JP2016179614A - Clogging cap and clogging structure and clogging method using the same - Google Patents

Clogging cap and clogging structure and clogging method using the same Download PDF

Info

Publication number
JP2016179614A
JP2016179614A JP2015061380A JP2015061380A JP2016179614A JP 2016179614 A JP2016179614 A JP 2016179614A JP 2015061380 A JP2015061380 A JP 2015061380A JP 2015061380 A JP2015061380 A JP 2015061380A JP 2016179614 A JP2016179614 A JP 2016179614A
Authority
JP
Japan
Prior art keywords
closing
injection hole
closing cap
shaft
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015061380A
Other languages
Japanese (ja)
Other versions
JP6548926B2 (en
Inventor
黒川 裕司
Yuji Kurokawa
裕司 黒川
浩司 川上
Koji Kawakami
浩司 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Takiron Engineering Co Ltd
Original Assignee
Takiron Co Ltd
Takiron Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd, Takiron Engineering Co Ltd filed Critical Takiron Co Ltd
Priority to JP2015061380A priority Critical patent/JP6548926B2/en
Publication of JP2016179614A publication Critical patent/JP2016179614A/en
Application granted granted Critical
Publication of JP6548926B2 publication Critical patent/JP6548926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a clogging cap capable of simply and sufficiently clogging an aperture formed on a structure consisting of a thermoplastic resin molded body or the like by using a general purpose rotary tool or the like without using a special machine, and a clogging structure and a clogging method using the same.SOLUTION: By a rotation friction pressure welding for pushing to inside of an injection hole 3 while rolling a shaft body 4 with status where a tip side shaft part 5 of the shaft body 4 is injected into the injection hole 3 and a melting margin part 9 is contacted with circumference of the injection hole 3, the melting margin part 9 is molten by friction heat with the circumference of the injection hole 3 and a collar part 11 contacts with an inner member 2 when the shaft body 4 is pushed with a predetermined distance equal to a gap S1 to the injection hole 3.SELECTED DRAWING: Figure 2

Description

本発明は、熱可塑性樹脂成形体等からなる構造体の開口部を閉塞する熱可塑性樹脂製の閉塞用キャップ並びにそれを用いた閉塞構造及び閉塞方法に関し、特に、回転摩擦圧接による溶着で開口部を閉塞する閉塞用キャップ並びにそれを用いた閉塞構造及び閉塞方法に関するものである。   The present invention relates to a sealing cap made of a thermoplastic resin that closes an opening of a structure made of a thermoplastic resin molded body and the like, and a closing structure and a closing method using the same, and in particular, the opening by welding by rotational friction welding. The present invention relates to a closure cap for closing a container, and a closure structure and a closure method using the same.

老朽化した既設管の補修法の一例として、既設管の内周面に沿って中空骨組み状の補強材を配置し、この補強材の内側に、複数の熱可塑性樹脂製の内面部材を既設管の周方向に連続的に取り付けて筒状に組み立て、この筒状に組み立てられた内面部材を更生管とし、この更生管と既設管との間にモルタル等の充填剤を充填するようにしたものがある。   As an example of a method for repairing an aged existing pipe, a hollow frame-shaped reinforcing material is arranged along the inner peripheral surface of the existing pipe, and a plurality of inner surfaces made of thermoplastic resin are arranged inside the reinforcing material. The cylinder is continuously attached in the circumferential direction and assembled into a cylinder. The inner member assembled in this cylinder is used as a rehabilitation pipe, and a filler such as mortar is filled between the rehabilitation pipe and the existing pipe. There is.

充填剤を充填するにあたっては、更生管を構成する内面部材に円形状の注入孔を形成し、この注入孔を通して更生管と既設管との間に充填剤を注入するようされている。
充填剤の注入が完了すれば注入孔は不要となるので、注入孔を閉塞する必要がある。
In filling the filler, a circular injection hole is formed in the inner surface member constituting the rehabilitation pipe, and the filler is injected between the rehabilitation pipe and the existing pipe through the injection hole.
If the injection of the filler is completed, the injection hole becomes unnecessary, and it is necessary to close the injection hole.

従来、注入孔を閉塞する方法として、例えば、注入孔にねじ込み可能なプラグや、注入孔に嵌め込み可能なキャップ、注入孔を覆うことが可能なシートなどを用いるものが知られている。
プラグを用いるものでは、プラグのねじ山にシーリング剤を塗り、ドライバー等の工具を用いてプラグを注入孔にねじ込むようにされ、キャップを用いるものでは、シーリング剤を塗り付けたキャップを注入孔に嵌め込むようにされ、シートを用いるものでは、注入孔を覆うようにシートを内面部材に接着剤で貼り付けるようにされている。
Conventionally, as a method for closing the injection hole, for example, a plug that can be screwed into the injection hole, a cap that can be fitted into the injection hole, a sheet that can cover the injection hole, or the like is known.
In the case of using a plug, a sealing agent is applied to the thread of the plug, and the plug is screwed into the injection hole using a tool such as a screwdriver. In the case of using a cap, a cap applied with a sealing agent is used as the injection hole. When the sheet is used, the sheet is attached to the inner surface member with an adhesive so as to cover the injection hole.

しかし、シーリング剤や接着剤を用いる従来の閉塞方法では、接合する両者の材質に応じた種類のシーリング剤や接着剤を選ぶ必要があり、強い接合強度を得るには使用するシーリング剤等の選定や施工に専門知識が不可欠であり、また施工後の養生期間を長くとる必要があるなどの問題がある。   However, in the conventional closing method using a sealing agent or an adhesive, it is necessary to select a type of sealing agent or an adhesive depending on the materials to be joined. Selection of the sealing agent to be used is required to obtain a strong joint strength. In addition, there is a problem that specialized knowledge is indispensable for construction, and it is necessary to take a long curing period after construction.

そこで、シーリング剤等を用いることなく開口部を閉塞するようにしたものが、例えば、特許文献1及び2にて提案されている。   Thus, for example, Patent Documents 1 and 2 have proposed that the opening is closed without using a sealing agent or the like.

特開2014−162067号公報JP, 2014-162067, A 特許第4128484号公報Japanese Patent No. 4128484

特許文献1には、樹脂部材の接合構造に関するものが記載されており、ポリアミド系樹脂からなるオイルフィルタブラケットの筒部と、やはりポリアミド系樹脂からなる止め栓とを振動溶着により接合して、筒部を止め栓で閉塞するようにした技術が開示されている。
また、特許文献2には、熱可塑性樹脂成形体に形成された貫通穴を熱可塑性樹脂製の栓体で穴埋めする技術に関するものが記載されており、貫通穴の周辺部位に対して外側に向けて拡径する漏斗状の拡径部を回転切削刃により形成し、形成された拡径部に対し栓体を回転させながら押し付ける回転摩擦圧接で拡径部と栓体とを溶着により接合して、貫通穴を栓体で閉塞するようにした技術が開示されている。
Patent Document 1 discloses a structure relating to a joining structure of resin members. A cylinder portion of an oil filter bracket made of a polyamide resin and a stopper plug made of a polyamide resin are joined by vibration welding to form a cylinder. A technique is disclosed in which a part is closed with a stopper plug.
Patent Document 2 describes a technique related to a technique of filling a through hole formed in a thermoplastic resin molded body with a plug made of a thermoplastic resin, and is directed outward with respect to a peripheral portion of the through hole. A funnel-shaped enlarged diameter part that expands in diameter is formed by a rotary cutting blade, and the enlarged diameter part and the plug body are joined by welding by rotary friction welding that presses the plug body while rotating the formed diameter part. A technique is disclosed in which a through hole is closed with a plug.

しかしながら、特許文献1に記載のものでは、筒部に対して止め栓を加圧した状態で、例えば、共鳴振動や機械的振動を付与することができる構成の振動溶着機のような特殊な機械を用いなければならず、適用範囲が限定され、例えば、既設管補修の施工現場での閉塞処理の用途に適用するのは困難であるという問題点がある。
また、特許文献2に記載のものでは、貫通穴の周辺部位に対する栓体の回転摩擦圧接を行う前に、予め貫通穴の周辺部位に漏斗状の拡径部を形成しなければならず、工数が増えるため、施工効率が悪いという問題点がある。
However, in the one described in Patent Document 1, a special machine such as a vibration welding machine having a configuration capable of applying resonance vibration or mechanical vibration in a state in which a stopper plug is pressurized against the cylindrical portion. There is a problem that the application range is limited, and it is difficult to apply to the use of the clogging treatment at the construction site of existing pipe repair, for example.
Moreover, in the thing of patent document 2, before performing the rotational friction welding of the plug body with respect to the peripheral part of a through-hole, the funnel-shaped enlarged diameter part must be previously formed in the peripheral part of a through-hole, and man-hours are required. Therefore, there is a problem that the construction efficiency is poor.

本発明は、上記従来技術の有する問題点に鑑み、熱可塑性樹脂成形体等からなる構造体に形成された開口部を特殊な機械を用いることなく汎用の回転工具等を用いて容易かつ効率よく閉塞することができる閉塞用キャップ並びにそれを用いた閉塞構造及び閉塞方法を提供することを目的とする。   In view of the above-described problems of the prior art, the present invention can easily and efficiently use a general-purpose rotary tool or the like for an opening formed in a structure made of a thermoplastic resin molded body or the like without using a special machine. An object of the present invention is to provide a closing cap that can be closed, a closing structure using the same, and a closing method.

上記目的を達成するため、第1発明による閉塞用キャップは、構造体に形成された開口部を閉塞するための閉塞用キャップであって、開口部の内径よりも大きい外径の溶融代部を有する基端側軸部及びその基端側軸部の先端側に一体的に設けられて開口部に回転可能に挿入される先端側軸部とを有してなる軸体と、この軸体の先端側軸部が開口部に挿入されて溶融代部が開口部の周縁に接触された状態のときに構造体との間に隙間を存するように基端側軸部に一体的に設けられる鍔部とを備え、軸体の先端側軸部を開口部に挿入して溶融代部を開口部の周縁に接触させた状態で軸体を回転させながらその開口部の奥へと押し込む回転摩擦圧接により、溶融代部が開口部の周縁との摩擦熱で溶融するようにしてなることを特徴とする。   In order to achieve the above object, a closing cap according to a first invention is a closing cap for closing an opening formed in a structure, and has a fusion margin having an outer diameter larger than the inner diameter of the opening. A shaft body that has a proximal end side shaft portion and a distal end side shaft portion that is integrally provided on the distal end side of the proximal end side shaft portion and is rotatably inserted into the opening; and When the distal end side shaft portion is inserted into the opening portion and the fusion margin is in contact with the periphery of the opening portion, it is provided integrally with the proximal end side shaft portion so as to leave a gap with the structure. Rotating friction welding that pushes the shaft body into the opening while rotating the shaft body in a state where the shaft portion on the tip side of the shaft body is inserted into the opening portion and the melting margin is in contact with the peripheral edge of the opening portion Thus, the melting margin is melted by frictional heat with the periphery of the opening.

