JP2016176683A - Operational method for fusion furnace - Google Patents

Operational method for fusion furnace Download PDF

Info

Publication number
JP2016176683A
JP2016176683A JP2015059383A JP2015059383A JP2016176683A JP 2016176683 A JP2016176683 A JP 2016176683A JP 2015059383 A JP2015059383 A JP 2015059383A JP 2015059383 A JP2015059383 A JP 2015059383A JP 2016176683 A JP2016176683 A JP 2016176683A
Authority
JP
Japan
Prior art keywords
adjusting agent
basicity
combustion chamber
slag
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015059383A
Other languages
Japanese (ja)
Other versions
JP6454575B2 (en
Inventor
公司 皆川
Koji Minagawa
公司 皆川
博之 細田
Hiroyuki Hosoda
博之 細田
民法 木下
Taminori Kinoshita
民法 木下
伊藤 正
Tadashi Ito
正 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2015059383A priority Critical patent/JP6454575B2/en
Publication of JP2016176683A publication Critical patent/JP2016176683A/en
Application granted granted Critical
Publication of JP6454575B2 publication Critical patent/JP6454575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operational method for a fusion furnace capable of effectively removing both upstream side slugs and downstream side slugs.SOLUTION: This invention relates to an operation method for a fusion furnace comprising the steps of melting ash content included in flammable gas by igniting flammable gas while forming a swirl flow by flammable gas in a combustion chamber [21]; and supplying conditioner for supplying basicity conditioner into a fusion furnace [20]. At the conditioner supplying step, a first conditioner having particle diameter capable of being caught by the upstream side slugs [S1] adhering to the combustion chamber [21] and containing component capable of keeping basicity of the upstream side slugs [S1] in a prescribed range and a second conditioner having smaller particle diameter than that of the first conditioner and having a particle diameter capable of being caught by the downstream side slugs [S2] adhering to a gas discharging chamber [26] and further capable of keeping basicity of the downstream side slugs [S2] in a prescribed range are supplied as basicity conditioner through a flow inlet port [21].SELECTED DRAWING: Figure 1

Description

本発明は、溶融炉の運転方法に関するものである。   The present invention relates to a method for operating a melting furnace.

従来、ガス化炉で生じた可燃性ガスを燃焼させるとともに当該可燃性ガスに含まれる灰分を溶融させる溶融炉が知られている。このような溶融炉として、いわゆる旋回流溶融炉、すなわち、流入口を通じて流入した可燃性ガスを旋回させながら燃焼させる燃焼室と、可燃性ガスに含まれる灰分の溶融により形成される溶融スラグを排出するための出滓口と、燃焼室で燃焼した後の排ガスを排出するガス排出室と、を有する溶融炉が公知である。この溶融炉では、当該溶融炉の運転中に、燃焼室の内面及びガス排出室の内面にスラグが付着しやすい。   Conventionally, a melting furnace is known in which combustible gas generated in a gasification furnace is combusted and ash contained in the combustible gas is melted. As such a melting furnace, a so-called swirling flow melting furnace, that is, a combustion chamber in which combustible gas flowing in through an inlet is swirled and combusted, and molten slag formed by melting ash contained in the combustible gas are discharged. There is known a melting furnace having a tap outlet for gas discharge and a gas discharge chamber for discharging exhaust gas after combustion in the combustion chamber. In this melting furnace, slag tends to adhere to the inner surface of the combustion chamber and the inner surface of the gas discharge chamber during operation of the melting furnace.

一方、溶融炉内に付着したスラグの塩基度(CaO/SiO)を調整することによって当該スラグの溶融を促進することも知られている。例えば、特許文献1には、燃焼室内に付着する上流側スラグの塩基度とガス排出室内に付着する下流側スラグの塩基度とが互いに異なること、及び、前記上流側スラグの塩基度を調整可能な第1調整剤を供給する第1供給部と、前記下流側スラグの塩基度を調整可能な第2調整剤を供給する第2供給部と、を備える溶融炉が開示されている。第1供給部は、流入口を通じて第1調整剤を燃焼室内に供給する。第2供給部は、出滓口の上方から第2調整剤をガス排出室内に供給する。 On the other hand, it is also known to promote melting of the slag by adjusting the basicity (CaO / SiO 2 ) of the slag adhered in the melting furnace. For example, in Patent Document 1, the basicity of the upstream slag adhering to the combustion chamber is different from the basicity of the downstream slag adhering to the gas exhaust chamber, and the basicity of the upstream slag can be adjusted. There is disclosed a melting furnace including a first supply unit that supplies a first adjusting agent and a second supply unit that supplies a second adjusting agent capable of adjusting the basicity of the downstream slag. A 1st supply part supplies a 1st regulator to a combustion chamber through an inflow port. The second supply unit supplies the second regulator into the gas discharge chamber from above the tap outlet.

特開2006−349218号公報JP 2006-349218 A

上記特許文献1に記載されるような溶融炉の運転方法でも下流側スラグを除去することができるが、第2供給部によって当該下流側スラグの表面の全域に第2調整剤を均一に供給するのは難しい。   Although the downstream slag can also be removed by the operation method of the melting furnace as described in Patent Document 1, the second adjusting agent is uniformly supplied to the entire surface of the downstream slag by the second supply unit. Is difficult.

本発明の目的は、上流側スラグ及び下流側スラグの双方を有効に除去可能な溶融炉の運転方法を提供することである。   The objective of this invention is providing the operating method of the melting furnace which can remove both upstream slag and downstream slag effectively.

前記課題を解決するために鋭意検討した結果、本発明者らは、上記特許文献1に記載されるような溶融炉、つまり、燃焼室において可燃性ガスで旋回流を形成しながら当該可燃性ガスを燃焼させるものでは、燃焼室の内面には、可燃性ガスに含まれる灰分のうち比較的大きな粒径を有する大粒径灰分の溶融により形成されたスラグが付着しやすい一方、ガス排出室の内面には、前記灰分のうち比較的小さな粒径を有する小粒径灰分の溶融により形成されたスラグが付着しやすいことを見出した。具体的に、燃焼室では、前記大粒径灰分に対して比較的大きな遠心力が作用するので、当該大粒径灰分が燃焼室の内面に衝突し、これにより当該大粒径灰分の溶融により形成されたスラグが燃焼室の内面に付着しやすい。一方、前記小粒径灰分には、燃焼室において比較的小さな遠心力しか作用しないので、この小粒径灰分はガス排出室まで飛散し、また、小粒径灰分は流入口からガス排出室に至る過程において拡散しているので、小粒径灰分の溶融により形成されたスラグは、ガス排出室内の広範囲にわたって付着しやすい。   As a result of intensive studies to solve the above problems, the present inventors have found that the combustible gas while forming a swirling flow with the combustible gas in the melting furnace as described in Patent Document 1, that is, the combustion chamber. In the combustion chamber, slag formed by melting a large particle ash having a relatively large particle size out of the ash contained in the combustible gas is likely to adhere to the inner surface of the combustion chamber, while the gas discharge chamber It has been found that slag formed by melting a small particle size ash having a relatively small particle size among the ash easily adheres to the inner surface. Specifically, in the combustion chamber, a relatively large centrifugal force acts on the large particle size ash, so that the large particle size ash collides with the inner surface of the combustion chamber, thereby melting the large particle size ash. The formed slag tends to adhere to the inner surface of the combustion chamber. On the other hand, since the small particle size ash only has a relatively small centrifugal force in the combustion chamber, the small particle size ash is scattered to the gas discharge chamber, and the small particle size ash is transferred from the inlet to the gas discharge chamber. The slag formed by the melting of the small particle size ash is likely to adhere over a wide area in the gas discharge chamber because it is diffused throughout the process.

