JP2016180041A - Method for manufacturing infrared reflective black based pigment - Google Patents

Method for manufacturing infrared reflective black based pigment Download PDF

Info

Publication number
JP2016180041A
JP2016180041A JP2015060458A JP2015060458A JP2016180041A JP 2016180041 A JP2016180041 A JP 2016180041A JP 2015060458 A JP2015060458 A JP 2015060458A JP 2015060458 A JP2015060458 A JP 2015060458A JP 2016180041 A JP2016180041 A JP 2016180041A
Authority
JP
Japan
Prior art keywords
pigment
reflective black
infrared reflective
infrared
brightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015060458A
Other languages
Japanese (ja)
Inventor
健 良知
Takeshi Rachi
健 良知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Prefecture
Original Assignee
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Prefecture filed Critical Kanagawa Prefecture
Priority to JP2015060458A priority Critical patent/JP2016180041A/en
Publication of JP2016180041A publication Critical patent/JP2016180041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a method for manufacturing an infrared reflective black based pigment, capable of selecting the brightness of pigment by adjusting sintering conditions; an infrared reflective black based pigment obtained by the manufacturing method and having low brightness and high solar reflectance; and a thermal barrier coating material including the infrared reflective black based pigment and excellent in thermal barrier properties.SOLUTION: The particle size of a dark color material is controlled by adjusting sintering conditions using fine metal particles as a starting material to select the brightness of the pigment. The obtained infrared reflective black based pigment is excellent in a balance between brightness and near-infrared solar reflectance.SELECTED DRAWING: Figure 1

Description

本発明は、赤外線反射性黒色系顔料の製造方法に関する。より詳しくは、焼成条件の調整により顔料の明度が選択できる赤外線反射性黒色系顔料の製造方法、この製造方法により得られる赤外線反射性黒色系顔料、及びこの赤外線反射性黒色系顔料を含む遮熱塗料に関する。   The present invention relates to a method for producing an infrared reflective black pigment. More specifically, a method for producing an infrared reflective black pigment in which the brightness of the pigment can be selected by adjusting firing conditions, an infrared reflective black pigment obtained by this production method, and a heat shield containing the infrared reflective black pigment It relates to paint.

近年、太陽光に含まれる近赤外領域の光を高いレベルで反射することにより、塗膜ならびに被塗物の温度上昇を抑えることができる遮熱塗料(高日射反射率塗料)が注目されている。遮熱塗料を用いて建物の屋根や屋上を塗装することにより、冷房の消費電力削減やヒートアイランド現象抑制の効果が期待される。   In recent years, heat-shielding paints (high solar reflectance paints) that can suppress the temperature rise of coatings and objects by reflecting light in the near infrared region contained in sunlight at a high level have attracted attention. Yes. By coating the roof and rooftop of a building using a thermal barrier paint, it is expected to reduce the power consumption of the cooling and to suppress the heat island phenomenon.

日本においては、屋根を塗装する際に経年に伴う汚れなどを考慮して明度を抑えた塗料が好まれるため、暗色系の遮熱塗料が多く開発されている。暗色系の遮熱塗料には、可視領域(波長380〜780nm)における反射率が低く、かつ近赤外領域(波長780〜2500nm)における反射率が高いことが求められる。また、耐候性に優れ有害な元素を含まないことも求められる。   In Japan, paints with reduced lightness are preferred in consideration of dirt that accompanies aging when painting roofs, and many dark-colored thermal barrier paints have been developed. The dark color thermal barrier coating is required to have a low reflectance in the visible region (wavelength 380 to 780 nm) and a high reflectance in the near infrared region (wavelength 780 to 2500 nm). In addition, it is also required that it has excellent weather resistance and does not contain harmful elements.

これらの要求特性を実現するため、暗色系の遮熱塗料に適した金属酸化物を主成分とする様々な無機系の顔料が提案されている。
例えば特許文献1には、酸化第二銅及び白色顔料等を含み、有害な元素を含まない耐酸性等に優れた赤外線反射性複合黒色系顔料と、その製造方法が記載されている。
In order to realize these required characteristics, various inorganic pigments based on metal oxides suitable for dark color thermal barrier coatings have been proposed.
For example, Patent Document 1 describes an infrared-reflective composite black pigment that has cupric oxide, a white pigment, and the like, has no harmful elements, and has excellent acid resistance, and a method for producing the same.

従来の無機系の赤外線反射性黒色系顔料の製造方法としては、炭酸塩、硝酸塩、硫酸塩等の金属塩を溶解した水溶液に塩基を添加して生成した金属水酸化物を焼成する方法や、特許文献1に記載されているような金属酸化物を焼成する方法が知られている。   As a conventional method for producing an inorganic infrared-reflective black pigment, a method of firing a metal hydroxide produced by adding a base to an aqueous solution in which a metal salt such as carbonate, nitrate or sulfate is dissolved, A method of firing a metal oxide as described in Patent Document 1 is known.

特開2010−150354号公報JP 2010-150354 A

しかしながら、従来の無機系の赤外線反射性黒色系顔料の製造方法では、出発原料として金属水酸化物や金属酸化物を用いており、これらの金属材料は加熱時の粒成長速度が遅いため、製造される顔料の明度が出発原料の粒径や組成に依存し、焼成条件を調整しても顔料の明度を変更することができなかった。   However, in the conventional method for producing an inorganic infrared reflective black pigment, metal hydroxide or metal oxide is used as a starting material, and since these metal materials have a slow grain growth rate upon heating, they are produced. The brightness of the pigment produced depends on the particle size and composition of the starting material, and the brightness of the pigment could not be changed even if the firing conditions were adjusted.