この場合において、軸体の基端側に、回転工具からの回転動力を受け取るための回転動力受部を設ける構成を採用することができる(第2発明)。   In this case, the structure which provides the rotational power receiving part for receiving the rotational power from a rotary tool in the base end side of a shaft body is employable (2nd invention).

次に、第3発明による閉塞構造は、熱可塑性樹脂成形体からなる構造体に形成された開口部を、第1発明又は第2発明に係る閉塞用キャップを用いて閉塞した閉塞構造であって、閉塞用キャップの溶融代部を開口部の周縁に接触させた状態で閉塞用キャップの軸体を回転させながらその開口部の奥へと押し込む回転摩擦圧接を、閉塞用キャップの鍔部が構造体に接触するまで行うことによって形成される溶着部を介して構造体と閉塞用キャップとが接合されていることを特徴とする。   Next, a closing structure according to a third invention is a closing structure in which an opening formed in a structure made of a thermoplastic resin molded body is closed using the closing cap according to the first invention or the second invention. Rotating friction pressure welding that pushes into the back of the opening while rotating the shaft body of the closing cap while the melting margin of the closing cap is in contact with the peripheral edge of the opening. The structure and the closing cap are joined to each other through a welded portion formed by performing the process until it comes into contact with the body.

次に、第4発明による閉塞方法は、熱可塑性樹脂成形体からなる構造体に形成された開口部を、第1発明又は第2発明に係る閉塞用キャップを用いて閉塞する閉塞方法であって、閉塞用キャップの先端側軸部を開口部に挿入して閉塞用キャップの溶融代部を開口部の周縁に接触させ、その後、閉塞用キャップの軸体に回転動力を付与してその軸体を回転させながら開口部の奥へと押し込み、閉塞用キャップの鍔部が構造体に接触させた後、閉塞用キャップの軸体に回転動力を付与するのを止めることを特徴とする。   Next, a closing method according to a fourth invention is a closing method for closing an opening formed in a structure made of a thermoplastic resin molded body using the closing cap according to the first invention or the second invention. Then, the shaft portion on the front end side of the closing cap is inserted into the opening portion, the melting margin of the closing cap is brought into contact with the peripheral edge of the opening portion, and then rotational power is applied to the shaft body of the closing cap to provide the shaft body. The rotation cap is pushed into the back of the opening, and after the collar portion of the closing cap is brought into contact with the structure, the application of rotational power to the shaft body of the closing cap is stopped.

本発明の閉塞用キャップ並びにそれを用いた閉塞構造及び閉塞方法においては、熱可塑性樹脂成形体等の構造体に形成された開口部の周縁に閉塞用キャップの溶融代部を接触させた状態で、閉塞用キャップの軸体を回転させながらその開口部の奥へと押し込む回転摩擦圧接によって閉塞用キャップが構造体に溶着される。
このため、閉塞用キャップの軸体に回転動力を付与することができる汎用の回転工具等を用いて開口部の閉塞作業を容易に行うことができる。
In the closing cap and the closing structure and closing method using the same according to the present invention, the melting margin of the closing cap is in contact with the periphery of the opening formed in the structure such as a thermoplastic resin molded body. The closing cap is welded to the structure by rotating friction welding that is pushed into the opening while rotating the shaft body of the closing cap.
For this reason, the closing operation of the opening can be easily performed using a general-purpose rotary tool or the like that can apply rotational power to the shaft body of the closing cap.

上記の閉塞作業での回転摩擦圧接時には、開口部に挿入された閉塞用キャップの先端側軸部がその開口部内で回転されるので、開口部内に挿入された先端側軸部がその回転運動時に心棒の役目をして開口部に対する閉塞用キャップの位置ずれを防ぐとともに回転運動を安定化させることができる。
また、上記の閉塞作業での回転摩擦圧接時において、開口部に対し閉塞用キャップの軸体が所定距離だけ押し込まれて閉塞用キャップの鍔部が熱可塑性樹脂成形体等からなる構造体に接触すれば、構造体に対する閉塞用キャップの接触面積が急激に増すことになるから閉塞用キャップの回転を停止させる摩擦力が働き、これによって溶融代部が溶融しきって溶着が完了しつつあることを作業者が容易に認識することができるとともに、閉塞用キャップがそれ以上開口部の奥へと押し込まれないように鍔部によって閉塞用キャップの押込方向の動きを止めることができ、閉塞用キャップが開口部の奥へと突き抜けてしまうのを未然に防ぐことができる。
また、上記の閉塞作業を行うにあたり、例えば、特許文献2に係る技術では必要とされる前処理、すなわち予め貫通穴の周辺部位に漏斗状の拡径部を形成するといったような特別な前処理が不要であり、閉塞用キャップの溶融代部を開口部の周縁に接触させた状態で閉塞用キャップの軸体を回転させながら閉塞用キャップの鍔部が熱可塑性樹脂成形体等の構造体に接触するまで閉塞用キャップを開口部の奥へと押し込むだけで構造体と閉塞用キャップとを容易に接合することができる。
At the time of rotational friction welding in the above-described closing operation, the distal end side shaft portion of the closing cap inserted into the opening portion is rotated within the opening portion, so that the distal end side shaft portion inserted into the opening portion is rotated during the rotational movement. It can serve as a mandrel to prevent the closing cap from being displaced relative to the opening and to stabilize the rotational movement.
Further, at the time of rotational friction welding in the above-described closing operation, the shaft body of the closing cap is pushed into the opening by a predetermined distance, and the flange portion of the closing cap contacts the structure made of a thermoplastic resin molded body or the like. If this is done, the contact area of the closing cap with respect to the structure will increase abruptly, so that a frictional force that stops the rotation of the closing cap will work, and the melting margin will be completely melted and welding will be completed. The operator can easily recognize it, and the movement of the closing cap in the pushing direction can be stopped by the collar so that the closing cap is not pushed further into the opening. It is possible to prevent the penetration through the opening.
In addition, when performing the above-described closing operation, for example, a pretreatment required in the technique according to Patent Document 2, that is, a special pretreatment such as forming a funnel-shaped enlarged diameter portion in the peripheral portion of the through hole in advance. Is not necessary, and the flange of the closing cap is turned into a structure such as a thermoplastic resin molding while rotating the shaft body of the closing cap while the melting margin of the closing cap is in contact with the periphery of the opening. The structure and the closing cap can be easily joined simply by pushing the closing cap into the back of the opening until contact is made.

したがって、本発明の閉塞用キャップ並びにそれを用いた閉塞構造及び閉塞方法によれば、熱可塑性樹脂成形体等からなる構造体に形成された開口部を特殊な機械を用いることなく汎用の回転工具等を用いて容易かつ効率よく閉塞することができる。   Therefore, according to the closing cap and the closing structure and closing method using the same according to the present invention, the general-purpose rotary tool can be used without using a special machine for the opening formed in the structure made of a thermoplastic resin molded body or the like. Etc., and can be easily and efficiently closed.

ここで、軸体の基端側に、回転工具からの回転動力を受け取るための回転動力受部を設ける構成を採用することにより、回転工具を用いてより効率よく閉塞作業を行うことができる。   Here, by adopting a configuration in which a rotational power receiving portion for receiving rotational power from the rotary tool is provided on the base end side of the shaft body, the closing operation can be performed more efficiently using the rotary tool.

本発明の第1の実施形態に係る閉塞用キャップを示す図で、(a)は平面図、(b)は正面図、(c)は底面図である。It is a figure which shows the closure cap concerning the 1st Embodiment of this invention, (a) is a top view, (b) is a front view, (c) is a bottom view. 第1の実施形態の閉塞用キャップを用いた回転摩擦圧接を示す図で、(a)は閉塞用キャップが注入孔に挿入された状態図、(b)は閉塞用キャップの溶融代部と注入孔周縁部とが溶着された状態図である。It is a figure which shows the rotational friction welding using the cap for closure of 1st Embodiment, (a) is a state figure in which the cap for closure was inserted in the injection hole, (b) is the fusion | melting margin part and injection | pouring of the cap for closure It is a state figure by which the hole peripheral part was welded. 本発明の第2の実施形態に係る閉塞用キャップを示す図で、(a)は平面図、(b)は正面図、(c)は底面図である。It is a figure which shows the closure cap concerning the 2nd Embodiment of this invention, (a) is a top view, (b) is a front view, (c) is a bottom view. 本発明の第3の実施形態に係る閉塞用キャップを示す図で、(a)は平面図、(b)は正面図、(c)は底面図である。It is a figure which shows the cap for closure concerning the 3rd Embodiment of this invention, (a) is a top view, (b) is a front view, (c) is a bottom view. 本発明の第4の実施形態に係る閉塞用キャップを示す図で、(a)は平面図、(b)は正面図、(c)は底面図である。It is a figure which shows the closure cap concerning the 4th Embodiment of this invention, (a) is a top view, (b) is a front view, (c) is a bottom view. 本発明の第5の実施形態に係る閉塞用キャップを示す図で、(a)は平面図、(b)は正面図、(c)は底面図である。It is a figure which shows the closure cap which concerns on the 5th Embodiment of this invention, (a) is a top view, (b) is a front view, (c) is a bottom view. 第5の実施形態の閉塞用キャップを用いた回転摩擦圧接を示す図で、(a)は閉塞用キャップが注入孔に挿入された状態図、(b)は閉塞用キャップの溶融代部と注入孔周縁部とが溶着された状態図である。It is a figure which shows the rotational friction welding using the cap for closure of 5th Embodiment, (a) is a state figure in which the cap for closure was inserted in the injection hole, (b) is the fusion | melting margin part and injection | pouring of the cap for closure It is a state figure by which the hole peripheral part was welded.

次に、本発明の閉塞用キャップ並びにそれを用いた閉塞構造及び閉塞方法の実施の形態を、図面に基づいて説明する。   Next, an embodiment of a closure cap of the present invention, and a closure structure and a closure method using the same will be described with reference to the drawings.

〔第1の実施形態〕
<閉塞用キャップの概略説明>
図1(a)、(b)及び(c)並びに図2(a)に示されるに閉塞用キャップ1は、図2(a)の紙面を垂直に貫く方向に長く延びる所定厚みの帯板状の内面部材2に形成された円形状の注入孔3を閉塞するための熱可塑性樹脂製の部材であり、断面円筒形の中空軸状部材からなる軸体4備えている。
ここで、内面部材2は、既設管補修用の更生管を構成する熱可塑性樹脂製の部材であり、本発明の「(熱可塑性樹脂成形体等からなる)構造体」に相当する。
また、注入孔3は、既設管と更生管との間にモルタル等の充填剤を注入するために設けられるものであり、本発明の「開口部」に相当する。
[First Embodiment]
<Outline explanation of cap for closure>
1 (a), (b) and (c) and FIG. 2 (a), the closing cap 1 is a strip having a predetermined thickness extending long in a direction perpendicularly penetrating the paper surface of FIG. 2 (a). This is a member made of a thermoplastic resin for closing the circular injection hole 3 formed in the inner surface member 2, and includes a shaft body 4 made of a hollow shaft-shaped member having a cylindrical cross section.
Here, the inner surface member 2 is a thermoplastic resin member that constitutes a rehabilitation pipe for repairing an existing pipe, and corresponds to a “structure (made of a thermoplastic resin molded body or the like)” of the present invention.
The injection hole 3 is provided to inject a filler such as mortar between the existing pipe and the rehabilitation pipe, and corresponds to the “opening” of the present invention.

