JP2016177117A - Thin plate-like sound absorbing structure and method of manufacturing the same - Google Patents

Thin plate-like sound absorbing structure and method of manufacturing the same Download PDF

Info

Publication number
JP2016177117A
JP2016177117A JP2015057203A JP2015057203A JP2016177117A JP 2016177117 A JP2016177117 A JP 2016177117A JP 2015057203 A JP2015057203 A JP 2015057203A JP 2015057203 A JP2015057203 A JP 2015057203A JP 2016177117 A JP2016177117 A JP 2016177117A
Authority
JP
Japan
Prior art keywords
sheet
sound absorbing
absorbing structure
sound
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015057203A
Other languages
Japanese (ja)
Other versions
JP6421062B2 (en
Inventor
克己 櫂谷
Katsumi Kaitani
克己 櫂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015057203A priority Critical patent/JP6421062B2/en
Publication of JP2016177117A publication Critical patent/JP2016177117A/en
Application granted granted Critical
Publication of JP6421062B2 publication Critical patent/JP6421062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thin plate-like sound absorbing structure that absorbs low and high frequency noise from a sound generating source, and a method of consecutively and inexpensively manufacturing the sound absorbing structure.SOLUTION: A thin plate-like sound absorbing structure includes: a porous sheet provided with a large number of through holes; an airtight sheet that blocks passage of air; and a center seat having a pulsed side surface interposed between the porous sheet and the airtight sheet. The center sheet has a plurality of different half-value widths. In the sound absorbing structure, an elongated converging space and an enclosed space are repeated while being in parallel in a length direction, and a large number of through holes are provided in one side wall of the individual enclosed space.SELECTED DRAWING: Figure 1

Description

本発明は、音発生源からの低周波および高周波の騒音を吸収する薄板状の吸音構造体に関し、さらに長寸の吸音構造体を連続的に安価に製造するための方法に関する。   The present invention relates to a thin plate-like sound absorbing structure that absorbs low-frequency and high-frequency noise from a sound generation source, and further relates to a method for continuously manufacturing a long sound-absorbing structure at a low cost.

吸音材は、種々の騒音源が存在する都市において、都市生活者が快適な日々を送るための必須の商品になっている。例えば、特開2002−243211号に開示の吸音材は、エアコンの圧縮機を被う遮音カバーの内側に複数のヘルムホルツ共鳴器を形成した構造であり、該圧縮機の外周部に配置できるように遮音カバーを円筒状に構成する。また、特開2008−138505号および特開2010−61078号は、遮音壁として電車や自動車から発生する騒音を防ぐために、鉄道施設や高速道路の周囲に設置されている。   The sound absorbing material is an indispensable commodity for a city person to spend a comfortable day in a city where various noise sources exist. For example, the sound absorbing material disclosed in Japanese Patent Application Laid-Open No. 2002-243111 has a structure in which a plurality of Helmholtz resonators are formed inside a sound insulation cover that covers a compressor of an air conditioner, so that the sound absorbing material can be disposed on the outer periphery of the compressor. The sound insulation cover is formed in a cylindrical shape. JP 2008-138505 A and JP 2010-61078 A are installed around railway facilities and highways in order to prevent noise generated from trains and automobiles as sound insulation walls.

吸音材は、各種の建物の壁面に組み込む場合もあり、コンサートホールや会議室などにおいて、楽音の不要な干渉を防いだり、隣接する部屋への声音漏れを防止できる。この種の吸音材は、一般に5cm前後の厚みを有するけれども、厚みが0.5mm程度の薄板状であれば、CPUファン、ハードディスクファンやビデオカードファンの音が大きいパソコンのケース内壁面に敷設したり、個別騒音源である電気掃除機や芝刈り機などの機器内部に取り付けることも可能になる。   In some cases, the sound absorbing material is incorporated into the walls of various buildings, and in concert halls and conference rooms, it is possible to prevent unnecessary interference of musical sounds and to prevent voice sound leakage to adjacent rooms. This type of sound-absorbing material generally has a thickness of about 5 cm, but if it is a thin plate with a thickness of about 0.5 mm, it is laid on the inner wall of a PC case where the sound from a CPU fan, hard disk fan or video card fan is loud. It can also be installed inside devices such as vacuum cleaners and lawn mowers that are individual noise sources.

特開2002−243211号公報JP 2002243321 A 特開2008−138505号公報JP 2008-138505 A 特開2010−61078号公報JP 2010-61078 A

特開2002−243211号に開示の吸音材は、オリフィス孔を設けた複数の内部ケースを遮音カバーの内側に設置し、吸音材の厚み自体はそれほど大きくない。この内部ケースは、ヘルムホルツの共鳴理論によって特定の周波数帯域の音を共鳴吸収し、オリフィス孔の厚さおよびケース内部の空気室の体積を変えることで個々の周波数帯域の音を吸収できる。この吸音材は、異なる寸法の内部ケースを1個ずつ製作して遮音カバーに取り付けるために製造作業が煩雑でコスト高になるうえに、ヘルムホルツの共鳴理論だけで音を吸収し、空気の振動には減衰性が殆ど生じないので、モータから発生する騒音を十分に吸収することは困難である。   In the sound absorbing material disclosed in Japanese Patent Laid-Open No. 2002-243211, a plurality of inner cases provided with orifice holes are installed inside the sound insulating cover, and the thickness of the sound absorbing material itself is not so large. The inner case resonates and absorbs sound of a specific frequency band by Helmholtz resonance theory, and can absorb sound of individual frequency bands by changing the thickness of the orifice hole and the volume of the air chamber inside the case. This sound-absorbing material is complicated and expensive because it produces individual inner cases with different dimensions and attaches them to the sound insulation cover. In addition, it absorbs sound using Helmholtz's resonance theory alone and absorbs air vibration. Is hardly attenuated, it is difficult to sufficiently absorb the noise generated from the motor.

一方、特開2008−138505号および特開2010−61078号は、高さの異なる複数の矩形枠材を収納した箱体からなり、該箱体の全体厚は使用枠材の厚みの合計になる。特開2008−138505号では、例えば、3枚の枠材の厚みは15mm、30mm、53mmであり、厚みを合算すると98mmになり、箱体の全体厚はその板厚を加えると100mmに達する。特開2010−61078号では、2枚の枠材における側壁幅はh3とh4であり、具体的な数値は不明であっても、箱体の全体厚はその板厚を加えるとかなりの値に達するものと推定できる。   On the other hand, Japanese Patent Application Laid-Open No. 2008-138505 and Japanese Patent Application Laid-Open No. 2010-61078 are composed of a box body that stores a plurality of rectangular frame materials having different heights, and the total thickness of the box body is the sum of the thicknesses of the frame materials used. . In Japanese Patent Application Laid-Open No. 2008-138505, for example, the thicknesses of three frame members are 15 mm, 30 mm, and 53 mm, and the total thickness is 98 mm, and the total thickness of the box reaches 100 mm when the plate thickness is added. In Japanese Patent Application Laid-Open No. 2010-61078, the side wall widths of the two frame members are h3 and h4. Even if the specific numerical values are unknown, the total thickness of the box is considerably increased by adding the plate thickness. Can be estimated.

前記の吸音材は、前述したように厚みが相当に大きいので、その用途は高速道路の周囲に設置する遮音壁に限られるであろう。また、この吸音材は、2枚の矩形枠材間ごとにアルミニウム板のような多孔板の周囲を挟着するので、その寸法にある程度の限界が生じ、長さ数メートルに達するような大きいものを製作することは実際上困難である。このため、道路の遮音壁に適用する場合には、多数枚の吸音材を組み合わせて配置することが必要であり、1枚の吸音材でもかなりの製造費用であるから、遮音壁全体としては非常にコスト高になってしまう。   Since the sound absorbing material has a considerably large thickness as described above, its use will be limited to the sound insulation wall installed around the highway. In addition, since this sound absorbing material sandwiches the periphery of a porous plate such as an aluminum plate between two rectangular frame members, the size of the sound absorbing material is limited to a certain extent, and is large enough to reach several meters in length. It is practically difficult to manufacture. For this reason, when applied to a sound insulation wall on a road, it is necessary to arrange a plurality of sound absorbing materials in combination, and even a single sound absorbing material is a considerable manufacturing cost, so the sound insulating wall as a whole is very expensive. It becomes high.