そのため、使用目的に合った最適な明度を有する赤外線反射性黒色系顔料や遮熱塗料を得るためには、複数の顔料や塗料を混合する調色工程を設けて明度を調整する必要があった。調色工程には煩雑な作業と難しい微調整が伴うため、明度を調整するために設ける調色工程の簡略化や省略化が求められていた。   Therefore, in order to obtain an infrared-reflective black pigment or thermal barrier paint having an optimum brightness suitable for the purpose of use, it was necessary to adjust the brightness by providing a toning process for mixing a plurality of pigments and paints. . Since the toning process involves complicated operations and difficult fine adjustments, there has been a demand for simplification and omission of the toning process provided for adjusting the brightness.

本発明では、従来にはない簡便な方法で製造工程において顔料の明度を選択することができる赤外線反射性黒色系顔料の製造方法、及びこの製造方法で得られる明度と近赤外日射反射率とのバランスに優れた赤外線反射性黒色系顔料を提供することを目的とする。   In the present invention, a method for producing an infrared-reflective black pigment capable of selecting the brightness of the pigment in the production process by a simple method that has not been heretofore, and the brightness and near-infrared solar reflectance obtained by this production method, An object of the present invention is to provide an infrared-reflective black pigment having an excellent balance.

本発明者らは上記課題を解決するため、赤外線反射性黒色系顔料の出発原料として金属水酸化物や金属酸化物ではなく金属微粒子を用いることにより、焼成条件の調整により顔料の明度を選択することができ、また明度と近赤外日射反射率とのバランスに優れた赤外線反射性黒色系顔料を得られることを見出し、さらに研究を進めた結果、本発明を完成させるに至った。   In order to solve the above problems, the present inventors select the brightness of the pigment by adjusting the firing conditions by using metal fine particles instead of metal hydroxide or metal oxide as a starting material of the infrared reflective black pigment. In addition, the present inventors have found that an infrared-reflective black pigment having an excellent balance between brightness and near-infrared solar reflectance can be obtained, and as a result of further research, the present invention has been completed.

即ち本発明は、金属微粒子と白色顔料を混合する工程と、該混合物を焼成する工程とを含み、焼成条件の調整により製造する顔料の明度(L)が選択できる、赤外線反射性黒色系顔料の製造方法である。 That is, the present invention includes a step of mixing metal fine particles and a white pigment and a step of firing the mixture, and the brightness (L * ) of the pigment produced by adjusting the firing conditions can be selected. It is a manufacturing method.

本発明の赤外線反射性黒色系顔料の製造方法において、金属微粒子の粒径を0.01〜1μmとしてもよく、金属微粒子を銅、コバルト、鉄、ニッケル及びマンガンから選ばれる1種以上とし、白色顔料をアルミナ、酸化チタン、シリカ及び酸化亜鉛から選ばれる1種以上としてもよい。   In the method for producing the infrared reflective black pigment of the present invention, the particle size of the metal fine particles may be 0.01 to 1 μm, the metal fine particles are one or more selected from copper, cobalt, iron, nickel and manganese, The pigment may be one or more selected from alumina, titanium oxide, silica, and zinc oxide.

また本発明は、明度(L)が20〜70の範囲であり、且つ、近赤外領域(波長780〜2500nm)における反射率が40%以上である、上記製造方法により得られる赤外線反射性黒色系顔料、及びこの赤外線反射性黒色系顔料を含む遮熱塗料である。 In addition, the present invention provides an infrared reflectivity obtained by the above production method, wherein the lightness (L * ) is in the range of 20 to 70 and the reflectance in the near infrared region (wavelength 780 to 2500 nm) is 40% or more. A black pigment and a thermal barrier paint containing the infrared reflective black pigment.

本発明の赤外線反射性黒色系顔料の製造方法は、焼成条件の調整により顔料の明度を選択することができる。
また、本発明の製造方法により得られる赤外線反射性黒色系顔料は、明度と近赤外日射反射率とのバランスに優れている。
In the method for producing an infrared reflective black pigment of the present invention, the brightness of the pigment can be selected by adjusting the firing conditions.
Moreover, the infrared reflective black pigment obtained by the production method of the present invention is excellent in the balance between brightness and near infrared solar reflectance.

実施例1〜3の反射率スペクトルを示すグラフである。It is a graph which shows the reflectance spectrum of Examples 1-3. 比較例1〜3の反射率スペクトルを示すグラフである。It is a graph which shows the reflectance spectrum of Comparative Examples 1-3. 比較例4〜6の反射率スペクトルを示すグラフである。It is a graph which shows the reflectance spectrum of Comparative Examples 4-6.