<軸体の説明>
図2(a)に示されるように、軸体4は、注入孔3を貫くように挿入可能な所定長さ寸法に設定され、先端側に位置する先端側軸部5と、基端側に位置する基端側軸部6とが一体形成されて構成されている。
先端側軸部5は、軸方向の全域に亘って注入孔3の内径寸法よりもやや小さい一定の外径寸法で円筒形状に形成される先導部7と、この先導部7の基端側に一体的に形成され、注入孔3の周縁に係合する係合部8とを有している。
基端側軸部6は、その先端位置から基端位置に向かって進むに従い外径が大きくなるテーパ円筒形状に形成され、その外周部に溶融代部9を有している。
なお、図1(b)及び(c)並びに図2(a)において、記号L1にて示される一点鎖線は、先端側軸部5と基端側軸部6との境界位置を示すものである。
<Description of shaft>
As shown in FIG. 2A, the shaft body 4 is set to a predetermined length dimension that can be inserted so as to penetrate the injection hole 3, and includes a distal end side shaft portion 5 located on the distal end side and a proximal end side. The proximal end side shaft portion 6 is integrally formed.
The distal end side shaft portion 5 has a leading portion 7 formed in a cylindrical shape with a constant outer diameter dimension slightly smaller than the inner diameter size of the injection hole 3 over the entire area in the axial direction, and a proximal end side of the leading portion 7. It has an engaging portion 8 that is integrally formed and engages with the periphery of the injection hole 3.
The proximal end side shaft portion 6 is formed in a tapered cylindrical shape having an outer diameter that increases from the distal end position toward the proximal end position, and has a fusion margin 9 on the outer peripheral portion thereof.
In FIGS. 1B and 1C and FIG. 2A, the alternate long and short dash line indicated by the symbol L1 indicates the boundary position between the distal end side shaft portion 5 and the proximal end side shaft portion 6. .

<先導部の説明>
先導部7は、軸体4を注入孔3へ挿入する際に真っ先に注入孔3に差し込まれる部位であり、注入孔3に対し軸体4がラジアル方向に位置ずれしたときにその注入孔3の周縁に当接してそのラジアル方向の位置ずれを止める役目と、軸体4の回転運動時の心棒としての役目をする。
<Description of the lead part>
The leading portion 7 is a portion that is inserted into the injection hole 3 first when the shaft body 4 is inserted into the injection hole 3. When the shaft body 4 is displaced in the radial direction with respect to the injection hole 3, the injection hole 3. It serves to stop the radial displacement by abutting against the peripheral edge of the shaft and as a mandrel during the rotational movement of the shaft body 4.

<係合部の説明>
係合部8は、テーパ外周面を有し、この係合部8のテーパ外周面は、先端側軸部5と基端側軸部6との境界位置(ラインL1で示される位置)では注入孔3の内径と等しい外径であり、そのラインL1で示される位置から先端側軸部5の先端に向かって進むに従い外径が小さくなり、最終的には先端側軸部5の外径と等しい外径となる形状に形成されている。
この係合部8は、先端側軸部5における先導部7が注入孔3に挿入されたときに、そのテーパ外周面が注入孔3の周縁に係合するようにされたものであり、この係合部8のテーパ外周面が注入孔3の周縁に係合することにより、この係合部8のテーパ外周面の調心作用によって、注入孔3と軸体4とが同軸心をなして位置決めされ、先端側軸部5の先導部7を注入孔3に挿入するだけで、注入孔3に対する閉塞用キャップ1の位置決めを容易かつ正確に行うことができる。
<Description of engaging part>
The engaging portion 8 has a tapered outer peripheral surface, and the tapered outer peripheral surface of the engaging portion 8 is injected at a boundary position (a position indicated by a line L1) between the distal end side shaft portion 5 and the proximal end side shaft portion 6. The outer diameter is equal to the inner diameter of the hole 3, and the outer diameter decreases from the position indicated by the line L <b> 1 toward the distal end of the distal end side shaft portion 5. It is formed in a shape having an equal outer diameter.
The engaging portion 8 is configured such that when the leading portion 7 in the distal end side shaft portion 5 is inserted into the injection hole 3, its tapered outer peripheral surface engages with the peripheral edge of the injection hole 3. When the tapered outer peripheral surface of the engaging portion 8 is engaged with the peripheral edge of the injection hole 3, the injection hole 3 and the shaft body 4 are coaxial with each other by the aligning action of the tapered outer peripheral surface of the engaging portion 8. The positioning cap 1 can be easily and accurately positioned with respect to the injection hole 3 simply by inserting the leading portion 7 of the distal shaft portion 5 into the injection hole 3.

<溶融代部の説明>
溶融代部9は、基端側軸部6の外周部を注入孔3の内径よりも大きくすることで形成されるものであり、テーパ外周面を有している。
この溶融代部9のテーパ外周面は、先端側軸部5と基端側軸部6との境界位置(ラインL1で示される位置)では注入孔3の内径と等しい外径であり、そのラインL1で示される位置から基端側軸部6の基端位置に向かって進むに従い外径が大きくなり、最終的には後述する鍔部11の外径よりも小さい外径の形状に形成されている。
この溶融代部9は、回転摩擦圧接時に注入孔3の周縁との摩擦熱によって溶融するものであり、テーパ状に形成されることにより、注入孔3の周縁への食い込みがよくなるので、注入孔3の周縁との溶着を強固なものとすることができるとともに、回転摩擦圧接時における押し込み動作をより容易に行うことができ、さらに、例えば、内面部材2が若干湾曲した形状であっても注入孔3の周縁に確実に接触させることができて溶着不良等の不具合を未然に防ぐことができる。
<Explanation of melting allowance>
The fusion margin 9 is formed by making the outer peripheral portion of the base end side shaft portion 6 larger than the inner diameter of the injection hole 3 and has a tapered outer peripheral surface.
The tapered outer peripheral surface of the melting margin 9 has an outer diameter equal to the inner diameter of the injection hole 3 at the boundary position (position indicated by the line L1) between the distal end side shaft portion 5 and the proximal end side shaft portion 6. The outer diameter increases from the position indicated by L1 toward the base end position of the base end side shaft portion 6, and is finally formed in a shape having an outer diameter smaller than the outer diameter of the collar portion 11 described later. Yes.
The melting margin 9 is melted by frictional heat with the peripheral edge of the injection hole 3 at the time of rotational friction welding, and is formed into a taper shape so that the bite into the peripheral edge of the injection hole 3 is improved. 3 can be firmly welded, and can be pushed more easily at the time of rotary friction welding. Further, for example, even if the inner surface member 2 has a slightly curved shape, injection is possible. The peripheral edge of the hole 3 can be surely brought into contact, and problems such as poor welding can be prevented in advance.

ここで、係合部8のテーパ外周面と溶融代部9のテーパ外周面とは、両者間に段差がなく平坦に連続するように一体的に連設され、これら係合部8のテーパ外周面と溶融代部9のテーパ外周面とによって軸体4のテーパ外周部10が形成される。
なお、係合部8のテーパ外周面と溶融代部9のテーパ外周面とは、上記のように、両者間に段差がなく平坦に連続するように一体的に連設するほか、概形的に傾斜面として見られるものであれば、例えば、基端位置に向かって段階的に外径が大きくなる細かな段部から形成されるものであってもよい。
Here, the taper outer peripheral surface of the engaging portion 8 and the taper outer peripheral surface of the melting margin portion 9 are integrally connected so as to be flat without any step between them, The tapered outer peripheral portion 10 of the shaft body 4 is formed by the surface and the tapered outer peripheral surface of the melting margin 9.
In addition, the tapered outer peripheral surface of the engaging portion 8 and the tapered outer peripheral surface of the melting allowance portion 9 are integrally connected so that there is no step between the two as described above. As long as it can be seen as an inclined surface, for example, it may be formed from a fine step portion whose outer diameter gradually increases toward the base end position.

<鍔部の説明>
軸体4の基端側には、軸体4の径方向外側に張り出すように円環状の鍔部11が軸体4に一体的に設けられている。
この鍔部11は、軸体4の先端側軸部5が注入孔3に挿入された際に内面部材2における注入孔3の周辺部位と対向する対向面12を有し、溶融代部9が注入孔3の周縁に接触された状態のときに注入孔3の周辺部位とその対向面12との間に所定の隙間S1を存するように軸体4に対する軸方向の配置が定められており、回転摩擦圧接時に注入孔3に対し軸体4がその隙間S1に相当する所定距離だけ押し込まれたときに、この鍔部11の対向面12が注入孔3の周辺部位に接触するようにされている。
<Explanation of buttock>
On the base end side of the shaft body 4, an annular flange 11 is provided integrally with the shaft body 4 so as to project outward in the radial direction of the shaft body 4.
The flange portion 11 has a facing surface 12 that faces the peripheral portion of the injection hole 3 in the inner surface member 2 when the distal end side shaft portion 5 of the shaft body 4 is inserted into the injection hole 3. The axial arrangement with respect to the shaft body 4 is determined so that a predetermined gap S1 exists between the peripheral portion of the injection hole 3 and the facing surface 12 when it is in contact with the peripheral edge of the injection hole 3, When the shaft body 4 is pushed into the injection hole 3 by a predetermined distance corresponding to the gap S1 during the rotary friction welding, the facing surface 12 of the flange 11 is brought into contact with the peripheral portion of the injection hole 3. Yes.

