JP2016178169A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2016178169A
JP2016178169A JP2015056087A JP2015056087A JP2016178169A JP 2016178169 A JP2016178169 A JP 2016178169A JP 2015056087 A JP2015056087 A JP 2015056087A JP 2015056087 A JP2015056087 A JP 2015056087A JP 2016178169 A JP2016178169 A JP 2016178169A
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
reaction
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015056087A
Other languages
Japanese (ja)
Other versions
JP6489478B2 (en
Inventor
新一 荒木
Shinichi Araki
新一 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2015056087A priority Critical patent/JP6489478B2/en
Publication of JP2016178169A publication Critical patent/JP2016178169A/en
Application granted granted Critical
Publication of JP6489478B2 publication Critical patent/JP6489478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device capable of suppressing generation of by-products without using a complicated device.SOLUTION: In a reaction chamber 4 of a semiconductor manufacturing device, a semiconductor substrate 7 is placed. Reaction gas is supplied into the reaction chamber 4 to process a surface of the substrate, and simultaneously, other gas is mixed and reacted with unreacted gas that passed through the reaction chamber 4, at a downstream side of the reaction chamber 4. By the mixed gas, by-products that are likely to be sublimated even at a low temperature are produced, and then, removed by a normal air exhaustion step.SELECTED DRAWING: Figure 1

Description

本発明は半導体装置の製造方法に関し、特に半導体製造装置内に反応ガスを導入して半導体基板表面に加工を施す工程を含む半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device including a step of processing a surface of a semiconductor substrate by introducing a reaction gas into the semiconductor manufacturing device.

半導体装置の製造工程では、半導体基板表面に薄膜を形成する工程やエッチング工程等を繰り返し、所望の半導体装置を形成する。例えば、半導体基板表面に薄膜を形成する一例として、シリコンナイトライド膜を形成する場合がある。一般的にシリコンナイトライド膜は、化学気相成長(CVD)法により形成される。   In the manufacturing process of the semiconductor device, a desired semiconductor device is formed by repeating a process of forming a thin film on the surface of the semiconductor substrate, an etching process, and the like. For example, a silicon nitride film may be formed as an example of forming a thin film on the surface of a semiconductor substrate. Generally, a silicon nitride film is formed by a chemical vapor deposition (CVD) method.

図2は、CVD法により薄膜を形成する際に使用される半導体製造装置の一種である縦型CVD装置の説明図である。石英製のアウターチューブ1の内側に同心状にインナーチューブ2が配置され、ステンレス製のマニホールド3上に載置されている。インナーチューブ2の内側が、成膜反応を行う反応室4となる。この反応室4はアウターチューブ1外側に設置された図示しないヒーターにより加熱される。マニホールド3には、反応室4内部に成膜に必要な反応ガス等を導入するガス導入管5と、インナーチューブ2の外側から未反応の反応ガス等を排出する排気口6が設けられている。排気口6は真空ポンプに接続され、反応室4を減圧、真空に保つことができる。半導体基板7は、ボート8に複数枚載置され、反応室4の所定の位置に設置される。なお、9はボート8を載置する台座であり、10はマニホールド3の開口を密閉する炉口蓋となる。   FIG. 2 is an explanatory view of a vertical CVD apparatus which is a kind of semiconductor manufacturing apparatus used when forming a thin film by the CVD method. An inner tube 2 is disposed concentrically inside the quartz outer tube 1 and placed on a stainless steel manifold 3. The inner side of the inner tube 2 serves as a reaction chamber 4 for performing a film forming reaction. The reaction chamber 4 is heated by a heater (not shown) installed outside the outer tube 1. The manifold 3 is provided with a gas introduction pipe 5 for introducing a reaction gas necessary for film formation into the reaction chamber 4 and an exhaust port 6 for discharging unreacted reaction gas from the outside of the inner tube 2. . The exhaust port 6 is connected to a vacuum pump, and the reaction chamber 4 can be kept under reduced pressure and vacuum. A plurality of semiconductor substrates 7 are mounted on the boat 8 and installed at predetermined positions in the reaction chamber 4. Reference numeral 9 denotes a pedestal on which the boat 8 is placed, and reference numeral 10 denotes a furnace opening lid that seals the opening of the manifold 3.

