある。その場合、ブラケット部材とビーム間の接着剤の厚みを一定範囲で均一にコントロールするのは難しく、接合強度にばらつきが生じやすい。その結果、十分な接合強度を確保できない場合もあった。   In addition, the use of fiber reinforced resin such as CFRP (carbon fiber reinforced plastic) as a beam material is also being studied. However, the joint portion between the bracket member and the beam member cannot be welded, and it may be necessary to join both members using an adhesive. In that case, it is difficult to uniformly control the thickness of the adhesive between the bracket member and the beam within a certain range, and the bonding strength tends to vary. As a result, there are cases where sufficient bonding strength cannot be ensured.

特開2000−108662号公報JP 2000-108662 A 特開2008−201377号公報JP 2008-201377 A

本発明は、上記事項に鑑みてなされたものであり、その目的は、電食等の発生を防止し、接合強度に優れ、更に製造工程を煩雑にすることのないビーム構造部材を提供するものである。   The present invention has been made in view of the above matters, and an object thereof is to provide a beam structure member that prevents the occurrence of electrolytic corrosion and the like, has excellent bonding strength, and does not complicate the manufacturing process. It is.

本発明のビーム構造部材は、
筒状の第1部材と、
前記第1部材の外周面に射出成形により積層された第1樹脂層と、
前記第1樹脂層に重ねて配置され、軽合金材料からなる筒状部を有する第2部材と、
を備え、
前記第2部材は、電磁成形により、前記第1樹脂層を介して前記第1部材とかしめ固定されていることを特徴とする。
また、前記第1部材は、外周面と内周面とを貫通する少なくとも1つの貫通孔が形成され、前記貫通孔に樹脂材料が充填されていてもよい。
前記第1部材は、内周面に第2樹脂層が積層されていてもよい。
前記第2部材は、周方向に沿った少なくとも一部に、他の部分よりも剛性の高い高剛性部を有してもよい。
前記第1部材と前記第2部材は、それぞれが角筒形状を有し、前記高剛性部が前記角筒形状の隅部であってもよい。
前記第2部材は、前記高剛性部から外側に延出されるリブ部を備えてもよい。
前記第1樹脂層は、前記第2部材の前記高剛性部に対応する周位置に、前記高剛性部に向かって突出する突起部が形成されてもよい。
The beam structural member of the present invention is
A cylindrical first member;
A first resin layer laminated by injection molding on the outer peripheral surface of the first member;
A second member disposed on the first resin layer and having a cylindrical portion made of a light alloy material;
With
The second member is fixed by caulking to the first member via the first resin layer by electromagnetic molding.
Further, the first member may be formed with at least one through hole penetrating the outer peripheral surface and the inner peripheral surface, and the through hole may be filled with a resin material.
The first member may have a second resin layer laminated on the inner peripheral surface.
The second member may have a high-rigidity portion that is higher in rigidity than other portions, at least at a portion along the circumferential direction.
Each of the first member and the second member may have a rectangular tube shape, and the highly rigid portion may be a corner portion of the rectangular tube shape.
The second member may include a rib portion extending outward from the high-rigidity portion.
The first resin layer may be formed with a protruding portion that protrudes toward the highly rigid portion at a circumferential position corresponding to the highly rigid portion of the second member.

本発明によれば、外表面に樹脂層が形成された筒状の第1部材に、筒状の第2部材を重ねて配置し、第1部材と第2部材とを第1樹脂層を介して電磁成形によりかしめ固定した構成としている。これにより、第1部材の表面に、安定した厚みを有する強固な第1樹脂層が形成され、電食等の発生を確実に防止できる。また、製造工程を煩雑にすることなく、接合強度に優れた構成にできる。   According to the present invention, the cylindrical second member is disposed so as to overlap the cylindrical first member having the resin layer formed on the outer surface, and the first member and the second member are interposed via the first resin layer. The structure is fixed by caulking by electromagnetic forming. Thereby, the strong 1st resin layer which has the stable thickness is formed in the surface of the 1st member, and generation | occurrence | production of electrolytic corrosion etc. can be prevented reliably. Moreover, it can be set as the structure excellent in joining strength, without making a manufacturing process complicated.

本発明の実施形態を説明するための図で、第1構成例のビーム構造部材の斜視図である。It is a figure for demonstrating embodiment of this invention, and is a perspective view of the beam structure member of a 1st structural example. 本体部の端部外表面に形成した樹脂層を示す斜視図である。It is a perspective view which shows the resin layer formed in the edge part outer surface of a main-body part. 図2のV1方向から見た本体部と樹脂層の側面図である。It is the side view of the main-body part and resin layer seen from the V1 direction of FIG. 本体部の外周面と内周面に樹脂層を形成した本体部と樹脂層の側面図である。It is the side view of the main-body part and resin layer which formed the resin layer in the outer peripheral surface and inner peripheral surface of a main-body part. (A),(B),(C)は、ブラケット部材の各種形状を示す断面図である。(A), (B), (C) is sectional drawing which shows the various shapes of a bracket member. ビーム構造部材の製造に用いる電磁成形装置の構成図で、(A)は電磁成形装置の側面図、(B)は(A)のV2方向から見た電磁成形装置の正面図である。It is a block diagram of the electromagnetic forming apparatus used for manufacture of a beam structural member, (A) is a side view of an electromagnetic forming apparatus, (B) is a front view of the electromagnetic forming apparatus seen from the V2 direction of (A). 角本体部からなる筒状部の高剛性部の位置を示す模式的な断面図である。It is typical sectional drawing which shows the position of the highly rigid part of the cylindrical part which consists of a corner | angular main-body part. 筒状部と樹脂層との間に隙間が生じる様子を示す参考図である。It is a reference figure which shows a mode that a clearance gap produces between a cylindrical part and a resin layer. (A)樹脂層の高剛性部に対応する周位置で凸部が形成された様子を示すビーム構造部材の側面図、(B)は(A)を電磁成形した後のビーム構造部材の側面図である。(A) Side view of a beam structure member showing a state in which a convex portion is formed at a circumferential position corresponding to a highly rigid portion of the resin layer, (B) is a side view of the beam structure member after electromagnetic forming (A). It is.

