JP2016176338A - Air-fuel ratio control device of gas engine, and ship equipped with gas engine including air-fuel ratio control device - Google Patents

Air-fuel ratio control device of gas engine, and ship equipped with gas engine including air-fuel ratio control device Download PDF

Info

Publication number
JP2016176338A
JP2016176338A JP2015054816A JP2015054816A JP2016176338A JP 2016176338 A JP2016176338 A JP 2016176338A JP 2015054816 A JP2015054816 A JP 2015054816A JP 2015054816 A JP2015054816 A JP 2015054816A JP 2016176338 A JP2016176338 A JP 2016176338A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ratio control
fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015054816A
Other languages
Japanese (ja)
Other versions
JP6508709B2 (en
Inventor
オレクシ— ボンダレンコ
Oleksiy Bondarenko
オレクシ― ボンダレンコ
哲吾 福田
Tetsugo Fukuda
哲吾 福田
敏郎 栗原
Toshiro Kurihara
敏郎 栗原
泰久 市川
Yasuhisa Ichikawa
泰久 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2015054816A priority Critical patent/JP6508709B2/en
Publication of JP2016176338A publication Critical patent/JP2016176338A/en
Application granted granted Critical
Publication of JP6508709B2 publication Critical patent/JP6508709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-fuel ratio control device of a gas engine and a ship equipped with the gas engine including the air-fuel ratio control device, superior in responsiveness by keeping a constant air-fuel ratio even when the setting of a supply amount of a fuel gas is changed in the case where a load fluctuates, without additionally installing much apparatuses for controlling the air-fuel ratio.SOLUTION: An air-fuel ratio control device of a gas engine includes fuel supply amount control means 30 for controlling a supply amount of a fuel gas to be supplied to a gas engine 10, a supercharger 20 having a compressor 22 for pressurizing air and a turbine 21 driven by an exhaust gas of the gas engine 10, supercharger rotational frequency detection means 31 detecting a rotational frequency of the supercharger 20, and air-fuel ratio control means 32 for performing control so that temporal variation of the supply amount of the fuel gas by the fuel supply amount control means 30 is delayed on the basis of a result of the detection by the supercharger rotational frequency detection means 31 when the setting of the supply amount of the fuel gas is changed.SELECTED DRAWING: Figure 2

Description

本発明は、燃料ガスと空気とを混合して燃焼させ動力を得るガスエンジンの空燃比制御装置、及び空燃比制御装置付きガスエンジンを搭載した船舶に関する。   The present invention relates to an air-fuel ratio control device for a gas engine that obtains power by mixing and burning fuel gas and air, and a ship equipped with a gas engine with an air-fuel ratio control device.

燃料ガスと空気とを混合して燃焼させ動力を得るガスエンジンは環境に優しく、熱効率が高く、経済的であるため、コジェネレーションプラントの原動機として多く使用されており、また、環境規制が厳しくなってきている船舶においてもガスエンジンが搭載され始めている。しかしながらガスエンジン、特に希薄燃焼ガスエンジンは負荷変動に弱く、特に船舶のエンジンとして使用する場合は、海が荒れることなどによる負荷変動に対処するため数多くの制御装置を設けて空燃比制御を行っている。   Gas engines that obtain power by mixing and burning fuel gas and air are environmentally friendly, have high thermal efficiency, and are economical, so they are often used as prime movers for cogeneration plants, and environmental regulations are becoming stricter. Gas engines are beginning to be installed in ships that are coming. However, gas engines, particularly lean combustion gas engines, are vulnerable to load fluctuations, and especially when used as marine engines, a large number of control devices are provided to perform air-fuel ratio control in order to cope with load fluctuations caused by rough seas. Yes.

図6は従来の空燃比制御装置の概略構成図、図7は従来の空燃比制御装置のエンジン負荷変動に対する空燃比制御を示す図、図8は空燃比制御の必要性を示す図である。
図8において、縦軸は正味平均有効圧(BMEP)であり、横軸は空気過剰率(理論上必要な空気に対する実際の空気量の比)である。希薄燃焼において、空気過剰率が所望の空気過剰率より小さい場合はノッキングを起こしやすくなり、大きい場合は失火を起こしやすく(エンジンが停止しやすく)なる。正味平均有効圧が高くなるほどノッキングや失火を起こさないための適性な空燃比の範囲が狭くなることが分かる。
従来の空燃比制御装置は、図6に示すように、ガスエンジン100と、タービン210及びコンプレッサー220を有する過給機200とを備える。また、空燃比制御手段300を備え、空燃比制御手段300によって、スロットルバルブ(Throttle valve)310、可変バルブタイミング機構(Variable valve timing)320、可変ノズル(Variable Geometry Turbo )330、燃料供給手段340、排気ガスバイパス経路350、排気ガスバイパス制御弁(Waste gate valve)360が制御される。
空気の量を調整制御するためには、過給機200のコンプレッサー220の出口にスロットルバルブ310を設けて空気供給量を制御すると同時に、過給機200のタービン210側に設けた可変ノズル330の制御、及び排気ガスバイパス制御弁360で余分な排気ガスを逃がす制御が必要である。更に、ガスエンジン100側に設けた吸、排気のタイミングを可変にする可変バルブタイミング機構320で排気エネルギーを調整する必要がある。このような制御によって空燃比制御ができ、舶用に耐える動特性が得られる。
しかしながら、従来の空燃比制御方法では、負荷変動等に対応してエンジンの出力を保持しようと燃料ガスと空気の供給量を変化させる場合において、過給機200よりも燃料供給手段340のほうの応答が速いため、燃料ガスと空気の混合バランスが崩れてしまい、図7に示すように空燃比が変動して燃焼が不安定になってしまう。
6 is a schematic configuration diagram of a conventional air-fuel ratio control device, FIG. 7 is a diagram showing air-fuel ratio control with respect to engine load fluctuations of the conventional air-fuel ratio control device, and FIG. 8 is a diagram showing the necessity of air-fuel ratio control.
In FIG. 8, the vertical axis represents the net average effective pressure (BMEP), and the horizontal axis represents the excess air ratio (the ratio of the actual air amount to the theoretically required air). In lean combustion, if the excess air ratio is smaller than the desired excess air ratio, knocking is likely to occur, and if it is greater, misfire is likely to occur (the engine is likely to stop). It can be seen that the higher the net average effective pressure, the narrower the range of suitable air-fuel ratio for preventing knocking or misfire.
As shown in FIG. 6, the conventional air-fuel ratio control apparatus includes a gas engine 100 and a supercharger 200 having a turbine 210 and a compressor 220. The air-fuel ratio control unit 300 includes a throttle valve 310, a variable valve timing mechanism 320, a variable nozzle turbo 330, a fuel supply unit 340, The exhaust gas bypass path 350 and the exhaust gas bypass control valve 360 are controlled.
In order to adjust and control the amount of air, a throttle valve 310 is provided at the outlet of the compressor 220 of the supercharger 200 to control the air supply amount, and at the same time, the variable nozzle 330 provided on the turbine 210 side of the supercharger 200 is controlled. It is necessary to perform control and control to release excess exhaust gas using the exhaust gas bypass control valve 360. Further, it is necessary to adjust the exhaust energy by a variable valve timing mechanism 320 provided on the gas engine 100 side, which makes the intake and exhaust timing variable. By such control, air-fuel ratio control can be performed and dynamic characteristics that can withstand marine use can be obtained.
However, in the conventional air-fuel ratio control method, when the supply amounts of fuel gas and air are changed in order to maintain the output of the engine in response to load fluctuations or the like, the fuel supply means 340 is more than the supercharger 200. Since the response is fast, the mixing balance of the fuel gas and air is lost, and the air-fuel ratio fluctuates as shown in FIG.