そこで、本発明者らは、前記灰分の溶融炉内における挙動に合わせるように、塩基度調整剤として、比較的大きな粒径を有するものと比較的小さな粒径を有するものとを流入口を通じて供給することにより、燃焼室内に付着した上流側スラグ及びガス排出室内に付着した下流側スラグの双方を有効に除去可能であることに想到した。   Therefore, the present inventors supply, through the inlet, those having a relatively large particle size and those having a relatively small particle size as basicity adjusting agents so as to match the behavior of the ash in the melting furnace. As a result, it was conceived that both the upstream slag adhering to the combustion chamber and the downstream slag adhering to the gas discharge chamber can be effectively removed.

本発明はこのような観点からなされたものであり、ガス化炉で生じた可燃性ガスの流入を許容する流入口を有するとともに、前記流入口を通じて流入した可燃性ガスで旋回流を形成しながら当該可燃性ガスを燃焼させるとともに当該可燃性ガスに含まれる灰分を溶融させる燃焼室と、前記燃焼室の下方に設けられており、前記灰分の溶融により形成される溶融スラグを排出するための出滓口と、前記燃焼室の下流側でかつ前記出滓口よりも上方に設けられており、前記燃焼室で燃焼した後の排ガスを排出させるガス排出室と、を有する炉本体を含む溶融炉の運転方法であって、前記燃焼室において、前記可燃性ガスで旋回流を形成しながら当該可燃性ガスを燃焼させることにより前記可燃性ガスに含まれる灰分を溶融させる溶融工程と、前記炉本体内に付着するスラグの塩基度を調整可能な塩基度調整剤を前記炉本体内に供給する調整剤供給工程と、を備え、前記調整剤供給工程では、前記塩基度調整剤として、前記燃焼室内に付着する上流側スラグに捕捉されることが可能な粒径を有するとともに前記上流側スラグの塩基度を所定範囲に収めることが可能な成分を含む第1調整剤と、前記第1調整剤の粒径よりも小さな粒径であって前記ガス排出室内に付着する下流側スラグに捕捉されることが可能な粒径を有するとともに前記下流側スラグの塩基度を前記所定範囲に収めることが可能な成分を含む第2調整剤と、を前記燃焼室の流入口を通じて供給する、溶融炉の運転方法を提供する。   The present invention has been made from such a viewpoint, and has an inflow port that allows inflow of combustible gas generated in a gasification furnace, and forms a swirl flow with combustible gas that has flowed in through the inflow port. A combustion chamber for burning the combustible gas and melting the ash contained in the combustible gas, and a discharge chamber for discharging molten slag formed by melting the ash is provided below the combustion chamber. A melting furnace including a furnace body having a soot opening and a gas discharge chamber that is provided on the downstream side of the combustion chamber and above the pouring outlet and exhausts exhaust gas after burning in the combustion chamber. A melting step of melting the ash contained in the combustible gas by burning the combustible gas while forming a swirl flow with the combustible gas in the combustion chamber; and A regulator supply step for supplying a basicity adjusting agent capable of adjusting the basicity of slag adhering to the inside of the main body into the furnace body, and in the adjustment agent supply step, the combustion is used as the basicity adjustment agent. A first regulator comprising a component having a particle size that can be captured by an upstream slag adhering to a room and having a basicity of the upstream slag within a predetermined range; and the first regulator. And having a particle size that can be captured by the downstream slag adhering to the gas discharge chamber, and the basicity of the downstream slag can be within the predetermined range. A melting furnace operating method is provided in which a second regulator containing various components is supplied through an inlet of the combustion chamber.

本方法では、比較的大きな粒径を有する第1調整剤は、燃焼室において大きな遠心力を受けて旋回しながら燃焼室内に付着する上流側スラグの表面に付着する一方、比較的小さな粒径を有する第2調整剤は、ガス排出室まで飛散して当該ガス排出室内に付着する下流側スラグの表面に略均一に付着するので、前記上流側スラグ及び前記下流側スラグの双方を有効に除去することができる。具体的に、第1調整剤は、上流側スラグに捕捉されることが可能な粒径、換言すれば大きな質量を有しているので、燃焼室において第1調整剤に対して大きな遠心力が作用し、これにより第1調整剤は燃焼室の内面に付着する上流側スラグの表面に付着しやすい。一方、燃焼室において第2調整剤に対して作用する遠心力は、第1調整剤に対して作用する遠心力よりも小さいので、第2調整剤は、ガス排出室まで飛散し、また、第2調整剤は、流入口からガス排出室に至る過程において十分に拡散するので、下流側スラグの表面に略均一に付着しやすい。よって、本方法では、比較的大きな粒径を有する第1調整剤によって燃焼室内に付着する上流側スラグの塩基度が有効に調整されるので、当該上流側スラグの溶融が促進され、かつ、比較的小さな粒径を有する第2調整剤によってガス排出室内に付着する下流側スラグの塩基度が有効に調整されるので、当該下流側スラグの溶融が促進される。   In this method, the first regulator having a relatively large particle size adheres to the surface of the upstream slag that adheres to the combustion chamber while swirling by receiving a large centrifugal force in the combustion chamber, while having a relatively small particle size. Since the second adjusting agent has substantially uniformly adhered to the surface of the downstream slag that scatters to the gas discharge chamber and adheres to the gas discharge chamber, it effectively removes both the upstream slag and the downstream slag. be able to. Specifically, since the first adjusting agent has a particle size that can be captured by the upstream slag, in other words, a large mass, a large centrifugal force is exerted on the first adjusting agent in the combustion chamber. Thus, the first adjusting agent tends to adhere to the surface of the upstream slag that adheres to the inner surface of the combustion chamber. On the other hand, since the centrifugal force acting on the second adjusting agent in the combustion chamber is smaller than the centrifugal force acting on the first adjusting agent, the second adjusting agent scatters to the gas discharge chamber, and Since the 2 adjusting agent is sufficiently diffused in the process from the inlet to the gas discharge chamber, it tends to adhere substantially uniformly to the surface of the downstream slag. Therefore, in this method, since the basicity of the upstream slag adhering to the combustion chamber is effectively adjusted by the first regulator having a relatively large particle size, melting of the upstream slag is promoted, and the comparison is made. Since the basicity of the downstream slag adhering to the gas discharge chamber is effectively adjusted by the second adjusting agent having a small particle size, melting of the downstream slag is promoted.