上記CVD装置を使用して半導体基板7表面に薄膜を形成する場合には、炉口蓋10から半導体基板7を複数枚載置したボート8を台座9と共に反応室4に配置し、炉口蓋10を密閉した後、アウターチューブ1およびインナーチューブ2内を排気、減圧させた後、ガス導入管5から薄膜形成に必要な反応ガスを供給するとともに、所望の圧力、温度に設定することで、半導体基板7表面に薄膜を形成することができる。   When a thin film is formed on the surface of the semiconductor substrate 7 using the CVD apparatus, a boat 8 on which a plurality of semiconductor substrates 7 are placed from the furnace lid 10 is placed in the reaction chamber 4 together with the base 9, and the furnace lid 10 is After sealing, the inside of the outer tube 1 and the inner tube 2 is evacuated and depressurized, and then the reaction gas necessary for forming the thin film is supplied from the gas introduction tube 5 and the semiconductor substrate is set to a desired pressure and temperature. 7 A thin film can be formed on the surface.

所望の薄膜形成後は、ガス導入管5から不活性ガスを導入し、アウターチューブ1およびインナーチューブ2内を不活性ガスで置換した後、常圧に戻し、炉口蓋10からボート8が台座9と共に取り出される。   After the formation of the desired thin film, an inert gas is introduced from the gas introduction pipe 5, the inside of the outer tube 1 and the inner tube 2 is replaced with an inert gas, and then returned to normal pressure. It is taken out with.

ところで、この種のCVD装置では、反応室4内で反応ガスが熱分解して半導体基板7上に薄膜が堆積し、未反応の反応ガス、副生成物、キャリアガスが図中矢印で示すように流れ、排気口6から排気される。その際、排気口6付近は反応室4より低温となるため、副生成物11が管壁に付着してしまうという課題を抱えていた。そこで、付着した副生成物11をエッチング除去するため、上記半導体基板7表面に薄膜を形成する工程とは別にクリーニング工程を、所定間隔で行う必要があった。クリーニング方法の一例は、例えば特許文献1に記載されている。   By the way, in this type of CVD apparatus, the reaction gas is thermally decomposed in the reaction chamber 4 to deposit a thin film on the semiconductor substrate 7, and unreacted reaction gas, by-product, and carrier gas are indicated by arrows in the figure. And exhausted from the exhaust port 6. At that time, the vicinity of the exhaust port 6 is at a lower temperature than the reaction chamber 4, so that the by-product 11 is attached to the tube wall. Therefore, in order to remove the attached by-product 11 by etching, it is necessary to perform a cleaning step at a predetermined interval separately from the step of forming a thin film on the surface of the semiconductor substrate 7. An example of the cleaning method is described in Patent Document 1, for example.

特開2003−193238号公報JP 2003-193238 A

従来の副生成物の除去方法は、半導体装置の製造工程とは別のクリーニング工程を必要としていた。しかしながら、例えばMEMS素子の製造工程において低ストレスの薄膜形成を行う場合、従来の薄膜形成工程と比較すると発生する副生成物の量が多くなり、頻繁に副生成物を除去しなければならないという問題があった。   Conventional by-product removal methods require a cleaning process that is separate from the semiconductor device manufacturing process. However, for example, when forming a low-stress thin film in the manufacturing process of the MEMS element, the amount of by-products generated is larger than that in the conventional thin film forming process, and the by-products must be frequently removed. was there.