本発明は、従来の吸音材に関する前記の問題点を改善するために提案されたものであり、薄板状の構造であるので、道路の遮音壁のほかに自動車などの乗物や建物の壁面内部に配置して取り付けて音発生源からの騒音を吸収できる安価な吸音構造体を提供することを目的としている。本発明の他の目的は、低周波数から高周波数の音が存在する騒音を効果的に吸収する吸音構造体を提供することである。本発明の別の目的は、大きな寸法であっても最終製品まで効率良く製造できる吸音構造体の製造法を提供することである。   The present invention has been proposed in order to improve the above-mentioned problems associated with conventional sound-absorbing materials, and has a thin plate-like structure. Therefore, the present invention is disposed inside the walls of vehicles and vehicles such as automobiles in addition to sound-insulating walls of roads. It is an object of the present invention to provide an inexpensive sound absorbing structure that can be attached to absorb noise from a sound source. Another object of the present invention is to provide a sound absorbing structure that effectively absorbs noise in which low to high frequency sounds exist. Another object of the present invention is to provide a method of manufacturing a sound absorbing structure that can be efficiently manufactured to a final product even with a large size.

本発明に係る薄板状の吸音構造体は、多数の貫通孔を設けた多孔シートと、空気の通過を遮断する気密シートと、該多孔シートと気密シートとの間に介在させるパルス状側面の中心シートとを備える。この中心シートは複数の異なる半値幅を有し、該中心シートを多孔シートおよび気密シートに平行線状に接着することにより、吸音構造体の内部において細長い収束空間および囲繞空間が長さ方向に並列しながら繰り返し、個々の囲繞空間における一方の側壁に多数の貫通孔を設けている。   The thin plate-like sound absorbing structure according to the present invention includes a porous sheet provided with a large number of through holes, an airtight sheet that blocks passage of air, and the center of a pulsed side surface interposed between the porous sheet and the airtight sheet. A sheet. The central sheet has a plurality of different half-value widths, and by adhering the central sheet to the perforated sheet and the airtight sheet in parallel lines, the elongated converging space and the surrounding space are arranged in parallel in the length direction inside the sound absorbing structure. However, a number of through holes are provided in one side wall of each surrounding space.

本発明の吸音構造体において、多孔シートとして凹凸面を有するシートを用いると好ましく、この多孔シートの凹状裏面と中心シートの上方平面との間に第3空気層が存在し、第3空気層の存在によって比較的高周波の音を吸収できる。好ましくは、多孔シートは、幅0.3〜1mmの任意の形状の貫通孔を有し、該多孔シートの開孔率は70〜80%であり、一方、吸音構造体の囲繞空間の側壁には直径0.5〜1mmの円形貫通孔を設け、その側壁の開孔率を40〜50%に定める。また、中心シートは、その側面が台形、波形および方形のいずれかのシートであり、吸音構造体の全体厚さは3〜6mmである。   In the sound-absorbing structure of the present invention, it is preferable to use a sheet having an uneven surface as the porous sheet. A third air layer exists between the concave back surface of the porous sheet and the upper plane of the center sheet. The presence can absorb relatively high frequency sound. Preferably, the porous sheet has a through hole having an arbitrary shape with a width of 0.3 to 1 mm, and the opening ratio of the porous sheet is 70 to 80%, while on the side wall of the surrounding space of the sound absorbing structure. Provides a circular through hole with a diameter of 0.5 to 1 mm, and the opening ratio of the side wall is set to 40 to 50%. Further, the side surface of the center sheet is a trapezoidal, corrugated or rectangular sheet, and the total thickness of the sound absorbing structure is 3 to 6 mm.

本発明に係る吸音構造体の製造法では、平坦な薄肉シートを1対の穴開けローラ間に通して、該シートにおいて貫通孔の群を平行帯状に繰り返し設け、次にこの薄肉シートを加熱しながら1対の歯形ローラ間に通して、該シートを凹凸状に折り曲げて中心シートを作製する。これによって、中心シートの半値幅部の一方の側壁だけに貫通孔が存在することになり、この中心シートに対して上方から多孔シートをおよび下方から気密シートを送り込み、該中心シートを多孔シートおよび気密シートにそれぞれ接着する。   In the method for producing a sound absorbing structure according to the present invention, a flat thin sheet is passed between a pair of perforating rollers, and a group of through holes are repeatedly provided in a parallel strip shape on the sheet, and then the thin sheet is heated. Then, the sheet is passed through a pair of tooth-shaped rollers, and the sheet is bent into an uneven shape to produce a center sheet. As a result, a through-hole exists only on one side wall of the half width portion of the center sheet, and a porous sheet is fed into the center sheet from above and an airtight sheet from below. Adhere to each airtight sheet.

本発明の吸音構造体の製造法において、多孔シートを1対の環状溝ローラに通して凹凸面を形成し、この凹凸多孔シートを中心シートへ送り込んで接着すると好ましい。   In the method for producing a sound-absorbing structure of the present invention, it is preferable that the porous sheet is passed through a pair of annular groove rollers to form an uneven surface, and the uneven porous sheet is sent to the central sheet and bonded.

本発明に係る吸音構造体は、全厚が3〜6mmであり、厚さ5cm前後が多い従来の吸音材と比べると遙かに薄い。このため、本発明の吸音構造体は、遮音壁として鉄道施設や高速道路の周囲に設置できるだけでなく、自動車や電車などの内装防音部品、建物の壁面内の防音材などとして使用でき、さらにパソコンのケース内壁面に敷設したり、電気掃除機や芝刈り機などの機器内部に取り付けることもできる。   The sound absorbing structure according to the present invention has a total thickness of 3 to 6 mm and is much thinner than a conventional sound absorbing material having a thickness of around 5 cm. For this reason, the sound absorbing structure of the present invention can be used not only as a sound insulation wall around a railway facility or highway, but also as an interior soundproof part such as an automobile or a train, a soundproof material in the wall of a building, etc. It can also be laid on the inner wall of the case or installed inside equipment such as a vacuum cleaner or lawn mower.

本発明の吸音構造体において、多孔シートは平坦なものだけでなく、凹凸断面を有するシートも用いることができる。凹凸断面を有する多孔シートを接着すると、その凹状裏面と中心シートの上方平面との間に第3空気層が形成され、この空気層の存在によって本発明の吸音構造体に入った音の反射と屈折が多くなり、4kHz近辺の高周波数の音も十分に吸収できる。例えば、鉄道列車では騒音源の主たる周波数帯域が400〜4kHzであり、高速道路の騒音は250〜4kHzが主たる周波数帯域であるため、これらの帯域の音を本発明の吸音構造体で吸音すると騒音を十分に低減化できる。   In the sound absorbing structure of the present invention, not only a flat sheet but also a sheet having an uneven cross section can be used. When a porous sheet having a concavo-convex cross section is bonded, a third air layer is formed between the concave back surface and the upper plane of the center sheet, and the presence of this air layer reflects the sound that enters the sound absorbing structure of the present invention. Refraction is increased, and high frequency sounds around 4 kHz can be sufficiently absorbed. For example, since the main frequency band of a noise source is 400 to 4 kHz in a railway train and the main frequency band is 250 to 4 kHz in a highway, noise is generated when sound in these bands is absorbed by the sound absorbing structure of the present invention. Can be sufficiently reduced.

本発明に係る吸音構造体は、例えば、約2×500mのような寸法でも1枚で製造可能であり、寸法を大きくすることで遮音壁のような面積の大きい場所でも使用枚数を少なくでき、継ぎ目なし施工も可能であるから取付作業が容易になる。また、本発明の吸音構造体が軟質のプラスチック製であると、薄肉であるのである程度曲げることができ、道路遮音壁の湾曲部や騒音源の全体を取り囲む円筒形などにも変形可能である。   The sound-absorbing structure according to the present invention can be manufactured even with a size of about 2 × 500 m, for example, and by increasing the size, the number of use can be reduced even in a place with a large area such as a sound insulation wall. Since no construction is possible, installation work becomes easy. Further, if the sound absorbing structure of the present invention is made of soft plastic, it can be bent to some extent because it is thin, and can be deformed into a cylindrical shape surrounding the curved portion of the road sound insulating wall and the entire noise source.

本発明に係る製造法では、吸音構造体を連続的に製造でき、その長さが500m前後に達しても連続製造が可能であるうえに、その製造に用いる板材などの部品は比較的安価であり、その部品数も少なくてよい。したがって、本発明の製造法を利用すると、従来のような箱体の吸音材を製造する場合に比べて遙かに迅速に製造でき、しかも圧倒的に安価に製造することが可能である。   In the manufacturing method according to the present invention, the sound absorbing structure can be manufactured continuously, and can be continuously manufactured even when its length reaches about 500 m, and the parts such as plate materials used for the manufacturing are relatively inexpensive. Yes, the number of parts may be small. Therefore, when the manufacturing method of the present invention is used, it can be manufactured much more quickly than in the case of manufacturing a box-shaped sound absorbing material as in the prior art, and can be manufactured at an overwhelmingly low cost.