この場合において、前記調整剤供給工程では、前記第1調整剤として、150μm以上の粒径を有するものと、前記第2調整剤として、15μm以上40μm以下の粒径を有するものと、を前記流入口を通じて前記炉本体内に供給することが好ましい。   In this case, in the adjusting agent supplying step, the first adjusting agent has a particle diameter of 150 μm or more and the second adjusting agent has a particle diameter of 15 μm or more and 40 μm or less. It is preferable to supply into the furnace body through an inlet.

このようにすれば、より確実に第1調整剤が上流側スラグに捕捉され、かつ、より確実に第2調整剤が下流側スラグに捕捉される。具体的に、第1調整剤の粒径を150μm以上とすることにより、燃焼室において第1調整剤に対して十分に大きな遠心力が作用するので、当該第1調整剤が燃焼室内の上流側スラグに有効に捕捉される。そして、第2調整剤の粒径を15μm以上40μm以下のとすることにより、この第2調整剤がガス排出室内の下流側スラグに有効に捕捉される。具体的に、第2調整剤の粒径を15μm以上とすることにより、第2調整剤が下流側スラグに捕捉されることなく当該溶融炉の下流側に設けられた設備(バグフィルタ等)まで飛散することが抑制される。そして、第2調整剤の粒径を40μm以下とすることにより、燃焼室において第2調整剤に対して作用する遠心力が小さくなり、これにより第2調整剤が上流側スラグに捕捉されることが抑制される。   In this way, the first adjusting agent is more reliably captured by the upstream slag, and the second adjusting agent is more reliably captured by the downstream slag. Specifically, by setting the particle diameter of the first adjusting agent to 150 μm or more, a sufficiently large centrifugal force acts on the first adjusting agent in the combustion chamber, so that the first adjusting agent is located upstream in the combustion chamber. Effectively captured by slag. Then, by setting the particle size of the second adjusting agent to 15 μm or more and 40 μm or less, the second adjusting agent is effectively captured by the downstream slag in the gas discharge chamber. Specifically, by setting the particle size of the second adjusting agent to 15 μm or more, the second adjusting agent is not trapped by the downstream slag, and the equipment (such as a bag filter) provided on the downstream side of the melting furnace. Scattering is suppressed. And by making the particle diameter of a 2nd adjustment agent 40 micrometers or less, the centrifugal force which acts with respect to a 2nd adjustment agent in a combustion chamber becomes small, and, thereby, a 2nd adjustment agent is capture | acquired by upstream slag. Is suppressed.

以上のように、本発明によれば、上流側スラグ及び下流側スラグの双方を有効に除去可能な溶融炉の運転方法を提供することが可能となる。   As described above, according to the present invention, it is possible to provide a melting furnace operating method capable of effectively removing both the upstream slag and the downstream slag.

本発明の一実施形態のガス溶融炉の概略を示す図である。It is a figure which shows the outline of the gas melting furnace of one Embodiment of this invention. 塩基度調整剤の粒径と塩基度調整剤の溶融炉での捕捉率との関係を示す図である。It is a figure which shows the relationship between the particle size of a basicity adjusting agent, and the capture | acquisition rate in the melting furnace of a basicity adjusting agent. バグフィルタで捕捉された塩基度調整剤の頻度分布を示す図である。It is a figure which shows the frequency distribution of the basicity adjustment agent capture | acquired with the bag filter.

本発明の一実施形態のガス化溶融炉について、図1〜図3を参照しながら説明する。   A gasification melting furnace according to an embodiment of the present invention will be described with reference to FIGS.

図1に示されるように、本実施形態のガス化溶融炉は、ガス化炉10と、溶融炉15と、を備えている。   As shown in FIG. 1, the gasification melting furnace of this embodiment includes a gasification furnace 10 and a melting furnace 15.

ガス化炉10は、廃棄物を加熱することにより当該廃棄物から可燃性ガスを取り出す炉である。本実施形態では、ガス化炉10として、流動床式ガス化炉が用いられている。具体的に、流動床式ガス化炉は、流動媒体を流動化ガスで流動化させることによって形成される流動層で廃棄物を加熱することにより、当該廃棄物から可燃性ガスを取り出す炉である。このガス化炉10で生じた可燃性ガスは、当該ガス化炉10と溶融炉15とを連結するダクト40を通じて溶融炉15内に流入する。   The gasification furnace 10 is a furnace that takes out combustible gas from the waste by heating the waste. In the present embodiment, a fluidized bed gasifier is used as the gasifier 10. Specifically, the fluidized bed gasification furnace is a furnace that takes out combustible gas from the waste by heating the waste in a fluidized bed formed by fluidizing the fluidized medium with the fluidized gas. . The combustible gas generated in the gasification furnace 10 flows into the melting furnace 15 through a duct 40 connecting the gasification furnace 10 and the melting furnace 15.

溶融炉15は、ガス化炉10で生じた可燃性ガスを燃焼させることにより当該可燃性ガスに含まれる灰分を溶融させる炉である。本実施形態では、溶融炉15として、旋回流溶融炉が用いられている。この溶融炉15は、炉本体20と、塩基度調整剤供給部30と、を有する。炉本体20は、燃焼室21と、出滓口20bと、ガス排出室26と、を有する。   The melting furnace 15 is a furnace for melting the ash contained in the combustible gas by burning the combustible gas generated in the gasification furnace 10. In the present embodiment, a swirling flow melting furnace is used as the melting furnace 15. The melting furnace 15 includes a furnace body 20 and a basicity adjusting agent supply unit 30. The furnace body 20 includes a combustion chamber 21, a tap outlet 20 b, and a gas discharge chamber 26.

燃焼室21は、可燃ガスの流入を許容する流入口21aを有するとともに当該流入口21aを通じて流入した可燃性ガスを旋回させながら燃焼させる。燃焼室21には、可燃性ガスを燃焼させるための燃焼用空気が供給される。燃焼室21は、上下方向に延びる形状を有している。本実施形態では、燃焼室21は、流入口21aを有する上流側燃焼室22と、上流側燃焼室22の下方に配置された下流側燃焼室23と、上流側燃焼室22と下流側燃焼室23との境界に設けられた絞り部24と、を有する。   The combustion chamber 21 has an inflow port 21a that allows inflow of combustible gas, and combusts the swirling combustible gas that has flowed in through the inflow port 21a. Combustion air for burning the combustible gas is supplied to the combustion chamber 21. The combustion chamber 21 has a shape extending in the vertical direction. In the present embodiment, the combustion chamber 21 includes an upstream combustion chamber 22 having an inlet 21a, a downstream combustion chamber 23 disposed below the upstream combustion chamber 22, an upstream combustion chamber 22 and a downstream combustion chamber. 23, and a diaphragm 24 provided at the boundary with the head 23.