例えば、低ストレスの薄膜としてシリコンナイトライド膜を形成する場合、従来方法と同一のガス(例えば、シラン系ガスであるジクロロシラン(SiH2Cl2)ガスとアンモニア(NH3)ガス)を使用する場合には、その組成比を変更して所望のストレスとなるように調整する。具体的には、一般的な半導体装置のパッシベーション膜等に使用されるシリコンナイトライド膜を形成する場合、SiH2Cl2ガスとNH3ガスの流量比(SiH2Cl2/NH3)が0.25〜0.5程度であるのに対し、低ストレスのシリコンナイトライド膜を形成する場合には、5.0を越える流量比で成膜する。 For example, when a silicon nitride film is formed as a low-stress thin film, the same gas as the conventional method (for example, dichlorosilane (SiH 2 Cl 2 ) gas and ammonia (NH 3 ) gas which are silane-based gases) is used. In such a case, the composition ratio is changed and adjusted so as to obtain a desired stress. Specifically, when a silicon nitride film used for a passivation film or the like of a general semiconductor device is formed, the flow rate ratio (SiH 2 Cl 2 / NH 3 ) between SiH 2 Cl 2 gas and NH 3 gas is 0. On the other hand, when a low-stress silicon nitride film is formed, the film is formed at a flow rate ratio exceeding 5.0.

このように、シラン系ガスが過剰に存在する条件で成膜すると、シラン系ガスが反応室3内で消費しきれずに排気されてしまうことになる。その結果、従来に比べて多量の副生成物が発生してしまう。   As described above, when the film is formed under the condition where the silane-based gas is excessively present, the silane-based gas is exhausted without being consumed in the reaction chamber 3. As a result, a large amount of by-products are generated as compared with the conventional case.

しかもシラン系ガスから生成される副生成物は、塩素や塩酸を多量に含むシリコン系ポリマーとなる。そこで真空ポンプへの負担を避けるため、ガストラップを付加する必要があり、装置の複雑化を招いていた。またガストラップを追加することで、減圧経路の抵抗を増大させてしまう。さらに副生成物に塩素や塩酸を含むことからクリーニング工程での作業者の安全確保に留意しなければならない等の問題があった。   Moreover, the by-product generated from the silane gas becomes a silicon polymer containing a large amount of chlorine and hydrochloric acid. Therefore, in order to avoid the burden on the vacuum pump, it is necessary to add a gas trap, resulting in a complicated apparatus. In addition, adding a gas trap increases the resistance of the decompression path. Furthermore, since chlorine and hydrochloric acid are contained in the by-products, there are problems such as having to pay attention to ensuring the safety of workers in the cleaning process.

そこで本願発明は、複雑な装置を使用することなく、副生成物の発生を抑えることができる半導体装置の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can suppress the generation of by-products without using a complicated apparatus.

上記目的を達成するため本願請求項1に係る発明は、半導体製造装置の反応室内に基板を配置する工程と、前記反応室内に反応ガスを供給して前記基板表面に加工を施す工程と、前記反応室の下流側で、前記反応室を通過した前記反応ガスに別のガスを混合させ、該混合されたガスから形成される副生成物を除去する工程とを同時に行うことを特徴とする。   In order to achieve the above object, the invention according to claim 1 of the present application includes a step of placing a substrate in a reaction chamber of a semiconductor manufacturing apparatus, a step of processing a surface of the substrate by supplying a reaction gas into the reaction chamber, A process of mixing another gas with the reaction gas that has passed through the reaction chamber and removing a by-product formed from the mixed gas is performed at the downstream side of the reaction chamber.

本願請求項2に係る発明は、請求項1記載の半導体装置の製造方法において、前記半導体製造装置はCVD装置であり、前記反応室内に反応ガスとしてシラン系ガスとアンモニアガスを供給して前記基板表面に薄膜を形成する工程と、前記反応室の下流側で、前記反応室を通過した前記反応ガスに別のアンモニアガスを混合させ、形成される塩化アンモニウムを除去する工程とを同時に行うことを特徴とする。   The invention according to claim 2 of the present application is the method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor manufacturing apparatus is a CVD apparatus, and a silane-based gas and an ammonia gas are supplied as reaction gases into the reaction chamber to form the substrate. Simultaneously performing a step of forming a thin film on the surface and a step of mixing another ammonia gas with the reaction gas that has passed through the reaction chamber and removing formed ammonium chloride on the downstream side of the reaction chamber. Features.

本願請求項3に係る発明は、請求項2記載の半導体装置の製造方法において、前記塩化アンモニウムを除去する工程は、該塩化アンモニウムが昇華して除去される工程であることを特徴とする。   The invention according to claim 3 of the present application is the method of manufacturing a semiconductor device according to claim 2, wherein the step of removing ammonium chloride is a step of sublimating and removing the ammonium chloride.