以下、本発明の赤外線反射性黒色系顔料の製造方法、この製造方法により得られる赤外線反射性黒色系顔料、及びこの赤外線反射性黒色系顔料を含む遮熱塗料について、詳細に説明する。
なお、説明が省略されている製法、組成、特性等については、当該技術分野の当業者に知られているものと同一又は実質的に同一のものとすることができる。
Hereinafter, a method for producing the infrared reflective black pigment of the present invention, an infrared reflective black pigment obtained by this production method, and a thermal barrier coating containing the infrared reflective black pigment will be described in detail.
In addition, about a manufacturing method, a composition, a characteristic, etc. with which description is abbreviate | omitted, it can be made the same or substantially the same as what is known to those skilled in the art.

本発明の赤外線反射性黒色系顔料の製造方法は、金属微粒子と白色顔料を混合する工程を含んでいる。金属微粒子は、顔料の明度を下げるための暗色材料として配合され、後の焼成工程により酸化され黒色度の高い金属酸化物となる。また白色顔料は、近赤外領域における反射率を高めるための材料として配合される。   The method for producing an infrared reflective black pigment of the present invention includes a step of mixing metal fine particles and a white pigment. The metal fine particles are blended as a dark color material for lowering the brightness of the pigment, and are oxidized by a subsequent baking step to become a metal oxide with high blackness. The white pigment is blended as a material for increasing the reflectance in the near infrared region.

金属微粒子の粒径は、小さければ焼成条件の調整により選択できる焼成後の金属酸化物の粒径の範囲が広くなり、顔料の明度選択の幅が広がる。一方、大きければ出発原料の混合時や塗料への配合時に分散性が向上する。好ましくは0.01〜1μm、より好ましくは0.01〜0.5μm、さらに好ましくは0.01〜0.1μmである。   If the particle size of the metal fine particles is small, the range of the particle size of the metal oxide after firing that can be selected by adjusting the firing conditions is widened, and the range of lightness selection of the pigment is widened. On the other hand, if it is larger, the dispersibility is improved when the starting materials are mixed or blended into the paint. Preferably it is 0.01-1 micrometer, More preferably, it is 0.01-0.5 micrometer, More preferably, it is 0.01-0.1 micrometer.

金属微粒子の種類は、明度と近赤外日射反射率とのバランスに優れた金属酸化物が得られるため、銅、コバルト、鉄、ニッケル及びマンガンが好ましく、銅、コバルト及び鉄がより好ましく、銅が最も好ましい。
製造工程の簡素化や条件設定の容易化の観点から、これらの金属微粒子を1種類用いるのが好ましいが、得られる顔料の明度や色相等の諸特性を調整するために2種類以上配合して用いてもよい。
The type of metal fine particles is preferably copper, cobalt, iron, nickel, and manganese, more preferably copper, cobalt, and iron, because a metal oxide having an excellent balance between brightness and near infrared solar reflectance is obtained. Is most preferred.
From the viewpoint of simplifying the production process and facilitating the setting of conditions, it is preferable to use one kind of these metal fine particles, but in order to adjust various properties such as lightness and hue of the resulting pigment, two or more kinds are blended. It may be used.

白色顔料は、高い近赤外日射反射率が得られ安価であることから、アルミナ、酸化チタン、シリカ及び酸化亜鉛が好ましく、化学的な安定性が高いことからアルミナ、酸化チタン及びシリカがより好ましく、アルミナが最も好ましい。
得られる顔料の日射反射率等の諸特性を調整するために、これらの白色顔料を2種類以上配合して用いてもよい。
The white pigment is preferably made of alumina, titanium oxide, silica and zinc oxide because it has high near-infrared solar reflectance and is inexpensive, and more preferably alumina, titanium oxide and silica because of high chemical stability. Alumina is most preferred.
In order to adjust various properties such as solar reflectance of the obtained pigment, two or more of these white pigments may be blended and used.

金属微粒子と白色顔料の配合比率は、金属微粒子が多いと低い明度が得られ、白色顔料が多いと高い近赤外日射反射率が得られるため、両者のバランスを考慮して製造する顔料の使用目的に応じて設定される。
顔料の用途が暗色系遮熱塗料であれば、金属微粒子と白色顔料のモル比は0.25:0.75〜0.95:0.05の範囲が好ましく、0.5:0.5〜0.95:0.05の範囲がより好ましい。
The blending ratio of metal fine particles and white pigment is low when a large amount of metal fine particles is obtained, and when a large amount of white pigment is obtained, a high near-infrared solar reflectance is obtained. It is set according to the purpose.
If the use of the pigment is a dark color thermal barrier paint, the molar ratio of the metal fine particles to the white pigment is preferably in the range of 0.25: 0.75 to 0.95: 0.05, 0.5: 0.5 to The range of 0.95: 0.05 is more preferable.

混合工程では、金属微粒子と白色顔料の粉体を十分に撹拌混合する必要がある。混合に使用する装置は、均質に十分に混合できる装置であれば特に制限されないが、粉体を剪断混合できる装置が好ましい。
工業的な生産設備としては、ヘンシェルミキサー、バンバリーミキサー、リボンミキサーなどの容器固定型混合機、V型混合機、ターブラーミキサーなどの容器回転・揺動型混合機、スクリュー式混練機、加圧式ニーダー、各種ミルなどが挙げられる。
In the mixing step, it is necessary to sufficiently stir and mix the metal fine particles and the white pigment powder. The apparatus used for mixing is not particularly limited as long as it can uniformly and sufficiently mix, but an apparatus capable of shear mixing powder is preferable.
Industrial production facilities include Henschel mixers, Banbury mixers, ribbon mixers and other fixed container mixers, V type mixers, tumbler mixers and other container rotating / oscillating mixers, screw-type kneaders, and pressure-type mixers. Examples include kneaders and various mills.