上流側燃焼室22は、円筒状に形成されておりその中心軸が鉛直と平行となる姿勢で配置されている。流入口21aは、上流側燃焼室22の上部に形成されている。ダクト40は、上流側燃焼室22のうち流入口21aを取り囲む部位に接続されている。ダクト40は、流入口21aを通じて上流側燃焼室22内に流入する可燃性ガスが当該上流側燃焼室22の内周面に沿って旋回する旋回流を形成する姿勢で上流側燃焼室22に接続されている。具体的に、ダクト40は、流入口21aから上流側燃焼室22の中心と異なる方向に向かって可燃性ガスを上流側燃焼室22内に流入させる姿勢で当該上流側燃焼室22に接続されている。本実施形態では、ダクト40から燃焼室21内に流入する可燃性ガスの流速は、15m/s以上25m/s以下の範囲に設定されている。   The upstream combustion chamber 22 is formed in a cylindrical shape, and is arranged in a posture in which the central axis is parallel to the vertical. The inlet 21 a is formed in the upper part of the upstream combustion chamber 22. The duct 40 is connected to a portion of the upstream combustion chamber 22 surrounding the inflow port 21a. The duct 40 is connected to the upstream combustion chamber 22 in such a posture that a combustible gas flowing into the upstream combustion chamber 22 through the inflow port 21 a forms a swirling flow that swirls along the inner peripheral surface of the upstream combustion chamber 22. Has been. Specifically, the duct 40 is connected to the upstream combustion chamber 22 in such a posture that the combustible gas flows into the upstream combustion chamber 22 from the inlet 21a in a direction different from the center of the upstream combustion chamber 22. Yes. In the present embodiment, the flow rate of the combustible gas flowing from the duct 40 into the combustion chamber 21 is set in the range of 15 m / s to 25 m / s.

下流側燃焼室23は、絞り部24の下方から出滓口20bに向かって斜め下方に延びる形状を有する底壁23aを有する。燃焼室21での可燃性ガスの燃焼時に当該可燃性ガスに含まれる灰分が溶融することにより形成される溶融スラグは、この底壁23a上を流下して出滓口20bから排出される。絞り部24は、上流側燃焼室22の下端部の内径よりも小さな内径を有する。   The downstream combustion chamber 23 has a bottom wall 23a having a shape extending obliquely downward from the lower portion of the throttle portion 24 toward the tap outlet 20b. Molten slag formed by melting the ash contained in the combustible gas during combustion of the combustible gas in the combustion chamber 21 flows down on the bottom wall 23a and is discharged from the outlet 20b. The throttle portion 24 has an inner diameter that is smaller than the inner diameter of the lower end portion of the upstream combustion chamber 22.

ガス排出室26は、燃焼室21の下流側でかつ出滓口20bよりも上方に設けられており、燃焼室21で燃焼した後の排ガスを排出させる形状を有する。ガス排出室26は、出滓口20bを基準として燃焼室21の反対側(図1の右側)に配置されている。ガス排出室26は、出滓口20bから斜め上方に向かって延びる空間を取り囲む形状を有する。ガス排出室26は、出滓口20bから離間するにしたがって上方に向かうように傾斜する形状を有する底壁27を有している。   The gas discharge chamber 26 is provided on the downstream side of the combustion chamber 21 and above the outlet 20b, and has a shape for discharging the exhaust gas after burning in the combustion chamber 21. The gas discharge chamber 26 is disposed on the opposite side (the right side in FIG. 1) of the combustion chamber 21 with respect to the tap outlet 20b. The gas discharge chamber 26 has a shape surrounding a space extending obliquely upward from the tap outlet 20b. The gas discharge chamber 26 has a bottom wall 27 having a shape that inclines upward as it is separated from the tap hole 20b.

塩基度調整剤供給部30は、炉本体20内に付着するスラグS1,S2の塩基度を調整可能な塩基度調整剤を供給する。具体的に、塩基度調整剤供給部30は、前記塩基度調整剤として、燃焼室21で捕捉されることが可能な粒径を有する第1調整剤と、第1調整剤の粒径よりも小さくかつガス排出室26で捕捉されることが可能な粒径を有する第2調整剤と、を流入口21aを通じて燃焼室21内に供給する。本実施形態では、塩基度調整剤供給部30は、ダクト40内に接続されている。   The basicity adjusting agent supply unit 30 supplies a basicity adjusting agent capable of adjusting the basicity of the slags S1 and S2 attached in the furnace body 20. Specifically, the basicity adjusting agent supply unit 30 has, as the basicity adjusting agent, a first adjusting agent having a particle size that can be captured in the combustion chamber 21, and a particle size of the first adjusting agent. A second regulator having a particle size that is small and can be captured in the gas discharge chamber 26 is supplied into the combustion chamber 21 through the inlet 21a. In the present embodiment, the basicity adjusting agent supply unit 30 is connected in the duct 40.

ここで、「塩基度」とは、CaO/SiOによって表される数値をいう。つまり、塩基度は、炭酸カルシウムなどの添加により上がり、珪石やガラスの添加により下がる。このため、塩基度が低い場合、炭酸カルシウム等が添加され、逆に、塩基度が高い場合、珪石やガラス等が添加される。 Here, “basicity” refers to a numerical value represented by CaO / SiO 2 . That is, the basicity increases with the addition of calcium carbonate or the like, and decreases with the addition of silica or glass. For this reason, when the basicity is low, calcium carbonate or the like is added. Conversely, when the basicity is high, silica or glass is added.

本実施形態では、「粒径」とは、いわゆる50%粒子径(メディアン径)を指す。50%粒子径とは、累積分布(体積分布)表における粒子の累積率が50%であるときの粒径である。この粒径は、レーザー回折・散乱法により測定される。   In the present embodiment, the “particle diameter” refers to a so-called 50% particle diameter (median diameter). The 50% particle size is a particle size when the cumulative rate of particles in the cumulative distribution (volume distribution) table is 50%. This particle size is measured by a laser diffraction / scattering method.

第1調整剤は、燃焼室21内に付着する上流側スラグS1の塩基度を所定範囲(例えば、0.6〜0.9)に収めることが可能な成分を含む。上流側スラグS1は、流入口21aを通じて燃焼室21内に流入した可燃性ガスに含まれる灰分のうち比較的大きな粒径を有するものの溶融により形成される。第2調整剤は、ガス排出室26内(本実施形態では底壁27上)に付着する下流側スラグS2の塩基度を所定範囲に収めることが可能な成分を含む。下流側スラグS2は、流入口21aを通じて燃焼室21内に流入した可燃性ガスに含まれる灰分のうち比較的小さな粒径を有するものの溶融により形成される。   The first adjusting agent includes a component capable of keeping the basicity of the upstream slag S1 attached in the combustion chamber 21 within a predetermined range (for example, 0.6 to 0.9). The upstream slag S1 is formed by melting of ash contained in the combustible gas that has flowed into the combustion chamber 21 through the inlet 21a and having a relatively large particle size. The second adjusting agent includes a component capable of keeping the basicity of the downstream slag S2 attached in the gas discharge chamber 26 (on the bottom wall 27 in the present embodiment) within a predetermined range. The downstream slag S2 is formed by melting of the ash contained in the combustible gas that has flowed into the combustion chamber 21 through the inlet 21a and having a relatively small particle size.