ここで、特許文献1には、燃料供給通路中の燃料流量の検出値に基づき必要空気量を算出するとともに給気通路における給気圧力及び給気温度の検出値に基づき実空気量を算出し、実空気量が必要空気量に一致するように給気放出手段によって給気通路における給気量を制御する、ガスエンジンの空燃比制御方法が開示されている。
また、特許文献2には、エンジンに供給される燃料ガスの発熱量及びエンジンの始動時を含む運転時の最適熱量に対応する最適燃料ガス量を算出し、最適燃料ガス量と給気圧力検出値及び給気温度検出値に基づき算出された実際の空気量とに適合する過給機の最適回転数を算出し、最適過給機回転数になるように過給機に連結された電動モータを制御するモータコントローラを有してなる、モータ駆動過給機付きガスエンジンが開示されている。
また、特許文献3には、ガスエンジンから検出されたエンジン回転速度信号と、その目標値となる速度指令値信号との偏差に基づき燃料ガス流量指令値を演算し、燃料ガス流量指令値に応じて燃料流量制御バルブの燃料ガス流量を設定する速度制御工程と、燃料ガス流量指令値に対して適正空燃比となる混合気流量指令値を算出し、混合気流量指令値と実混合気流量との偏差に基づきスロットルバルブの目標開度を設定するフィードバック制御を行う空燃比制御工程とを備えたガスエンジンの統合制御方法が開示されている。
また、特許文献4には、給気圧力センサからの給気圧力の検出値及び負荷検出器からのエンジン負荷の検出値に基づき、燃料噴射量を給気圧力及びエンジン負荷にそれぞれ対応する目標燃料噴射量に調整するとともに、過給機回転数検出器あるいは排気圧力センサから入力される過給機回転数あるいは排気圧力の検出値に基づき、燃料噴射量を過給機回転数及び排気圧力のいずれか一方または双方にそれぞれ対応する目標燃料噴射量に調整する制御装置を備える発電用ディーゼルエンジンの燃料制御装置が開示されている。
Here, in Patent Document 1, the required air amount is calculated based on the detected value of the fuel flow rate in the fuel supply passage, and the actual air amount is calculated based on the detected values of the supply pressure and supply temperature in the supply passage. A gas engine air-fuel ratio control method is disclosed in which the air supply amount in the air supply passage is controlled by the air supply discharge means so that the actual air amount matches the required air amount.
Further, Patent Document 2 calculates the optimum fuel gas amount corresponding to the calorific value of the fuel gas supplied to the engine and the optimum heat amount during operation including when the engine is started, and detects the optimum fuel gas amount and supply air pressure. Electric motor connected to the turbocharger so as to obtain the optimum turbocharger rotation speed by calculating the optimum turbocharger rotation speed that matches the actual air amount calculated based on the value and the detected air temperature A gas engine with a motor-driven supercharger having a motor controller for controlling the motor is disclosed.
Further, in Patent Document 3, a fuel gas flow rate command value is calculated based on a deviation between an engine rotation speed signal detected from a gas engine and a speed command value signal as a target value, and the fuel gas flow rate command value is A speed control step for setting the fuel gas flow rate of the fuel flow rate control valve, and a mixture flow rate command value that provides an appropriate air-fuel ratio with respect to the fuel gas flow rate command value, and a mixture flow rate command value and an actual mixture flow rate An integrated control method for a gas engine is disclosed, which includes an air-fuel ratio control step for performing feedback control for setting a target opening of a throttle valve based on the deviation of the throttle valve.
Further, Patent Document 4 discloses a target fuel that corresponds to the fuel injection amount and the engine load based on the detected value of the supplied air pressure from the supplied air pressure sensor and the detected value of the engine load from the load detector, respectively. The fuel injection amount is adjusted to either the turbocharger speed or the exhaust pressure based on the detected value of the turbocharger speed or the exhaust pressure input from the turbocharger speed detector or the exhaust pressure sensor. There is disclosed a fuel control device for a diesel engine for power generation that includes a control device that adjusts the target fuel injection amount corresponding to one or both of them.

特開2003−261239号公報JP 2003-261239 A 特開2007−218223号公報JP 2007-218223 A 特開2009−57870号公報JP 2009-57870 A 特開2006−307676号公報JP 2006-307676 A