本発明に係る吸音構造体の一例を示す拡大断面図である。It is an expanded sectional view showing an example of a sound absorption structure concerning the present invention. 本発明の変形例として、パルス状側面の表面多孔シートを接着した吸音構造体を示す側面図である。It is a side view which shows the sound-absorbing structure which adhere | attached the surface porous sheet of the pulse-shaped side surface as a modification of this invention. 図2の吸音構造体を正面から見た端面図である。It is the end elevation which looked at the sound absorption structure of Drawing 2 from the front. 市松模様状の凹凸表面を有する多孔シートを示す平面図である。It is a top view which shows the porous sheet which has the checkered pattern-like uneven | corrugated surface. 薄肉シートから台形側面の中心シートに加工する工程を示す概略説明図である。It is a schematic explanatory drawing which shows the process processed into a center sheet | seat of a trapezoid side surface from a thin sheet | seat. 台形側面の中心シートの上下面に多孔シートおよび気密シートを接着する工程を示す概略説明図である。It is a schematic explanatory drawing which shows the process of adhere | attaching a porous sheet and an airtight sheet | seat on the upper and lower surfaces of the center sheet | seat of a trapezoid side surface. 1対の穴開けローラを通過した後の薄肉シートを示す部分平面図であり、該薄肉シートは凹凸加工の後に中心シートになる。It is a fragmentary top view which shows the thin sheet after passing a pair of punching rollers, and this thin sheet becomes a center sheet after uneven | corrugated processing. パルス状側面の中心シートから吸音構造体を製造するまでを示す概略説明図である。It is a schematic explanatory drawing which shows until it manufactures a sound absorption structure from the center sheet | seat of a pulse-shaped side surface. 本発明の実施例における吸音構造体に関する吸音率を示すグラフである。It is a graph which shows the sound absorption rate regarding the sound absorption structure in the Example of this invention.

本発明に係る吸音構造体1は、図1に示すように、多数の貫通孔2を設けた多孔シート3と、空気の通過を遮断する気密シート5と、多孔シート3と気密シート5との間に介在させるパルス状側面の中心シート7とからなる。多孔シート3、気密シート5および中心シート7は、吸収すべき音の周波数帯域に応じて厚みが定められ、通常、同一または異なる厚さ0.2〜0.5mm程度の薄板材であればよい。   As shown in FIG. 1, the sound absorbing structure 1 according to the present invention includes a porous sheet 3 provided with a large number of through holes 2, an airtight sheet 5 that blocks passage of air, and a porous sheet 3 and an airtight sheet 5. It consists of a central sheet 7 with a pulse-like side surface interposed therebetween. The thickness of the porous sheet 3, the airtight sheet 5 and the center sheet 7 is determined according to the frequency band of the sound to be absorbed, and is usually a thin plate material having the same or different thickness of about 0.2 to 0.5 mm. .

多孔シート3、気密シート5および中心シート7の素材は、ポリプロピレンやポリエチレンのようなポリオレフィン類、ポリアミド、ポリエステルなどを含むプラスチックまたはFRPのような難燃プラスチック、アルミニウムやステンレス鋼板などの金属板、板紙、薄板木材などである。使用シート素材は、吸音構造体1を設置する環境に応じて定められ、例えば、高温環境では難燃プラスチックや金属板を用い、コスト重視ならばポリプロピレンなどのポリオレフィン類を用いる。   The material of the porous sheet 3, the airtight sheet 5 and the center sheet 7 is made of polyolefins such as polypropylene and polyethylene, polyamide, polyester, or other flame retardant plastic such as FRP, metal plate such as aluminum or stainless steel plate, paperboard For example, thin wood. The sheet material to be used is determined according to the environment in which the sound absorbing structure 1 is installed. For example, a flame retardant plastic or a metal plate is used in a high temperature environment, and a polyolefin such as polypropylene is used if cost is important.

図1の吸音構造体1において、平坦な多孔シート3には、幅0.3〜1mmである多数の貫通孔2を設けると好ましく、該貫通孔の平面形状は円形や角形などの任意の形状であり、複数の平面形状の貫通孔が混在していてもよい。貫通孔2の幅が0.3mm未満であると多孔シート3を通過する音が少なくなり、幅1mmを超えると音が直進しやすくなって音の屈折と反射が低下する。多孔シート3の開孔率はシート全面において70〜80%であり、開孔率70%未満では所定の周波数の音の吸音率を一定以上に高くすることができず、開孔率が80%を超えると音の屈折による空気振動の減衰化を大きくしにくい。   In the sound-absorbing structure 1 of FIG. 1, it is preferable that the flat porous sheet 3 is provided with a large number of through holes 2 having a width of 0.3 to 1 mm, and the planar shape of the through holes is an arbitrary shape such as a circle or a square. In addition, a plurality of planar through holes may be mixed. When the width of the through hole 2 is less than 0.3 mm, the sound passing through the porous sheet 3 is reduced, and when the width exceeds 1 mm, the sound is likely to go straight and the refraction and reflection of the sound are reduced. The aperture ratio of the porous sheet 3 is 70 to 80% over the entire surface of the sheet. If the aperture ratio is less than 70%, the sound absorption rate of the sound with a predetermined frequency cannot be increased to a certain level, and the aperture ratio is 80%. Exceeding this makes it difficult to increase the attenuation of air vibration due to refraction of sound.

多孔シート3は、中心シート7に平行線状に接着されることにより、音が貫通孔2を通過する際に、該中心シートに確実に保持されることになり、音圧による多孔シート7の振動が抑制され、吸音性能の低下を防止することができる。また、気密シート5は、空気の通過を遮断することを要するので貫通孔を設けておらず、通常、多孔シート3と同一の厚みおよび素材からなる。   The porous sheet 3 is adhered to the central sheet 7 in a parallel line shape, so that when the sound passes through the through hole 2, the porous sheet 3 is securely held by the central sheet, Vibration is suppressed, and a decrease in sound absorption performance can be prevented. Further, the airtight sheet 5 is not provided with a through-hole because it is necessary to block the passage of air, and is usually made of the same thickness and material as the porous sheet 3.

中心シート7は、図示のようなパルス状側面を有し、その側面形状は台形、波形、三角波形、方形のいずれでもよく、このパルス状側面を図1のように長手方向または交差方向に形成すればよい。図1に示す中心シート7は、台形側面を有し、その上頂点8の平坦部で多孔シート3に接着するので、該多孔シートの場合には開孔率は接着時に低下する。中心シート7の立脚壁部は、好ましくは、水平面に対して約60度の角度であると、音が収束空間12から囲繞空間14へ通過しやすいけれども、方形側面のように水平面に対して90度の角度であっても、多孔シート3から収束空間12に入った音波が小径の貫通孔16である細い隙間を通過する時に屈折するため、この屈折を利用すると、側壁が直角でも音を曲げて吸音でき、中心シート7として使用可能である。   The central sheet 7 has a pulse-shaped side surface as shown in the figure, and the side surface shape may be any of a trapezoidal shape, a corrugated shape, a triangular waveform, and a square shape, and the pulse-shaped side surface is formed in the longitudinal direction or the crossing direction as shown in FIG. do it. The center sheet 7 shown in FIG. 1 has a trapezoidal side surface, and adheres to the porous sheet 3 at the flat portion of the top vertex 8 thereof. Therefore, in the case of the porous sheet, the hole area ratio decreases at the time of bonding. The standing wall portion of the center sheet 7 preferably has an angle of about 60 degrees with respect to the horizontal plane, but the sound is easy to pass from the convergence space 12 to the surrounding space 14, but it is 90 ° with respect to the horizontal plane like a rectangular side surface. Even if the angle is at a degree, the sound wave entering the converging space 12 from the perforated sheet 3 is refracted when passing through a narrow gap, which is a small-diameter through-hole 16, so if this refraction is used, the sound is bent even if the side wall is at right angles. Can be used as the center sheet 7.

中心シート7は、その上頂点8において多孔シート3に平行線状に接着され、その下頂点10において気密シート5に平行線状に接着されることにより、吸音構造体1の内部において細長い収束空間12および囲繞空間14が長さ方向に並列しながら繰り返す。個々の囲繞空間14は、両側壁16,18を有し、その一方の側壁16だけに多数の貫通孔20を設け、該貫通孔を経て囲繞空間14は収束空間12と連通する。このため、貫通孔20の群は中心シート7の一部に横帯状に設けられる(図7参照)。   The central sheet 7 is bonded in parallel lines to the porous sheet 3 at the upper vertex 8 and is bonded to the airtight sheet 5 in the lower vertex 10 so as to be elongated in the interior of the sound absorbing structure 1. 12 and the surrounding space 14 are repeated in parallel in the length direction. Each surrounding space 14 has both side walls 16, 18. A large number of through holes 20 are provided only on one side wall 16, and the surrounding space 14 communicates with the converging space 12 through the through holes. For this reason, the group of the through-holes 20 is provided in a part of the center sheet 7 in a horizontal band shape (see FIG. 7).