本実施形態では、塩基度調整剤供給部30は、第1調整剤として、150μm〜350μmの粒径を有するものと、第2調整剤として、15μm〜40μmの粒径を有するものと、を炉本体20内に供給する。この理由を、図2及び図3を参照しながら説明する。   In the present embodiment, the basicity adjusting agent supply unit 30 is a furnace having a particle size of 150 μm to 350 μm as the first adjusting agent and a particle size of 15 μm to 40 μm as the second adjusting agent. It is supplied into the main body 20. The reason for this will be described with reference to FIGS.

図2は、塩基度調整剤の50%粒子径と当該塩基度調整剤の溶融炉15での捕捉率との関係を示している。この関係は、塩基度調整剤供給部30からの塩基度調整剤の供給量と、溶融炉15の出滓口20bを通じて得られるスラグ中に捕捉される捕捉量と、に基づいて求められている。具体的には、溶融炉15に流入する灰分に塩基度調整剤を添加すると出滓口21bを通じて得られるスラグ中の塩基度成分の量が変化するため、溶融炉15に流入する灰分の溶融成分を予め求めるとともに、出滓口21bを通じて得られたスラグの成分を求めることにより、流入口21aを通じて供給された塩基度調整剤のうちスラグ中に取り込まれた塩基度調整剤の量を求めることができる。これを利用して溶融炉15における塩基度調整剤の捕捉率を求めた。図2には、複数回の試験結果の上限値と下限値とを含む領域が表示されている。なお、溶融炉15での捕捉率は、状況によっては100%となっていないが、この原因としては、測定のタイミングのズレなどが挙げられる。ここで、粒径毎の粒子の動きをシミュレーションにて確認したところ、比較的大きな粒径を有する塩基度調整剤のほとんどは、出滓口21bを通じてスラグとして排出されること、及び、図2のデータとも整合性がとれることから、塩基度調整剤供給部30から供給された塩基度調整剤のうちの大部分は、燃焼室21内の上流側スラグS1に付着すると考えられる。また、比較的小さな粒径を有する塩基度調整剤については、粒径が小さくなるほど燃焼室21を通過してバグフィルタへ移動する量が多くなり、前記シミュレーションによっても、燃焼室21を通過してバグフィルタへ移動する粒子の一部がガス排出室26の底壁27に付着した下流側スラグS2に接触することが分かった。そのため、燃焼室21で捕捉された塩基度調整剤は、そのほとんどがスラグとして出滓口21bを通じて排出されるものの、比較的小さな粒径を有する塩基度調整剤は、燃焼室21を通過してバグフィルタへ移動する内の一部のみがスラグの塩基度調整に寄与している。つまり、図2は、燃焼室21での塩基度調整剤の捕捉量を示していると見なすことが可能である。   FIG. 2 shows the relationship between the 50% particle size of the basicity adjusting agent and the capture rate of the basicity adjusting agent in the melting furnace 15. This relationship is obtained based on the supply amount of the basicity adjusting agent from the basicity adjusting agent supply unit 30 and the trapped amount captured in the slag obtained through the outlet 20b of the melting furnace 15. . Specifically, when the basicity adjusting agent is added to the ash flowing into the melting furnace 15, the amount of basicity component in the slag obtained through the tap outlet 21 b changes, so that the molten component of the ash flowing into the melting furnace 15 Is obtained in advance, and the amount of the basicity adjusting agent taken into the slag out of the basicity adjusting agent supplied through the inflow port 21a is obtained by obtaining the component of the slag obtained through the tap outlet 21b. it can. Using this, the capture rate of the basicity adjusting agent in the melting furnace 15 was determined. In FIG. 2, an area including an upper limit value and a lower limit value of a plurality of test results is displayed. In addition, although the capture rate in the melting furnace 15 is not 100% depending on the situation, a cause of this is a shift in the timing of measurement. Here, when the movement of the particles for each particle diameter was confirmed by simulation, most of the basicity adjusting agent having a relatively large particle diameter was discharged as slag through the outlet 21b, and FIG. Since consistency with the data is obtained, it is considered that most of the basicity adjusting agent supplied from the basicity adjusting agent supply unit 30 adheres to the upstream slag S1 in the combustion chamber 21. For the basicity adjuster having a relatively small particle size, the smaller the particle size, the larger the amount that passes through the combustion chamber 21 and moves to the bag filter. It was found that some of the particles moving to the bag filter contact the downstream slag S2 attached to the bottom wall 27 of the gas discharge chamber 26. Therefore, most of the basicity adjusting agent trapped in the combustion chamber 21 is discharged as slag through the outlet 21b, but the basicity adjusting agent having a relatively small particle size passes through the combustion chamber 21. Only a part of the movement to the bug filter contributes to the basicity adjustment of the slag. That is, FIG. 2 can be regarded as indicating the trapping amount of the basicity adjusting agent in the combustion chamber 21.

図2に示されるように、塩基度調整剤の50%粒子径が150μm以上の範囲では、塩基度調整剤供給部30から供給された塩基度調整剤のうちの50%以上が燃焼室21で捕捉される(上流側スラグS1に付着する)。このため、前記第1調整剤として、150μm以上の50%粒子径を有するものが選択されることが好ましく、更には200μm以上の50%粒子径を有するものが選択されることが好ましい。また、ガス化炉10で生じる灰分のうち350μm以上の粒径を有するものの溶融炉15への飛散量は非常に少ないため、第1調整剤の粒径の上限値は、350μmに設定されてもよい。   As shown in FIG. 2, in the range where the 50% particle size of the basicity adjusting agent is 150 μm or more, 50% or more of the basicity adjusting agent supplied from the basicity adjusting agent supply unit 30 is in the combustion chamber 21. Captured (attaches to the upstream slag S1). For this reason, as the first adjusting agent, one having a 50% particle diameter of 150 μm or more is preferably selected, and further, one having a 50% particle diameter of 200 μm or more is preferably selected. Further, among the ash generated in the gasification furnace 10, although the particle size of 350 μm or more is very small, the upper limit value of the particle diameter of the first adjusting agent is set to 350 μm because the scattering amount to the melting furnace 15 is very small. Good.