ガスエンジン、特に希薄燃焼ガスエンジンがノッキングや失火を起こさず安定して燃焼するためには、負荷が変動した場合など燃料ガスの供給量の設定変更がされた場合であっても、空燃比を一定に制御する必要がある。しかしながら、空燃比を制御するための機器を多く追加しても応答性をはじめとする制御性の向上を図ることは難しく、機器点数が増え複雑になることにより信頼性の低下も招き易い。
特許文献1のガスエンジンの空燃比制御方法は、燃料流量、給気圧力及び給気温度を検出して必要空気量及び実空気量を算出する必要があるとともに、給気通路中の給気の一部を外部に放出するための給気放出手段等を必要とするものである。
また、特許文献2のモータ駆動過給機付きガスエンジンは、最適燃料ガス量を算出し、給気圧力及び給気温度を検出して過給機の最適回転数を算出して電動モータを制御するモータコントローラを必要とするものであるが、空燃比を制御するための機器の応答性を考慮して制御を行うものではないため、負荷変動時に空燃比を一定に保つことが難しい。
また、特許文献3のガスエンジンの制御方法は、検出したエンジン回転速度に基づいて各演算を行い、スロットルバルブの目標開度を設定するフィードバック制御を必要とするものであるが、過給機の応答性を考慮して制御を行うものではないため負荷変動時に空燃比を一定に保つことが難しい。
また、特許文献4の発電用ディーゼルエンジンの燃料制御装置は、給気圧力、エンジン負荷、過給機回転数、及び排気圧力など複数の検出値を制御に用いるものであるが、燃料―空気制御系における適度な応答性を保持するものであり、過給機の応答性を考慮して制御を行うものではないため、負荷変動時に空燃比を一定に保つことが難しい。また、発電用ディーゼルエンジンに関する制御装置であり、ディーゼルエンジンよりも細かい制御が求められるガスエンジンに関するものではない。
In order for gas engines, especially lean combustion gas engines, to burn stably without causing knocking or misfire, the air-fuel ratio must be reduced even when the fuel gas supply amount is changed, such as when the load fluctuates. It needs to be controlled constantly. However, even if a large number of devices for controlling the air-fuel ratio are added, it is difficult to improve the controllability such as responsiveness, and the number of devices increases and the complexity tends to decrease.
In the air-fuel ratio control method of the gas engine disclosed in Patent Document 1, it is necessary to calculate the necessary air amount and the actual air amount by detecting the fuel flow rate, the supply air pressure, and the supply air temperature, as well as the supply air amount in the supply passage. A supply air discharge means for discharging a part of the air to the outside is required.
In addition, the gas engine with a motor-driven supercharger disclosed in Patent Document 2 calculates the optimum fuel gas amount, detects the supply air pressure and the supply air temperature, calculates the optimum rotation speed of the supercharger, and controls the electric motor. However, it is difficult to keep the air-fuel ratio constant when the load fluctuates because the control is not performed in consideration of the responsiveness of the device for controlling the air-fuel ratio.
In addition, the gas engine control method disclosed in Patent Document 3 requires feedback control to perform each calculation based on the detected engine rotational speed and set the target opening of the throttle valve. Since control is not performed in consideration of responsiveness, it is difficult to keep the air-fuel ratio constant when the load fluctuates.
Further, the fuel control device for a power generation diesel engine disclosed in Patent Document 4 uses a plurality of detected values such as a supply air pressure, an engine load, a supercharger rotation speed, and an exhaust pressure for control. The system maintains moderate response in the system and does not perform control in consideration of the response of the turbocharger, so it is difficult to keep the air-fuel ratio constant during load fluctuations. Moreover, it is a control apparatus regarding the diesel engine for electric power generation, and is not related to the gas engine which requires finer control than a diesel engine.

そこで本発明は、空燃比を制御するための機器を多く追加することなく、負荷が変動した場合など燃料ガスの供給量の設定変更がされた場合であっても、空燃比を一定に保つことができる応答性に優れたガスエンジンの空燃比制御装置及び空燃比制御装置付きガスエンジンを搭載した船舶を提供することを目的とする。   Therefore, the present invention does not add many devices for controlling the air-fuel ratio, and keeps the air-fuel ratio constant even when the setting of the fuel gas supply amount is changed, such as when the load fluctuates. An object of the present invention is to provide a gas engine air-fuel ratio control device with excellent responsiveness and a ship equipped with the gas engine with the air-fuel ratio control device.

請求項1記載に対応したガスエンジンの空燃比制御装置においては、燃料ガスと空気とを混合して燃焼させ動力を得るガスエンジンの空燃比制御装置であって、ガスエンジンへ供給する燃料ガスの供給量を制御する燃料供給量制御手段と、空気を加圧するコンプレッサー及びガスエンジンの排気ガスにより駆動されるタービンを有した過給機と、過給機の回転数を検出する過給機回転数検出手段と、燃料ガスの供給量の設定変更がされた場合に過給機回転数検出手段の検出結果に基づいて燃料供給量制御手段による燃料ガスの供給量の時間的変化を遅くするように制御する空燃比制御手段とを備えたことを特徴とする。
負荷が変動した場合には、過給機の応答が遅れるが、燃料供給量制御手段は過給機よりも応答が速いので、負荷変動が生じた場合など燃料ガスの供給量の設定が変更された際は、空気の供給量よりも燃料ガスの供給量のほうが先に必要量に到達するため空燃比が変動して燃焼が不安定になってしまう。そこで、請求項1に記載の本発明によれば、過給機の回転数に基づいて燃料ガスの供給量の時間的変化を燃料供給量制御手段にて遅くする、即ち燃料ガスの供給量が必要量に到達するまでの時間を空気の供給量に合わせて遅くすることで、空燃比を制御する機器を多く増やすことなく空燃比を一定にして、ガスエンジンにおける燃焼を安定させることができる。
The air-fuel ratio control apparatus for a gas engine according to claim 1 is an air-fuel ratio control apparatus for a gas engine that obtains power by mixing fuel gas and air and combusting the fuel gas. Fuel supply amount control means for controlling the supply amount, a compressor for pressurizing air, a supercharger having a turbine driven by exhaust gas of a gas engine, and a supercharger rotational speed for detecting the rotational speed of the supercharger When the setting of the detection means and the fuel gas supply amount is changed, the temporal change of the fuel gas supply amount by the fuel supply amount control means is delayed based on the detection result of the supercharger rotation speed detection means. And an air-fuel ratio control means for controlling.
When the load fluctuates, the response of the turbocharger is delayed, but the fuel supply amount control means responds faster than the supercharger, so the setting of the fuel gas supply amount is changed, such as when the load fluctuates. In this case, since the fuel gas supply amount reaches the required amount earlier than the air supply amount, the air-fuel ratio fluctuates and combustion becomes unstable. Therefore, according to the first aspect of the present invention, the temporal change in the supply amount of the fuel gas is delayed by the fuel supply amount control means based on the rotational speed of the supercharger, that is, the supply amount of the fuel gas is reduced. By delaying the time required to reach the required amount according to the air supply amount, the air-fuel ratio can be kept constant without increasing the number of devices that control the air-fuel ratio, and combustion in the gas engine can be stabilized.

請求項2記載の本発明は、燃料供給量制御手段が、デジタル的にオン/オフするソレノイド弁であることを特徴とする。請求項2に記載の本発明によれば、燃料供給量制御手段に一般的なオン/オフ型のソレノイド弁を使用することで、燃料供給量制御手段を複雑にすることなく安価に、また信頼性も高く構成することができる。   According to a second aspect of the present invention, the fuel supply amount control means is a solenoid valve that is digitally turned on / off. According to the second aspect of the present invention, by using a general on / off type solenoid valve for the fuel supply amount control means, the fuel supply amount control means is inexpensive and reliable without complicating the fuel supply amount control means. It can also be configured with high performance.

請求項3記載の本発明は、空燃比制御手段が、ソレノイド弁のデューティー比を制御することを特徴とする。請求項3に記載の本発明によれば、ソレノイド弁のデューティー比を制御することによって、燃料供給量制御手段による燃料ガスの供給量の制御が自由にでき、時間的変化を遅くすることができる。   The present invention according to claim 3 is characterized in that the air-fuel ratio control means controls the duty ratio of the solenoid valve. According to the third aspect of the present invention, by controlling the duty ratio of the solenoid valve, it is possible to freely control the supply amount of the fuel gas by the fuel supply amount control means, and to delay the temporal change. .