収束空間12および囲繞空間14は、吸音構造体1の長さ方向に並列することで該構造体の薄さを維持する。収束空間12および囲繞空間14は、吸音構造体1の厚みが小さいことによって単位面積は小さいけれども、該吸音構造体の横幅(例えば2m)に相当する長さを有するので、その空間に含まれる空気量は従来の吸音材とほぼ同程度である。囲繞空間14は、多数の貫通孔20を介して収束空間12と連通することにより、該収束空間に入った音の反射と屈折を増やし、空気振動による減衰化を大きくする。   The convergence space 12 and the surrounding space 14 are arranged in parallel in the length direction of the sound absorbing structure 1 to maintain the thinness of the structure. The convergence space 12 and the surrounding space 14 have a length corresponding to the lateral width (for example, 2 m) of the sound absorbing structure although the unit area is small due to the small thickness of the sound absorbing structure 1. The amount is almost the same as the conventional sound absorbing material. The surrounding space 14 communicates with the converging space 12 through a large number of through holes 20 to increase reflection and refraction of sound entering the converging space and increase attenuation due to air vibration.

囲繞空間14の側壁16には、直径0.5〜1mmの貫通孔20を設け、該貫通孔は円形平面であることが望ましい。貫通孔20の直径は、0.5mm未満であると音が収束空間12から囲繞空間14へ流入しにくくなり、1mmを超えると収束空間12における音の屈折が低下する。側壁16の開孔率は40〜50%に定めると好ましく、開孔率40%未満では収束空間12から囲繞空間14への音の流入が少なくなり、開孔率が80%を超えると所定の周波数の音の吸音率を一定以上に高くすることができない。   A through hole 20 having a diameter of 0.5 to 1 mm is provided in the side wall 16 of the surrounding space 14, and the through hole is preferably a circular plane. If the diameter of the through hole 20 is less than 0.5 mm, it is difficult for sound to flow from the converging space 12 to the surrounding space 14, and if it exceeds 1 mm, sound refraction in the converging space 12 decreases. The opening rate of the side wall 16 is preferably set to 40 to 50%. When the opening rate is less than 40%, sound flows from the convergence space 12 into the surrounding space 14 less, and when the opening rate exceeds 80%, a predetermined amount is obtained. The sound absorption rate of the frequency sound cannot be increased beyond a certain level.

パルス状側面の中心シート7は、複数の異なる半値幅を有するため、個々の収束空間12および囲繞空間14は複数の異なる横幅の組み合わせにすればよい。例えば、周波数帯域100〜1kHzの音を吸収するには、収束空間12は、下横幅1.3〜2.0mmから0.5mmずつの増加でa、b、c、dを定め、当該収束空間と連通する囲繞空間14は、上横幅0.8〜1.5mmから0.5mmずつの増加でe、f、g、hを定めればよく、この上下横幅で長さ方向に繰り返していく。一般に、囲繞空間14は、収束空間12よりも単位面積を小さく定め、これによって囲繞空間14の空気層での音の屈折をいっそう増加させる。   Since the central sheet 7 on the pulse-shaped side surface has a plurality of different half widths, the individual converging space 12 and the surrounding space 14 may be a combination of a plurality of different lateral widths. For example, in order to absorb sound having a frequency band of 100 to 1 kHz, the convergence space 12 determines a, b, c, and d in increments of 0.5 mm from the lower lateral width of 1.3 to 2.0 mm, and the convergence space. The surrounding space 14 that communicates with each other may be determined by increasing e, f, g, and h in increments of 0.5 mm from an upper horizontal width of 0.8 to 1.5 mm, and repeats in the length direction with this vertical width. In general, the surrounding space 14 has a smaller unit area than the convergence space 12, thereby further increasing the refraction of sound in the air layer of the surrounding space 14.

収束空間12および囲繞空間14について、個々の下横幅および上横幅は前記の増加幅範囲に定めもならば、上下横幅を順番通りに増減させる必要もない。収束空間12および囲繞空間14の空気室では、音が進行する方向に直交する方向に共鳴現象が発生するけれども、ヘルムホルツの共鳴理論によって特定の共鳴周波数の音を共鳴吸収できる。さらに、中心シート7が複数の異なる半値幅を有することにより、収束空間12および囲繞空間14の体積が複数異なり、特定の体積の空気室で個々の周波数帯域の音を吸収すると、ヘルムホルツ共鳴原理で吸音可能な共鳴周波数の数が多くなり、全体として幅広い周波数帯域の音を吸収できる。   Regarding the convergence space 12 and the surrounding space 14, the lower width and the upper width of the individual are determined within the above-described increased width range, and it is not necessary to increase or decrease the vertical width in order. In the air chambers of the converging space 12 and the surrounding space 14, a resonance phenomenon occurs in a direction orthogonal to the direction in which the sound travels. However, the sound having a specific resonance frequency can be resonantly absorbed by the Helmholtz resonance theory. Furthermore, when the central sheet 7 has a plurality of different half-value widths, the volumes of the converging space 12 and the surrounding space 14 are different from each other, and the sound of each frequency band is absorbed by an air chamber of a specific volume, the Helmholtz resonance principle The number of resonance frequencies that can be absorbed increases, and as a whole, sounds in a wide frequency band can be absorbed.

また、収束空間12および囲繞空間14は、多数の貫通孔20を経て連通するから共鳴現象が緩和され性能をさらに向上させることができる。収束空間12内で貫通孔20を通過しない音は該収束空間12の横幅を半波長とし、且つ貫通孔20を通過する音は囲繞空間14の横幅を半波長とする周波数以下の周波数で両空間内を進行することになり、貫通孔20を通過してからの音の広がりを防止する。   Further, since the convergence space 12 and the surrounding space 14 communicate with each other through a large number of through holes 20, the resonance phenomenon is alleviated and the performance can be further improved. Sound that does not pass through the through-hole 20 in the convergence space 12 has a half-wave width of the convergence space 12, and sound that passes through the through-hole 20 has a frequency equal to or lower than the frequency that makes the width of the surrounding space 14 half-wave. The sound travels through the through hole 20 to prevent the sound from spreading.

空気層である収束空間12および囲繞空間14において、その空間層の厚み、側壁16の開口率、板厚ならびに貫通孔20の直径からなるパラメータは、多孔シート3の貫通孔2および貫通孔20を通過する空気に対して音の屈折と反射による空気の粘性作用を生じさせるように規定される。これによって、貫通孔20を通過する空気に粘性減衰作用が発生すると、空気振動が熱エネルギへと変換されて、空気の振動に減衰性が生じる結果として、比較的広い周波数帯域において高い吸音効果を発揮する。   In the converging space 12 and the surrounding space 14 that are air layers, the parameters including the thickness of the space layer, the opening ratio of the side wall 16, the plate thickness, and the diameter of the through hole 20 are the same as those for the through hole 2 and the through hole 20 of the porous sheet 3. It is defined to cause the viscous action of air due to refraction and reflection of sound to the passing air. As a result, when a viscous damping action occurs in the air passing through the through-hole 20, the air vibration is converted into thermal energy, resulting in the damping of the air vibration, resulting in a high sound absorption effect in a relatively wide frequency band. Demonstrate.

吸音構造体1は、全体厚さが3〜6mmであるから、道路などの遮音壁だけでなく、自動車や電車などの内装やパソコンのケース内壁面に敷設したり、モータ使用機器の内部などに取り付けることができる。吸音構造体1は、要望に応じて全体厚をより大きくすることも可能である。吸音構造体1は、その内部において細長い収束空間12および囲繞空間14が並列に繰り返し存在するので、厚みが薄くても騒音源における1kHz以下の周波数帯域の音を十分に吸収できる。   Since the overall thickness of the sound absorbing structure 1 is 3 to 6 mm, the sound absorbing structure 1 is laid not only on a sound insulation wall such as a road but also on an interior of a car or a train, an inner wall surface of a personal computer case, or attached to the inside of a motor using device. be able to. The sound absorbing structure 1 can also be increased in overall thickness as desired. Since the sound absorbing structure 1 includes the elongated converging space 12 and the surrounding space 14 repeatedly in parallel, the sound absorbing structure 1 can sufficiently absorb sound in a frequency band of 1 kHz or less in the noise source even if the thickness is thin.