また、本発明の赤外線反射性黒色系顔料の製造方法は、金属微粒子と白色顔料の混合物を焼成する工程を含んでいる。この焼成工程では、金属微粒子を十分に酸化して黒色度の高い金属酸化物を得る必要がある。
焼成する温度は、低ければ金属微粒子の溶融による粒子の粗大化や意図しない複合酸化物の生成を抑制することができ、高ければ十分に酸化することができるため、好ましくは300〜1000℃、より好ましくは500〜900℃、さらに好ましくは600〜800℃である。
Moreover, the manufacturing method of the infrared reflective black pigment of this invention includes the process of baking the mixture of metal microparticles and a white pigment. In this firing step, it is necessary to sufficiently oxidize the metal fine particles to obtain a metal oxide with high blackness.
If the firing temperature is low, the coarsening of the particles due to melting of the metal fine particles and the generation of unintended composite oxide can be suppressed, and if it is high, it can be sufficiently oxidized. Preferably it is 500-900 degreeC, More preferably, it is 600-800 degreeC.

焼成する時間は、短ければ粒子の過度な粒成長を抑制することができ、長ければ十分な酸化を行うことができるため、好ましくは数分〜100時間、より好ましくは数分〜50時間、さらに好ましくは数分〜10時間である。
また、焼成の条件を変えて工程を数段階に分けて実施してもよい。加熱焼成する雰囲気は通常は大気中である。
The firing time is preferably a few minutes to 100 hours, more preferably a few minutes to 50 hours, since excessive grain growth can be suppressed if the firing time is short, and sufficient oxidation can be performed if the time is long. Preferably, it is several minutes to 10 hours.
Further, the process may be divided into several stages by changing the firing conditions. The atmosphere for heating and firing is usually in the air.

焼成に使用する装置は、均質に十分に焼成できる装置であれば特に制限されないが、工業的な生産設備としては、ロータリーキルン、シャトルキルンなどのバッチ式焼成炉、トンネルキルン、ローラーハースキルンなど連続式焼成炉等が挙げられる。
大型の焼成装置を用いる場合には焼成ムラを防止するため、加熱空気、加熱酸素ガス等をキルン内に導入して酸化雰囲気下としてもよく、また一度に焼成工程を完結させるため焼成装置内に温度勾配を設けてもよい。
The equipment used for firing is not particularly limited as long as it can uniformly and sufficiently fire, but industrial production equipment includes batch-type firing furnaces such as rotary kilns and shuttle kilns, continuous kilns such as tunnel kilns and roller hearth kilns. A baking furnace etc. are mentioned.
When using a large firing device, in order to prevent uneven firing, heated air, heated oxygen gas or the like may be introduced into the kiln to create an oxidizing atmosphere, and in order to complete the firing process at once, A temperature gradient may be provided.

なお必要に応じて、焼成工程の後に焼成物を粉砕する粉砕工程を設けてもよい。粉砕に使用する装置は、凝集粒子を十分に粉砕できる装置であれば特に制限されないが、工業的な生産設備としては、ハンマーミル、ジェットミルなどの微粉砕機が挙げられる。   In addition, you may provide the grinding | pulverization process which grind | pulverizes a baked material after a baking process as needed. The apparatus used for pulverization is not particularly limited as long as the apparatus can sufficiently pulverize the agglomerated particles, but industrial production equipment includes fine pulverizers such as a hammer mill and a jet mill.

ここで、本発明の赤外線反射性黒色系顔料の製造方法は、同一の原料を用いながら焼成条件(温度及び時間)を調整することにより、赤外線反射性黒色系顔料の明度(L)を選択できることが特徴である。
本発明の製造方法では、出発原料として加熱焼成時の結晶の粒成長速度が速い金属微粒子を用いるため、焼成条件を調整することにより、金属微粒子が酸化して生じる黒色の金属酸化物(暗色材料)の粒径を制御することができる。暗色材料の着色力は粒径に依存するため、暗色材料の粒径を制御することにより顔料の明度を選択することができる。
Here, the infrared reflective black pigment production method of the present invention selects the lightness (L * ) of the infrared reflective black pigment by adjusting the firing conditions (temperature and time) while using the same raw materials. It is a feature that can be done.
In the production method of the present invention, metal fine particles having a fast crystal grain growth rate during heating and firing are used as a starting material. Therefore, by adjusting the firing conditions, a black metal oxide (dark material) produced by oxidation of the metal fine particles is used. ) Can be controlled. Since the coloring power of the dark material depends on the particle size, the brightness of the pigment can be selected by controlling the particle size of the dark material.

従来の無機系の赤外線反射性黒色系顔料の製造方法では、出発原料として加熱焼成時の結晶の粒成長速度が遅い金属水酸化物や金属酸化物を用いるため、焼成後の暗色材料の粒径は出発原料の粒径に依存し、焼成条件を変化させても粒径はほとんど変化しないため、原料を変えずに製造条件を調整しても顔料の明度を変更することができなかった。   In the conventional method for producing an inorganic infrared-reflective black pigment, since a metal hydroxide or metal oxide having a slow crystal growth rate during heating and firing is used as a starting material, the particle size of the dark color material after firing Depends on the particle size of the starting material, and even if the firing conditions are changed, the particle size hardly changes. Therefore, even if the production conditions are adjusted without changing the raw materials, the brightness of the pigment cannot be changed.