一方、図2に示されるように、塩基度調整剤の50%粒子径が40μm以下の範囲では、塩基度調整剤供給部30から供給された塩基度調整剤の燃焼室21での捕捉率が40%未満となる。溶融炉15での捕捉率が低いということは、粒子が溶融炉15を通過して当該溶融炉15よりも後段に配置されたバグフィルタへ至ることを意味するが、粒度解析の結果、燃焼室21を通過してバグフィルタへ至る粒子の一部が出滓口21b以降の炉壁(ガス排出室26の底壁27)に付着することが分かった。ここで、灰分がスラグとして底壁27に付着すると、これを起点に少しずつスラグが成長していくものと考えられる。このため、前記第2調整剤として、40μm以下の50%粒子径を有するものが選択されることが好ましい。なお、溶融炉15よりも後段へ粒子を移動させる観点から、第2調整剤の50%粒子径を30μm以下としても良い。   On the other hand, as shown in FIG. 2, in the range where the 50% particle size of the basicity adjusting agent is 40 μm or less, the capture rate of the basicity adjusting agent supplied from the basicity adjusting agent supply unit 30 in the combustion chamber 21 is high. Less than 40%. The low capture rate in the melting furnace 15 means that the particles pass through the melting furnace 15 and reach the bag filter disposed at a later stage than the melting furnace 15. It has been found that some of the particles passing through 21 and reaching the bag filter adhere to the furnace wall (bottom wall 27 of the gas discharge chamber 26) after the outlet 21b. Here, when ash is attached to the bottom wall 27 as slag, it is considered that the slag grows little by little starting from this. For this reason, it is preferable to select what has a 50% particle diameter of 40 micrometers or less as said 2nd regulator. From the viewpoint of moving the particles to the subsequent stage from the melting furnace 15, the 50% particle diameter of the second adjusting agent may be 30 μm or less.

そして、第2調整剤の50%粒子径の下限値は、15μmに設定されることが好ましい。この理由を、図3を参照しながら説明する。図3は、2つのサイト(廃棄物処理施設)でのバグフィルタで捕捉された塩基度調整剤の頻度分布を示している。この図3に示されるように、塩基度調整剤の50%粒子径が15μmよりも小さい範囲では、塩基度調整剤供給部30から供給された塩基度調整剤のうちの大部分がバグフィルタで捕捉されるため、つまり、ガス排出室26を通過するため、第2調整剤の50%粒子径は、15μm以上に設定されることが好ましい。   And it is preferable that the lower limit of the 50% particle diameter of a 2nd regulator is set to 15 micrometers. The reason for this will be described with reference to FIG. FIG. 3 shows the frequency distribution of the basicity adjusting agent captured by the bag filter at two sites (waste treatment facilities). As shown in FIG. 3, in the range where the 50% particle size of the basicity adjusting agent is smaller than 15 μm, most of the basicity adjusting agent supplied from the basicity adjusting agent supply unit 30 is a bag filter. In order to be captured, that is, to pass through the gas discharge chamber 26, the 50% particle diameter of the second adjusting agent is preferably set to 15 μm or more.

次に、本実施形態のガス化溶融炉の運転方法について説明する。   Next, the operation method of the gasification melting furnace of this embodiment is demonstrated.

まず、廃棄物がガス化炉10に投入される。そうすると、ガス化炉で生じた可燃性ガスがダクト40を通じて溶融炉15に流入する。この可燃性ガスの溶融炉15への流入速度は、15m/s〜25m/s程度である。   First, waste is thrown into the gasifier 10. Then, combustible gas generated in the gasification furnace flows into the melting furnace 15 through the duct 40. The inflow speed of the combustible gas into the melting furnace 15 is about 15 m / s to 25 m / s.

流入口21aを通じて燃焼室21内に流入した可燃性ガスは、燃焼室21で旋回しながら燃焼し、これにより可燃性ガスに含まれる灰分が溶融する。この灰分の溶融により形成される溶融スラグは、下流側燃焼室23の底壁23a上を流下し、出滓口20bから排出される。一方、燃焼室21で燃焼した後の排ガスは、ガス排出室26を通じて溶融炉15の下流側の設備へ向かう。   The combustible gas that has flowed into the combustion chamber 21 through the inflow port 21a burns while swirling in the combustion chamber 21, whereby the ash contained in the combustible gas is melted. The molten slag formed by melting the ash flows down on the bottom wall 23a of the downstream combustion chamber 23 and is discharged from the tap outlet 20b. On the other hand, the exhaust gas after burning in the combustion chamber 21 goes to the equipment on the downstream side of the melting furnace 15 through the gas discharge chamber 26.

ここで、本ガス化溶融炉の運転中、図1に示されるように、燃焼室21の内面に上流側スラグS1が付着するとともに、ガス排出室26の内面に下流側スラグS2が付着することがあるため、塩基度調整剤供給部30から塩基度調整剤(第1調整剤及び第2調整剤)が供給される。例えば、上流側スラグS1の塩基度が低く、下流側スラグS2の塩基度が高い場合、塩基度調整剤供給部30から、第1調整剤として、上流側スラグS1に捕捉されることが可能な粒径を有するとともに当該上流側スラグS1の塩基度を上げることが可能な成分(CaCO等)を含むものが供給され、第2調整剤として、第1調整剤の粒径よりも小さな粒径であって下流側スラグS2に捕捉されることが可能な粒径を有するとともに当該下流側スラグS2の塩基度を下げることが可能な成分(SiO等)を含むものが供給される。 Here, during operation of the gasification melting furnace, as shown in FIG. 1, the upstream slag S <b> 1 adheres to the inner surface of the combustion chamber 21 and the downstream slag S <b> 2 adheres to the inner surface of the gas discharge chamber 26. Therefore, the basicity adjusting agent (first adjusting agent and second adjusting agent) is supplied from the basicity adjusting agent supply unit 30. For example, when the basicity of the upstream slag S1 is low and the basicity of the downstream slag S2 is high, the upstream slag S1 can be captured as the first adjusting agent from the basicity adjusting agent supply unit 30. A particle having a particle size and containing a component (CaCO 3 or the like) capable of increasing the basicity of the upstream slag S1 is supplied, and a particle size smaller than the particle size of the first adjusting agent is supplied as the second adjusting agent. In addition, a material having a particle size that can be captured by the downstream slag S2 and containing a component (such as SiO 2 ) that can lower the basicity of the downstream slag S2 is supplied.