本発明の半導体装置の製造方法によれば、薄膜形成等の加工工程とクリーニング工程を同時に行うため、副生成物の堆積を大幅に低減することができる。特に副生成物の発生量が多くなる成膜条件での半導体装置の製造工程で本発明を採用すると効果は大きい。   According to the method for manufacturing a semiconductor device of the present invention, since a processing step such as thin film formation and a cleaning step are performed simultaneously, deposition of by-products can be significantly reduced. In particular, when the present invention is employed in a manufacturing process of a semiconductor device under film forming conditions in which a large amount of by-products is generated, the effect is great.

また本発明を実施するための半導体製造装置は、通常の半導体製造装置に追加のガス導入ができる簡便な構造を追加するのみで良く、ガストラップの用な複雑な構造を追加する必要がないという利点がある。   Moreover, the semiconductor manufacturing apparatus for carrying out the present invention only needs to add a simple structure capable of introducing additional gas to a normal semiconductor manufacturing apparatus, and does not need to add a complicated structure for a gas trap. There are advantages.

本発明の製造方法により生成する副生成物が塩化アンモニウムの場合、昇華により簡便に除去することが可能となる。また、加工工程と同時に行うクリーニング工程だけでは除去しきれずに堆積した場合でも、追加のクリーニングを行うことで昇華させ、あるいは水洗で容易に除去することができるという利点がある。当然ながら追加のクリーニングの頻度は大幅に削減することができるし、副生成物に塩素や塩酸を含まないので、クリーニング工程での作業者の安全確保が容易になるという利点がある。   When the by-product produced by the production method of the present invention is ammonium chloride, it can be easily removed by sublimation. In addition, even when the deposits cannot be completely removed by the cleaning process performed simultaneously with the processing process, there is an advantage that they can be sublimated by additional cleaning or easily removed by washing with water. Of course, the frequency of the additional cleaning can be greatly reduced, and there is an advantage that it is easy to ensure the safety of the worker in the cleaning process because the by-product does not contain chlorine or hydrochloric acid.

本発明に使用する半導体装置であるCVD装置の説明図である。It is explanatory drawing of the CVD apparatus which is a semiconductor device used for this invention. 一般的なCVD装置の説明図である。It is explanatory drawing of a general CVD apparatus.

本願発明は、薄膜の形成やエッチングなど基板表面に加工を施す工程と同時に反応室より下流側では副生成物の堆積を抑制するための処理を行う半導体装置の製造方法となる。以下、本願発明の実施例について詳細に説明する。   The present invention is a method for manufacturing a semiconductor device in which processing for suppressing deposition of by-products is performed downstream of the reaction chamber at the same time as processing of the substrate surface such as thin film formation and etching. Hereinafter, embodiments of the present invention will be described in detail.

本発明の実施例として、薄膜を形成する場合について説明する。具体的には、特に本発明の効果の大きい一例として、低ストレスのシリコンナイトライド膜を形成する場合について説明する。図1に本実施例に使用するCVD装置を示す。図1に示すように従来例で説明したCVD装置同様、石英製のアウターチューブ1の内側に同心状にインナーチューブ2が配置され、ステンレス製のマニホールド3上に載置されている。インナーチューブ2の内側が、成膜反応を行う反応室4となる。この反応室4はアウターチューブ1外側に設置された図示しないヒーターにより加熱される。マニホールド3には、反応室4内部に成膜に必要な反応ガス等を導入するガス導入管5a〜5dと、インナーチューブ2の外側から未反応の反応ガス等を排出する排気口6が設けられている。排気口6は真空ポンプに接続され、反応室4を減圧、真空に保つことができる。半導体基板7は、ボート8に複数枚載置され、反応室4の所定の位置に設置される。なお、9はボート8を載置する台座であり、10はマニホールド3の開口を密閉する炉口蓋となる。   As an example of the present invention, a case where a thin film is formed will be described. Specifically, a case where a low-stress silicon nitride film is formed will be described as an example in which the effect of the present invention is particularly large. FIG. 1 shows a CVD apparatus used in this embodiment. As shown in FIG. 1, an inner tube 2 is disposed concentrically inside a quartz outer tube 1 and placed on a stainless steel manifold 3 as in the CVD apparatus described in the conventional example. The inner side of the inner tube 2 serves as a reaction chamber 4 for performing a film forming reaction. The reaction chamber 4 is heated by a heater (not shown) installed outside the outer tube 1. The manifold 3 is provided with gas introduction pipes 5 a to 5 d for introducing reaction gases necessary for film formation into the reaction chamber 4 and an exhaust port 6 for discharging unreacted reaction gases from the outside of the inner tube 2. ing. The exhaust port 6 is connected to a vacuum pump, and the reaction chamber 4 can be kept under reduced pressure and vacuum. A plurality of semiconductor substrates 7 are mounted on the boat 8 and installed at predetermined positions in the reaction chamber 4. Reference numeral 9 denotes a pedestal on which the boat 8 is placed, and reference numeral 10 denotes a furnace opening lid that seals the opening of the manifold 3.