そのため、使用目的に合った最適な明度を有する赤外線反射性黒色系顔料や遮熱塗料を得るためには、明度を調整するために調色工程を設ける必要があった。この調色工程は複数の顔料や塗料を混合するため作業が煩雑であり、また経験や勘を必要とするため調整が難しかった。   Therefore, in order to obtain an infrared-reflective black pigment or heat-shielding paint having an optimal brightness suitable for the purpose of use, it is necessary to provide a toning process for adjusting the brightness. This toning process is complicated because a plurality of pigments and paints are mixed, and adjustment is difficult because it requires experience and intuition.

本発明の製造方法では、出発材料として同一の金属微粒子を使用し、製造工程において焼成条件を調整することにより、顔料の色相を変化させることなく顔料の明度を選択することができる。これにより、明度を調整するために設ける調色工程の簡略化や省略化が可能となり、使用目的に合った最適な明度の高品質な顔料を低コストで製造することができる。   In the production method of the present invention, the same metal fine particles are used as a starting material, and the brightness of the pigment can be selected without changing the hue of the pigment by adjusting the firing conditions in the production process. Thereby, it is possible to simplify or omit the toning process provided for adjusting the brightness, and it is possible to manufacture a high-quality pigment having an optimal brightness suitable for the purpose of use at a low cost.

本発明の赤外線反射性黒色系顔料の明度(L)は、低いほど黒色系顔料として好適となるため好ましく、近赤外領域(波長780〜2500nm)における反射率は、高いほど遮熱効果が向上するため好ましい。
一般に、近赤外日射反射率の高い顔料では、明度も高くなる傾向があるため、顔料の使用目的に応じて両特性のバランスが最適となるように、金属微粒子及び白色顔料の種類、配合比率及び焼成条件を調整して設定される。
The lower the lightness (L * ) of the infrared reflective black pigment of the present invention is, the more preferable it is as a black pigment, and the higher the reflectance in the near infrared region (wavelength 780 to 2500 nm), the better the heat shielding effect. It is preferable because it improves.
In general, pigments with high near-infrared solar reflectance tend to have high brightness, so the types of metal fine particles and white pigments and their blending ratio are optimized so that the balance of both properties is optimal depending on the intended use of the pigment. And it sets by adjusting baking conditions.

本発明の赤外線反射性黒色系顔料の用途が遮熱塗料であれば、明度(L)が20〜70の範囲で且つ近赤外日射反射率が40%以上であることが好ましく、明度(L)が20〜60の範囲で且つ近赤外日射反射率が50%以上であることがより好ましく、明度(L)が20〜50の範囲で且つ近赤外日射反射率が60%以上であることがさらに好ましい。 If the use of the infrared reflective black pigment of the present invention is a thermal barrier coating, the lightness (L * ) is preferably in the range of 20 to 70 and the near infrared solar reflectance is preferably 40% or more. More preferably, L * ) is in the range of 20 to 60 and the near infrared solar reflectance is 50% or more, and the lightness (L * ) is in the range of 20 to 50 and the near infrared solar reflectance is 60%. More preferably, it is the above.

また、本発明の遮熱塗料には本発明の赤外線反射性黒色系顔料が含まれており、その他に基剤としてバインダー樹脂及び溶剤等が含まれている。基剤には必要に応じて、硬化剤、体質顔料、可塑剤、分散剤、消泡剤、界面活性剤及び硬化促進剤等が添加される。   The thermal barrier paint of the present invention contains the infrared reflective black pigment of the present invention, and additionally contains a binder resin and a solvent as a base. If necessary, a curing agent, extender pigment, plasticizer, dispersant, antifoaming agent, surfactant, curing accelerator, and the like are added to the base.

赤外線反射性黒色系顔料の配合比率は、少なければ塗料の保存性や塗装時のハンドリング性が向上し、多ければ低い明度と高い遮熱効果が得られるため、塗料の基剤100重量部に対して、好ましくは0.5〜100重量部、より好ましくは1〜100重量部の範囲である。   If the blending ratio of the infrared-reflective black pigment is small, the storability of the paint and handling at the time of coating are improved, and if it is large, a low lightness and a high heat shielding effect can be obtained. The range is preferably 0.5 to 100 parts by weight, more preferably 1 to 100 parts by weight.

本発明の遮熱塗料は、水等の分散媒にバインダー樹脂を分散させたエマルション系塗料、有機溶剤等の溶媒中にバインダー樹脂を溶解させた溶液系塗料、バインダー樹脂と硬化剤からなる粉体塗料等いずれの形態であってもよい。   The thermal barrier paint of the present invention includes an emulsion paint in which a binder resin is dispersed in a dispersion medium such as water, a solution paint in which the binder resin is dissolved in a solvent such as an organic solvent, and a powder comprising the binder resin and a curing agent. Any form such as paint may be used.