ここで、溶融代部9と鍔部11とは、溶融代部9のテーパ外周面と鍔部11の対向面12とが連続するように一体形成されている。
これにより、回転摩擦圧接によって溶融代部9が溶融しきった瞬間に鍔部11の対向面12が注入孔3の周辺部位に接触され、これによって軸体4が注入孔3の奥へとそれ以上押し込まれないことになるから、注入孔3の周縁と溶融代部9とが確実に溶着されることになる。
仮に、溶融代部9のテーパ外周面と鍔部11の対向面12とが連続せずに、両者間に、例えば、軸体4の軸方向に真っ直ぐに延びる円周面が介在されて、溶融代部9と鍔部11とがその円周面が設けられる分だけ離れて配置された場合、回転摩擦圧接時に軸体4がその円周面が設けられる分だけ余計に注入孔3の奥へと押し込まれることになり、注入孔3の周縁と溶融代部9との互いの溶融部によって形成される後述の溶着部16が内面部材2を突き抜ける方向に押し込まれることになり、また単なる円周面では注入孔3の周縁との回転摩擦による発熱が不十分であるから、溶着不良が引き起こされる恐れがある。
したがって、溶融代部9のテーパ外周面と鍔部11の対向面12とが連続するように、溶融代部9と鍔部11とを軸体4の軸方向に一体的に連設するのがよい。
Here, the fusion margin 9 and the flange 11 are integrally formed so that the tapered outer peripheral surface of the fusion margin 9 and the facing surface 12 of the flange 11 are continuous.
As a result, the opposing surface 12 of the flange portion 11 is brought into contact with the peripheral portion of the injection hole 3 at the moment when the melting margin 9 is completely melted by the rotational friction welding, whereby the shaft body 4 is further moved into the depth of the injection hole 3. Since it will not be pushed in, the periphery of the injection hole 3 and the fusion margin part 9 will be welded reliably.
Temporarily, the taper outer peripheral surface of the melting allowance portion 9 and the facing surface 12 of the flange portion 11 are not continuous, and a circumferential surface extending straight in the axial direction of the shaft body 4 is interposed between the two, for example, When the marginal portion 9 and the flange portion 11 are arranged apart from each other by the circumferential surface, the shaft body 4 is further moved to the depth of the injection hole 3 by the amount by which the circumferential surface is provided at the time of rotational friction welding. The welded portion 16 (described later) formed by the melted portion of the peripheral edge of the injection hole 3 and the fusion allowance portion 9 is pushed in the direction of penetrating the inner surface member 2, and the mere circumference On the surface, heat generation due to rotational friction with the peripheral edge of the injection hole 3 is insufficient, which may cause poor welding.
Therefore, the fusion margin portion 9 and the flange portion 11 are integrally connected in the axial direction of the shaft body 4 so that the tapered outer peripheral surface of the fusion margin portion 9 and the facing surface 12 of the flange portion 11 are continuous. Good.

<天板部の説明>
軸体4の基端側には、さらに、天板部13が、断面円筒形の中空軸状部材からなる軸体4の基端側開口を塞ぐように、軸体4及び鍔部11と一体形成されている。
<Description of the top plate>
On the base end side of the shaft body 4, the top plate portion 13 is further integrated with the shaft body 4 and the flange portion 11 so as to close the base end side opening of the shaft body 4 made of a hollow shaft-shaped member having a cylindrical cross section. Is formed.

<回転動力受部の説明>
天板部13の裏面には、直方体状のブロック部14が一体的に設けられ、天板部13及びブロック部14には、両者に亘って所定深さで掘り下げられるように形成される細長い長方形穴(マイナス溝)15が設けられている。
この長方形穴15には、例えば、電動インパクトドライバーやエアインパクトレンチ等の回転工具の出力軸に連結されたマイナスドライバービットの先端部が差し込み可能とされており、回転工具からマイナスドライバービットを介して出力された回転動力が長方形穴15の内壁面で受け止められ、受け止められた回転動力が軸体4に伝達されるようになっている。
こうして、軸体4の基端側に、回転工具からの回転動力を受け取るための長方形穴15を設ける構成を採用することにより、回転工具を用いてより効率よく後述する閉塞作業を行うことができる。
なお、長方形穴15が本発明の「回転動力受部」に相当する。
<Description of the rotational power receiver>
A rectangular parallelepiped block portion 14 is integrally provided on the back surface of the top plate portion 13, and the top plate portion 13 and the block portion 14 are formed in an elongated rectangular shape so as to be dug down at a predetermined depth across both. A hole (minus groove) 15 is provided.
Into this rectangular hole 15, for example, the tip of a minus driver bit connected to the output shaft of a rotary tool such as an electric impact driver or an air impact wrench can be inserted. The output rotational power is received by the inner wall surface of the rectangular hole 15, and the received rotational power is transmitted to the shaft body 4.
Thus, by adopting a configuration in which the rectangular hole 15 for receiving the rotational power from the rotary tool is provided on the base end side of the shaft body 4, the closing operation described later can be performed more efficiently using the rotary tool. .
The rectangular hole 15 corresponds to the “rotary power receiving portion” of the present invention.

<熱可塑性樹脂の説明>
閉塞用キャップ1及び内面部材2を構成する熱可塑性樹脂としては、例えば、ポリエチレン(PE、LDPE、HDPE、LLDPE等)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリアセタール(POM)などが挙げられる。
なお、閉塞用キャップ1と内面部材2とは、同種の樹脂であるのが好ましい。
<Description of thermoplastic resin>
Examples of the thermoplastic resin constituting the closure cap 1 and the inner surface member 2 include polyethylene (PE, LDPE, HDPE, LLDPE, etc.), polystyrene (PS), polycarbonate (PC), polypropylene (PP), polybutylene terephthalate ( PBT), polyethylene terephthalate (PET), polyamide (PA), polyacetal (POM) and the like.
The closing cap 1 and the inner surface member 2 are preferably the same type of resin.

次に、以上に述べたように構成される閉塞用キャップ1を用いて内面部材2に形成された注入孔3を閉塞する閉塞方法について図2(a)及び(b)を用いて説明する。   Next, a closing method for closing the injection hole 3 formed in the inner surface member 2 by using the closing cap 1 configured as described above will be described with reference to FIGS. 2 (a) and 2 (b).

予め、図示されない電動インパクトドライバーやエアインパクトレンチ等の回転工具の出力軸にマイナスドライバービットを連結しておく。
次いで、図2(a)に示されるように、閉塞用キャップ1の先端側軸部5を注入孔3に挿入して閉塞用キャップ1の溶融代部9を注入孔3の周縁に接触させる。このとき、閉塞用キャップ1の鍔部11と注入孔3の周辺部位との間に隙間S1が存在した状態で注入孔3に閉塞用キャップ1が差し込まれる。
次いで、回転工具に取り付けられたマイナスドライバービットの先端部を閉塞用キャップ1の長方形穴15に差し込む。
次いで、回転工具を作動させて閉塞用キャップ1の軸体4に回転動力を付与してその軸体4を回転させながら注入孔3の奥へと押し込む回転摩擦圧接を行う。
これにより、注入孔3の周縁部と閉塞用キャップ1の溶融代部9との接触部位に回転摩擦が生じ、相対回転速度と押当力とに応じた摩擦による発熱で注入孔3の周縁部と閉塞用キャップ1の溶融代部9とが溶融し始め、これに相対回転による溶融樹脂同士の掻き混ぜ効果が加わって、両者の溶融部の組織がからみあった状態となる。
そして、図2(b)に示されるように、上記回転摩擦圧接によって閉塞用キャップ1の軸体4が上記隙間S1に相当する所定距離だけ押し込まれて閉塞用キャップ1の鍔部11が注入孔3の周辺部位に接触した後、回転工具の作動を停止させて閉塞用キャップ1の軸体4に回転動力を付与するのを止める。
これにより、注入孔3の周縁部及び閉塞用キャップ1の溶融代部9の両者の溶融部が冷えて固まり、これによって形成される溶着部16を介して閉塞用キャップ1と内面部材2とが強固に接合された閉塞構造が得られる。
こうして、摩擦溶融と相対回転による攪拌との相乗作用によって溶着されるので、融点温度が大きく掛け離れていないかぎり、殆どの種類の熱可塑性樹脂同士の接合において高い強度の接合が達成できる。
A minus driver bit is connected in advance to an output shaft of a rotary tool such as an electric impact driver or an air impact wrench (not shown).
Next, as shown in FIG. 2A, the distal end side shaft portion 5 of the closing cap 1 is inserted into the injection hole 3, and the melting margin portion 9 of the closing cap 1 is brought into contact with the peripheral edge of the injection hole 3. At this time, the closing cap 1 is inserted into the injection hole 3 in a state where a gap S1 exists between the flange portion 11 of the closing cap 1 and the peripheral portion of the injection hole 3.
Next, the tip of the minus driver bit attached to the rotary tool is inserted into the rectangular hole 15 of the closing cap 1.
Next, the rotary tool is operated to apply rotational power to the shaft body 4 of the closing cap 1 to rotate the shaft body 4 and push it into the injection hole 3 while rotating it.
Thereby, rotational friction arises in the contact site | part of the peripheral part of the injection hole 3, and the fusion | melting margin part 9 of the closure cap 1, and the peripheral part of the injection hole 3 by the heat_generation | fever by friction according to relative rotational speed and pushing force And the melting allowance portion 9 of the closing cap 1 begin to melt, and the effect of stirring the molten resin by relative rotation is added to this, and the structure of the melted portion of both is entangled.
Then, as shown in FIG. 2 (b), the shaft body 4 of the closing cap 1 is pushed by a predetermined distance corresponding to the gap S1 by the rotational friction welding, so that the flange portion 11 of the closing cap 1 becomes the injection hole. After the contact with the peripheral part 3, the operation of the rotary tool is stopped to stop applying the rotational power to the shaft body 4 of the closing cap 1.
Thereby, both the peripheral part of the injection hole 3 and the fusion | melting part 9 of the fusion | melting margin part 9 of the closure cap 1 cool and solidify, and the closure cap 1 and the inner surface member 2 are connected via the welding part 16 formed by this. A tightly bonded closure structure is obtained.
Thus, since welding is performed by the synergistic effect of friction melting and stirring by relative rotation, high-strength bonding can be achieved in bonding of almost all kinds of thermoplastic resins as long as the melting point temperature is not greatly different.

<作用効果の説明>
第1の実施形態の閉塞用キャップ1並びにそれを用いた閉塞構造及び閉塞方法においては、内面部材2に形成された注入孔3の周縁に閉塞用キャップ1の溶融代部9を接触させた状態で、閉塞用キャップ1の軸体4を回転させながらその注入孔3の奥へと押し込む回転摩擦圧接によって閉塞用キャップ1が内面部材2に溶着されるので、閉塞用キャップ1の軸体4に回転動力を付与することができる電動インパクトドライバーやエアインパクトレンチ等の汎用の回転工具を用いて注入孔3の閉塞作業を容易に行うことができる。
<Description of effects>
In the closing cap 1 and the closing structure and closing method using the same according to the first embodiment, the melting margin 9 of the closing cap 1 is brought into contact with the periphery of the injection hole 3 formed in the inner surface member 2. Thus, the closing cap 1 is welded to the inner surface member 2 by rotating friction welding that is pushed into the injection hole 3 while rotating the shaft body 4 of the closing cap 1, so that the shaft body 4 of the closing cap 1 is attached to the shaft body 4. The injection hole 3 can be easily closed using a general-purpose rotary tool such as an electric impact driver or an air impact wrench capable of applying rotational power.