図2および図3において、吸音構造体21には凹凸を有する多孔シート22を用いる。多孔シート22は、前記の中心シート7と同様に、台形、波形または方形であるパルス状側面を有していても、図4に示すように山部と谷部が交互に形成される市松模様状の凹凸を設けていてもよい。多孔シート22の凹凸面は、中心シート7の凹凸面と直交またはある程度斜めの角度で交差させる。例えば、図8に示すように、多孔シート22には長手方向と交差した方向に波形側面を形成し、この波形側面を中心シート7の凹凸面と直交させればよい。また、多孔シート22のパルス状側面を長手方向に形成し、長手方向と交差した方向に凹凸面を形成した中心シートと交差させてもよい。   2 and 3, the sound absorbing structure 21 uses a porous sheet 22 having irregularities. As in the case of the central sheet 7, the porous sheet 22 has a checkered pattern in which peaks and valleys are alternately formed as shown in FIG. May be provided. The uneven surface of the porous sheet 22 intersects with the uneven surface of the center sheet 7 at an angle that is orthogonal or somewhat oblique. For example, as shown in FIG. 8, a corrugated side surface may be formed in the porous sheet 22 in a direction intersecting the longitudinal direction, and the corrugated side surface may be orthogonal to the uneven surface of the center sheet 7. Moreover, the pulse-shaped side surface of the porous sheet 22 may be formed in the longitudinal direction and intersected with the central sheet in which the uneven surface is formed in the direction intersecting the longitudinal direction.

図4に示す多孔シート24は、熱成形加工やエンボス加工によって角錐山部26および角錐谷部28を連続して形成し、断面が三角波形で表面が凹凸の市松模様状になっている。多孔シート24には、熱成形加工やエンボス加工の前またはその加工と同時に微小な多孔を形成すればよい。多孔シート24は、角錐山部26および角錐谷部28を交互に形成することにより、比較的曲げやすいうえに剛性を高めることができ、該多孔シートの厚みが薄い場合でも湾曲したり陥没することが少ない。   The perforated sheet 24 shown in FIG. 4 has a pyramidal crest 26 and a pyramidal trough 28 formed continuously by thermoforming or embossing, and has a checkered pattern with a triangular cross section and an uneven surface. The porous sheet 24 may be formed with fine pores before or simultaneously with the thermoforming or embossing. The perforated sheet 24 can be bent relatively easily by forming the pyramid crest portions 26 and the pyramid trough portions 28 alternately, and can be bent or depressed even when the thickness of the perforated sheet is thin. Less is.

図2と図3に示す波形側面の多孔シート22は、その表面の形状による表面の反射によって低周波数から高周波数までの吸音を達成できる。多孔シート22を中心シート7の上面に接着すると、細長い第3空気層30(図3)が多孔シート22の凹状裏面と中心シート7の上方平面との間に形成され、この第3空気層の存在によって多孔シート22内へ入った音の屈折が増加し、比較的高周波の音まで多く吸収することが可能になる。細長い第3空気層30は、細長い収束空間12と交差状に連通しており、多孔シート22内へ入った音の多くは第3空気層30から収束空間12へ行くまで反射と屈折を繰り返し、空気に粘性減衰作用が発生して広い周波数帯域で吸音効果を発揮する。   The corrugated side porous sheet 22 shown in FIGS. 2 and 3 can achieve sound absorption from a low frequency to a high frequency by reflection of the surface due to the shape of the surface. When the porous sheet 22 is bonded to the upper surface of the center sheet 7, an elongated third air layer 30 (FIG. 3) is formed between the concave back surface of the porous sheet 22 and the upper plane of the center sheet 7. Due to the presence, the refraction of the sound entering the porous sheet 22 increases, and it is possible to absorb a large amount of sound of relatively high frequency. The elongated third air layer 30 communicates with the elongated converging space 12 in a crossing manner, and most of the sound that has entered the porous sheet 22 is repeatedly reflected and refracted from the third air layer 30 to the converging space 12, A viscous damping effect is generated in the air, and the sound absorbing effect is exhibited in a wide frequency band.

波形側面の多孔シート22において、その凹凸高さを大きくすると、高周波数の音の吸音率が高くなり、凹凸が小さくて平坦に近づくと高周波数の音の吸音率が小さくなる。多孔シート22の凹凸高さが、中心シート7の凹凸高さと同程度つまり高さ2.5〜5mmになると、多孔シート22内へ入った音の反射と屈折が多くなり、4kHz近辺の高周波数の音も多く吸収できる(図8参照)。鉄道列車や自動車の騒音は主に250〜4kHzの周波数帯域であるため、これらの帯域の音を本発明の吸音構造体21で吸音すると騒音を十分に低減化できる。   In the corrugated side porous sheet 22, when the height of the unevenness is increased, the sound absorption rate of the high frequency sound is increased, and when the unevenness is small and approaches flat, the sound absorption rate of the high frequency sound is decreased. When the unevenness height of the porous sheet 22 is about the same as the unevenness height of the center sheet 7, that is, a height of 2.5 to 5 mm, reflection and refraction of sound entering the porous sheet 22 increase, and a high frequency around 4 kHz. Can also be absorbed (see FIG. 8). Since the noise of railway trains and automobiles is mainly in the frequency band of 250 to 4 kHz, noise can be sufficiently reduced by absorbing sound in these bands with the sound absorbing structure 21 of the present invention.

図示しないけれども、多孔シート22と中心シート7との間に別の多孔シートまたは薄ネットを介在させることも可能である。また、多孔シート22の凹凸が小さくなって平坦に近づくに従い、前記の多孔シート3と同様に100Hz程度の低周波数から4kHz程度の高周波数までの吸音を達成できても、高周波数の音の吸音率が比較的少なくなる。   Although not shown, it is possible to interpose another porous sheet or thin net between the porous sheet 22 and the center sheet 7. Further, as the unevenness of the porous sheet 22 becomes smaller and approaches flat, the sound absorption of the high-frequency sound can be achieved even if the sound absorption from the low frequency of about 100 Hz to the high frequency of about 4 kHz can be achieved as in the case of the porous sheet 3. The rate is relatively low.

吸音構造体1を製造する際には、図5に示すように、プラスチック製や金属製などの平坦な薄肉シート32を用いる。薄肉シート32は、厚さが0.2〜0.5mmであり、多孔シート3および気密シート5についても同様の厚みである。また、薄肉シート32は、幅が1.5〜2m、長さが1500m程度まで可能であり、多孔シート3および気密シート5は、幅が薄肉シート32と同じで長さが1000m以下であればよい。多孔シート3を薄肉シートから製造するには、全周面にニードルを植設した1対の穴開けローラ(図示しない)に薄肉シートを通して、開孔率を70〜80%にすることも可能である。   When the sound absorbing structure 1 is manufactured, as shown in FIG. 5, a flat thin sheet 32 made of plastic or metal is used. The thin sheet 32 has a thickness of 0.2 to 0.5 mm, and the porous sheet 3 and the airtight sheet 5 have the same thickness. The thin sheet 32 can have a width of 1.5 to 2 m and a length of about 1500 m, and the porous sheet 3 and the airtight sheet 5 have the same width as the thin sheet 32 and a length of 1000 m or less. Good. In order to manufacture the porous sheet 3 from a thin sheet, it is possible to pass the thin sheet through a pair of perforating rollers (not shown) in which needles are implanted on the entire peripheral surface so that the aperture ratio is 70 to 80%. is there.

薄肉シート32は、図5において、ニードル列35を間欠的に植設した1対の穴開けローラ34,34間に通して、該シートにおいて貫通孔20の群を平行帯状に繰り返し設ける(図7参照)。穴開けローラ34,34は、プラスチック製シートの場合にはローラ自体を加熱しながら穴開け加工すると好ましい。   The thin sheet 32 is passed between a pair of perforating rollers 34, 34 in which needle rows 35 are intermittently planted in FIG. 5, and the group of through holes 20 is repeatedly provided in a parallel strip shape on the sheet (FIG. 7). reference). In the case of plastic sheets, the perforating rollers 34 and 34 are preferably drilled while heating the rollers themselves.

穴開けローラ34,34において、一方が細幅のニードル列35を3列以上植設したローラであり、他方が各ニードル列が入り込む盲孔列36を刻設したローラである。複数のニードル列35を植設した穴開けローラ34では、ニードル列35,35間の間隔がそれぞれ異なることにより、複数の異なる半値幅を有する中心シート7を得ることができる。   In the perforating rollers 34, 34, one is a roller in which three or more narrow needle rows 35 are implanted, and the other is a roller in which a blind hole row 36 into which each needle row enters is engraved. In the perforating roller 34 in which a plurality of needle rows 35 are implanted, the center sheet 7 having a plurality of different half-value widths can be obtained by different intervals between the needle rows 35 and 35.