エマルション系塗料のバインダー樹脂としては、アクリル樹脂、変性アクリル樹脂、ウレタン樹脂及びエチレン−酢酸ビニル共重合樹脂等のエマルションが挙げられる。
溶液系塗料のバインダー樹脂としては、アクリル樹脂、変性アクリル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂及びエポキシ樹脂等が挙げられる。また溶剤としては、芳香族炭化水素系溶剤、脂肪族炭化水素系溶剤、石油系溶剤、アルコール系溶剤、ケトン系溶剤及びエステル系溶剤等が挙げられる。
Examples of the binder resin of the emulsion paint include emulsions such as acrylic resins, modified acrylic resins, urethane resins, and ethylene-vinyl acetate copolymer resins.
Examples of the binder resin for the solution-based paint include acrylic resins, modified acrylic resins, alkyd resins, urethane resins, silicone resins, fluorine resins, and epoxy resins. Examples of the solvent include aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, petroleum solvents, alcohol solvents, ketone solvents, ester solvents, and the like.

以下、本発明の赤外線反射性黒色系顔料の製造方法、及びこの製造方法により得られる赤外線反射性黒色系顔料について、実施例及び比較例を参照して具体的に説明する。
なお、本発明はこれらの実施例によって限定されるものではなく、本発明の技術的思想を逸脱しない範囲で種々の変更が可能である。
Hereinafter, the manufacturing method of the infrared reflective black pigment of the present invention and the infrared reflective black pigment obtained by this manufacturing method will be specifically described with reference to Examples and Comparative Examples.
The present invention is not limited to these examples, and various modifications can be made without departing from the technical idea of the present invention.

[実施例1〜3]
金属微粒子のCu粒子(平均粒径:50nm)と白色顔料のα−Al粒子(粒径:2〜3μm)とを、モル比0.5:0.5の割合で、乳鉢と乳棒を用いて十分に撹拌混合した。
次いで、この混合物を大気雰囲気下にて電気炉を用いて焼成した。実施例1は800℃で2時間、実施例2は800℃で2時間焼成後さらに800℃で48時間、実施例3は300℃で60時間焼成後さらに800℃で2時間焼成した。
[Examples 1 to 3]
Cu fine particles (average particle size: 50 nm) and white pigment α-Al 2 O 3 particles (particle size: 2 to 3 μm) in a molar ratio of 0.5: 0.5, mortar and pestle Was thoroughly stirred and mixed.
Subsequently, this mixture was baked using an electric furnace in an air atmosphere. Example 1 was calcined at 800 ° C. for 2 hours, Example 2 was calcined at 800 ° C. for 2 hours and then calcined at 800 ° C. for 48 hours, and Example 3 was calcined at 300 ° C. for 60 hours and calcined at 800 ° C. for 2 hours.

[比較例1〜3]
金属酸化物のCuO粒子(平均粒径:550nm)と白色顔料のα−Al粒子(粒径:2〜3μm)とを、モル比0.5:0.5の割合で、乳鉢と乳棒を用いて十分に撹拌混合した。次いで、この混合物を大気雰囲気下にて電気炉を用いて焼成した。焼成条件は実施例1〜3と同一の3条件とした。
[Comparative Examples 1-3]
Metal oxide CuO particles (average particle size: 550 nm) and white pigment α-Al 2 O 3 particles (particle size: 2 to 3 μm) in a molar ratio of 0.5: 0.5 Mix thoroughly with a pestle. Subsequently, this mixture was baked using an electric furnace in an air atmosphere. The firing conditions were the same as those in Examples 1 to 3.

[比較例4〜6]
金属酸化物のCuO粒子(粒径:5μm以下)と白色顔料のα−Al粒子(粒径:2〜3μm)とを、モル比0.5:0.5の割合で、乳鉢と乳棒を用いて十分に撹拌混合した。次いで、この混合物を大気雰囲気下にて電気炉を用いて焼成した。焼成条件は実施例1〜3と同一の3条件とした。
上記実施例1〜3及び比較例1〜6の混合条件及び焼成条件を下記表1に示す。
[Comparative Examples 4 to 6]
Metal oxide CuO particles (particle size: 5 μm or less) and white pigment α-Al 2 O 3 particles (particle size: 2 to 3 μm) in a molar ratio of 0.5: 0.5 Mix thoroughly with a pestle. Subsequently, this mixture was baked using an electric furnace in an air atmosphere. The firing conditions were the same as those in Examples 1 to 3.
The mixing conditions and firing conditions of Examples 1 to 3 and Comparative Examples 1 to 6 are shown in Table 1 below.

Figure 2016180041
Figure 2016180041

上記の製法により得られた実施例1〜3及び比較例1〜6の顔料を、1wt%のポリビニルアルコール(PVA)水溶液中に分散させた。次いで、この溶液をガラス板に塗布し、70℃で乾燥させて塗膜化した。作製した塗膜の分光反射率を自記分光光度計(島津製作所、UV−3100PC)を用いて測定し、JIS K 5675に基づいて明度(L)及び近赤外領域(波長780〜2500nm)の日射反射率を算出した。反射率スペクトルを図1〜3に各々示し、算出結果を下記表2に示す。 The pigments of Examples 1 to 3 and Comparative Examples 1 to 6 obtained by the above production method were dispersed in a 1 wt% aqueous solution of polyvinyl alcohol (PVA). Next, this solution was applied to a glass plate and dried at 70 ° C. to form a coating film. The spectral reflectance of the prepared coating film was measured using a self-recording spectrophotometer (Shimadzu Corporation, UV-3100PC), and the lightness (L * ) and near-infrared region (wavelength 780 to 2500 nm) of JIS K 5675 were measured. Solar reflectance was calculated. The reflectance spectra are shown in FIGS. 1 to 3, and the calculation results are shown in Table 2 below.