ここで、本実施例で使用するCVD装置のガス導入管として、反応室4の下流側で反応ガスの供給ができるガス導入管5eが追加されている点が相違している。このガス導入管5eの設置場所は、供給されるガスが反応室4に逆流しない位置に設定される。従って、この条件が満たされれば、図1に示すようにアウターチューブ1とインナーチューブ2の間に限定されず、インナーチューブ2内であっても良い。またその形状も図1に示す形状の他、先端が曲がった形状等種々変更可能である。   Here, a difference is that a gas introduction pipe 5e capable of supplying a reaction gas is added downstream of the reaction chamber 4 as a gas introduction pipe of the CVD apparatus used in this embodiment. The installation place of the gas introduction pipe 5 e is set at a position where the supplied gas does not flow backward into the reaction chamber 4. Therefore, as long as this condition is satisfied, it is not limited between the outer tube 1 and the inner tube 2 as shown in FIG. In addition to the shape shown in FIG. 1, the shape thereof can be variously changed such as a shape with a bent tip.

上記CVD装置を使用して半導体基板7表面に低ストレスのシリコンナイトライド膜を形成する場合、炉口蓋10から半導体基板7を複数枚載置したボート8を台座9と共に反応室4に配置し、炉口蓋10を密閉した後、アウターチューブ1およびインナーチューブ2内を排気、減圧させた後、ガス導入管5a〜5dから薄膜形成に必要な反応ガスを供給すると共に、ガス導入管5eから副生成物を除去するためのガスを供給し、所望の圧力、温度に設定する。   When a low-stress silicon nitride film is formed on the surface of the semiconductor substrate 7 using the CVD apparatus, a boat 8 on which a plurality of semiconductor substrates 7 are placed from the furnace lid 10 is disposed in the reaction chamber 4 together with the base 9. After the furnace lid 10 is sealed, the outer tube 1 and the inner tube 2 are evacuated and depressurized, and then a reaction gas necessary for forming a thin film is supplied from the gas introduction pipes 5a to 5d, and a by-product is produced from the gas introduction pipe 5e. A gas for removing an object is supplied, and a desired pressure and temperature are set.

具体的には、反応ガスとしてガス導入管5a、5bからNH3ガスを、ガス導入管5cからSiH2Cl2ガスをそれぞれ供給し、ガス導入管5dからキャリアガスとして窒素(N2)ガスを供給する。反応ガスは、反応室4内で熱分解され、半導体基板7上にシリコンナイトライド膜が堆積する。 Specifically, NH 3 gas is supplied as the reaction gas from the gas introduction pipes 5a and 5b, SiH 2 Cl 2 gas is supplied from the gas introduction pipe 5c, and nitrogen (N 2 ) gas is supplied as the carrier gas from the gas introduction pipe 5d. Supply. The reaction gas is thermally decomposed in the reaction chamber 4, and a silicon nitride film is deposited on the semiconductor substrate 7.