そうすると、比較的大きな粒径を有する第1調整剤は、燃焼室21において大きな遠心力を受けて旋回しながら燃焼室21内に付着する上流側スラグS1の表面に付着する一方、比較的小さな粒径を有する第2調整剤は、ガス排出室26まで飛散して当該ガス排出室26内に付着する下流側スラグS2の表面に略均一に付着するので、上流側スラグS1及び下流側スラグS2の双方を有効に除去することができる。具体的に、第1調整剤は、上流側スラグS1に捕捉されることが可能な粒径、換言すれば大きな質量を有しているので、燃焼室21において第1調整剤に対して大きな遠心力が作用し、これにより第1調整剤は上流側スラグS1の表面に付着しやすい。一方、燃焼室21において第2調整剤に対して作用する遠心力は、第1調整剤に対して作用する遠心力よりも小さいので、第2調整剤は、ガス排出室26まで飛散し、また、第2調整剤は、流入口21aからガス排出室26に至る過程において十分に拡散するので、ガス排出室26内の広範囲にわたって付着する下流側スラグS2の表面に略均一に付着しやすい。よって、本実施形態では、比較的大きな粒径を有する第1調整剤によって燃焼室21内に付着する上流側スラグS1の塩基度が有効に調整されるので、当該上流側スラグS1の溶融が促進され、かつ、比較的小さな粒径を有する第2調整剤によってガス排出室26内に付着する下流側スラグS2の塩基度が有効に調整されるので、当該下流側スラグS2の溶融が促進される。   Then, the first adjusting agent having a relatively large particle size adheres to the surface of the upstream slag S1 that adheres in the combustion chamber 21 while turning by receiving a large centrifugal force in the combustion chamber 21, while relatively small particles The second adjusting agent having a diameter scatters to the gas discharge chamber 26 and adheres substantially uniformly to the surface of the downstream slag S2 that adheres in the gas discharge chamber 26, so that the upstream slag S1 and the downstream slag S2 Both can be effectively removed. Specifically, since the first adjusting agent has a particle size that can be captured by the upstream slag S1, in other words, a large mass, the first adjusting agent has a large centrifugal force relative to the first adjusting agent in the combustion chamber 21. A force acts, whereby the first adjusting agent tends to adhere to the surface of the upstream slag S1. On the other hand, since the centrifugal force acting on the second adjusting agent in the combustion chamber 21 is smaller than the centrifugal force acting on the first adjusting agent, the second adjusting agent scatters to the gas discharge chamber 26, and Since the second adjusting agent is sufficiently diffused in the process from the inlet 21a to the gas discharge chamber 26, it tends to adhere substantially uniformly to the surface of the downstream slag S2 that adheres over a wide area in the gas discharge chamber 26. Therefore, in this embodiment, the basicity of the upstream slag S1 adhering in the combustion chamber 21 is effectively adjusted by the first regulator having a relatively large particle size, so that the melting of the upstream slag S1 is promoted. In addition, the basicity of the downstream slag S2 adhering to the inside of the gas discharge chamber 26 is effectively adjusted by the second adjusting agent having a relatively small particle size, so that the melting of the downstream slag S2 is promoted. .

また、本実施形態では、塩基度調整剤供給部30は、前記第1調整剤として、150μm以上の粒径を有するものと、前記第2調整剤として、15μm以上40μm以下の粒径を有するものと、を流入口21aを通じて炉本体20内に供給するので、より確実に第1調整剤が上流側スラグS1に捕捉され、かつ、より確実に第2調整剤が下流側スラグS2に捕捉される。   In the present embodiment, the basicity adjusting agent supply unit 30 has a particle size of 150 μm or more as the first adjusting agent, and a particle size of 15 μm or more and 40 μm or less as the second adjusting agent. Are supplied into the furnace body 20 through the inflow port 21a, so that the first adjusting agent is more reliably captured by the upstream slag S1, and the second adjusting agent is more reliably captured by the downstream slag S2. .

従来、塩基度調整剤を1箇所から供給する場合、溶融炉で捕捉されることを目的として供給しているものの、溶融炉のどの部位で捕捉されるかということまで考慮し、それに併せて塩基度調整剤の粒径を異ならせて、これらを混合して用いること、及び、必要に応じて混合する塩基度調整剤の種類を変えることまでは検討されていない。本実施形態においては、溶融炉の捕捉させたい場所に応じて塩基度調整剤の粒径を調整しているため、スラグの堆積する場所毎に応じて塩基度を調整し、上流側スラグS1及び下流側スラグS2のそれぞれを有効に除去することができる。   Conventionally, when the basicity adjusting agent is supplied from one place, it is supplied for the purpose of being captured in the melting furnace, but it is also considered in which part of the melting furnace it is captured and the base It has not been studied until the particle size of the degree-adjusting agent is changed and mixed and used, and the type of the basicity adjusting agent to be mixed is changed as necessary. In this embodiment, since the particle size of the basicity adjusting agent is adjusted according to the location where the melting furnace is to be captured, the basicity is adjusted according to the location where the slag is deposited, and the upstream slag S1 and Each of the downstream slag S2 can be effectively removed.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

塩基度調整剤の粒径は、50%粒子径に限られない。前記粒径として、いわゆるモード径が採用されてもよい。この場合であっても、上記と同様の効果が得られる。   The particle size of the basicity adjusting agent is not limited to 50% particle size. A so-called mode diameter may be employed as the particle diameter. Even in this case, the same effect as described above can be obtained.

また、塩基度調整剤供給部30の接続先は、ダクト40に限られない。塩基度調整剤供給部30の接続先は、塩基度調整剤が流入口21aを通じて炉本体20内に供給される範囲で設定可能である。例えば、塩基度調整剤供給部30は、燃焼室21のうち流入口21aを取り囲む部位に接続されてもよい。また、塩基度調整剤供給部30は、廃棄物と共にガス化炉10へ塩基度調整剤を供給するようにしても良い。   Further, the connection destination of the basicity adjusting agent supply unit 30 is not limited to the duct 40. The connection destination of the basicity adjusting agent supply unit 30 can be set in a range in which the basicity adjusting agent is supplied into the furnace body 20 through the inflow port 21a. For example, the basicity adjusting agent supply unit 30 may be connected to a portion of the combustion chamber 21 that surrounds the inflow port 21a. The basicity adjusting agent supply unit 30 may supply the basicity adjusting agent to the gasification furnace 10 together with the waste.

また、溶融炉15の炉本体20の形状は、上記実施形態の例に限られない。例えば、燃焼室21と出滓口20bとが鉛直方向に重なる形状であってもよく、あるいは、ガス排出室26と出滓口20bとが鉛直方向に重なる形状であってもよい。また、ガス排出室26の底壁27は、下流に向かうにしたがって上方に向かうように傾斜する形状に限られない。   Further, the shape of the furnace body 20 of the melting furnace 15 is not limited to the example of the above embodiment. For example, the combustion chamber 21 and the tap hole 20b may have a shape that overlaps in the vertical direction, or the gas discharge chamber 26 and the tap hole 20b may overlap in the vertical direction. Further, the bottom wall 27 of the gas discharge chamber 26 is not limited to a shape that is inclined so as to go upward as it goes downstream.

10 ガス化炉
15 溶融炉
20 炉本体
20b 出滓口
21 燃焼室
21a 流入口
26 ガス排出室
30 塩基度調整剤供給部
40 ダクト
DESCRIPTION OF SYMBOLS 10 Gasification furnace 15 Melting furnace 20 Furnace main body 20b Outlet 21 Combustion chamber 21a Inlet 26 Gas discharge chamber 30 Basicity adjusting agent supply part 40 Duct

Claims (2)