Figure 2016180041
Figure 2016180041

図1及び表2の結果より、Cu粒子を用いた実施例1〜3では、焼成条件を変化させると、近赤外領域のスペクトルはほとんど変化せずに可視光領域のスペクトルが変化して、近赤外日射反射率がほぼ同一の数値を示しながら明度が変化していることが分かる。
一方、図2、3及び表2の結果より、CuO粒子を用いた比較例1〜3及び比較例4〜6では、焼成条件を変化させても、近赤外領域と可視光領域の両スペクトルともにほとんど変化せず、近赤外日射反射率と明度もほとんど変化しないことが分かる。
From the results shown in FIG. 1 and Table 2, in Examples 1 to 3 using Cu particles, when the firing conditions are changed, the spectrum in the visible light region changes with almost no change in the near infrared spectrum, It can be seen that the brightness changes while the near-infrared solar reflectance shows almost the same numerical value.
On the other hand, from the results of FIGS. 2 and 3 and Table 2, in Comparative Examples 1 to 3 and Comparative Examples 4 to 6 using CuO particles, both spectra in the near infrared region and the visible light region are obtained even when the firing conditions are changed. It can be seen that both hardly change and the near-infrared solar reflectance and brightness hardly change.

これは、出発原料として加熱焼成時の粒成長速度が速いCu粒子を用いると、焼成の熱履歴に応じて結晶の粒成長が進み、Cu粒子が酸化して生じる黒色のCuO粒子の粒径が変化して、その着色力が変化するためと考えられる。
一方、出発原料として加熱焼成時の粒成長速度が遅い金属酸化物のCuO粒子を用いると、焼成による結晶の粒成長が進まず粒径が変化しないため、その着色力も変化しないと考えられる。
This is because when Cu particles having a high grain growth rate during heating and firing are used as starting materials, the grain growth of crystals proceeds according to the thermal history of firing, and the particle size of black CuO particles generated by oxidation of Cu particles is This is thought to be due to the change in coloring power.
On the other hand, if metal oxide CuO particles having a slow grain growth rate during heating and firing are used as the starting material, the crystal growth due to firing does not proceed and the particle size does not change, so the coloring power is considered not to change.

したがって、出発原料として金属酸化物ではなく金属微粒子を用いると、同一の原料を用いながら焼成条件を調整することにより顔料の明度を選択できることが分かる。
具体的には、焼成条件に対応して金属微粒子が酸化されて生じる金属酸化物の粒径がどの様に変化し、それにより得られる顔料の明度がどの様に変化するのかを、出発原料の粒径や組成別に予め確認しておく。そして、そのデータやモデル式に基づいて焼成条件を調整して金属酸化物の粒径を制御することにより、製造工程において顔料の明度を選択することが可能となる。
Therefore, it can be seen that when the metal fine particles are used as the starting material instead of the metal oxide, the brightness of the pigment can be selected by adjusting the firing conditions while using the same raw material.
Specifically, how the particle size of the metal oxide produced by the oxidation of metal fine particles corresponding to the firing conditions changes, and how the brightness of the resulting pigment changes, Confirm beforehand by particle size and composition. Then, the brightness of the pigment can be selected in the production process by adjusting the firing conditions based on the data and the model formula to control the particle size of the metal oxide.

本発明の赤外線反射性黒色系顔料の製造方法は、同一の原料を用いながら焼成条件の調整により顔料の明度が選択できるため、工業的に簡便に且つ効率よく顔料や塗料を製造することができる。また、本発明の赤外線反射性黒色系顔料は、明度と日射反射率とのバランスに優れており、暗色系遮熱塗料等に要求される特性を十分に満たすことができる。   In the method for producing an infrared reflective black pigment of the present invention, the brightness of the pigment can be selected by adjusting the firing conditions while using the same raw material, so that the pigment and paint can be produced industrially simply and efficiently. . In addition, the infrared reflective black pigment of the present invention has an excellent balance between brightness and solar reflectance, and can sufficiently satisfy the characteristics required for dark color thermal barrier paints and the like.

したがって、本発明の赤外線反射性黒色系顔料の製造方法、この製造方法により得られる赤外線反射性黒色系顔料、及びこの赤外線反射性黒色系顔料を含む遮熱塗料は、顔料、塗料、樹脂、建築資材等の技術分野において特に有用である。

Therefore, the method for producing the infrared-reflective black pigment of the present invention, the infrared-reflective black pigment obtained by this production method, and the thermal barrier coating containing this infrared-reflective black pigment are pigments, paints, resins, architectures It is particularly useful in the technical field of materials and the like.