以下、本発明の実施形態について、図面を参照して詳細に説明する。ここでは、ビーム構造部材を自動車のドアビーム等に適用する場合を一例に説明するが、本発明はこれに限らない。
<第1構成例>
図1は本発明の実施形態を説明するための図で、ビーム構造部材の全体構成を示す斜視図である。
本構成のビーム構造部材100は、筒状の本体部(第1部材)11と、本体部11の両端部にそれぞれ取り付けられた一対のブラケット部材13,13と、を有する。本体部11は、長手方向の両端部に、端部外周面を覆う樹脂層(第1樹脂層)15がそれぞれ形成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, a case where the beam structural member is applied to an automobile door beam or the like will be described as an example, but the present invention is not limited thereto.
<First configuration example>
FIG. 1 is a perspective view showing an overall configuration of a beam structure member for explaining an embodiment of the present invention.
The beam structure member 100 of this configuration includes a cylindrical main body (first member) 11 and a pair of bracket members 13 and 13 attached to both ends of the main body 11, respectively. The main body 11 is formed with resin layers (first resin layers) 15 covering the outer peripheral surfaces of the end portions at both ends in the longitudinal direction.

ブラケット部材13は、筒状部(第2部材)17と、筒状部17から外側に延出されたリブ部19と、をそれぞれ有する。筒状部17は、樹脂層15が形成された本体部11の端部に挿入され、後述する電磁成形により、ブラケット部材13が樹脂層15を介して本体部11にかしめ固定される。   The bracket member 13 includes a tubular portion (second member) 17 and a rib portion 19 extending outward from the tubular portion 17. The cylindrical portion 17 is inserted into an end portion of the main body portion 11 on which the resin layer 15 is formed, and the bracket member 13 is caulked and fixed to the main body portion 11 via the resin layer 15 by electromagnetic molding described later.

上記構成のビーム構造部材100は、上記構造に限らず、少なくとも1つのブラケット部材13が本体部11に接合されていればよい。また、本体部11は、単一直線状の筒体に限らず、1つ以上の分岐点を有して複数の筒体が接合された構成であってもよい。更に、分岐された筒体の先端にブラケット部材13が配置された構成であってもよい。また、必要に応じて、本体部11の内部にリブ付アルミ押出材等の衝撃吸収部品を配置してもよい。   The beam structure member 100 having the above configuration is not limited to the above structure, and it is sufficient that at least one bracket member 13 is joined to the main body 11. The main body 11 is not limited to a single linear cylinder, and may have a configuration in which a plurality of cylinders are joined with one or more branch points. Furthermore, the structure by which the bracket member 13 is arrange | positioned at the front-end | tip of the branched cylinder may be sufficient. Moreover, you may arrange | position impact-absorbing components, such as an aluminum extrusion material with a rib, in the inside of the main-body part 11 as needed.

以下、上記構成のビーム構造部材100の各部を順次説明する。
(第1部材)
第1部材である本体部11は、断面円形状の直管構造を有するが、断面円形状に限らず、断面が楕円形状や、断面が矩形状又は多角形状であってもよい。本体部11の材質は、例えば、アルミニウム合金材(JIS規格の6000系、5000系、7000系、2000系、3000系等)、マグネシウム合金、鋼材(軟鋼、高張力鋼)、チタン合金等の金属材料が用いられる。
Hereinafter, each part of the beam structure member 100 having the above-described configuration will be sequentially described.
(First member)
The main body portion 11 as the first member has a straight tube structure with a circular cross section, but is not limited to a circular cross section, and the cross section may be an elliptical shape or a rectangular or polygonal cross section. Examples of the material of the main body 11 include metals such as aluminum alloy materials (JIS standard 6000 series, 5000 series, 7000 series, 2000 series, 3000 series, etc.), magnesium alloys, steel materials (soft steel, high-tensile steel), and titanium alloys. Material is used.

本体部11を筒状にするには、本体部11がアルミニウムやマグネシウムであれば、押出成形法を利用できる。また、本体部11が鋼材やチタンであれば、板材の端部を抵抗シーム溶接により接合する方法が利用できる。   In order to make the main body 11 cylindrical, an extrusion method can be used if the main body 11 is aluminum or magnesium. Moreover, if the main-body part 11 is steel materials and titanium, the method of joining the edge part of a board | plate material by resistance seam welding can be utilized.