請求項4記載の本発明は、ガスエンジンのエンジン回転数を検出するエンジン回転数検出手段を備え、空燃比制御手段は、エンジン回転数検出手段の検出結果に基づいて制御を行うことを特徴とする。請求項4に記載の本発明によれば、エンジンの回転数を考慮してガス流量を算出することができるので、空燃比制御手段は、より正確なガス流量に基づいて燃料ガスの供給量の時間的変化を制御することができる。   According to a fourth aspect of the present invention, the engine speed detecting means for detecting the engine speed of the gas engine is provided, and the air-fuel ratio control means performs control based on the detection result of the engine speed detecting means. To do. According to the fourth aspect of the present invention, since the gas flow rate can be calculated in consideration of the engine speed, the air-fuel ratio control means can control the supply amount of the fuel gas based on the more accurate gas flow rate. Time changes can be controlled.

請求項5記載の本発明は、過給機を加勢する加勢手段を備え、空燃比制御手段は、燃料ガスの供給量の設定変更がされた場合に過給機回転数検出手段の検出結果に基づいて加勢手段を制御することを特徴とする。請求項5に記載の本発明によれば、例えば過給機の回転数が必要回転数より低い場合つまり空気供給量が不足する場合には、加勢手段により過給機を加勢することで過給機の回転数を上げて必要空気量を速く確保することができる。   According to a fifth aspect of the present invention, there is provided an energizing means for energizing the supercharger, and the air-fuel ratio control means uses the detection result of the supercharger rotation speed detecting means when the fuel gas supply amount setting is changed. Based on this, the urging means is controlled. According to the fifth aspect of the present invention, for example, when the rotational speed of the supercharger is lower than the required rotational speed, that is, when the air supply amount is insufficient, supercharging is performed by energizing the supercharger by the urging means. The required air volume can be secured quickly by increasing the speed of the machine.

請求項6記載の本発明は、加勢手段は、過給機を駆動するとともに過給機により回転され発電を行う機能を有したモータ/ジェネレータであることを特徴とする。請求項6に記載の本発明によれば、過給機の回転数が必要回転数より低い場合つまり空気供給量が不足している場合には、過給機を加勢するモータとして使用して過給機の回転数を上げて必要空気量を確保し、過給機の回転数が必要回転数より高い場合つまり空気供給量が過多の場合には、ジェネレータとして発電することで過給機の回転を抑えて空気供給量を減らすことができる。   The present invention described in claim 6 is characterized in that the urging means is a motor / generator having a function of driving the supercharger and rotating the turbocharger to generate electric power. According to the sixth aspect of the present invention, when the rotational speed of the supercharger is lower than the required rotational speed, that is, when the air supply amount is insufficient, the supercharger is used as a motor for energizing. Increase the rotation speed of the turbocharger to secure the required air volume. If the turbocharger rotation speed is higher than the required rotation speed, that is, if the air supply is excessive, rotate the turbocharger by generating electricity as a generator. It is possible to suppress the air supply and reduce the air supply amount.

請求項7記載の本発明は、過給機のコンプレッサーとガスエンジンの間の経路にスロットル弁を備え、空燃比制御手段は、燃料ガスの供給量の設定変更がされた場合に過給機回転数検出手段の検出結果に基づいてスロットル弁を制御することを特徴とする。請求項7に記載の本発明によれば、例えば過給機の回転数が必要回転数より低い場合つまり空気供給量が不足する場合には、応答の速いスロットル弁を開けることで空気供給量を速く増やすことができる。   According to a seventh aspect of the present invention, a throttle valve is provided in a path between the compressor of the supercharger and the gas engine, and the air-fuel ratio control means rotates the supercharger when the setting of the fuel gas supply amount is changed. The throttle valve is controlled based on the detection result of the number detecting means. According to the seventh aspect of the present invention, for example, when the rotational speed of the supercharger is lower than the required rotational speed, that is, when the air supply amount is insufficient, the air supply amount is reduced by opening the throttle valve with quick response. It can increase quickly.

請求項8記載の本発明は、空燃比制御手段は、スロットル弁を定常負荷時は絞った位置に臨ませる制御をすることを特徴とする。請求項8に記載の本発明によれば、定常負荷時にはスロットル弁を絞っておくことによって、負荷上昇時に備えて余力を持たせることができる。   The present invention according to claim 8 is characterized in that the air-fuel ratio control means performs control so that the throttle valve is brought to a throttled position during a steady load. According to the eighth aspect of the present invention, the throttle valve is throttled at the time of steady load, so that a surplus power can be provided in preparation for an increase in load.

請求項9記載の本発明は、過給機のタービンの上流側に可変ノズルを備え、空燃比制御手段は、燃料ガスの供給量の設定変更がされた場合に過給機回転数検出手段の検出結果に基づいて可変ノズルを制御することを特徴とする。請求項9に記載の本発明によれば、例えば過給機の回転数が必要回転数より低い場合つまり空気供給量が不足する場合には、応答の速い可変ノズルのノズル翼の向きや角度によって排気ガス通路を変化させてガスエンジンから供給される排気ガスの流速を調整して加圧空気の加圧特性を改善し、空気供給量を速く増やすことができ、空燃比を一定に保ち易くなる。   According to a ninth aspect of the present invention, a variable nozzle is provided on the upstream side of the turbocharger turbine, and the air-fuel ratio control means is configured to detect the supercharger rotation speed detection means when the fuel gas supply amount setting is changed. The variable nozzle is controlled based on the detection result. According to the ninth aspect of the present invention, for example, when the rotational speed of the supercharger is lower than the necessary rotational speed, that is, when the air supply amount is insufficient, the direction and angle of the nozzle blades of the variable nozzle with quick response The exhaust gas passage is changed to adjust the flow rate of the exhaust gas supplied from the gas engine to improve the pressurization characteristic of the pressurized air, the air supply amount can be increased quickly, and the air-fuel ratio can be kept constant. .

請求項10記載の本発明は、過給機のタービンを迂回するバイパス経路と、バイパス経路を開閉するバイパス制御弁を備え、空燃比制御手段は、燃料ガスの供給量の設定変更がされた場合に過給機回転数検出手段の検出結果に基づいてバイパス制御弁を制御することを特徴とする。請求項10に記載の本発明によれば、過給機の回転数が必要回転数より低い場合つまり空気供給量が不足する場合には、予め開けてあるバイパス経路の開度を応答の速いバイパス制御弁で絞り過給機の回転数を増し空気供給量を速く増やすことができる。また、過給機の回転数が必要回転数より大きい場合には、バイパス制御弁を開いてバイパス経路に排気ガスを流してタービンを迂回させることで過給機の回転数を下げて空気供給量を速く減少させることができる。   The present invention according to claim 10 includes a bypass path that bypasses the turbine of the turbocharger and a bypass control valve that opens and closes the bypass path, and the air-fuel ratio control means is configured to change the fuel gas supply amount. Further, the bypass control valve is controlled based on the detection result of the supercharger rotation speed detection means. According to the tenth aspect of the present invention, when the rotation speed of the supercharger is lower than the required rotation speed, that is, when the air supply amount is insufficient, the opening degree of the bypass path opened in advance is bypassed quickly. The control valve can increase the rotation speed of the throttle supercharger and increase the air supply amount quickly. If the turbocharger speed is greater than the required speed, the bypass control valve is opened and exhaust gas flows through the bypass path to bypass the turbine, thereby reducing the turbocharger speed and supplying air Can be reduced quickly.