上記の閉塞作業での回転摩擦圧接時には、注入孔3に挿入された閉塞用キャップ1の先端側軸部5がその注入孔3内で回転されるので、注入孔3内に挿入された先端側軸部5がその回転運動時に心棒の役目をして注入孔3に対する閉塞用キャップ1の位置ずれを防ぐとともに回転運動を安定化させることができる。
また、上記の閉塞作業での回転摩擦圧接時において、注入孔3に対し閉塞用キャップ1の軸体4が隙間S1に相当する所定距離だけ押し込まれて閉塞用キャップ1の鍔部11の対向面12が内面部材2における注入孔3の周辺部位に接触すれば、内面部材2に対する閉塞用キャップ1の接触面積が急激に増すことになるから閉塞用キャップ1の回転を停止させる摩擦力が働き、これによって溶融代部9が溶融しきって溶着が完了しつつあることを作業者が容易に認識することができるとともに、閉塞用キャップ1がそれ以上注入孔3の奥へと押し込まれないように鍔部11によって閉塞用キャップ1の押込方向の動きを止めることができ、閉塞用キャップ1が注入孔3の奥へと突き抜けてしまうのを未然に防ぐことができる。
また、上記の閉塞作業を行うにあたり、例えば、特許文献2に係る技術では必要とされる前処理、すなわち予め貫通穴の周辺部位に漏斗状の拡径部を形成するといったような特別な前処理が不要であり、閉塞用キャップ1の溶融代部9を注入孔3の周縁に接触させた状態で閉塞用キャップ1の軸体4を回転させながら閉塞用キャップ1の鍔部11が注入孔3の周辺部位に接触するまで閉塞用キャップ1を注入孔3の奥へと押し込むだけで閉塞用キャップ1と内面部材2とを容易に接合することができる。
At the time of rotational friction welding in the above-described closing operation, the distal end side shaft portion 5 of the closing cap 1 inserted into the injection hole 3 is rotated within the injection hole 3, so that the distal end side inserted into the injection hole 3 The shaft portion 5 serves as a mandrel during the rotational motion to prevent the displacement of the closing cap 1 with respect to the injection hole 3 and to stabilize the rotational motion.
Further, at the time of rotational friction welding in the above-described closing operation, the shaft body 4 of the closing cap 1 is pushed into the injection hole 3 by a predetermined distance corresponding to the gap S1, and the opposing surface of the flange portion 11 of the closing cap 1 is pressed. If 12 contacts the peripheral part of the injection hole 3 in the inner surface member 2, the contact area of the closing cap 1 with respect to the inner surface member 2 will increase abruptly, so that a frictional force that stops the rotation of the closing cap 1 works. As a result, the operator can easily recognize that the melting margin 9 is completely melted and the welding is being completed, and the closure cap 1 is prevented from being pushed further into the injection hole 3. The movement of the closing cap 1 in the pushing direction can be stopped by the portion 11, and the closing cap 1 can be prevented from penetrating deeply into the injection hole 3.
In addition, when performing the above-described closing operation, for example, a pretreatment required in the technique according to Patent Document 2, that is, a special pretreatment such as forming a funnel-shaped enlarged diameter portion in the peripheral portion of the through hole in advance. Is not necessary, and the flange portion 11 of the closing cap 1 is inserted into the injection hole 3 while the shaft body 4 of the closing cap 1 is rotated in a state where the melting margin 9 of the closing cap 1 is in contact with the peripheral edge of the injection hole 3. The closure cap 1 and the inner surface member 2 can be easily joined simply by pushing the closure cap 1 into the back of the injection hole 3 until it comes into contact with the peripheral portion.

したがって、第1の実施形態の閉塞用キャップ1並びにそれを用いた閉塞構造及び閉塞方法によれば、特殊な機械を用いることなく汎用の回転工具等を用いて内面部材2の注入孔3を容易かつ効率よく閉塞することができる。   Therefore, according to the closing cap 1 of the first embodiment and the closing structure and closing method using the same, the injection hole 3 of the inner surface member 2 can be easily formed using a general-purpose rotary tool or the like without using a special machine. In addition, it can be blocked efficiently.

〔第2の実施形態〕
図3には、本発明の第2の実施形態に係る閉塞用キャップを示す図で、(a)には平面図が、(b)には正面図が、(c)には底面図が、それぞれ示されている。
なお、この第2の実施形態において、先に述べた第1の実施形態と同一又は同様のものについては、図に同一符号を付すに留めてその詳細な説明を省略することとし、以下においては第2の実施形態に特有の部分を中心に説明することとする(後述する第3の実施形態〜第5の実施形態についても同様)。
[Second Embodiment]
FIG. 3 is a view showing a closing cap according to a second embodiment of the present invention, wherein (a) is a plan view, (b) is a front view, (c) is a bottom view, Each is shown.
In the second embodiment, the same or similar parts as those in the first embodiment described above are designated by the same reference numerals in the drawings, and detailed description thereof will be omitted. The description will focus on the parts specific to the second embodiment (the same applies to third to fifth embodiments described later).

第1の実施形態の閉塞用キャップ1においては、軸体4が断面円筒形の中空軸状部材からなるものであるのに対し、第2の実施形態の閉塞用キャップ1Aにおいては、軸体4Aが断面円形の中実軸状部材からなるものとされ、これに伴い、第1の実施形態の閉塞用キャップ1では必要とされる天板部13やブロック部14が不要となり、これら天板部13やブロック部14の役目は軸体4Aそれ自体が担うことになり、回転動力受部の役目をする長方形穴15は軸体4Aの基端部に直接設けられ、それ以外については基本的に第1の実施形態の閉塞用キャップ1と同構造である。   In the closing cap 1 of the first embodiment, the shaft body 4 is made of a hollow shaft-shaped member having a cylindrical cross section, whereas in the closing cap 1A of the second embodiment, the shaft body 4A. Is made of a solid shaft-shaped member having a circular cross section, and accordingly, the top plate portion 13 and the block portion 14 which are required in the closing cap 1 of the first embodiment are not required, and these top plate portions The shaft body 4A itself plays the role of the block 13 and the block portion 14, and the rectangular hole 15 serving as the rotational power receiving portion is provided directly in the base end portion of the shaft body 4A. It is the same structure as the cap 1 for closure of 1st Embodiment.

以上に述べた第2の実施形態の閉塞用キャップ1A並びにそれを用いた閉塞構造及び閉塞方法によっても、第1の実施形態の閉塞用キャップ1並びにそれを用いた閉塞構造及び閉塞方法と同様の作用効果を得ることができる。   The closing cap 1A according to the second embodiment and the closing structure and closing method using the same are the same as the closing cap 1 according to the first embodiment and the closing structure and closing method using the same. An effect can be obtained.

〔第3の実施形態〕
図4には、本発明の第3の実施形態に係る閉塞用キャップを示す図で、(a)には平面図が、(b)には正面図が、(c)には底面図が、それぞれ示されている。
[Third Embodiment]
FIG. 4 is a view showing a closing cap according to a third embodiment of the present invention, where (a) is a plan view, (b) is a front view, (c) is a bottom view, Each is shown.

第1の実施形態の閉塞用キャップ1においては、軸体4の基端側軸部6に形成される溶融代部9のテーパ外周面が、先端側軸部5と基端側軸部6との境界位置(ラインL1で示される位置)では注入孔3の内径と等しい外径であり、そのラインL1で示される位置から基端側軸部6の基端位置に向かって進むに従い外径が大きくなり、最終的には鍔部11の外径よりも小さい外径の形状に形成されているのに対し、第3の実施形態の閉塞用キャップ1Bにおいては、軸体4B(中空軸状部材又は中実軸状部材のいずれでも可であるが、ここでは中実軸状部材の場合を示す。)の基端側軸部6Bに形成される溶融代部9Bにおけるテーパ外周面が、先端側軸部5と基端側軸部6との境界位置(ラインL1で示される位置)では注入孔3の内径と等しい外径であり、そのラインL1で示される位置から基端側軸部6Bの基端位置に向かって進むに従い外径が大きくなるところまでは第1の実施形態の閉塞用キャップ1と同様であるが、最終的には鍔部11の外径と等しい外径になるような形状に形成されて外観が皿ビス形状とされ、それ以外については基本的に第1の実施形態の閉塞用キャップ1と同構造である。   In the closing cap 1 of the first embodiment, the taper outer peripheral surface of the melting margin 9 formed on the proximal end side shaft portion 6 of the shaft body 4 has the distal end side shaft portion 5 and the proximal end side shaft portion 6. The outer diameter is equal to the inner diameter of the injection hole 3 (the position indicated by the line L1), and the outer diameter increases from the position indicated by the line L1 toward the base end position of the base end side shaft portion 6. In contrast, in the closing cap 1B of the third embodiment, the shaft body 4B (hollow shaft-shaped member) is formed. Alternatively, a solid shaft-shaped member may be used, but here, the case of a solid shaft-shaped member is shown.) The taper outer peripheral surface of the melting margin portion 9B formed in the base end side shaft portion 6B is At the boundary position between the shaft portion 5 and the proximal end side shaft portion 6 (the position indicated by the line L1), the inner diameter of the injection hole 3 is The outer diameter is the same as the closing cap 1 of the first embodiment until the outer diameter increases from the position indicated by the line L1 toward the base end position of the base end side shaft portion 6B. However, the outer cap is finally formed in a shape equal to the outer diameter of the collar portion 11 and the outer appearance is a countersunk screw shape. Otherwise, the closure cap of the first embodiment is basically used. 1 and the same structure.

以上に述べた第3の実施形態の閉塞用キャップ1B並びにそれを用いた閉塞構造及び閉塞方法によっても、第1の実施形態の閉塞用キャップ1並びにそれを用いた閉塞構造及び閉塞方法と同様の作用効果を得ることができる。   The closing cap 1B of the third embodiment described above and the closing structure and closing method using the same are the same as the closing cap 1 of the first embodiment and the closing structure and closing method using the same. An effect can be obtained.

〔第4の実施形態〕
図5には、本発明の第4の実施形態に係る閉塞用キャップを示す図で、(a)には平面図が、(b)には正面図が、(c)には底面図が、それぞれ示されている。
[Fourth Embodiment]
FIG. 5 is a view showing a closing cap according to a fourth embodiment of the present invention, wherein (a) is a plan view, (b) is a front view, (c) is a bottom view, Each is shown.

第1の実施形態の閉塞用キャップ1においては、テーパ外周面を有する形状の溶融代部9が採用されているのに対し、第4の実施形態の閉塞用キャップ1Cにおいては、基端側軸部6Cの基端位置に向かって段階的に外径が大きくなる複数段(ここでは2段のもののみを例示するが、3段以上であってもよく、あるいは1段であってもよい。)の段付き形状の溶融代部9Cが採用され、それ以外については基本的に第1の実施形態の閉塞用キャップ1と同構造である。   In the closing cap 1 of the first embodiment, the melting margin 9 having a tapered outer peripheral surface is employed, whereas in the closing cap 1C of the fourth embodiment, the proximal side shaft is provided. A plurality of stages in which the outer diameter increases stepwise toward the base end position of the portion 6C (only two stages are illustrated here, but may be three stages or more, or may be one stage. 9C is used, and the rest is basically the same structure as the closing cap 1 of the first embodiment.