本体部11は、上記金属材料の他、炭素繊維強化プラスチック(CFRP)等の非金属材料であってもよい。非金属材料としては、他に、ガラス繊維強化プラスチック(GFRP)、ガラス長繊維強化プラスチック(GMT)、ボロン繊維強化プラスチック(BFRP)、アラミド繊維強化プラスチック(AFRP,KFRP)、ポリエチレン繊維強化プラスチック(DFRP)、ザイロン強化プラスチック(ZFRP)等が挙げられる。このような繊維強化プラスチックは、樹脂とファイバーとのプリプレグを積層して管状にし、この環状のプリプレグをオーブン内で加熱・硬化させることにより得られる。   The main body 11 may be a non-metallic material such as carbon fiber reinforced plastic (CFRP) in addition to the metal material. Other non-metallic materials include glass fiber reinforced plastic (GFRP), long glass fiber reinforced plastic (GMT), boron fiber reinforced plastic (BFRP), aramid fiber reinforced plastic (AFRP, KFRP), polyethylene fiber reinforced plastic (DFRP). ), Zylon reinforced plastic (ZFRP), and the like. Such a fiber reinforced plastic is obtained by laminating a prepreg of resin and fiber into a tubular shape, and heating and curing the annular prepreg in an oven.

樹脂層15が射出成形により積層される本体部11の表面は、プライマー処理が施されることが好ましい。このプライマー処理に用いられる接着剤としては、変性ポリオレフィン系塗料、変性エポキシ系プライマー等、不揮発分の少ない低粘度の液体が挙げられる。本体部11の表面にプライマー処理の層が形成されると、本体部11と樹脂層15との接着性が向上する。   The surface of the main body 11 on which the resin layer 15 is laminated by injection molding is preferably subjected to primer treatment. Examples of the adhesive used for the primer treatment include a low-viscosity liquid with a small non-volatile content, such as a modified polyolefin-based paint and a modified epoxy-based primer. When the primer-treated layer is formed on the surface of the main body 11, the adhesion between the main body 11 and the resin layer 15 is improved.

プライマー処理の層には、シランカップリング剤、もしくは、その加水分解物を別途添加してもよい。これにより、プライマー処理層を介しての本体部11と樹脂層51との密着性がより強固になる。プライマー処理の具体例としては、本体部11がアルミニウム合金材である場合には、例えば、三井化学製ユニストールR−300(登録商標)等が好適に用いられる。本体部11が鋼材である場合には、例えば、ダイセルエボニック製ベスタメルト(登録商標)が好適に用いられる。なお、アルミニウム合金や鋼材の場合、プライマー処理前の下地処理として、リン酸クロメート、Ti−Zr等のノンクロメート化成処理を行ってもよい。   A silane coupling agent or a hydrolyzate thereof may be separately added to the primer treatment layer. Thereby, the adhesiveness of the main-body part 11 and the resin layer 51 through a primer process layer becomes stronger. As a specific example of the primer treatment, when the main body 11 is an aluminum alloy material, for example, Mitsui Chemicals Unistall R-300 (registered trademark) is preferably used. In the case where the main body 11 is a steel material, for example, Daicel Evonik Vestamelt (registered trademark) is preferably used. In the case of an aluminum alloy or steel material, non-chromate chemical conversion treatment such as phosphoric acid chromate or Ti-Zr may be performed as a base treatment before the primer treatment.

(樹脂層)
樹脂層15は、本体部11のプライマー処理層上に、溶融した樹脂を射出成形することにより形成される。ここで、樹脂層15を構成する樹脂材料は、通常の射出成形に用いられる樹脂組成物であれば、特に限定されない。樹脂層15に用いられる樹脂材料としては、例えば、ポリプロピレン、ポリアミド、ポリエチレン、ポリスチレン、ABS樹脂、塩化ビニル樹脂、フッ素樹脂等の熱可塑性樹脂が挙げられる。
(Resin layer)
The resin layer 15 is formed on the primer treatment layer of the main body 11 by injection molding a molten resin. Here, the resin material which comprises the resin layer 15 will not be specifically limited if it is a resin composition used for normal injection molding. Examples of the resin material used for the resin layer 15 include thermoplastic resins such as polypropylene, polyamide, polyethylene, polystyrene, ABS resin, vinyl chloride resin, and fluororesin.

樹脂材料には、タルクや金属繊維、ガラス繊維等の充填材や各種添加材が配合されていてもよい。その場合、樹脂材料への充填材の充填率は、射出成形時の樹脂材料の流動性を確保しつつ樹脂材料の強度を向上させるため、タルクの場合:5〜40%程度、金属繊維の場合:5〜20%程度、ガラス繊維の場合:5〜65%とすることが好ましい。   The resin material may contain fillers such as talc, metal fibers, glass fibers, and various additives. In that case, the filling rate of the filler into the resin material is to improve the strength of the resin material while ensuring the fluidity of the resin material at the time of injection molding. In the case of talc: about 5 to 40%, in the case of metal fiber : About 5 to 20%, In the case of glass fiber: It is preferable to set it as 5 to 65%.

図2は、本体部11の端部外表面に積層した樹脂層(第1樹脂層)15を示す斜視図、図3は図2のV1方向から見た本体部11と樹脂層15の側面図である。樹脂材料は、本体部11の外周面11aに積層することが必須であるが、更に図4に示すように、本体部11の内周面11bにも樹脂層(第2樹脂層)16を積層してもよい。外周面11aと内周面11bとの両方に樹脂層15,16を積層することにより、本体部11の防食性が一層高くなると共に、部品としての剛性向上が図れる。   2 is a perspective view showing a resin layer (first resin layer) 15 laminated on the outer surface of the end portion of the main body 11, and FIG. 3 is a side view of the main body 11 and the resin layer 15 as viewed from the direction V1 in FIG. It is. Although it is essential to laminate the resin material on the outer peripheral surface 11a of the main body part 11, as shown in FIG. 4, a resin layer (second resin layer) 16 is also laminated on the inner peripheral surface 11b of the main body part 11. May be. By laminating the resin layers 15 and 16 on both the outer peripheral surface 11a and the inner peripheral surface 11b, the corrosion resistance of the main body 11 can be further enhanced and the rigidity as a component can be improved.