請求項11記載の本発明は、ガスエンジンにより駆動される可変ピッチプロペラを備え、空燃比制御手段は、燃料ガスの供給量の設定変更がされた場合に過給機回転数検出手段の検出結果に基づいて可変ピッチプロペラを制御することを特徴とする。請求項11に記載の本発明によれば、応答の速い可変ピッチプロペラのピッチを変えてガスエンジンにかかる負荷を増減することで、空燃比を一定に保ち易くできる。   The present invention according to claim 11 includes a variable pitch propeller driven by a gas engine, and the air-fuel ratio control means detects the detection result of the supercharger rotation speed detection means when the setting of the fuel gas supply amount is changed. The variable pitch propeller is controlled based on the above. According to the eleventh aspect of the present invention, it is possible to easily keep the air-fuel ratio constant by changing the pitch of the variable-pitch propeller with quick response to increase or decrease the load applied to the gas engine.

請求項12記載に対応した空燃比制御装置付きガスエンジンを搭載した船舶においては、請求項1から請求項11のうちの1項に記載のガスエンジンの空燃比制御装置を備えたことを特徴とする。請求項12に記載の本発明によれば、過給機の回転数に基づいて燃料ガスの供給量の時間的変化を燃料供給量制御手段にて遅くする、即ち燃料ガスの供給量が必要量に到達するまでの時間を空気の供給量に合わせて遅くすることで、空燃比を制御する機器を多く増やすことなく空燃比を一定にして、ガスエンジンにおける燃焼を安定させることができる空燃比制御装置付きのガスエンジンを搭載した船舶を提供することができる。   A ship equipped with a gas engine with an air-fuel ratio control device corresponding to claim 12 is provided with the air-fuel ratio control device for a gas engine according to one of claims 1 to 11. To do. According to the twelfth aspect of the present invention, the temporal change of the fuel gas supply amount is delayed by the fuel supply amount control means based on the rotational speed of the supercharger, that is, the fuel gas supply amount is the required amount. The air-fuel ratio control that stabilizes the combustion in the gas engine by keeping the air-fuel ratio constant without delaying the time until it reaches the air flow according to the amount of air supply, without increasing the number of devices that control the air-fuel ratio A ship equipped with a gas engine with a device can be provided.

本発明によれば、過給機の回転数に基づいて燃料ガスの供給量の時間的変化を燃料供給量制御手段にて遅くする、即ち燃料ガスの供給量が必要量に到達するまでの時間を空気の供給量に合わせて遅くすることで、空燃比を制御する機器を多く増やすことなく空燃比を一定にして、ガスエンジンにおける燃焼を安定させることができる。   According to the present invention, the time change of the fuel gas supply amount is delayed by the fuel supply amount control means based on the rotational speed of the supercharger, that is, the time until the fuel gas supply amount reaches the required amount. By delaying the air flow in accordance with the air supply amount, the air-fuel ratio can be kept constant without increasing the number of devices for controlling the air-fuel ratio, and combustion in the gas engine can be stabilized.

また、燃料供給量制御手段が、デジタル的にオン/オフするソレノイド弁である場合には、燃料供給量制御手段に一般的なオン/オフ型のソレノイド弁を使用することで、燃料供給量制御手段を複雑にすることなく安価に、また信頼性も高く構成することができる。   Further, when the fuel supply amount control means is a solenoid valve that is digitally turned on / off, the fuel supply amount control means can be controlled by using a general on / off type solenoid valve for the fuel supply amount control means. The configuration can be made inexpensively and highly reliable without complicating the means.

また、空燃比制御手段が、ソレノイド弁のデューティー比を制御する場合には、ソレノイド弁のデューティー比を制御することによって、燃料供給量制御手段による燃料ガスの供給量の制御が自由にでき、時間的変化を遅くすることができる。   In addition, when the air-fuel ratio control means controls the duty ratio of the solenoid valve, the fuel gas supply amount can be freely controlled by the fuel supply amount control means by controlling the duty ratio of the solenoid valve. Changes can be slowed.

また、ガスエンジンのエンジン回転数を検出するエンジン回転数検出手段を備え、空燃比制御手段は、エンジン回転数検出手段の検出結果に基づいて制御を行う場合には、エンジンの回転数を考慮してガス流量を算出することができるので、空燃比制御手段は、より正確なガス流量に基づいて燃料ガスの供給量の時間的変化を制御することができる。   The engine speed detection means for detecting the engine speed of the gas engine is provided, and the air-fuel ratio control means takes into account the engine speed when performing control based on the detection result of the engine speed detection means. Since the gas flow rate can be calculated, the air-fuel ratio control means can control the temporal change in the supply amount of the fuel gas based on the more accurate gas flow rate.

また、過給機を加勢する加勢手段を備え、空燃比制御手段は、燃料ガスの供給量の設定変更がされた場合に過給機回転数検出手段の検出結果に基づいて加勢手段を制御する場合には、例えば過給機の回転数が必要回転数より低い場合つまり空気供給量が不足する場合には、加勢手段により過給機を加勢することで過給機の回転数を上げて必要空気量を速く確保することができる。   The air-fuel ratio control means controls the urging means based on the detection result of the supercharger rotation speed detection means when the setting of the fuel gas supply amount is changed. In this case, for example, when the rotation speed of the supercharger is lower than the required rotation speed, that is, when the air supply amount is insufficient, it is necessary to increase the rotation speed of the supercharger by energizing the supercharger by the urging means. The amount of air can be secured quickly.

また、加勢手段は、過給機を駆動するとともに過給機により回転され発電を行う機能を有したモータ/ジェネレータである場合には、過給機の回転数が必要回転数より低い場合つまり空気供給量が不足している場合には、過給機を加勢するモータとして使用して過給機の回転数を上げて必要空気量を確保し、過給機の回転数が必要回転数より高い場合つまり空気供給量が過多の場合には、ジェネレータとして発電することで過給機の回転を抑えて空気供給量を減らすことができる。   Further, in the case where the urging means is a motor / generator having a function of driving the supercharger and rotating the supercharger to generate electric power, when the rotational speed of the supercharger is lower than the required rotational speed, that is, air If the supply amount is insufficient, use the turbocharger as a motor to boost the turbocharger to increase the rotation speed of the turbocharger to ensure the required air volume, and the turbocharger rotation speed is higher than the required rotation speed In this case, that is, when the air supply amount is excessive, it is possible to suppress the rotation of the supercharger and reduce the air supply amount by generating power as a generator.