以上に述べた第4の実施形態の閉塞用キャップ1C並びにそれを用いた閉塞構造及び閉塞方法によっても、第1の実施形態の閉塞用キャップ1並びにそれを用いた閉塞構造及び閉塞方法と同様の作用効果を得ることができる。   The closing cap 1C of the fourth embodiment described above and the closing structure and closing method using the same are the same as the closing cap 1 of the first embodiment and the closing structure and closing method using the same. An effect can be obtained.

〔第5の実施形態〕
図6には、本発明の第5の実施形態に係る閉塞用キャップを示す図で、(a)には平面図が、(b)には正面図が、(c)には底面図が、それぞれ示されている。
また、図7には、第5の実施形態の閉塞用キャップを用いた回転摩擦圧接を示す図で、(a)には閉塞用キャップが注入孔に挿入された状態図が、(b)には閉塞用キャップの溶融代部と注入孔周縁部とが溶着された状態図が、それぞれ示されている。
[Fifth Embodiment]
FIG. 6 is a diagram showing a closing cap according to a fifth embodiment of the present invention, where (a) is a plan view, (b) is a front view, (c) is a bottom view, Each is shown.
FIG. 7 is a diagram showing rotational friction welding using the closing cap of the fifth embodiment. FIG. 7A is a state diagram in which the closing cap is inserted into the injection hole. FIG. 2 shows a state diagram in which the melting margin part of the closing cap and the peripheral part of the injection hole are welded.

<閉塞用キャップの概略説明>
図6(a)、(b)及び(c)並びに図7(a)に示される閉塞用キャップ1Dは、断面円形で先端に向かって先細る逆円錐台状の中実軸状部材(勿論、中空軸状部材でも可であるが、ここでは中実軸状部材を採用した例のみを示す。)からなる軸体4Dを備えている。
<Outline explanation of cap for closure>
The closing cap 1D shown in FIGS. 6 (a), 6 (b) and 6 (c) and FIG. 7 (a) is an inverted truncated cone-shaped solid shaft-shaped member (of course, of course with a circular cross section and tapering toward the tip). A hollow shaft-shaped member may be used, but here, only an example in which a solid shaft-shaped member is employed is shown).

<軸体の説明>
図7(a)に示される軸体4Dは、注入孔3を貫くように挿入可能な所定長さ寸法に設定され、先端側に位置する先端側軸部5Dと、基端側に位置する基端側軸部6Dとが一体形成されて構成されている。
先端側軸部5Dは、先端位置の外径が注入孔3の内径寸法よりも小さく基端位置に向かって進むに従い外径が大きくなり基端位置の外径が注入孔3の内径寸法よりもやや小さい部分逆円錐台状に形成される先導部7Dと、この先導部7Dの基端側に一体形成され、注入孔3の周縁に係合する係合部8Dとを有している。
基端側軸部6Dは、先端側軸部5Dと段差なく連続するような部分逆円錐台状に形成され、その先端位置から基端位置に向かって進むに従い外径が大きくなり、その外周部に溶融代部9Dを有している。
なお、図6(b)及び(c)並びに図7(a)において、記号L1にて示される一点鎖線は、先端側軸部5Dと基端側軸部6Dとの境界位置を示すものであり、記号L2にて示される二点鎖線は、先導部7Dと係合部8Dとの境界位置を示すものである。
<Description of shaft>
A shaft body 4D shown in FIG. 7A is set to have a predetermined length dimension that can be inserted so as to penetrate the injection hole 3, and includes a distal end side shaft portion 5D that is located on the distal end side and a base position that is located on the proximal end side. The end side shaft portion 6D is integrally formed.
The distal end side shaft portion 5D has an outer diameter that is smaller than the inner diameter dimension of the injection hole 3 and increases toward the proximal end position, and the outer diameter of the proximal end position is larger than the inner diameter dimension of the injection hole 3. It has a leading portion 7D that is formed in a slightly smaller partial inverted truncated cone shape, and an engaging portion 8D that is integrally formed on the proximal end side of the leading portion 7D and engages with the peripheral edge of the injection hole 3.
The proximal end side shaft portion 6D is formed in a partially inverted truncated cone shape that is continuous with the distal end side shaft portion 5D without a step, and its outer diameter increases as it advances from the distal end position toward the proximal end position. Has a melting margin 9D.
In FIGS. 6B and 6C and FIG. 7A, the alternate long and short dash line indicated by the symbol L1 indicates the boundary position between the distal end side shaft portion 5D and the proximal end side shaft portion 6D. A two-dot chain line indicated by symbol L2 indicates a boundary position between the leading portion 7D and the engaging portion 8D.

<先導部の説明>
先導部7Dは、軸体4Dを注入孔3へ挿入する際に真っ先に注入孔3に差し込まれる部位であり、注入孔3に対し軸体4Dがラジアル方向に位置ずれしたときにその注入孔3の周縁に当接してそのラジアル方向の位置ずれを止める役目と、軸体4Dの回転運動時の心棒としての役目をする。
<Description of the lead part>
The leading portion 7D is a portion that is inserted into the injection hole 3 first when the shaft body 4D is inserted into the injection hole 3, and when the shaft body 4D is displaced in the radial direction with respect to the injection hole 3, the injection hole 3 is inserted. It serves to stop the radial displacement by abutting on the peripheral edge of the shaft and as a mandrel during the rotational movement of the shaft body 4D.

<係合部の説明>
係合部8Dは、テーパ外周面を有し、この係合部8Dのテーパ外周面は、先端側軸部5Dと基端側軸部6Dとの境界位置(ラインL1で示される位置)では注入孔3の内径と等しい外径であり、そのラインL1で示される位置から先端側軸部5Dの先端に向かって進むに従い外径が小さくなる形状に形成されている。
この係合部8Dは、先端側軸部5Dにおける先導部7Dが注入孔3に挿入されたときに、そのテーパ外周面が注入孔3の周縁に係合するようにされたものであり、この係合部8Dのテーパ外周面が注入孔3の周縁に係合することにより、この係合部8Dのテーパ外周面の調心作用によって、注入孔3と軸体4Dとが同軸心をなして位置決めされ、先端側軸部5Dの先導部7Dを注入孔3に挿入するだけで、注入孔3に対する閉塞用キャップ1Dの位置決めを容易かつ正確に行うことができる。
<Description of engaging part>
The engaging portion 8D has a tapered outer peripheral surface, and the tapered outer peripheral surface of the engaging portion 8D is injected at a boundary position (a position indicated by the line L1) between the distal end side shaft portion 5D and the proximal end side shaft portion 6D. The outer diameter is equal to the inner diameter of the hole 3, and the outer diameter decreases from the position indicated by the line L1 toward the distal end of the distal end side shaft portion 5D.
The engaging portion 8D is configured such that when the leading portion 7D in the distal end side shaft portion 5D is inserted into the injection hole 3, its tapered outer peripheral surface engages with the peripheral edge of the injection hole 3. When the tapered outer peripheral surface of the engaging portion 8D is engaged with the peripheral edge of the injection hole 3, the injection hole 3 and the shaft body 4D are coaxial with each other by the aligning action of the tapered outer peripheral surface of the engaging portion 8D. The positioning cap 1D can be easily and accurately positioned with respect to the injection hole 3 simply by inserting the leading portion 7D of the distal end side shaft portion 5D into the injection hole 3.

<溶融代部の説明>
溶融代部9Dは、基端側軸部6Dの外周部を注入孔3の内径よりも大きくすることで形成されるものであり、テーパ外周面を有している。
この溶融代部9Dのテーパ外周面は、先端側軸部5Dと基端側軸部6Dとの境界位置(ラインL1で示される位置)では注入孔3の内径と等しい外径であり、そのラインL1で示される位置から基端側軸部6Dの基端位置に向かって進むに従い外径が大きくなり、最終的には鍔部11の外径よりも小さい外径の形状に形成されている。
この溶融代部9Dは、回転摩擦圧接時に注入孔3の周縁との摩擦熱によって溶融するものであり、テーパ状に形成されることにより、注入孔3の周縁への食い込みがよくなるので、注入孔3の周縁との溶着を強固なものとすることができるとともに、回転摩擦圧接時における押し込み動作をより容易に行うことができ、さらに、例えば、内面部材2が若干湾曲した形状であっても注入孔3の周縁に確実に接触させることができて溶着不良等の不具合を未然に防ぐことができる。
<Explanation of melting allowance>
The fusion margin 9D is formed by making the outer peripheral portion of the base end side shaft portion 6D larger than the inner diameter of the injection hole 3, and has a tapered outer peripheral surface.
The taper outer peripheral surface of the melting margin 9D has an outer diameter equal to the inner diameter of the injection hole 3 at the boundary position (position indicated by the line L1) between the distal end side shaft portion 5D and the proximal end side shaft portion 6D. The outer diameter increases from the position indicated by L1 toward the base end position of the base end side shaft portion 6D, and is finally formed in a shape having an outer diameter smaller than the outer diameter of the flange portion 11.
The melting margin 9D is melted by frictional heat with the peripheral edge of the injection hole 3 at the time of rotational friction welding, and since it is formed in a tapered shape, the bite into the peripheral edge of the injection hole 3 is improved. 3 can be firmly welded, and can be pushed more easily at the time of rotary friction welding. Further, for example, even if the inner surface member 2 has a slightly curved shape, injection is possible. The peripheral edge of the hole 3 can be surely brought into contact, and problems such as poor welding can be prevented in advance.

なお、係合部8Dのテーパ外周面と溶融代部9Dのテーパ外周面とは、両者間に段差がなく平坦に連続するように一体的に連設され、これら係合部8Dのテーパ外周面と溶融代部9Dのテーパ外周面とによって軸体4Dのテーパ外周部10Dが形成される。   The tapered outer peripheral surface of the engaging portion 8D and the tapered outer peripheral surface of the melting margin portion 9D are integrally connected so as to be flat without any step therebetween, and the tapered outer peripheral surface of these engaging portions 8D. The tapered outer peripheral surface 10D of the shaft body 4D is formed by the tapered outer peripheral surface of the melting margin portion 9D.

<鍔部の説明>
軸体4Dの基端側には、軸体4Dの径方向外側に張り出すように円環状の鍔部11が軸体4Dに一体的に設けられている。
この鍔部11は、軸体4Dの先端側軸部5Dが注入孔3に挿入された際に内面部材2における注入孔3の周辺部位と対向する対向面12を有し、溶融代部9Dが注入孔3の周縁に接触された状態のときに注入孔3の周辺部位とその対向面12との間に所定の隙間S2を存在するように軸体4Dに対する軸方向の配置が定められており、回転摩擦圧接時に注入孔3に対し軸体4Dがその隙間S2に相当する所定距離だけ押し込まれたときに、この鍔部11の対向面12が注入孔3の周辺部位に接触するようにされている。
<Explanation of buttock>
On the base end side of the shaft body 4D, an annular flange 11 is provided integrally with the shaft body 4D so as to project outward in the radial direction of the shaft body 4D.
The flange portion 11 has a facing surface 12 that faces the peripheral portion of the injection hole 3 in the inner surface member 2 when the distal end side shaft portion 5D of the shaft body 4D is inserted into the injection hole 3, and the melting margin portion 9D is The arrangement in the axial direction with respect to the shaft body 4D is determined so that a predetermined gap S2 exists between the peripheral portion of the injection hole 3 and the facing surface 12 when in contact with the peripheral edge of the injection hole 3. When the shaft body 4D is pushed into the injection hole 3 by a predetermined distance corresponding to the gap S2 during the rotary friction welding, the facing surface 12 of the flange 11 is brought into contact with the peripheral portion of the injection hole 3. ing.