ここで、低ストレスのシリコンナイトライド膜を形成する場合、SiH2Cl2ガスとNH3ガスの流量は、SiH2Cl2ガスを過剰に導入するのが一般的である。そのため、反応ガスが供給される上流側、即ち図1の台座9に近いCVD装置下部側と、その上流側、即ち図1の台座9から遠いCVD装置上部側では、熱分解反応により消費されるNH3ガスが上流側ほど不足してしまう。そこで、NH3ガスの供給をガス導入管5aに加え、ガス導入管5bからも供給する構成としている。 Here, when a low-stress silicon nitride film is formed, SiH 2 Cl 2 gas and NH 3 gas are generally introduced with an excessive amount of SiH 2 Cl 2 gas. Therefore, the upstream side to which the reaction gas is supplied, that is, the lower side of the CVD apparatus close to the pedestal 9 in FIG. 1 and the upstream side thereof, that is, the upper side of the CVD apparatus far from the pedestal 9 in FIG. The NH 3 gas becomes deficient on the upstream side. Therefore, the NH 3 gas is supplied from the gas introduction pipe 5b in addition to the gas introduction pipe 5a.

このような構成で半導体基板7上に低ストレスのシリコンナイトライド膜が形成された場合、未反応の反応ガスは図中矢印で示すようにインナーチューブ2の外側を通り、排気口6から排気される。従来例で説明したように、SiH2Cl2は、反応室3内で消費しきれずに排気されてしまい多量の副生成物を発生してしまう。そこで本実施例では、未反応の反応ガスにガス導入管5eからNH3ガスを供給する。ここで供給するNH3ガスは、反応室を通過した未反応のNH3ガスおよびSiH2Cl2ガス等と混合した状態で副生成物として塩化アンモニウム(NH4Cl)が形成されるように調整して供給する。この副生成物NH4Clは、150℃程度で昇華する物質であり、通常の排気工程で十分除去可能となる。 When a low-stress silicon nitride film is formed on the semiconductor substrate 7 with such a configuration, the unreacted reaction gas passes through the outside of the inner tube 2 and is exhausted from the exhaust port 6 as indicated by arrows in the figure. The As described in the conventional example, SiH 2 Cl 2 is exhausted without being consumed in the reaction chamber 3 and generates a large amount of by-products. Therefore, in this embodiment, NH 3 gas is supplied from the gas introduction pipe 5e to the unreacted reaction gas. The NH 3 gas supplied here is adjusted so that ammonium chloride (NH 4 Cl) is formed as a by-product in a state where it is mixed with unreacted NH 3 gas and SiH 2 Cl 2 gas that have passed through the reaction chamber. And supply. This by-product NH 4 Cl is a substance that sublimes at about 150 ° C. and can be sufficiently removed by a normal exhaust process.

このように供給されるNH3ガスは、除去が容易な副生成物を形成するために必要な反応ガスとなり、また生成した塩化アンモニウムをキャリアガスとともに除去することにもなる。また、薄膜の生成と共に行う塩化アンモニウムの除去工程だけでは除去しきれずに
排気口6に副生成物11として堆積した場合でも、塩化アンモニウムは昇華させ、あるいは水洗により容易に除去することができる。またその頻度は、従来に比べて大幅に削減することが可能となる。
The NH 3 gas supplied in this manner becomes a reaction gas necessary for forming a by-product that can be easily removed, and the produced ammonium chloride is also removed together with the carrier gas. Further, even when the ammonium chloride cannot be completely removed by the step of removing the ammonium chloride that is performed together with the formation of the thin film, and is deposited as the by-product 11 in the exhaust port 6, the ammonium chloride can be easily sublimated or removed by washing with water. In addition, the frequency can be greatly reduced as compared with the conventional case.