なお、本体部11の両端部は、外周面11aと内周面11bとを貫通する貫通孔21が形成されていてもよい。この貫通孔21に樹脂材料が充填されることで、樹脂材料と本体部11との接合強度をより高めることができる。充填される樹脂材料は、樹脂層15,16と同じ樹脂材料であることが好ましく、その場合には、射出成形によって樹脂層15,16を同時に成形できる。   In addition, the both ends of the main-body part 11 may be formed with the through-hole 21 which penetrates the outer peripheral surface 11a and the inner peripheral surface 11b. By filling the through hole 21 with the resin material, the bonding strength between the resin material and the main body 11 can be further increased. The resin material to be filled is preferably the same resin material as the resin layers 15 and 16, and in this case, the resin layers 15 and 16 can be simultaneously molded by injection molding.

樹脂層15の積層厚みは、最も薄い箇所で1.5〜3mm程度とすることが射出成形性の点で好ましい。また、樹脂層15には、必要に応じて外周方向に突出する突起部やフィン、補強リブ等を設けることもできる。このような突起部等を設けることで、後述するブラケット部材13の周り止め効果が向上する。   The lamination thickness of the resin layer 15 is preferably about 1.5 to 3 mm at the thinnest point in terms of injection moldability. In addition, the resin layer 15 can be provided with protrusions, fins, reinforcing ribs, and the like that protrude in the outer peripheral direction as necessary. By providing such a protrusion or the like, the effect of stopping the bracket member 13 to be described later is improved.

(第2部材)
第2部材であるブラケット部材13の筒状部17は、本体部11の断面形状と相似する断面形状を有する。すなわち、本体部11が断面円形である場合は、筒状部17を丸管形状とし、本体部11が角筒形状の場合は、筒状部17を角筒形状とする。
(Second member)
The cylindrical portion 17 of the bracket member 13 that is the second member has a cross-sectional shape similar to the cross-sectional shape of the main body portion 11. That is, when the main body portion 11 has a circular cross section, the cylindrical portion 17 has a round tube shape, and when the main body portion 11 has a rectangular tube shape, the cylindrical portion 17 has a rectangular tube shape.

図5(A),(B),(C)は、ブラケット部材13の各種形状を示す断面図である。ブラケット部材13の筒状部17は、図1のA−A線断面である図5(A)に示すように、他部品等への取り付けを行うためのボルトやナットを締結するリブ部19,19を有する。リブ部19,19は、図示例のように平坦状に形成される他、取り付け対象となる他の構造部材の形状に応じて、適宜形状を変更できる。   5A, 5 </ b> B, and 5 </ b> C are cross-sectional views illustrating various shapes of the bracket member 13. As shown in FIG. 5A, which is a cross-sectional view taken along line AA of FIG. 1, the cylindrical portion 17 of the bracket member 13 includes rib portions 19 for fastening bolts and nuts for attachment to other parts and the like. 19 The rib portions 19 and 19 are formed in a flat shape as in the illustrated example, and the shape can be appropriately changed according to the shape of another structural member to be attached.

例えば、図5(B)に示すように、互いに平行な一対のリブ部19A,19Aの形状を採用することもできる。また、図5(C)に示すように、断面円形の筒状部17に代えて、断面矩形状の筒状部17Aとした場合にも、平坦なリブ部19B,19Bの形状や、他の形状にすることができる。   For example, as shown in FIG. 5B, the shape of a pair of rib portions 19A and 19A that are parallel to each other may be employed. Further, as shown in FIG. 5C, when the cylindrical portion 17A having a rectangular cross section is used instead of the cylindrical portion 17 having a circular cross section, the shape of the flat rib portions 19B and 19B, It can be shaped.

筒状部17,17Aは、電磁成形時の誘導電流によるローレンツ力により、かしめ方向に移動する。そのため、筒状部17は、アルミニウム又はアルミニウム合金、マグネシウム合金等の高導電性の軽合金材料で構成する必要がある。   The cylindrical portions 17 and 17A move in the caulking direction by the Lorentz force due to the induced current during electromagnetic forming. Therefore, the cylindrical part 17 needs to be comprised with highly conductive light alloy materials, such as aluminum or aluminum alloy, and a magnesium alloy.

<ビーム構造部材の製造方法>
次に、本構成のビーム構造部材100を製造する手順を説明する。
概略的には、本体部11の両端部に、樹脂層15を周知の射出成形方法により成形する。そして、電磁成形装置により、本体部11の樹脂層15が成形された部分に、ブラケット部材13の筒状部17をそれぞれかしめ固定する。これにより、ビーム構造部材100が完成する。
<Production method of beam structural member>
Next, a procedure for manufacturing the beam structure member 100 having this configuration will be described.
Schematically, the resin layer 15 is formed on both ends of the main body 11 by a known injection molding method. And the cylindrical part 17 of the bracket member 13 is respectively crimped and fixed to the part by which the resin layer 15 of the main-body part 11 was shape | molded with the electromagnetic shaping | molding apparatus. Thereby, the beam structural member 100 is completed.