ここで、溶融代部9Dと鍔部11とは、溶融代部9Dのテーパ外周面と鍔部11の対向面12とが連続するように一体形成されている。
これにより、回転摩擦圧接によって溶融代部9Dが溶融しきった瞬間に鍔部11の対向面12が注入孔3の周辺部位に接触され、これによって軸体4Dが注入孔3の奥へとそれ以上押し込まれないことになるから、注入孔3の周縁と溶融代部9Dとが確実に溶着されることになる。
仮に、溶融代部9Dのテーパ外周面と鍔部11の対向面12とが連続せずに、両者間に、例えば、軸体4Dの軸方向に真っ直ぐに延びる円周面が介在されて、溶融代部9Dと鍔部11とがその円周面が設けられる分だけ離れて配置された場合、回転摩擦圧接時に軸体4Dがその円周面が設けられる分だけ余計に注入孔3の奥へと押し込まれることになり、注入孔3の周縁と溶融代部9Dとの互いの溶融部によって形成される溶着部16Dが内面部材2を突き抜ける方向に押し込まれることになり、また単なる円周面では注入孔3の周縁との回転摩擦による発熱が不十分であるから、溶着不良が引き起こされる恐れがある。
したがって、溶融代部9Dのテーパ外周面と鍔部11の対向面12とが連続するように、溶融代部9Dと鍔部11とを軸体4Dの軸方向に一体的に連設するのがよい。
Here, the fusion margin 9D and the flange 11 are integrally formed so that the tapered outer peripheral surface of the fusion margin 9D and the facing surface 12 of the flange 11 are continuous.
Thereby, at the moment when the melting margin portion 9D is completely melted by the rotary friction welding, the facing surface 12 of the flange portion 11 is brought into contact with the peripheral portion of the injection hole 3, whereby the shaft body 4D is further moved into the depth of the injection hole 3. Since it will not be pushed in, the periphery of the injection hole 3 and the fusion margin part 9D will be welded reliably.
Temporarily, the taper outer peripheral surface of the melting allowance portion 9D and the facing surface 12 of the flange portion 11 are not continuous, and, for example, a circumferential surface extending straight in the axial direction of the shaft body 4D is interposed between them. When the marginal portion 9D and the flange portion 11 are arranged apart from each other by the circumferential surface, the shaft body 4D is excessively moved to the back of the injection hole 3 by the amount by which the circumferential surface is provided at the time of rotational friction welding. The welded portion 16D formed by the melted portion of the peripheral edge of the injection hole 3 and the melting allowance portion 9D is pushed in the direction of penetrating the inner surface member 2, and on the mere circumferential surface Since heat generation due to rotational friction with the peripheral edge of the injection hole 3 is insufficient, there is a risk of causing poor welding.
Therefore, the fusion margin portion 9D and the flange portion 11 are integrally connected in the axial direction of the shaft body 4D so that the tapered outer peripheral surface of the fusion margin portion 9D and the facing surface 12 of the flange portion 11 are continuous. Good.

以上に述べた第5の実施形態の閉塞用キャップ1D並びにそれを用いた閉塞構造及び閉塞方法によっても、第1の実施形態の閉塞用キャップ1並びにそれを用いた閉塞構造及び閉塞方法と同様の作用効果を得ることができる。   The closing cap 1D of the fifth embodiment and the closing structure and closing method using the same are the same as those of the closing cap 1 of the first embodiment and the closing structure and closing method using the same. An effect can be obtained.

以上、本発明の閉塞用キャップ並びにそれを用いた閉塞構造及び閉塞方法について、複数の実施形態に基づいて説明したが、本発明は上記実施形態に記載した構成に限定されるものではなく、各実施形態に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the closure cap of the present invention, the closure structure using the same, and the closure method were explained based on a plurality of embodiments, the present invention is not limited to the composition described in the above embodiment, The configuration can be appropriately changed within a range not departing from the gist, such as appropriately combining the configurations described in the embodiments.

例えば、上記各実施形態においては、回転工具からの回転動力を受け取るための回転動力受部として長方形穴15を採用した例を示したが、これに限定されるものではなく、非円形穴であれば任意の形状を採用することができ、長方形穴15に代えて、例えば、正方形穴や六角穴、十文字状穴などを採用してもよい。
また、軸体4の基端部に回転工具のチャックによって掴まれる掴み軸や回転工具の工具ビットと係合する非円形断面の突起などを回転動力受部として設けて、これら掴み軸や突起を介して回転工具からの回転動力を軸体4に伝達するようにしてもよい。
また、鍔部11の外形を非円形状として、その鍔部11に係合するソケットレンチ等を介して回転工具からの回転動力を軸体4に伝達したり、鍔部11それ自体を回転工具のチャックで掴んで軸体4に回転動力を伝達したりする態様もあり得る。
For example, in each of the above embodiments, the example in which the rectangular hole 15 is employed as the rotational power receiving portion for receiving the rotational power from the rotary tool has been described. However, the present invention is not limited to this, and any non-circular hole may be used. For example, a square hole, a hexagonal hole, or a cross-shaped hole may be employed instead of the rectangular hole 15.
Further, a gripping shaft that is gripped by the chuck of the rotary tool or a non-circular cross-sectional protrusion that engages with the tool bit of the rotary tool is provided as a rotational power receiving portion at the base end portion of the shaft body 4, and these gripping shafts and protrusions are provided. Alternatively, the rotational power from the rotary tool may be transmitted to the shaft body 4.
Further, the outer shape of the flange portion 11 is made non-circular, and rotational power from the rotary tool is transmitted to the shaft body 4 via a socket wrench or the like engaged with the flange portion 11, or the flange portion 11 itself is There may be a mode in which the rotational power is transmitted to the shaft body 4 by gripping with the chuck.

次に、本発明の閉塞用キャップ並びにそれを用いた閉塞構造及び閉塞方法のより具体的な実施例について説明する。   Next, more specific examples of the closure cap of the present invention, and the closure structure and closure method using the same will be described.

<実施例1〜実施例5の説明>
図1(b)に示される第1の実施形態の閉塞用キャップ1において、軸体4の直径が30mmで係合部8と溶融代部9とで構成されるテーパ外周部10の高さH、幅W、角度θについて表1に示されるように3水準(実験No.1〜3)を用意し、これらを実施例1〜3とした。
図4(b)に示される第3の実施形態の閉塞用キャップ1Bにおいて、軸体4Bの直径が30mmで係合部8と溶融代部9Bとで構成されるテーパ外周部10Bの高さH、幅W、角度θについて表1に示されるように2水準(実験No.4及び5)を用意し、これらを実施例4及び5とした。
<Description of Examples 1 to 5>
In the closing cap 1 of the first embodiment shown in FIG. 1B, the height H of the tapered outer peripheral portion 10 constituted by the engaging portion 8 and the melting margin portion 9 when the diameter of the shaft body 4 is 30 mm. As shown in Table 1, three levels (Experiment Nos. 1 to 3) were prepared for the width W and the angle θ, and these were designated as Examples 1 to 3.
In the closing cap 1B of the third embodiment shown in FIG. 4B, the height H of the tapered outer peripheral portion 10B configured by the engaging portion 8 and the melting margin portion 9B when the diameter of the shaft body 4B is 30 mm. As shown in Table 1, two levels (Experiment Nos. 4 and 5) were prepared for the width W and the angle θ, and these were designated as Examples 4 and 5.

<比較例1〜比較例5の説明>
実施例1に係る閉塞用キャップにおいて、テーパ外周部10を無とし、鍔部11の厚さ(t)を1.5mmとしたもの(実験No.6)を比較例1とした。
実施例1に係る閉塞用キャップにおいて、テーパ外周部10を無とし、鍔部11の厚さ(t)を2.0mmとしたもの(実験No.7)を比較例2とした。
実施例1に係る閉塞用キャップにおいて、鍔部11を無とし、テーパ外周部10の最外径を注入孔3の内径と同程度としたもの(実験No.8)を比較例3とした。
実施例1に係る閉塞用キャップにおいて、先端側軸部5における先導部7を無とし、テーパ外周部10の高さH、幅W、角度θについて表1に示されるように2水準(実験No.9及び10)を用意し、これらを比較例4及び5とした。
<Description of Comparative Examples 1 to 5>
In the cap for closure according to Example 1, the taper outer peripheral part 10 was not used, and the thickness (t) of the flange part 11 was set to 1.5 mm (Experiment No. 6) as Comparative Example 1.
In the closing cap according to Example 1, the taper outer peripheral portion 10 was not used, and the thickness (t) of the flange portion 11 was set to 2.0 mm (Experiment No. 7) as Comparative Example 2.
In the closing cap according to Example 1, the flange portion 11 was not used, and the outermost diameter of the tapered outer peripheral portion 10 was set to be the same as the inner diameter of the injection hole 3 (Experiment No. 8).
In the closing cap according to the first embodiment, the leading portion 7 in the distal end side shaft portion 5 is omitted, and the height H, width W, and angle θ of the tapered outer peripheral portion 10 are two levels as shown in Table 1 (Experiment No. .9 and 10) were prepared, and these were designated as Comparative Examples 4 and 5.

Figure 2016179614
Figure 2016179614

上記実施例1〜5及び比較例1〜5のそれぞれを用いて内面部材2に対する回転摩擦圧接を行い溶着状態を評価した。
実施例1〜5のものは、いずれも回転摩擦圧接を何ら支障なく容易かつスムーズに行うことができ、表1に示されるように、良好な溶着状態を示した。
Using each of Examples 1 to 5 and Comparative Examples 1 to 5, rotational friction welding was performed on the inner surface member 2, and the welded state was evaluated.
In each of Examples 1 to 5, the rotational friction welding could be easily and smoothly performed without any trouble, and as shown in Table 1, a good welded state was shown.