なお、図1に示すようにガス導入管5eを排気経路内に設置する場合、排気経路内でSiH2Cl2はNH3ガスと反応し、不要のパーティクルの発生やガス導入管5e表面にシリコンナイトライド膜の積層等が生じる。そこで、ガス導入管を石英、パイレックス、アルミナ、ボロンナイトライドやシリコンカーバイドなどのセラミックなど、所望の材料で形成するのが望ましい。 As shown in FIG. 1, when the gas introduction pipe 5e is installed in the exhaust path, SiH 2 Cl 2 reacts with the NH 3 gas in the exhaust path, and unnecessary particles are generated and silicon is formed on the surface of the gas introduction pipe 5e. Lamination of a nitride film or the like occurs. Therefore, it is desirable to form the gas introduction tube with a desired material such as quartz, pyrex, alumina, ceramics such as boron nitride and silicon carbide.

以上説明したように本発明では、通常の成膜工程において、成膜のための熱分解反応を阻害しない下流側で、別の反応ガスを供給する構成とするのみで、除去の容易な副生成物を形成し、さらに副生成物の除去を同時に行うことができ、副生成物を除去するためのクリーニングの頻度を大幅に少なくすることが可能なる。   As described above, according to the present invention, in a normal film forming process, by simply supplying another reactive gas on the downstream side that does not inhibit the thermal decomposition reaction for film formation, a by-product that is easy to remove. The product can be formed and the by-product can be removed at the same time, and the frequency of cleaning for removing the by-product can be greatly reduced.

本発明は、上記実施例に限定されず種々変更することが可能である。第1の実施例は、縦型CVD装置の場合について説明したが、横型CVD装置であっても何ら問題ない。また、低ストレスのシリコンナイトライド膜の形成に限るものでもない。さらにCVD装置を用いた成膜の場合に限らず、半導体基板をエッチング加工する際に、下流側にエッチング除去される半導体基板、反応ガス等から生成する副生成物を除去するようなガスを導入すれば、エッチング工程を行っている反応室の下流側で副生成物の発生を抑えることが可能となる。   The present invention is not limited to the above-described embodiments, and various modifications can be made. In the first embodiment, the case of a vertical CVD apparatus has been described, but there is no problem even if it is a horizontal CVD apparatus. Further, the present invention is not limited to the formation of a low stress silicon nitride film. Furthermore, not only in the case of film formation using a CVD apparatus, when etching a semiconductor substrate, a gas that removes by-products generated from the semiconductor substrate, reaction gas, etc. that is removed by etching downstream is introduced. By doing so, it is possible to suppress the generation of by-products on the downstream side of the reaction chamber in which the etching process is performed.

1:アウターチューブ、2:インナーチューブ、3:マニホールド、4:反応室、5、5a〜5e:ガス導入管、6:排気口、7:半導体基板、8:ボート、9:台座、10:炉口蓋、11:副生成物   1: outer tube, 2: inner tube, 3: manifold, 4: reaction chamber, 5, 5a to 5e: gas introduction pipe, 6: exhaust port, 7: semiconductor substrate, 8: boat, 9: pedestal, 10: furnace Palate, 11: by-product

Claims (3)

半導体製造装置の反応室内に基板を配置する工程と、
前記反応室内に反応ガスを供給して前記基板表面に加工を施す工程と、前記反応室の下流側で、前記反応室を通過した前記反応ガスに別のガスを混合させ、該混合されたガスから形成される副生成物を除去する工程とを同時に行うことを特徴とする半導体装置の製造方法。
Placing a substrate in a reaction chamber of a semiconductor manufacturing apparatus;
A step of supplying a reaction gas into the reaction chamber to process the substrate surface; and, on the downstream side of the reaction chamber, another gas is mixed with the reaction gas that has passed through the reaction chamber, and the mixed gas And a step of removing a by-product formed from the semiconductor device.
請求項1記載の半導体装置の製造方法において、
前記半導体製造装置はCVD装置であり、
前記反応室内に反応ガスとしてシラン系ガスとアンモニアガスを供給して前記基板表面に薄膜を形成する工程と、前記反応室の下流側で、前記反応室を通過した前記反応ガスに別のアンモニアガスを混合させ、形成される塩化アンモニウムを除去する工程とを同時に行うことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
The semiconductor manufacturing apparatus is a CVD apparatus,
A step of supplying a silane-based gas and ammonia gas as reaction gases into the reaction chamber to form a thin film on the substrate surface, and another ammonia gas as the reaction gas that has passed through the reaction chamber on the downstream side of the reaction chamber And a step of removing the formed ammonium chloride at the same time.
請求項2記載の半導体装置の製造方法において、
前記塩化アンモニウムを除去する工程は、該塩化アンモニウムが昇華して除去される工程であることを特徴とする半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 2.
The method of manufacturing a semiconductor device, wherein the step of removing ammonium chloride is a step of removing ammonium chloride by sublimation.
JP2015056087A 2015-03-19 2015-03-19 Manufacturing method of semiconductor device Active JP6489478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015056087A JP6489478B2 (en) 2015-03-19 2015-03-19 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015056087A JP6489478B2 (en) 2015-03-19 2015-03-19 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2016178169A true JP2016178169A (en) 2016-10-06
JP6489478B2 JP6489478B2 (en) 2019-03-27