また、過給機のコンプレッサーとガスエンジンの間の経路にスロットル弁を備え、空燃比制御手段は、燃料ガスの供給量の設定変更がされた場合に過給機回転数検出手段の検出結果に基づいてスロットル弁を制御する場合には、例えば過給機の回転数が必要回転数より低い場合つまり空気供給量が不足する場合には、応答の速いスロットル弁を開けることで空気供給量を速く増やすことができる。   In addition, a throttle valve is provided in the path between the compressor of the supercharger and the gas engine, and the air-fuel ratio control means detects the detection result of the supercharger rotation speed detection means when the fuel gas supply amount setting is changed. In the case of controlling the throttle valve based on this, for example, when the rotational speed of the supercharger is lower than the required rotational speed, that is, when the air supply amount is insufficient, the air supply amount can be increased by opening the throttle valve with quick response. Can be increased.

また、空燃比制御手段は、スロットル弁を定常負荷時は絞った位置に臨ませる制御をする場合には、定常負荷時にはスロットル弁を絞っておくことによって、負荷上昇時に備えて余力を持たせることができる。   In addition, the air-fuel ratio control means, when controlling the throttle valve to be in the throttled position at the time of steady load, allows the throttle valve to be throttled at the time of steady load so as to have a surplus power in preparation for when the load increases. Can do.

また、過給機のタービンの上流側に可変ノズルを備え、空燃比制御手段は、燃料ガスの供給量の設定変更がされた場合に過給機回転数検出手段の検出結果に基づいて可変ノズルを制御する場合には、例えば過給機の回転数が必要回転数より低い場合つまり空気供給量が不足する場合には、応答の速い可変ノズルのノズル翼の向きや角度によって排気ガス通路を変化させてガスエンジンから供給される排気ガスの流速を調整して加圧空気の加圧特性を改善し、空気供給量を速く増やすことができ、空燃比を一定に保ち易くなる。   In addition, a variable nozzle is provided on the upstream side of the turbocharger turbine, and the air-fuel ratio control means is configured to change the variable nozzle based on the detection result of the supercharger rotation speed detection means when the fuel gas supply amount setting is changed. For example, when the rotational speed of the turbocharger is lower than the required rotational speed, that is, when the air supply amount is insufficient, the exhaust gas passage changes depending on the direction and angle of the nozzle blades of the variable nozzle that responds quickly. Thus, the flow rate of the exhaust gas supplied from the gas engine is adjusted to improve the pressurization characteristic of the pressurized air, the air supply amount can be increased quickly, and the air-fuel ratio can be easily kept constant.

また、過給機のタービンを迂回するバイパス経路と、バイパス経路を開閉するバイパス制御弁を備え、空燃比制御手段は、燃料ガスの供給量の設定変更がされた場合に過給機回転数検出手段の検出結果に基づいてバイパス制御弁を制御する場合には、過給機の回転数が必要回転数より低い場合つまり空気供給量が不足する場合には、予め開けてあるバイパス経路の開度を応答の速いバイパス制御弁で絞り過給機の回転数を増し空気供給量を速く増やすことができる。また、過給機の回転数が必要回転数より大きい場合には、バイパス制御弁を開いてバイパス経路に排気ガスを流してタービンを迂回させることで過給機の回転数を下げて空気供給量を速く減少させることができる。   In addition, a bypass path that bypasses the turbocharger turbine and a bypass control valve that opens and closes the bypass path are provided, and the air-fuel ratio control means detects the turbocharger speed when the setting of the fuel gas supply amount is changed. When the bypass control valve is controlled on the basis of the detection result of the means, when the rotation speed of the supercharger is lower than the required rotation speed, that is, when the air supply amount is insufficient, the opening degree of the bypass path opened in advance By using a quick response bypass control valve, it is possible to increase the rotation speed of the throttle supercharger and increase the air supply amount quickly. If the turbocharger speed is greater than the required speed, the bypass control valve is opened and exhaust gas flows through the bypass path to bypass the turbine, thereby reducing the turbocharger speed and supplying air Can be reduced quickly.

また、ガスエンジンにより駆動される可変ピッチプロペラを備え、空燃比制御手段は、燃料ガスの供給量の設定変更がされた場合に過給機回転数検出手段の検出結果に基づいて可変ピッチプロペラを制御する場合には、応答の速い可変ピッチプロペラのピッチを変えてガスエンジンにかかる負荷を増減することで、空燃比を一定に保ち易くできる。   In addition, a variable pitch propeller driven by a gas engine is provided, and the air-fuel ratio control means controls the variable pitch propeller based on the detection result of the supercharger rotation speed detection means when the setting of the fuel gas supply amount is changed. In the case of control, the air-fuel ratio can be easily kept constant by changing the pitch of the variable pitch propeller that responds quickly to increase or decrease the load applied to the gas engine.

また、請求項1から請求項11のうちの1項に記載のガスエンジンの空燃比制御装置を船舶に備えた場合には、過給機の回転数に基づいて燃料ガスの供給量の時間的変化を燃料供給量制御手段にて遅くする、即ち燃料ガスの供給量が必要量に到達するまでの時間を空気の供給量に合わせて遅くすることで、空燃比を制御する機器を多く増やすことなく空燃比を一定にして、ガスエンジンにおける燃焼を安定させることができる空燃比制御装置付きのガスエンジンを搭載した船舶を提供することができる。   When the air-fuel ratio control device for a gas engine according to one of claims 1 to 11 is provided in a ship, the amount of fuel gas supplied over time is determined based on the rotational speed of the supercharger. Increase the number of devices that control the air-fuel ratio by delaying the change with the fuel supply amount control means, that is, by delaying the time until the fuel gas supply amount reaches the required amount according to the air supply amount. Therefore, it is possible to provide a ship equipped with a gas engine equipped with an air-fuel ratio control device that can stabilize combustion in the gas engine while keeping the air-fuel ratio constant.

本発明の一実施形態による空燃比制御装置付きガスエンジンを搭載した船舶の概略構成図1 is a schematic configuration diagram of a ship equipped with a gas engine with an air-fuel ratio control device according to an embodiment of the present invention. 同ガスエンジンの空燃比制御装置の概略構成図Schematic configuration diagram of the air-fuel ratio control device of the gas engine 同空燃比制御装置のエンジン負荷変動に対する空燃比制御を示す図The figure which shows the air fuel ratio control with respect to the engine load fluctuation | variation of the same air fuel ratio control apparatus 本発明の他の実施形態によるガスエンジンの空燃比制御装置の概略構成図The schematic block diagram of the air fuel ratio control apparatus of the gas engine by other embodiment of this invention 同空燃比制御装置のエンジン負荷変動に対する空燃比制御を示す図The figure which shows the air fuel ratio control with respect to the engine load fluctuation | variation of the same air fuel ratio control apparatus 従来の空燃比制御装置の概略構成図Schematic configuration diagram of a conventional air-fuel ratio control device 同空燃比制御装置のエンジン負荷変動に対する空燃比制御を示す図The figure which shows the air fuel ratio control with respect to the engine load fluctuation | variation of the same air fuel ratio control apparatus 空燃比制御の必要性を示す図Diagram showing the necessity of air-fuel ratio control