これに対し、比較例1のものでは、テーパ外周部10がなく、しかも鍔部11の厚みが薄いため、回転摩擦圧接の動作途中で鍔部11が軸体4から分離してしまい、溶着不良となった。
また、比較例2のものでは、比較例1のものよりは鍔部11の厚みが大きくされているため、鍔部11における対向面12の一部が注入孔3の周辺部位に溶着されてはいるものの、溶着部の食い込みが浅い等のため、溶着強度が不足しており、剥がれ易く、溶着不良となった。
また、比較例3のものでは、鍔部11がないため、鍔部11があれば働くストッパ機能が得られず、回転摩擦圧接時の押し込みによって軸体4が注入孔3の奥へと突き抜けてしまった。
また、比較例4及び5のものでは、先端側軸部5の係合部8が注入孔3の周縁に係合するものの、先端側軸部5の先導部7がないため、軸体4のラジアル方向に不意に力が作用したときに位置ずれが生ずることがあり、回転摩擦圧接時の回転運動が安定せず、一応溶着するが強度がなく、溶着不良となった。
On the other hand, in the comparative example 1, since there is no tapered outer peripheral portion 10 and the thickness of the flange portion 11 is thin, the flange portion 11 is separated from the shaft body 4 during the operation of the rotary friction welding, resulting in poor welding. It became.
In Comparative Example 2, since the thickness of the flange portion 11 is larger than that in Comparative Example 1, a part of the facing surface 12 of the flange portion 11 is not welded to the peripheral portion of the injection hole 3. However, since the penetration of the welded portion was shallow, the welding strength was insufficient, and it was easy to peel off, resulting in poor welding.
Moreover, since the thing of the comparative example 3 does not have the collar part 11, if the collar part 11 exists, the stopper function which works will not be obtained, but the shaft body 4 penetrates into the back of the injection hole 3 by the pushing at the time of rotational friction welding. Oops.
Moreover, in the comparative examples 4 and 5, although the engaging portion 8 of the distal end side shaft portion 5 is engaged with the peripheral edge of the injection hole 3, the leading end portion 7 of the distal end side shaft portion 5 is not provided. When a force is unexpectedly applied in the radial direction, the position may be displaced, and the rotational motion during the rotary friction welding is not stable, and once welded, but the strength was insufficient, resulting in poor welding.

本発明の閉塞用キャップ並びにそれを用いた閉塞構造及び閉塞方法は、特殊な機械を用いることなく汎用の回転工具等を用いて熱可塑性樹脂成形体等からなる構造体の開口部を容易かつ効率よく閉塞することができるという特性を有していることから、例えば、更生管に形成されたモルタル等の注入孔を閉塞する用途に好適に用いることができる。   The closing cap and the closing structure and closing method using the same according to the present invention can easily and efficiently open an opening of a structure made of a thermoplastic resin molded body using a general-purpose rotary tool or the like without using a special machine. Since it has the characteristic of being able to close well, it can be used suitably for the use which closes injection holes, such as mortar formed in the rehabilitation pipe, for example.

1、1A〜1D 閉塞用キャップ
2 内面部材(熱可塑性樹脂成形体)
3 注入孔(開口部)
4、4A〜4D 軸体
5、5D 先端側軸部
6、6B〜6D 基端側軸部
9、9B〜9D 溶融代部
11 鍔部
15 長方形穴(回転動力受部)
16、16D 溶着部
1, 1A-1D Closing cap 2 Inner surface member (thermoplastic resin molding)
3 injection hole (opening)
4, 4A to 4D Shaft body 5, 5D Tip side shaft portion 6, 6B to 6D Base end side shaft portion 9, 9B to 9D Melting margin portion 11 Hook portion 15 Rectangular hole (rotational power receiving portion)
16, 16D weld

Claims (4)

構造体に形成された開口部を閉塞するための閉塞用キャップであって、開口部の内径よりも大きい外径の溶融代部を有する基端側軸部及びその基端側軸部の先端側に一体的に設けられて開口部に回転可能に挿入される先端側軸部とを有してなる軸体と、この軸体の先端側軸部が開口部に挿入されて溶融代部が開口部の周縁に接触された状態のときに構造体との間に隙間を存するように基端側軸部に一体的に設けられる鍔部とを備え、軸体の先端側軸部を開口部に挿入して溶融代部を開口部の周縁に接触させた状態で軸体を回転させながらその開口部の奥へと押し込む回転摩擦圧接により、溶融代部が開口部の周縁との摩擦熱で溶融するようにしてなることを特徴とする閉塞用キャップ。   A closing cap for closing an opening formed in a structure, the proximal end shaft portion having a fusion margin having an outer diameter larger than the inner diameter of the opening portion, and the distal end side of the proximal end shaft portion And a shaft body having a distal end side shaft portion rotatably inserted into the opening portion, and the distal end side shaft portion of the shaft body is inserted into the opening portion to open the melting margin portion. And a flange portion that is provided integrally with the base end side shaft portion so as to leave a gap with the structure when in contact with the periphery of the portion. Inserting and rotating the shaft body in a state where the melting margin is in contact with the periphery of the opening, while rotating the shaft body, the fusion margin is melted by frictional heat with the periphery of the opening. A cap for closure which is characterized by being made to do so. 軸体の基端側に、回転工具からの回転動力を受け取るための回転動力受部を設けてなることを特徴とする請求項1記載の閉塞用キャップ。   2. The closing cap according to claim 1, wherein a rotational power receiving portion for receiving rotational power from the rotary tool is provided on the proximal end side of the shaft body. 熱可塑性樹脂成形体からなる構造体に形成された開口部を、請求項1又は2記載の閉塞用キャップを用いて閉塞した閉塞構造であって、閉塞用キャップの溶融代部を開口部の周縁に接触させた状態で閉塞用キャップの軸体を回転させながらその開口部の奥へと押し込む回転摩擦圧接を、閉塞用キャップの鍔部が構造体に接触するまで行うことによって形成される溶着部を介して構造体と閉塞用キャップとが接合されていることを特徴とする閉塞構造。   3. A closing structure in which an opening formed in a structure made of a thermoplastic resin molding is closed using the closing cap according to claim 1 or 2, wherein a melting margin of the closing cap is a peripheral edge of the opening. The welded portion formed by rotating frictional pressure welding that pushes the shaft of the closing cap into the back of the opening while rotating the shaft of the closing cap until it comes into contact with the structure. The structure and the closure cap are joined through the closure structure. 熱可塑性樹脂成形体からなる構造体に形成された開口部を、請求項1又は2記載の閉塞用キャップを用いて閉塞する閉塞方法であって、閉塞用キャップの先端側軸部を開口部に挿入して閉塞用キャップの溶融代部を開口部の周縁に接触させ、その後、閉塞用キャップの軸体に回転動力を付与してその軸体を回転させながら開口部の奥へと押し込み、閉塞用キャップの鍔部が構造体に接触させた後、閉塞用キャップの軸体に回転動力を付与するのを止めることを特徴とする閉塞方法。   A closing method for closing an opening formed in a structure made of a thermoplastic resin molded body using the closing cap according to claim 1, wherein the front end side shaft portion of the closing cap is used as the opening. Insert and allow the melting margin of the closing cap to contact the periphery of the opening, and then apply rotational power to the shaft of the closing cap and push it into the opening while rotating the shaft to close it. A closing method, comprising: stopping the application of rotational power to the shaft body of the closing cap after the collar portion of the cap is brought into contact with the structure.
JP2015061380A 2015-03-24 2015-03-24 Method of closing an opening formed in a structure using a closure cap Active JP6548926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015061380A JP6548926B2 (en) 2015-03-24 2015-03-24 Method of closing an opening formed in a structure using a closure cap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015061380A JP6548926B2 (en) 2015-03-24 2015-03-24 Method of closing an opening formed in a structure using a closure cap

Publications (2)

Publication Number Publication Date
JP2016179614A true JP2016179614A (en) 2016-10-13
JP6548926B2 JP6548926B2 (en) 2019-07-24

Family

ID=57131421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015061380A Active JP6548926B2 (en) 2015-03-24 2015-03-24 Method of closing an opening formed in a structure using a closure cap

Country Status (1)

Country Link
JP (1) JP6548926B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021524403A (en) * 2018-07-13 2021-09-13 ウッドウェルディング・アクチェンゲゼルシャフト Fixing connector elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463843A (en) * 1965-09-28 1969-08-26 Leta S Taylor Method of making a float for a liquid level gauge
JPS55121024A (en) * 1979-03-09 1980-09-17 Toyota Motor Corp Weld pin adhered resulting from rotation friction and method of adhering it
JP2001322172A (en) * 2000-05-16 2001-11-20 Showa Marutsutsu Co Ltd Rotary friction welding method, component to be welded, and method for manufacturing container, container body and. cap for container
JP2014162067A (en) * 2013-02-22 2014-09-08 Toyota Boshoku Corp Junction structure of resin member, and junction state inspection method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463843A (en) * 1965-09-28 1969-08-26 Leta S Taylor Method of making a float for a liquid level gauge
JPS55121024A (en) * 1979-03-09 1980-09-17 Toyota Motor Corp Weld pin adhered resulting from rotation friction and method of adhering it
JP2001322172A (en) * 2000-05-16 2001-11-20 Showa Marutsutsu Co Ltd Rotary friction welding method, component to be welded, and method for manufacturing container, container body and. cap for container
JP2014162067A (en) * 2013-02-22 2014-09-08 Toyota Boshoku Corp Junction structure of resin member, and junction state inspection method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021524403A (en) * 2018-07-13 2021-09-13 ウッドウェルディング・アクチェンゲゼルシャフト Fixing connector elements
US11904551B2 (en) 2018-07-13 2024-02-20 Woodwelding Ag Anchoring of connector element

Also Published As

Publication number Publication date
JP6548926B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP5415455B2 (en) Friction plug welding method and system
AU2017239548B2 (en) Mixing and dispensing container
JP6687537B2 (en) Riveting method
US8567032B2 (en) Method for joining metal and plastic workpieces
US9297405B2 (en) Bolt element and a method for the attachment of a bolt element to a component of a composite material
RU2403134C2 (en) Bolt for projection welding and method of its welding
CN109072958B (en) Method and machine for anchoring a connector in a first object
US8043021B2 (en) Fastening element for a friction-welded joint
US20060213954A1 (en) Method and joining element for joining workpieces
JPS62233230A (en) Spin welding method
JPH048217B2 (en)
US10584734B2 (en) Method for producing an adhesive screw connection using a flow drill screw, and composite component produced thereby
JP6119795B2 (en) Metal member joining method and metal member joining structure
NZ215891A (en) End component and cylindrical side wall for container to be joined by spin welding
WO2018224217A1 (en) Housing for an electrical device, having a tightly fitting housing part
US10393165B2 (en) Method for producing an adhesive screw connection using a flow drill screw, and flow drill screw usable therefor
JP2016179614A (en) Clogging cap and clogging structure and clogging method using the same
JP6102813B2 (en) Method of joining metal member and resin member
MX2009000732A (en) Self-tapping drill screw.
JPH0536225B2 (en)
US20160176102A1 (en) Component having an integral bond and a joining method
JP2018083329A (en) Heat calking structure
KR20140045046A (en) A glue container cap having metal pipe
EP3448770B1 (en) Screw cap for large containers
US8608886B2 (en) Method for connecting a first component to a second component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190626

R150 Certificate of patent or registration of utility model

Ref document number: 6548926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250