貫通孔20の群を所定の異なる間隔で形成した薄肉シート32aは、1対の歯形ローラ37,37間に通して、該シートを所定の間隔で凹凸状に折り曲げてパルス状側面の中心シート7を得る。歯形ローラ37,37は、プラスチック製シートの場合にはローラ自体を加熱しながら穴開け加工すると好ましい。   The thin sheet 32a in which the group of through holes 20 is formed at a predetermined different interval is passed between a pair of tooth-shaped rollers 37, 37, and the sheet is bent into a concavo-convex shape at a predetermined interval to obtain a central sheet 7 on the pulse side surface. Get. In the case of a plastic sheet, the tooth-shaped rollers 37 and 37 are preferably drilled while heating the roller itself.

歯形ローラ37,37は、相互に噛み合った凹凸周面を有し、穴開けローラ34,34と正確に同期して回転する。歯形ローラ37,37において、各歯先幅と歯底幅とがそれぞれ異なり、通過する薄肉シート32aは、図7に示すように、1対の谷折り線38,38および山折り線40,40を幅を変えながら繰り返し形成する。各谷折り線38,38間をa、b、c、dと定めるとa<b<c<dであり、且つ各山折り線40,40間をe、f、g、hと定めるとe<f<g<hである。   The tooth-shaped rollers 37 and 37 have concave and convex peripheral surfaces meshing with each other, and rotate in synchronization with the perforating rollers 34 and 34 accurately. In the tooth profile rollers 37, 37, the width of each tooth tip and the width of the bottom of the teeth are different, and the thin sheet 32a that passes therethrough is, as shown in FIG. 7, a pair of valley fold lines 38, 38 and mountain fold lines 40, 40. Are repeatedly formed while changing the width. If the distance between the valley fold lines 38 and 38 is defined as a, b, c, and d, a <b <c <d, and the distance between the mountain fold lines 40 and 40 is defined as e, f, g, and h, e <F <g <h.

図5において台形側面を有する中心シート7は、波形、三角波形または方形側面などのパルス状側面にすることも可能である。次に図6において、得た中心シート7は、その上下面においてローラ42と44で液状接着剤を塗布した後に、この中心シートに対して上方のロール46から多孔シート3をおよび下方のロール48から気密シート5を順次送り込み、多孔シート3および気密シート5を中心シート7にそれぞれ接着し、その後に遠赤外線乾燥炉50などに通して乾燥する。   The center sheet 7 having a trapezoidal side surface in FIG. Next, in FIG. 6, the obtained center sheet 7 is coated with a liquid adhesive by rollers 42 and 44 on the upper and lower surfaces thereof, and then the porous sheet 3 and the lower roll 48 from the upper roll 46 to the center sheet. Then, the airtight sheet 5 is sequentially fed, and the perforated sheet 3 and the airtight sheet 5 are bonded to the center sheet 7, respectively, and then dried through a far-infrared drying oven 50 or the like.

中心シート7、多孔シート3および気密シート5が樹脂シートである場合には、高周波、誘電加熱または超音波で溶着することが可能であり、この場合には塗布ローラ42,44および乾燥炉50は不要である。また、これらのシートが金属製であるならば、スポット溶接やロウ付けも可能である。   When the center sheet 7, the porous sheet 3 and the airtight sheet 5 are resin sheets, they can be welded by high frequency, dielectric heating or ultrasonic waves. In this case, the coating rollers 42 and 44 and the drying furnace 50 are It is unnecessary. If these sheets are made of metal, spot welding and brazing are also possible.

図8は、図2と図3に示す波形側面の多孔シート22を製造する例を示す。この多孔シート22の横幅は、凹凸形成後に中心シートや気密シートの幅とほぼ一致するように定める。多孔シート22を平坦な薄肉シートから製造するには、該薄肉シートをニードル周面の1対の穴開けローラ(図示しない)などに通して平坦な多孔シートを得た後に、平坦な多孔シートを1対の環状溝ローラ52,52に通して交差方向に波形側面を形成すればよい。ローラ52,52は、所望の波形側面に応じた環状溝の深さと横幅を有し、その横幅は中心シートや気密シートの幅に対応し、波形側面のほかに台形、三角波形または方形の側面にしてもよい。   FIG. 8 shows an example in which the corrugated side porous sheet 22 shown in FIGS. 2 and 3 is manufactured. The lateral width of the porous sheet 22 is determined so as to substantially match the width of the center sheet and the airtight sheet after the formation of the irregularities. In order to manufacture the porous sheet 22 from a flat thin sheet, the thin sheet is passed through a pair of perforating rollers (not shown) on the peripheral surface of the needle to obtain a flat porous sheet, The corrugated side surface may be formed in the crossing direction through the pair of annular groove rollers 52 and 52. The rollers 52 and 52 have a depth and a width of an annular groove corresponding to a desired corrugated side surface, the width corresponds to the width of the center sheet and the airtight sheet, and in addition to the corrugated side surface, a trapezoidal, triangular corrugated or rectangular side surface It may be.

波形側面の多孔シート22は、図示しないけれども、中心シートの上面に液状接着剤を塗布した後に、該中心シートに対して上方から順次送り込んで接着し、さらに気密シートを下方から送り込んで接着する。得た吸音構造体多孔シート22は、再度に遠赤外線乾燥炉などで乾燥する。   Although not shown in the figure, the corrugated side porous sheet 22 is applied with a liquid adhesive on the upper surface of the center sheet, and then sequentially fed and bonded to the center sheet from above, and further, the airtight sheet is fed from below and bonded. The obtained sound absorbing structure porous sheet 22 is dried again in a far-infrared drying furnace or the like.

次に、本発明を実施例に基づいて説明するが、本発明は実施例に限定されるものではない。吸音構造体の素材として、厚さ0.4mmのポリプロピレンシートを用いる。平坦な多孔シート3は、このポリプロピレンシートに多数の貫通孔2を設け、該貫通孔は直径0.5mmでシート全面の開孔率は80%である。また、気密シート5はこのポリプロピレンシートをそのまま使用する。   Next, the present invention will be described based on examples, but the present invention is not limited to the examples. A polypropylene sheet having a thickness of 0.4 mm is used as a material for the sound absorbing structure. The flat perforated sheet 3 is provided with a large number of through holes 2 in this polypropylene sheet. The through holes have a diameter of 0.5 mm and the opening ratio of the entire sheet is 80%. The airtight sheet 5 uses this polypropylene sheet as it is.

中心シート7について、厚さ0.4mmのポリプロピレンシートは、1対の穴開けローラ34,34(図5)間を通して貫通孔20の群が所定の異なる間隔で横帯状に形成され、さらに1対の歯形ローラ37,37間に通して該シートを凹凸状に折り曲げることにより、台形側面の中心シート7を得る。次に、中心シートに対して上方から多孔シート3をおよび下方から気密シート5を送り込んで高周波で接着する。   With respect to the center sheet 7, a 0.4 mm thick polypropylene sheet has a group of through holes 20 formed between the pair of perforating rollers 34, 34 (FIG. 5) in a horizontal band shape at predetermined different intervals. The center sheet 7 on the trapezoidal side surface is obtained by bending the sheet between the tooth-shaped rollers 37 and 37 and bending the sheet into an uneven shape. Next, the perforated sheet 3 and the airtight sheet 5 are sent from above to the center sheet and bonded at high frequency.

中心シート7は、図1において、上頂点8において多孔シート3に平行線状に接着され、その下頂点10において気密シート5に平行線状に接着されている。この結果、吸音構造体1の内部において多数の細長い収束空間12および囲繞空間14が長さ方向に並列する。収束空間12では、下横幅がa=1.5mm、b=2.0mm、c=2.5mm、d=3.0mmであり、一方、囲繞空間14では、上横幅がe=1.25mm、f=1.75mm、g=2.25mm、h=2.75mmであり、この収束空間12の下横幅と囲繞空間14の上横幅を繰り返す。   In FIG. 1, the center sheet 7 is bonded to the porous sheet 3 in parallel lines at the upper vertex 8, and is bonded to the airtight sheet 5 in parallel lines at the lower vertex 10. As a result, a large number of elongated converging spaces 12 and surrounding spaces 14 are juxtaposed in the longitudinal direction inside the sound absorbing structure 1. In the convergence space 12, the lower lateral width is a = 1.5 mm, b = 2.0 mm, c = 2.5 mm, and d = 3.0 mm, while in the surrounding space 14, the upper lateral width is e = 1.25 mm, f = 1.75 mm, g = 2.25 mm, h = 2.75 mm, and the lower horizontal width of the convergence space 12 and the upper horizontal width of the surrounding space 14 are repeated.