以下に、本発明の実施形態によるガスエンジンの空燃比制御装置、及び空燃比制御装置付きガスエンジンを搭載した船舶について説明する。
図1は本発明の一実施形態による空燃比制御装置付きガスエンジンを搭載した船舶の概略構成図、図2は同ガスエンジンの空燃比制御装置の概略構成図、図3は同空燃比制御装置のエンジン負荷変動に対する空燃比制御を示す図である。
Hereinafter, a gas engine air-fuel ratio control apparatus according to an embodiment of the present invention and a ship equipped with a gas engine with an air-fuel ratio control apparatus will be described.
FIG. 1 is a schematic configuration diagram of a ship equipped with a gas engine with an air-fuel ratio control device according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of an air-fuel ratio control device of the gas engine, and FIG. It is a figure which shows the air fuel ratio control with respect to the engine load fluctuation | variation.

図1に示すように、本実施形態の空燃比制御装置付きガスエンジンを搭載した船舶は、船体1の船尾2側に、プロペラ3を駆動する駆動源4を備えている。
駆動源4は、燃料ガスと空気とを混合して燃焼させ動力を得る希薄燃焼式のガスエンジン10と、過給機20を有する。過給機20は、ガスエンジン10から排気された排気ガスにより駆動され、ガスエンジン10に加圧空気を供給する。
なお、ガスエンジン10は希薄燃焼式以外の超希薄燃焼式や負荷変動時に同様な課題を有する他の方式のガスエンジンであってもよい。
As shown in FIG. 1, a ship equipped with the gas engine with an air-fuel ratio control device of the present embodiment includes a drive source 4 that drives a propeller 3 on the stern 2 side of the hull 1.
The drive source 4 includes a lean combustion type gas engine 10 that obtains power by mixing and burning fuel gas and air, and a supercharger 20. The supercharger 20 is driven by exhaust gas exhausted from the gas engine 10 and supplies pressurized air to the gas engine 10.
The gas engine 10 may be a super lean combustion type other than the lean combustion type, or another type of gas engine having the same problem when the load changes.

次に、図2を用いて同ガスエンジンの空燃比制御装置について説明する。
本実施形態のガスエンジンの空燃比制御装置は、ガスエンジン10へ供給する燃料ガスの供給量を制御する燃料供給量制御手段30と、過給機20の回転数を検出する過給機回転数検出手段31と、空気と燃料ガスとの混合比である空燃比を制御する空燃比制御手段32とを備える。
過給機20は、ガスエンジン10の排気経路に設けられ排ガスにより駆動されるタービン21と、このタービン21によって動作し空気を加圧するコンプレッサー22と、タービン21の上流側(排気ガス導入側)に配置される可変ノズル23とを有する。
可変ノズル23は、ノズル翼の向きや角度によって排気ガス通路を変化させてガスエンジン10から供給される排気ガスの流速を調整して加圧空気の加圧特性を改善することができる。
過給機20からガスエンジン10までの間の経路には空気冷却器(図示無し)を有しており、コンプレッサー22で加圧され高温となった空気は、空気冷却器で冷却されてガスエンジン10に導入される。
燃料供給量制御手段30にはデジタル的にオン/オフするソレノイド弁を用いている。一般的なオン/オフ型のソレノイド弁を用いることで、燃料供給量制御手段30を複雑にすることなく安価に、また信頼性も高く構成することができる。
Next, the air-fuel ratio control apparatus for the gas engine will be described with reference to FIG.
The air-fuel ratio control apparatus for a gas engine according to the present embodiment includes a fuel supply amount control means 30 that controls the supply amount of fuel gas supplied to the gas engine 10 and a supercharger rotational speed that detects the rotational speed of the supercharger 20. A detection unit 31 and an air-fuel ratio control unit 32 that controls an air-fuel ratio that is a mixture ratio of air and fuel gas are provided.
The supercharger 20 is provided in an exhaust path of the gas engine 10 and driven by exhaust gas, a compressor 22 that operates by the turbine 21 and pressurizes air, and an upstream side (exhaust gas introduction side) of the turbine 21. And a variable nozzle 23 to be arranged.
The variable nozzle 23 can improve the pressurization characteristic of the pressurized air by changing the exhaust gas passage according to the direction and angle of the nozzle blade and adjusting the flow rate of the exhaust gas supplied from the gas engine 10.
An air cooler (not shown) is provided in the path from the supercharger 20 to the gas engine 10, and the air that has been pressurized by the compressor 22 and heated to a high temperature is cooled by the air cooler and then the gas engine. 10 is introduced.
The fuel supply amount control means 30 uses a solenoid valve that is digitally turned on / off. By using a general on / off type solenoid valve, the fuel supply amount control means 30 can be configured at low cost and with high reliability without being complicated.

空燃比制御手段32は、ガバナーの指示変更、負荷変動、又は外乱などによって燃料ガスの供給量が変動する場合、つまり燃料ガスの供給量の設定変更がされた場合に、過給機回転数検出手段31の検出結果に基づいてソレノイド弁30のデューティー比を制御することによって、ソレノイド弁30による燃料ガスの供給量の制御が自由にでき、時間的変化を遅くすることができる。
すなわち、ガスエンジン10に係る負荷が増加又は減少した場合には、ガスエンジン10の回転数を維持するために、空気供給量及びガス燃料供給量が増加又は減少するように制御される。その制御において、まず、検出した過給機20の回転数から実際の空気供給量を算出し、必要空気量に到達するまでの空気供給量の増加速度又は減少速度を求める。次に、必要空気量に到達するまでの空気供給量の増加速度又は減少速度と、予め定められた適正空燃比とに基づいて、適正空燃比から外れずに燃料ガスの供給量が必要量に到達するように燃料ガスの供給量の増加速度又は減少速度を設定する。そして、設定した燃料ガスの供給量の増加速度又は減少速度に基づいて、空燃比制御手段32はソレノイド弁30を制御する。
The air-fuel ratio control means 32 detects the supercharger rotation speed when the fuel gas supply amount fluctuates due to a change in the governor instruction, load fluctuation, or disturbance, that is, when the fuel gas supply amount setting is changed. By controlling the duty ratio of the solenoid valve 30 based on the detection result of the means 31, the supply amount of fuel gas by the solenoid valve 30 can be freely controlled, and the temporal change can be delayed.
That is, when the load on the gas engine 10 increases or decreases, the air supply amount and the gas fuel supply amount are controlled to increase or decrease in order to maintain the rotation speed of the gas engine 10. In the control, first, an actual air supply amount is calculated from the detected rotational speed of the supercharger 20, and an increase rate or a decrease rate of the air supply amount until the required air amount is reached is obtained. Next, based on the increase or decrease rate of the air supply amount until the required air amount is reached and the predetermined appropriate air-fuel ratio, the fuel gas supply amount is reduced to the required amount without deviating from the appropriate air-fuel ratio. An increase rate or a decrease rate of the supply amount of the fuel gas is set so as to reach. The air-fuel ratio control means 32 controls the solenoid valve 30 based on the set increase rate or decrease rate of the fuel gas supply amount.