ガス化炉で生じた可燃性ガスの流入を許容する流入口を有するとともに、前記流入口を通じて流入した可燃性ガスで旋回流を形成しながら当該可燃性ガスを燃焼させるとともに当該可燃性ガスに含まれる灰分を溶融させる燃焼室と、前記燃焼室の下方に設けられており、前記灰分の溶融により形成される溶融スラグを排出するための出滓口と、前記燃焼室の下流側でかつ前記出滓口よりも上方に設けられており、前記燃焼室で燃焼した後の排ガスを排出させるガス排出室と、を有する炉本体を含む溶融炉の運転方法であって、
前記燃焼室において、前記可燃性ガスで旋回流を形成しながら当該可燃性ガスを燃焼させることにより前記可燃性ガスに含まれる灰分を溶融させる溶融工程と、
前記炉本体内に付着するスラグの塩基度を調整可能な塩基度調整剤を前記炉本体内に供給する調整剤供給工程と、を備え、
前記調整剤供給工程では、前記塩基度調整剤として、前記燃焼室内に付着する上流側スラグに捕捉されることが可能な粒径を有するとともに前記上流側スラグの塩基度を所定範囲に収めることが可能な成分を含む第1調整剤と、前記第1調整剤の粒径よりも小さな粒径であって前記ガス排出室内に付着する下流側スラグに捕捉されることが可能な粒径を有するとともに前記下流側スラグの塩基度を前記所定範囲に収めることが可能な成分を含む第2調整剤と、を前記燃焼室の流入口を通じて供給する、溶融炉の運転方法。
It has an inlet that allows inflow of combustible gas generated in the gasification furnace, and combusts the combustible gas while forming a swirl flow with the combustible gas that flows in through the inlet, and is included in the combustible gas. A combustion chamber for melting the ash content, an outlet for discharging molten slag formed by melting the ash content, a downstream side of the combustion chamber and the outlet. A method for operating a melting furnace including a furnace body having a gas discharge chamber for discharging exhaust gas after being burned in the combustion chamber;
In the combustion chamber, a melting step of melting ash contained in the combustible gas by combusting the combustible gas while forming a swirl flow with the combustible gas;
A regulator supply step of supplying a basicity adjusting agent capable of adjusting the basicity of the slag adhering in the furnace body into the furnace body, and
In the adjusting agent supplying step, the basicity adjusting agent has a particle size that can be captured by the upstream slag adhering to the combustion chamber, and the basicity of the upstream slag falls within a predetermined range. And having a particle size that is smaller than the particle size of the first regulator and that can be captured by the downstream slag adhering to the gas discharge chamber. A method for operating a melting furnace, comprising supplying a second regulator containing a component capable of keeping the basicity of the downstream slag within the predetermined range through an inlet of the combustion chamber.
請求項1に記載の溶融炉の運転方法において、
前記調整剤供給工程では、前記第1調整剤として、150μm以上の粒径を有するものと、前記第2調整剤として、15μm以上40μm以下の粒径を有するものと、を前記流入口を通じて前記炉本体内に供給する、溶融炉の運転方法。
In the operation method of the melting furnace according to claim 1,
In the adjusting agent supplying step, the first adjusting agent having a particle size of 150 μm or more and the second adjusting agent having a particle size of 15 μm or more and 40 μm or less through the inlet are provided in the furnace. A method for operating a melting furnace to be supplied into the body.
JP2015059383A 2015-03-23 2015-03-23 Operation method of melting furnace Active JP6454575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059383A JP6454575B2 (en) 2015-03-23 2015-03-23 Operation method of melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059383A JP6454575B2 (en) 2015-03-23 2015-03-23 Operation method of melting furnace

Publications (2)

Publication Number Publication Date
JP2016176683A true JP2016176683A (en) 2016-10-06
JP6454575B2 JP6454575B2 (en) 2019-01-16

Family

ID=57070995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059383A Active JP6454575B2 (en) 2015-03-23 2015-03-23 Operation method of melting furnace

Country Status (1)

Country Link
JP (1) JP6454575B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212615A (en) * 2002-01-22 2003-07-30 Kobe Steel Ltd Method for melt treatment of sludge incineration ash and method for manufacturing rigid aggregate
JP2006349218A (en) * 2005-06-14 2006-12-28 Kobelco Eco-Solutions Co Ltd Slag basicity adjusting method and its device for gasification melting furnace
JP2007225168A (en) * 2006-02-22 2007-09-06 Hitachi Zosen Corp Molten deposit removal method and melting furnace
JP2009281694A (en) * 2008-05-26 2009-12-03 Hitachi Zosen Corp Method for improving molten slag production efficiency in melting furnace of gasification melting furnace, method for preventing accumulation of non-melted deposit in the melting furnace of the gasification melting furnace, and the gasification melting furnace
JP2013130314A (en) * 2011-12-20 2013-07-04 Kawasaki Heavy Ind Ltd Slag melting device and gasification melting device including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212615A (en) * 2002-01-22 2003-07-30 Kobe Steel Ltd Method for melt treatment of sludge incineration ash and method for manufacturing rigid aggregate
JP2006349218A (en) * 2005-06-14 2006-12-28 Kobelco Eco-Solutions Co Ltd Slag basicity adjusting method and its device for gasification melting furnace
JP2007225168A (en) * 2006-02-22 2007-09-06 Hitachi Zosen Corp Molten deposit removal method and melting furnace
JP2009281694A (en) * 2008-05-26 2009-12-03 Hitachi Zosen Corp Method for improving molten slag production efficiency in melting furnace of gasification melting furnace, method for preventing accumulation of non-melted deposit in the melting furnace of the gasification melting furnace, and the gasification melting furnace
JP2013130314A (en) * 2011-12-20 2013-07-04 Kawasaki Heavy Ind Ltd Slag melting device and gasification melting device including the same

Also Published As

Publication number Publication date
JP6454575B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP4361890B2 (en) Method and apparatus for adjusting slag basicity of gasification melting furnace
JPH05311180A (en) Coal burner and slag discharger therefor
JP7082931B2 (en) Coal-fired boiler ash adhesion prediction method and equipment, coal-fired boiler ash adhesion prevention method and equipment, and coal-fired boiler operation method and equipment
JP6454575B2 (en) Operation method of melting furnace
JP6659471B2 (en) Exhaust gas treatment equipment
CN104531221B (en) A kind of gasification furnace structure that can simultaneously process fine coal and water-coal-slurry
EP3502560B1 (en) Burner head for exhaust gas treatment device and method for manufacturing same, and combustion chamber for exhaust gas treatment device, and manufacturing method and maintenance method for same
JP6460848B2 (en) Operation method of melting furnace
JP3847055B2 (en) Secondary combustion equipment for dust-containing exhaust gas
JP2007064498A (en) Combustion melting furnace
JP6413157B1 (en) Device for preventing clogging of gasification melting system and method for preventing clogging of gasification melting system
JPH054565B2 (en)
JP7065829B2 (en) Boiler system
JP2005265390A (en) Combustion air blowing method for combustion melting furnace, and combustion melting furnace
JP6149048B2 (en) Waste treatment system and operation method thereof
JP2006250516A (en) Removing method of slag lump fixed in combustion chamber
JP2582419B2 (en) Melt combustion equipment
JPH053845Y2 (en)
CN2791488Y (en) Blast furnace and converter gas flame stabilizer
JPH08579Y2 (en) Melting combustion device
JP3310816B2 (en) Melt combustion equipment
RU2116569C1 (en) Burner
JP2000205534A (en) Method and system for suppressing regeneration of dioxins
JP2003279024A (en) Ash fusing furnace
JP5862604B2 (en) How to design a blowing lance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6454575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250