Family

ID=57071357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056087A Active JP6489478B2 (en) 2015-03-19 2015-03-19 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP6489478B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007097A (en) * 1999-06-24 2001-01-12 Nec Corp Apparatus and method for forming silicon nitride film
JP2002334869A (en) * 2001-02-07 2002-11-22 Tokyo Electron Ltd Method and device for forming silicon nitride film, and method for preprocessing of cleaning thereof
JP2012069844A (en) * 2010-09-27 2012-04-05 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device and substrate processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007097A (en) * 1999-06-24 2001-01-12 Nec Corp Apparatus and method for forming silicon nitride film
JP2002334869A (en) * 2001-02-07 2002-11-22 Tokyo Electron Ltd Method and device for forming silicon nitride film, and method for preprocessing of cleaning thereof
JP2012069844A (en) * 2010-09-27 2012-04-05 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device and substrate processing apparatus

Also Published As

Publication number Publication date
JP6489478B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
KR20230119083A (en) Method and system for treatment of deposition reactor
CN104853855B (en) Process and method for in-situ dry cleaning of thin film deposition reactors and thin film layers
JP2637265B2 (en) Method of forming silicon nitride film
US9670580B2 (en) MOCVD layer growth method with subsequent multi-stage cleaning step
US10262863B2 (en) Method for manufacturing SiC epitaxial wafer by simultaneously utilizing an N-based gas and a CI-based gas, and SiC epitaxial growth apparatus
JP2004311929A (en) Cleaning method for thin film forming apparatus, thin film forming method, and thin film forming apparatus
JP6529927B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2008112973A (en) Washing method for thin film formation apparatus, thin film formation method, and thin film formation device
US20190122880A1 (en) Method for washing semiconductor manufacturing apparatus component, apparatus for washing semiconductor manufacturing apparatus component, and vapor phase growth apparatus
JP2011233583A (en) Vapor-phase growth device and method of manufacturing silicon epitaxial wafer
TWI749278B (en) Vertical type heat treatment device
US7727483B2 (en) Reactor for chlorosilane compound
JP2007039272A (en) Hydride vapor growth system, method for producing group iii nitride semiconductor substrate and group iii nitride semiconductor substrate
JP2018529605A (en) Fluidized bed reactor and method for producing polycrystalline silicon granules
JP2009064913A (en) Substrate processing apparatus and method for manufacturing semiconductor device
JP6489478B2 (en) Manufacturing method of semiconductor device
KR101909430B1 (en) Apparatus and method for treating gas powder for semicouductor process system
JP5197554B2 (en) Thin film forming apparatus cleaning method and thin film forming method
TWI602944B (en) Method of forming carbon-containing silicon film
JP6302379B2 (en) Substrate processing apparatus and processing gas generator
JP5370209B2 (en) Manufacturing method of silicon epitaxial wafer
JP4804354B2 (en) Chlorosilane reactor
JP2019508586A (en) Method of depositing in situ coating on the thermally and chemically loaded components of a fluid bed reactor for producing high purity polysilicon
JP2022017028A (en) Exhaust treatment method and method for producing silicon carbide polycrystalline wafer
JP2020190014A (en) Film formation method, film formation apparatus, and method for cleaning treatment vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190215

R150 Certificate of patent or registration of utility model

Ref document number: 6489478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250