Claims (5)

金属微粒子と白色顔料を混合する工程と、該混合物を焼成する工程とを含み、焼成条件の調整により製造する顔料の明度(L)が選択できる、赤外線反射性黒色系顔料の製造方法。 A method for producing an infrared reflective black pigment, comprising a step of mixing metal fine particles and a white pigment, and a step of firing the mixture, wherein the lightness (L * ) of the pigment produced by adjusting the firing conditions can be selected. 金属微粒子の粒径が0.01〜1μmである、請求項1に記載の赤外線反射性黒色系顔料の製造方法。   The method for producing an infrared reflective black pigment according to claim 1, wherein the metal fine particles have a particle size of 0.01 to 1 μm. 金属微粒子が銅、コバルト、鉄、ニッケル及びマンガンから選ばれる1種以上であり、白色顔料がアルミナ、酸化チタン、シリカ及び酸化亜鉛から選ばれる1種以上である、請求項1又は2に記載の赤外線反射性黒色系顔料の製造方法。   The metal fine particles are at least one selected from copper, cobalt, iron, nickel and manganese, and the white pigment is at least one selected from alumina, titanium oxide, silica and zinc oxide. A method for producing an infrared reflective black pigment. 明度(L)が20〜70の範囲であり、且つ、近赤外領域(波長780〜2500nm)における反射率が40%以上である、請求項1〜3のいずれかに記載の製造方法により得られる赤外線反射性黒色系顔料。 By the manufacturing method in any one of Claims 1-3 whose brightness (L * ) is the range of 20-70, and the reflectance in a near-infrared area | region (wavelength 780-2500 nm) is 40% or more. Infrared reflective black pigment obtained. 請求項4に記載の赤外線反射性黒色系顔料を含む遮熱塗料。

A thermal barrier paint comprising the infrared reflective black pigment according to claim 4.

JP2015060458A 2015-03-24 2015-03-24 Method for manufacturing infrared reflective black based pigment Pending JP2016180041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060458A JP2016180041A (en) 2015-03-24 2015-03-24 Method for manufacturing infrared reflective black based pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015060458A JP2016180041A (en) 2015-03-24 2015-03-24 Method for manufacturing infrared reflective black based pigment

Publications (1)

Publication Number Publication Date
JP2016180041A true JP2016180041A (en) 2016-10-13

Family

ID=57131042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015060458A Pending JP2016180041A (en) 2015-03-24 2015-03-24 Method for manufacturing infrared reflective black based pigment

Country Status (1)

Country Link
JP (1) JP2016180041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116859A1 (en) * 2017-12-11 2019-06-20 Agc株式会社 Optical layer, manufacturing method for optical layer, solar battery module equipped with optical layer, external wall material for construction, and structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116859A1 (en) * 2017-12-11 2019-06-20 Agc株式会社 Optical layer, manufacturing method for optical layer, solar battery module equipped with optical layer, external wall material for construction, and structure
JPWO2019116859A1 (en) * 2017-12-11 2020-12-24 Agc株式会社 Optical layers, manufacturing methods for optical layers, solar cell modules with optical layers, building exterior wall materials and structures
JP7162012B2 (en) 2017-12-11 2022-10-27 Agc株式会社 Optical layer, method for manufacturing optical layer, solar cell module with optical layer, outer wall material for building, and building

Similar Documents

Publication Publication Date Title
Raj et al. Terbium doped Sr2MO4 [M= Sn and Zr] yellow pigments with high infrared reflectance for energy saving applications
KR102534292B1 (en) Composite tungsten oxide ultrafine particles and dispersion thereof
Jovaní et al. New red-shade environmental-friendly multifunctional pigment based on Tb and Fe doped Y2Zr2O7 for ceramic applications and cool roof coatings
JPWO2019031246A1 (en) Electromagnetic wave absorption transparent base material
JP6410806B2 (en) Inorganic red pigment
TWI798204B (en) Black near-infrared reflective pigment and method for producing same
JP2013249393A (en) Black pigment, and glaze and coating containing the same
Zou et al. Ni-doped BaTi5O11: New brilliant yellow pigment with high NIR reflectance as solar reflective fillers
JP2016533314A (en) Bismuth vanadate pigment
JP5554541B2 (en) Infrared reflective material, method for producing the same, and paint and resin composition containing the same
CN110330813B (en) Color TiO2Near-infrared reflection pigment and preparation method thereof
JP2009215384A (en) Black pigment and method of manufacturing the same
CN115003631B (en) Electromagnetic wave-absorbing particle, electromagnetic wave-absorbing particle dispersion, and method for producing electromagnetic wave-absorbing particle
Cai et al. New environmental-friendly yellow pigments Y4–xAxMoO9+ δ (A= Ta, Tb)
JP2016180041A (en) Method for manufacturing infrared reflective black based pigment
JP7151712B2 (en) Agricultural and horticultural soil cover film and its manufacturing method
JP7310644B2 (en) Method for producing near-infrared shielding fine particles
Zhang et al. Synthesis and characterization of Zn1-xMnxO yellow pigment with high near-infrared reflectance
CN112441623B (en) Preparation of high near-infrared reflection color pigment by using modified cobalt blue pigment
CN113072823B (en) Metal ion doped bismuth vanadate yellow pigment and preparation method and application thereof
JP5395576B2 (en) Infrared reflective material, method for producing the same, and paint and resin composition containing the same
KR20140128510A (en) Ceramic ink composite for inkjet printing
JP5773567B2 (en) Infrared reflective material, method for producing the same, and paint and resin composition containing the same
WO2024090211A1 (en) Black particles
JP2004083616A (en) Compound oxide black pigment and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170824