上記の電磁成形装置により、かしめ固定を実施する工程について、以下に詳細に説明する。
図6は本構成のビーム構造部材100の製造に用いる電磁成形装置31の構成図で、(A)は電磁成形装置の側面図、(B)は(A)のV2方向から見た電磁成形装置の正面図である。
The process of performing caulking and fixing using the electromagnetic forming apparatus will be described in detail below.
6A and 6B are configuration diagrams of an electromagnetic forming apparatus 31 used for manufacturing the beam structural member 100 having this configuration. FIG. 6A is a side view of the electromagnetic forming apparatus, and FIG. 6B is an electromagnetic forming apparatus viewed from the V2 direction in FIG. FIG.

電磁成形装置31は、螺旋状に配置された導体コイル31Aと、図中上下一対の磁束集中器31B,31Cとを有する。磁束集中器31B,31Cは、導体コイル31Aの内径部にそれぞれ配置される。磁束集中器31B,13Cの長手方向断面における長手方向一端部には、内径部中心へ向かって突出する小径部33が形成される。この小径部33は、導体コイル31Aにより発生した磁束を、小径部33の内周面に向けて集中させる機能を有する。   The electromagnetic forming apparatus 31 includes a conductor coil 31A arranged in a spiral shape and a pair of upper and lower magnetic flux concentrators 31B and 31C in the drawing. The magnetic flux concentrators 31B and 31C are respectively disposed on the inner diameter portion of the conductor coil 31A. A small-diameter portion 33 that protrudes toward the center of the inner diameter portion is formed at one end in the longitudinal direction of the magnetic flux concentrators 31B and 13C. The small diameter portion 33 has a function of concentrating the magnetic flux generated by the conductor coil 31 </ b> A toward the inner peripheral surface of the small diameter portion 33.

磁束集中器31B,31Cの長手方向一端部は、筒状部17の形状に沿ったキャビティ35を画成する。筒状部17がリブ部19を有する場合、キャビティ35は、筒状部17とリブ部19,19の全体を取り囲む形状にされる。電磁成形装置31は、このキャビティ35内にビーム構造部材100の端部を収容して、加工を行う。   One end in the longitudinal direction of the magnetic flux concentrators 31 </ b> B and 31 </ b> C defines a cavity 35 along the shape of the cylindrical portion 17. When the cylindrical portion 17 has the rib portion 19, the cavity 35 is shaped to surround the entire cylindrical portion 17 and the rib portions 19 and 19. The electromagnetic forming device 31 accommodates the end of the beam structural member 100 in the cavity 35 and performs processing.

次に、加工手順を説明する。まず、樹脂の射出成形が完了した本体部11を、ブラケット部材13の筒状部17に挿入する。   Next, a processing procedure will be described. First, the main body 11 having been subjected to resin injection molding is inserted into the tubular portion 17 of the bracket member 13.

そして、図6(A)及び(B)に示すように、本体部11が筒状部17に挿入されたブラケット部材13を、電磁成形装置31のキャビティ35内に挿入する。これにより、ブラケット部材13の周囲が磁束集中器31B,31Cにより取り囲まれる。   Then, as shown in FIGS. 6A and 6B, the bracket member 13 in which the main body portion 11 is inserted into the cylindrical portion 17 is inserted into the cavity 35 of the electromagnetic forming device 31. Thereby, the circumference | surroundings of the bracket member 13 are surrounded by the magnetic flux concentrators 31B and 31C.

この状態では、磁束集中器31B,31Cの各小径部33の内周面が、筒状部17の外周面の近傍に対面配置され、筒状部17の外周面を囲んでいる。   In this state, the inner peripheral surface of each small diameter portion 33 of the magnetic flux concentrators 31 </ b> B and 31 </ b> C is disposed in the vicinity of the outer peripheral surface of the cylindrical portion 17 and surrounds the outer peripheral surface of the cylindrical portion 17.

導体コイル31Aの駆動回路は、電源37、コンデンサ39、充電スイッチ41、放電スイッチ43を備える。コンデンサ39は、放電スイッチ43を開状態にして充電スイッチ41が閉じられると、電源37からの電力供給を受けて充電される。上記充電後に充電スイッチ41を開状態にして放電スイッチ43が閉じられると、コンデンサ39が放電し、導体コイル31Aへ瞬間的に大電流が流れる。これにより、導体コイル31Aから磁束が発生する。   The drive circuit for the conductor coil 31 </ b> A includes a power source 37, a capacitor 39, a charge switch 41, and a discharge switch 43. When the discharge switch 43 is opened and the charge switch 41 is closed, the capacitor 39 is charged by receiving power from the power source 37. When the charging switch 41 is opened after the charging and the discharging switch 43 is closed, the capacitor 39 is discharged, and a large current flows instantaneously to the conductor coil 31A. Thereby, magnetic flux is generated from the conductor coil 31A.

導体コイル31Aから発生した磁束は、磁束集中器31B,31Cの小径部33を介して、筒状部17の外周面に集中する。その結果、軽合金材料からなる筒状部17に誘導電流が発生する。この誘導電流と電磁場との相互作用により、本体部11と筒状部17との重なり合う部分に、縮管させる力(電磁力)が作用する。この縮管作用によって、本体部11と筒状部17とが強固にかしめ固定される。   The magnetic flux generated from the conductor coil 31A is concentrated on the outer peripheral surface of the cylindrical portion 17 via the small diameter portion 33 of the magnetic flux concentrators 31B and 31C. As a result, an induced current is generated in the cylindrical portion 17 made of a light alloy material. Due to the interaction between the induced current and the electromagnetic field, a force (electromagnetic force) for contraction acts on the overlapping portion of the main body portion 11 and the cylindrical portion 17. The main body part 11 and the cylindrical part 17 are firmly caulked and fixed by this contraction action.