得た吸音構造体は全体厚さが4mmであり、中心シート7の立脚壁部は水平面に対して約60度の角度である。個々の囲繞空間14は、その一方の側壁16に多数の貫通孔20を有し、該貫通孔を経て囲繞空間14は収束空間12と連通する。円形平面の貫通孔20は、直径が0.5mmであり、側壁16の開孔率を50%に定める。   The obtained sound absorbing structure has an overall thickness of 4 mm, and the standing wall portion of the center sheet 7 is at an angle of about 60 degrees with respect to the horizontal plane. Each surrounding space 14 has a large number of through holes 20 on one side wall 16 thereof, and the surrounding space 14 communicates with the converging space 12 through the through holes. The through hole 20 having a circular plane has a diameter of 0.5 mm, and the opening rate of the side wall 16 is set to 50%.

得た吸音構造体の吸音率を測定する。垂直入射吸音率は、JIS A 1405−1および2の「音響管による吸音率およびインピーダンスの測定」(2)(3)で規定されている。垂直入射吸音率の測定では、定在波法、音響管法または管内法とも称し、音波は試料表面に垂直入射する。このJISでは,管内のスピーカから放射される音波の波長λと管の内径d(m)がd<0.59λの条件(但し、円管の場合)を満たす音響管が必要とされ、低周波数から高周波数までの広い周波数帯域の音の測定には、内径が異なる複数の音響管を用いる。   The sound absorption rate of the obtained sound absorbing structure is measured. The normal incident sound absorption coefficient is defined in JIS A 1405-1 and 2 “Measurement of sound absorption coefficient and impedance by acoustic tube” (2) (3). In the measurement of the normal incident sound absorption coefficient, it is also referred to as a standing wave method, an acoustic tube method, or an in-tube method, and a sound wave is perpendicularly incident on the sample surface. This JIS requires an acoustic tube that satisfies the condition that the wavelength λ of the sound wave radiated from the speaker in the tube and the inner diameter d (m) of the tube is d <0.59λ (in the case of a circular tube), and has a low frequency. A plurality of acoustic tubes having different inner diameters are used to measure sound in a wide frequency band from to high frequencies.

定在波の音圧振幅の最大値Pmaxおよび最小値Pminが求められれば、定在波比nから垂直入射吸音率αを得ることができる。
定在波比n=Pmax/Pmin
垂直入射吸音率α=1−(n−1/n+1)
If the maximum value Pmax and the minimum value Pmin of the sound pressure amplitude of the standing wave are obtained, the normal incident sound absorption coefficient α 0 can be obtained from the standing wave ratio n.
Standing wave ratio n = Pmax / Pmin
Normal incident sound absorption coefficient α 0 = 1− (n−1 / n + 1) 2

実施例1の吸音構造体について、垂直入射吸音率の測定結果を図9において点線で示す。この結果から、この吸音構造体は、厚みが4mmであっても騒音源における1kHz以下の周波数帯域の音を十分に吸収でき、4kHz近辺の高周波数の音になるとその吸収は若干少なくなる。   With respect to the sound absorbing structure of Example 1, the measurement result of the normal incident sound absorption coefficient is shown by a dotted line in FIG. From this result, even when the sound absorbing structure is 4 mm thick, it can sufficiently absorb sound in a frequency band of 1 kHz or less in the noise source, and its absorption is slightly reduced when it becomes a high frequency sound near 4 kHz.

吸音構造体の素材として、実施例1と同様のポリプロピレンシートを用いる。中心シート7および気密シート5は実施例1と同様に加工して使用する。   As the material of the sound absorbing structure, the same polypropylene sheet as in Example 1 is used. The center sheet 7 and the airtight sheet 5 are processed and used in the same manner as in Example 1.

平坦な多孔シートは、薄肉シートに多数の貫通孔2を設け、該貫通孔は直径1.0mmで開孔率は70%である。この平坦な多孔シートを1対の環状溝ローラ52,52(図8)に通して長手方向に波形面を形成すると、多孔シート22の横幅は中心シート7や気密シート5の幅とほぼ一致する。波形側面の多孔シート22は、中心シート7の上下面に液状接着剤を塗布した後に、該中心シートに対して上方から送り込み、下方から送り込んだ気密シート5とともに接着する。   A flat perforated sheet is provided with a large number of through holes 2 in a thin sheet, the through holes having a diameter of 1.0 mm and an open area ratio of 70%. When this flat perforated sheet is passed through a pair of annular groove rollers 52 and 52 (FIG. 8) to form a corrugated surface in the longitudinal direction, the lateral width of the perforated sheet 22 substantially matches the width of the center sheet 7 and the airtight sheet 5. . The corrugated perforated sheet 22 is coated with a liquid adhesive on the upper and lower surfaces of the center sheet 7, then fed to the center sheet from above and bonded together with the airtight sheet 5 fed from below.

得た吸音構造体は全体厚さが7mmである。個々の囲繞空間14は、その一方の側壁16に多数の貫通孔20を有する。円形平面の貫通孔20は、直径が0.5mmであり、側壁16の開孔率を40%に定める。   The obtained sound absorbing structure has an overall thickness of 7 mm. Each surrounding space 14 has a large number of through holes 20 on one side wall 16 thereof. The through hole 20 having a circular plane has a diameter of 0.5 mm, and the opening ratio of the side wall 16 is set to 40%.

実施例2の吸音構造体について、垂直入射吸音率の測定結果を図8において実線で示す。この結果から、この吸音構造体は、厚みが7mmであっても騒音源における1kHz以下の周波数帯域の音を十分に吸収でき、しかも4kHz近辺の高周波数の音も十分に吸収できる。   With respect to the sound absorbing structure of Example 2, the measurement result of the normal incident sound absorption coefficient is shown by a solid line in FIG. From this result, even if the sound absorbing structure is 7 mm thick, it can sufficiently absorb sound in a frequency band of 1 kHz or less in the noise source, and can also sufficiently absorb high frequency sound around 4 kHz.

1 吸音構造体
2 貫通孔
3 多孔シート
5 気密シート
7 中心シート
12 収束空間
14 囲繞空間
20 貫通孔
22 パルス状側面の多孔シート22
30 第3空気層
32 薄肉シート
34,34 穴開けローラ
37,37 歯形ローラ
DESCRIPTION OF SYMBOLS 1 Sound absorption structure 2 Through-hole 3 Porous sheet 5 Airtight sheet 7 Center sheet 12 Convergence space 14 Enclosure space 20 Through-hole 22 Porous sheet 22 of a pulse-shaped side surface
30 Third Air Layer 32 Thin Sheet 34, 34 Hole Roller 37, 37 Tooth Profile Roller

Claims (7)