上記電磁成形により、本体部11の樹脂層15と、筒状部17とのかしめ固定を、短時間で完了させることができる。また、電磁成形は、溶接による接合のような熱が発生しないため、部材接合後の熱歪の矯正等、余分な工程が発生しない。更に、溶接熱が周囲部材に伝播されることがないため、樹脂層15が熱ダメージを受けることがなく、しかも、絶縁効果が低下することがない。   By the electromagnetic molding, the caulking and fixing between the resin layer 15 of the main body 11 and the cylindrical portion 17 can be completed in a short time. In addition, since electromagnetic forming does not generate heat as in joining by welding, an extra process such as correction of thermal strain after joining the members does not occur. Further, since the welding heat is not propagated to the surrounding members, the resin layer 15 is not damaged by heat and the insulating effect is not lowered.

上記のように製造されるビーム構造部材100によれば、ブラケット部材13が本体部11にかしめ固定されると、相互の部材が十分な積層厚みを有する樹脂層15によって挟まれる。また、樹脂層15は、射出成形によって本体部11外周面に積層されるため、積層厚みを高精度で均一にできる。このため、確実な絶縁性が保たれ、電食等の発生を確実に防止できる。また、ブラケット部材13と本体部11とが樹脂層15を介して接合されるため、周方向の接合強度分布が均一となり、ビーム構造部材100の耐久性を向上できる。更に、接着剤の塗布厚みを制御する工程や、溶接による熱歪み等の影響を回避する工程を設ける等、製造工程を煩雑にすることがないため、製造コストを低減できる。また、軽合金材料からなるブラケット部材13を用いることで、ビーム構造部材100を軽量化できる。   According to the beam structural member 100 manufactured as described above, when the bracket member 13 is caulked and fixed to the main body 11, the mutual members are sandwiched between the resin layers 15 having a sufficient laminated thickness. Moreover, since the resin layer 15 is laminated | stacked on the outer peripheral surface of the main-body part 11 by injection molding, lamination | stacking thickness can be made uniform with high precision. For this reason, reliable insulation is maintained and generation | occurrence | production of electrolytic corrosion etc. can be prevented reliably. Further, since the bracket member 13 and the main body portion 11 are joined via the resin layer 15, the circumferential joint strength distribution becomes uniform, and the durability of the beam structure member 100 can be improved. Furthermore, since the manufacturing process is not complicated, such as a process for controlling the coating thickness of the adhesive and a process for avoiding the influence of thermal distortion due to welding, etc., the manufacturing cost can be reduced. Further, by using the bracket member 13 made of a light alloy material, the beam structure member 100 can be reduced in weight.

<第2構成例>
次に、ビーム構造部材の第2構成例を説明する。以下の説明においては、上述した部材と同一の部材については、同一の符号を付与することで、その説明を簡単化、又は省略する。
<Second configuration example>
Next, a second configuration example of the beam structure member will be described. In the following description, the same members as those described above are denoted by the same reference numerals, and the description thereof is simplified or omitted.

前述のビーム構造部材100においては、筒状部17のリブ部19の根元部における剛性が高い。そのため、根元部における電磁成形時の縮径量が、他の部位よりも小さくなることがある。   In the beam structural member 100 described above, the rigidity of the root portion of the rib portion 19 of the cylindrical portion 17 is high. Therefore, the amount of diameter reduction at the time of electromagnetic forming in the root portion may be smaller than other parts.

例えば、図5(A),(B),(C)に示す、リブ部19,19A,19Bの根元部分は、他の部分よりも厚みが大きくなり、剛性の高い高剛性部HRとなる。また、図7に示す角筒形状の筒状部17Bは、角筒形状の4つの隅部が高剛性部HRとなる。上記のように、周方向に沿った少なくとも一部に高剛性部HRを有する場合、筒状部17,17A,17Bが、円周方向に不均一に縮管された状態でかしめ固定される可能性がある。   For example, the base portions of the rib portions 19, 19A, and 19B shown in FIGS. 5A, 5B, and 5C are thicker than the other portions and become a highly rigid portion HR having high rigidity. In addition, in the rectangular tube-shaped cylindrical portion 17B shown in FIG. 7, the four corner portions of the rectangular tube shape are the high-rigidity portions HR. As described above, when the high-rigidity portion HR is provided at least at a part along the circumferential direction, the cylindrical portions 17, 17A, and 17B can be caulked and fixed in a state of being non-uniformly contracted in the circumferential direction. There is sex.

このような高剛性部HRの部分は、他の部分よりも縮径による移動量が少ない状態でかしめられる。そのため、図8に参考図を示すように、筒状部17が縮径して、筒状部17と樹脂層15との間に隙間44,44が生じやすくなる。隙間44,44は、本体部11と筒状部17との接合強度を低下させ、ブラケット部材13に回転方向の荷重が負荷された場合に、ブラケット部材13が本体部11の円周方向に回転してしまうことを助長する。   Such a portion of the high-rigidity portion HR is caulked in a state where the amount of movement due to the reduced diameter is smaller than that of the other portions. Therefore, as shown in the reference diagram of FIG. 8, the cylindrical portion 17 is reduced in diameter, and the gaps 44 and 44 are easily generated between the cylindrical portion 17 and the resin layer 15. The gaps 44, 44 reduce the bonding strength between the main body portion 11 and the cylindrical portion 17, and the bracket member 13 rotates in the circumferential direction of the main body portion 11 when a load in the rotation direction is applied to the bracket member 13. To help you.

そこで、図9(A)に示すように、樹脂層15に、前述した筒状部17Aの高剛性部HRに対応する周位置で、樹脂が高剛性部HRに向かって突出する凸部45,45を設ける。樹脂層15が凸部45,45を有することにより、高剛性部HRの周位置における樹脂層15の厚みが他の領域よりも大きくなる。   Therefore, as shown in FIG. 9 (A), the resin layer 15 has convex portions 45 that protrude from the resin toward the high-rigidity portion HR at the circumferential position corresponding to the high-rigidity portion HR of the cylindrical portion 17A. 45 is provided. Since the resin layer 15 has the convex portions 45, 45, the thickness of the resin layer 15 at the circumferential position of the high-rigidity portion HR becomes larger than that of other regions.

そのため、図9(B)に示すように、電磁成形後は、筒状部17Aが縮径して筒状部17Aの高剛性部HRに窪みが発生する。この窪みに、樹脂層15の予め形成された凸部45,45によって樹脂が供給される。よって、図8に示すような隙間44,44が生じることはない。   Therefore, as shown in FIG. 9B, after the electromagnetic forming, the cylindrical portion 17A is reduced in diameter, and a depression is generated in the highly rigid portion HR of the cylindrical portion 17A. Resin is supplied to the depressions by previously formed convex portions 45, 45 of the resin layer 15. Therefore, the gaps 44 and 44 as shown in FIG. 8 do not occur.

また、凸部45,45は、樹脂層15の軸方向両端を他の部位よりも厚くしてもよい。樹脂層15を部分的に厚くすることにより、ブラケット部材13の軸方向の抜けを防止することが可能となる。   Moreover, the convex parts 45 and 45 may make the axial direction both ends of the resin layer 15 thicker than another site | part. By partially thickening the resin layer 15, it is possible to prevent the bracket member 13 from coming off in the axial direction.

なお、図8及び図9(A),(B)は、本構成と作用効果を理解しやすいように、隙間44や凸部45の大きさ誇張して表しており、実際の隙間44や凸部45の大きさとは異なるものである。   8 and 9A and 9B exaggerate the size of the gap 44 and the convex portion 45 so that the present configuration and the effects can be easily understood. The size of the portion 45 is different.

本構成のビーム構造部材200によれば、前述同様の作用効果が得られ、電磁成形時の縮径によって、筒状部17と樹脂層15との間に隙間44が生じず、ブラケット部材13と本体部11との周り止め効果を高めることができる。   According to the beam structure member 200 of this configuration, the same effect as described above can be obtained, and the gap 44 is not generated between the tubular portion 17 and the resin layer 15 due to the reduced diameter at the time of electromagnetic forming, and the bracket member 13 The effect of stopping around the main body 11 can be enhanced.

以上、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。   As described above, the present invention is not limited to the above-described embodiments, and those skilled in the art can change or apply them based on combinations of the configurations of the embodiments, descriptions in the specification, and well-known techniques. Is also within the scope of the present invention, which is intended to be protected.

11 本体部(第1部材)
13 ブラケット部材
15 第1樹脂層
16 第2樹脂層
17 筒状部(第2部材)
21 貫通孔
45 凸部
100,200 ビーム構造部材
HR 高剛性部
11 Main body (first member)
13 Bracket member 15 1st resin layer 16 2nd resin layer 17 Cylindrical part (2nd member)
21 Through-hole 45 Convex part 100,200 Beam structure member HR High rigidity part

Claims (7)

筒状の第1部材と、
前記第1部材の外周面に射出成形により積層された第1樹脂層と、
前記第1樹脂層に重ねて配置され、軽合金材料からなる筒状部を有する第2部材と、
を備え、
前記第2部材は、電磁成形により、前記第1樹脂層を介して前記第1部材とかしめ固定されていることを特徴とするビーム構造部材。
A cylindrical first member;
A first resin layer laminated by injection molding on the outer peripheral surface of the first member;
A second member disposed on the first resin layer and having a cylindrical portion made of a light alloy material;
With
The beam structure member, wherein the second member is caulked and fixed to the first member via the first resin layer by electromagnetic molding.
前記第1部材は、外周面と内周面とを貫通する少なくとも1つの貫通孔が形成され、前記貫通孔に樹脂材料が充填されることを特徴とする請求項1に記載のビーム構造部材。   2. The beam structure member according to claim 1, wherein the first member is formed with at least one through hole penetrating an outer peripheral surface and an inner peripheral surface, and the through hole is filled with a resin material. 前記第1部材は、内周面に第2樹脂層が積層されることを特徴とする請求項2に記載のビーム構造部材。   The beam structure member according to claim 2, wherein the first member has a second resin layer laminated on an inner peripheral surface thereof. 前記第2部材は、周方向に沿った少なくとも一部に、他の部分よりも剛性の高い高剛性部を有することを特徴とする請求項1乃至請求項3のいずれか一項に記載のビーム構造部材。   The beam according to any one of claims 1 to 3, wherein the second member has a high-rigidity portion having rigidity higher than that of other portions at least in a part along the circumferential direction. Structural member. 前記第1部材と前記第2部材は、それぞれが角筒形状を有し、前記高剛性部が前記角筒形状の隅部であることを特徴とする請求項4に記載のビーム構造部材。   The beam structure member according to claim 4, wherein each of the first member and the second member has a rectangular tube shape, and the high-rigidity portion is a corner portion of the rectangular tube shape. 前記第2部材は、前記高剛性部から外側に延出されるリブ部を備えることを特徴とする請求項4又は請求項5に記載のビーム構造部材。   6. The beam structure member according to claim 4, wherein the second member includes a rib portion extending outward from the high-rigidity portion. 前記第1樹脂層は、前記第2部材の前記高剛性部に対応する周位置に、前記高剛性部に向かって突出する突起部が形成されることを特徴とする請求項5又は請求項6に記載のビーム構造部材。   7. The first resin layer is formed with a protrusion protruding toward the high-rigidity portion at a circumferential position corresponding to the high-rigidity portion of the second member. A beam structure member as described in 1.
JP2015065143A 2015-03-26 2015-03-26 Beam structural member Active JP6429696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015065143A JP6429696B2 (en) 2015-03-26 2015-03-26 Beam structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015065143A JP6429696B2 (en) 2015-03-26 2015-03-26 Beam structural member