多数の貫通孔を設けた多孔シートと、空気の通過を遮断する気密シートと、該多孔シートと気密シートとの間に介在させるパルス状側面の中心シートとを備え、該中心シートは複数の異なる半値幅を有し、該中心シートを多孔シートおよび気密シートに平行線状に接着することにより、吸音構造体の内部において細長い収束空間および囲繞空間が長さ方向に並列しながら繰り返し、個々の囲繞空間における一方の側壁に多数の貫通孔を設けている薄板状の吸音構造体。   A porous sheet provided with a large number of through holes, an airtight sheet that blocks passage of air, and a central sheet on a pulse-shaped side surface interposed between the porous sheet and the airtight sheet, the central sheet being a plurality of different By adhering the central sheet to the perforated sheet and the airtight sheet in parallel lines, the narrow converging space and the surrounding space are repeated in parallel in the length direction inside the sound absorbing structure, A thin plate-like sound absorbing structure in which a large number of through holes are provided on one side wall in a space. 多孔シートとして凹凸面を有するシートを用い、この多孔シートの凹状裏面と中心シートの上方平面との間に第3空気層が存在し、第3空気層の存在によって比較的高周波の音を吸収できる請求項1記載の吸音構造体。   A sheet having a concavo-convex surface is used as the porous sheet, and a third air layer exists between the concave back surface of the porous sheet and the upper plane of the center sheet, and relatively high frequency sound can be absorbed by the presence of the third air layer. The sound absorbing structure according to claim 1. 多孔シートは、幅0.3〜1mmの任意の形状の貫通孔を有し、該多孔シートの開孔率は70〜80%であり、一方、吸音構造体の囲繞空間の側壁には直径0.5〜1mmの円形貫通孔を設け、その側壁の開孔率を40〜50%に定める請求項1記載の吸音構造体。   The porous sheet has a through hole of an arbitrary shape with a width of 0.3 to 1 mm, and the porosity of the porous sheet is 70 to 80%. On the other hand, the diameter of the porous sheet is 0 on the side wall of the surrounding space of the sound absorbing structure. 2. The sound absorbing structure according to claim 1, wherein a circular through hole of 5 to 1 mm is provided and the opening ratio of the side wall is set to 40 to 50%. 中心シートは、その側面が台形、波形および方形のいずれかのシートである請求項1記載の吸音構造体。   The sound absorbing structure according to claim 1, wherein the center sheet is a trapezoidal, corrugated or square sheet on its side surface. 吸音構造体の全体厚さが3〜6mmである請求項1記載の吸音構造体。   The sound absorbing structure according to claim 1, wherein the entire thickness of the sound absorbing structure is 3 to 6 mm. 平坦な薄肉シートを1対の穴開けローラ間に通して、該シートにおいて貫通孔の群を平行帯状に繰り返し設け、次にこの薄肉シートを加熱しながら1対の歯形ローラ間に通して、該シートを凹凸状に折り曲げて中心シートを作製することにより、中心シートの半値幅部の一方の側壁だけに貫通孔が存在することになり、この中心シートに対して上方から多孔シートをおよび下方から気密シートを送り込み、該中心シートを多孔シートおよび気密シートにそれぞれ接着する薄板状の吸音構造体の製造法。   A flat thin sheet is passed between a pair of perforating rollers, and a group of through holes is repeatedly provided in a parallel strip shape in the sheet, and then the thin sheet is heated and passed between a pair of tooth-shaped rollers. By bending the sheet into a concavo-convex shape to produce the center sheet, a through hole exists only on one side wall of the half width portion of the center sheet. A method for producing a thin plate-like sound absorbing structure in which an airtight sheet is fed and the central sheet is bonded to a porous sheet and an airtight sheet, respectively. 多孔シートを1対の環状溝ローラに通して凹凸面を形成し、この凹凸多孔シートを中心シートへ送り込んで接着する請求項6記載の製造法。   The manufacturing method according to claim 6, wherein the porous sheet is passed through a pair of annular groove rollers to form an uneven surface, and the uneven porous sheet is fed to the central sheet and bonded.
JP2015057203A 2015-03-20 2015-03-20 Thin plate-like sound absorbing structure and its manufacturing method Active JP6421062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015057203A JP6421062B2 (en) 2015-03-20 2015-03-20 Thin plate-like sound absorbing structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015057203A JP6421062B2 (en) 2015-03-20 2015-03-20 Thin plate-like sound absorbing structure and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2016177117A true JP2016177117A (en) 2016-10-06
JP6421062B2 JP6421062B2 (en) 2018-11-07

Family

ID=57071064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015057203A Active JP6421062B2 (en) 2015-03-20 2015-03-20 Thin plate-like sound absorbing structure and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6421062B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101880399B1 (en) * 2017-08-22 2018-07-20 김호칠 Manufacturing method of wrapping paper
CN108922510A (en) * 2018-07-18 2018-11-30 重庆大学 The sound-absorbing porous material mixing sound absorption structure in parallel with resonant structure
JP2020052139A (en) * 2018-09-25 2020-04-02 トヨタ車体株式会社 Sound absorbing/insulating structure
JP2020190641A (en) * 2019-05-22 2020-11-26 トヨタ車体株式会社 Sound absorbing and insulating member

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118514U (en) * 1973-01-31 1974-10-09
JPS5027610U (en) * 1973-07-03 1975-03-31
JPH09273243A (en) * 1996-04-05 1997-10-21 Nok Megurasutikku Kk Sound absorber
JP2002227322A (en) * 2001-01-31 2002-08-14 Daiwa House Ind Co Ltd Sound absorption structure for building
JP2004148574A (en) * 2002-10-29 2004-05-27 Shizuoka Rekisei Kogyo Kk Method for manufacturing vibration-damping/sound-insulating sheet and vibration-damping/sound-insulating sheet
JP2004264372A (en) * 2003-02-24 2004-09-24 Kobe Steel Ltd Sound absorbing structure
JP2005099789A (en) * 2003-09-05 2005-04-14 Kobe Steel Ltd Sound absorbing structure and method of producing the same
JP2007101959A (en) * 2005-10-05 2007-04-19 Kobe Steel Ltd Sound insulation panel and wall

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118514U (en) * 1973-01-31 1974-10-09
JPS5027610U (en) * 1973-07-03 1975-03-31
JPH09273243A (en) * 1996-04-05 1997-10-21 Nok Megurasutikku Kk Sound absorber
JP2002227322A (en) * 2001-01-31 2002-08-14 Daiwa House Ind Co Ltd Sound absorption structure for building
JP2004148574A (en) * 2002-10-29 2004-05-27 Shizuoka Rekisei Kogyo Kk Method for manufacturing vibration-damping/sound-insulating sheet and vibration-damping/sound-insulating sheet
JP2004264372A (en) * 2003-02-24 2004-09-24 Kobe Steel Ltd Sound absorbing structure
JP2005099789A (en) * 2003-09-05 2005-04-14 Kobe Steel Ltd Sound absorbing structure and method of producing the same
JP2007101959A (en) * 2005-10-05 2007-04-19 Kobe Steel Ltd Sound insulation panel and wall

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101880399B1 (en) * 2017-08-22 2018-07-20 김호칠 Manufacturing method of wrapping paper
WO2019039796A1 (en) * 2017-08-22 2019-02-28 김호칠 Method for manufacturing packaging sheet
US11260645B2 (en) 2017-08-22 2022-03-01 Ho Chil KIM Method for manufacturing packaging sheet
CN108922510A (en) * 2018-07-18 2018-11-30 重庆大学 The sound-absorbing porous material mixing sound absorption structure in parallel with resonant structure
CN108922510B (en) * 2018-07-18 2023-08-15 重庆大学 Mixed sound absorption structure with porous sound absorption material and resonance structure connected in parallel
JP2020052139A (en) * 2018-09-25 2020-04-02 トヨタ車体株式会社 Sound absorbing/insulating structure
WO2020066284A1 (en) * 2018-09-25 2020-04-02 トヨタ車体株式会社 Sound absorption and insulation structure
CN112513975A (en) * 2018-09-25 2021-03-16 丰田车体株式会社 Sound absorption and insulation structure
JP7028125B2 (en) 2018-09-25 2022-03-02 トヨタ車体株式会社 Sound absorption and insulation structure
US11919456B2 (en) 2018-09-25 2024-03-05 Toyota Shatai Kabushiki Kaisha Sound absorbing and insulating structure
JP2020190641A (en) * 2019-05-22 2020-11-26 トヨタ車体株式会社 Sound absorbing and insulating member
JP7124789B2 (en) 2019-05-22 2022-08-24 トヨタ車体株式会社 sound absorbing material

Also Published As

Publication number Publication date
JP6421062B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6093344B2 (en) Corrugated sound absorbing panel and manufacturing method
JP6421062B2 (en) Thin plate-like sound absorbing structure and its manufacturing method
JP5304054B2 (en) Sound absorbing structure
US7467498B2 (en) Flexible sheet materials for tensioned structures, a method of making such materials, and tensioned false ceilings comprising such materials
RU2344489C1 (en) Sound-proof acoustic protection
RU171794U1 (en) Sound absorbing panel for soundproofing construction
JP2008009014A (en) Porous soundproof structure
JP6822643B2 (en) Absorbent acoustic metamaterial
JP2005099789A (en) Sound absorbing structure and method of producing the same
RU2348750C1 (en) Noise absorbing acoustic wall of manufacturing facility
JP4899090B2 (en) Sound absorption structure
Kalinova Resonance Effect of Nanofibrous Membrane for Sound Absorption Applications
Hua et al. Varying backing cavity depths to achieve broadband absorption using micro-perforated panels
RU62942U1 (en) SOUND PANEL
JP2016200695A (en) Sound absorptive panel, and sound absorption method using the same
CN110962400A (en) Sound insulation device
JP2004219555A (en) Wide-band sound absorbing plate and sound absorbing device
JP7306757B2 (en) Sound absorbing plate unit and sound absorbing device using the same
RU218915U1 (en) Double Sided Lightweight Broadband Soundproofing Panel
RU2668685C2 (en) Acoustic enclosure
JP2001236075A (en) Soundproof structure
JP2000170124A (en) Soundproof wall and silencer at the top of soundproof wall
JP2022138180A (en) Sound absorber
NZ616728B2 (en) Corrugated acoustical panel and production method
RU62943U1 (en) TUBULAR SOUND INSULATING PANEL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6421062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250