Publications (2)

Publication Number Publication Date
JP2016182921A true JP2016182921A (en) 2016-10-20
JP6429696B2 JP6429696B2 (en) 2018-11-28

Family

ID=57241378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015065143A Active JP6429696B2 (en) 2015-03-26 2015-03-26 Beam structural member

Country Status (1)

Country Link
JP (1) JP6429696B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278458A (en) * 1993-03-29 1994-10-04 Nippon Steel Corp Square pipe for automobile door reinforcing material
JPH09202138A (en) * 1996-01-24 1997-08-05 Hashimoto Forming Ind Co Ltd Reinforcement and decoration member for vehicle
JP2003095138A (en) * 2001-09-27 2003-04-03 Shigeru Co Ltd Steering beam for vehicle
JP2006264444A (en) * 2005-03-23 2006-10-05 Showa Denko Kk Steering support beam and manufacturing method
JP2009001005A (en) * 2007-05-24 2009-01-08 Kobe Steel Ltd Metal resin complex, and its manufacturing method
JP2010030463A (en) * 2008-07-29 2010-02-12 Kobe Steel Ltd Mounting structure for door beam
JP2010126140A (en) * 2008-12-01 2010-06-10 Calsonic Kansei Corp Structure of vehicle body strength member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278458A (en) * 1993-03-29 1994-10-04 Nippon Steel Corp Square pipe for automobile door reinforcing material
JPH09202138A (en) * 1996-01-24 1997-08-05 Hashimoto Forming Ind Co Ltd Reinforcement and decoration member for vehicle
JP2003095138A (en) * 2001-09-27 2003-04-03 Shigeru Co Ltd Steering beam for vehicle
JP2006264444A (en) * 2005-03-23 2006-10-05 Showa Denko Kk Steering support beam and manufacturing method
JP2009001005A (en) * 2007-05-24 2009-01-08 Kobe Steel Ltd Metal resin complex, and its manufacturing method
JP2010030463A (en) * 2008-07-29 2010-02-12 Kobe Steel Ltd Mounting structure for door beam
JP2010126140A (en) * 2008-12-01 2010-06-10 Calsonic Kansei Corp Structure of vehicle body strength member

Also Published As

Publication number Publication date
JP6429696B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
KR102059325B1 (en) Dissimilar Joint Structure
US10583629B2 (en) Joining structure
JP5908052B2 (en) Dissimilar panel structure
EP1882542B1 (en) Method of bonding dissimilar metals materials using a seal material interposed therebetween ; Bonding structure formed by such method
US8502105B2 (en) Joining method of dissimilar metal plates and dissimilar metal joined body
US10220885B2 (en) Different material joining structure and different material joining method
Jiang et al. Advances in joining technology of carbon fiber-reinforced thermoplastic composite materials and aluminum alloys
JP6810040B2 (en) How to make a sandwich panel
US9010848B2 (en) Diagonal strut device, method for manufacturing same and motor vehicle underfloor reinforced by means of diagonal structure device
US20160200074A1 (en) Design of sandwich structures including a polymeric/electrically non-conducting core for weldability
CN109130219B (en) A kind of composite joint technique of sheet metal and carbon fibre composite
JP2012176514A (en) Structure and method for joining fiber reinforced resin and metal
JP6865284B2 (en) Weldable Metal-Polymer Multilayer Composite Manufacturing Method
JP6193838B2 (en) Closed section member
US20130300158A1 (en) Diagonal strut device, method for manufacturing same and motor vehicle underfloor reinforced by means of the diagonal strut device
JP6429696B2 (en) Beam structural member
JP6280834B2 (en) Dissimilar material joined body and manufacturing method thereof
CN104176133A (en) Composite material connection structure and connection method thereof
US20190048910A1 (en) Different-material panel structure
JP6969673B2 (en) T-shaped joint structure
US20180169961A1 (en) System and method for bonding structures
CN111918781B (en) Component having top plate portion and side wall portion
JP7349688B2 (en) Bonding structure and bonding method
JP2018119570A (en) Junction structure of composite plate
JP2012111090A (en) Structure for connecting cfrp body with metal body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181030

R150 Certificate of patent or registration of utility model

Ref document number: 6429696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150