負荷が変動した場合には、過給機20の応答が遅れるが、ソレノイド弁30は過給機20よりも応答が速いので、燃料ガスの供給量の設定が変更された場合は、空気の供給量よりも燃料ガスの供給量のほうが先に必要量に到達するため空燃比が変動して燃焼が不安定になってしまう。そこで、本実施形態のように、過給機20の回転数を検出し、その検出結果に基づいてソレノイド弁30による燃料ガスの供給量の時間的変化を遅くする(燃料ガスの供給量が必要量に到達するまでの増加速度又は減少速度を緩やかにする)ことで、空気の供給量の時間的変化に合わせ、空燃比が変動することを防止して一定にすることができる(図3参照)。したがって、ガスエンジン10における燃焼を安定させることができる。
なお、図3に示すように、ガスエンジン10の負荷が上昇した際に空燃比は一定であるが、ガスエンジン10の回転数は大きく低下している。しかし、負荷が発電機であって回転数低下による停電を防止するために回転数を一定に維持する必要がある場合等とは異なり、本実施形態のように負荷が船舶のプロペラ3である場合には、ガスエンジン10の回転数が低下しても一定の推進力を保つことができるため、回転数を一定に維持するよりも空燃比を一定に維持する制御を優先させることができる。
When the load fluctuates, the response of the supercharger 20 is delayed. However, since the solenoid valve 30 responds faster than the supercharger 20, if the setting of the fuel gas supply amount is changed, the supply of air is performed. Since the supply amount of the fuel gas reaches the required amount earlier than the amount, the air-fuel ratio fluctuates and the combustion becomes unstable. Therefore, as in this embodiment, the rotational speed of the supercharger 20 is detected, and the temporal change in the fuel gas supply amount by the solenoid valve 30 is delayed based on the detection result (the fuel gas supply amount is required). By slowing the rate of increase or decrease until reaching the amount, the air-fuel ratio can be prevented from fluctuating and kept constant in accordance with the temporal change in the air supply amount (see FIG. 3). ). Therefore, combustion in the gas engine 10 can be stabilized.
As shown in FIG. 3, when the load of the gas engine 10 increases, the air-fuel ratio is constant, but the rotational speed of the gas engine 10 is greatly reduced. However, unlike the case where the load is a generator and it is necessary to keep the rotation speed constant in order to prevent a power failure due to a decrease in the rotation speed, the load is the propeller 3 of the ship as in this embodiment. Since a constant propulsive force can be maintained even when the rotational speed of the gas engine 10 decreases, control for maintaining the air-fuel ratio constant can be prioritized over maintaining the rotational speed constant.

また、本実施形態のガスエンジンの空燃比制御装置は、ガスエンジン10のエンジン回転数を検出するエンジン回転数検出手段33を備えている。
空燃比制御手段32は、ガスエンジン10の回転数を考慮して実際のガス流量を算出し、そのガス流量を、燃料ガスの供給量が必要量に到達するまでの燃料ガスの供給量の増加速度又は減少速度の算出に用いる。燃料ガスの供給量が必要量に到達するまでの燃料ガスの供給量の増加速度又は減少速度を設定する際のパラメータとして実際のガス流量を用いることで、より正確に燃料ガスの供給量の時間的変化を制御することができる。
さらに、エンジン回転数検出手段33でガスエンジン10の回転数を検出できることを利用し、負荷が上昇したときに空燃比を保とうとしてガスエンジン10の回転数が下限を超える場合(ガスエンジン10が停止してしまうような場合)、又は負荷が減少したときにガスエンジン10の回転数が上限を超えて危険になる場合には、空燃比制御装置による空燃比制御を中止するように制御することができる。
The air-fuel ratio control apparatus for a gas engine according to the present embodiment includes an engine speed detection means 33 that detects the engine speed of the gas engine 10.
The air-fuel ratio control means 32 calculates the actual gas flow rate in consideration of the rotational speed of the gas engine 10 and increases the fuel gas supply amount until the fuel gas supply amount reaches the required amount. Used to calculate speed or decrease speed. By using the actual gas flow rate as a parameter when setting the increase or decrease rate of the fuel gas supply amount until the fuel gas supply amount reaches the required amount, the time of the fuel gas supply amount can be more accurately Change can be controlled.
Further, by utilizing the fact that the engine speed detection means 33 can detect the speed of the gas engine 10, when the speed of the gas engine 10 exceeds the lower limit in order to maintain the air-fuel ratio when the load increases, the gas engine 10 If the rotation speed of the gas engine 10 exceeds the upper limit and becomes dangerous when the load decreases, control is performed so that the air-fuel ratio control by the air-fuel ratio control device is stopped. Can do.

また、過給機20のコンプレッサー22とガスエンジン10の間の経路にはスロットル弁26を備えている。
スロットル弁26は、空燃比制御手段32の制御によって定常負荷時は絞った位置に臨ませている。そして、燃料ガスの供給量の設定が変更された場合は、空燃比制御手段32は、過給機回転数検出手段31による過給機20の回転数の検出結果が必要回転数より小さいつまり空気供給量が不足すると判断すると、スロットル弁26を開放して空気供給量を増加させる。定常負荷時にはスロットル弁26を絞って余力を持たせておき、負荷が上昇した際は応答の速いスロットル弁26を開放して空気供給量を速く増加させることで必要空気量に到達するまでの時間を短縮することができ、空燃比を一定に保ち易くなる。
Further, a throttle valve 26 is provided in a path between the compressor 22 of the supercharger 20 and the gas engine 10.
The throttle valve 26 faces the throttle position during steady load under the control of the air-fuel ratio control means 32. When the setting of the fuel gas supply amount is changed, the air-fuel ratio control means 32 determines that the detection result of the rotational speed of the supercharger 20 by the supercharger rotational speed detection means 31 is smaller than the required rotational speed, that is, air. If it is determined that the supply amount is insufficient, the throttle valve 26 is opened to increase the air supply amount. When the load is increased, the throttle valve 26 is throttled to have a surplus power, and when the load increases, the throttle valve 26 having a quick response is opened and the air supply amount is increased rapidly to reach the required air amount. And the air-fuel ratio can be easily kept constant.

また、空燃比制御手段32は、燃料ガスの供給量の設定が変更された場合は、過給機回転数検出手段31による過給機20の回転数の検出結果に基づいて可変ノズル23を制御する。例えば過給機20の回転数が必要回転数より低い場合つまり空気供給量が不足する場合には、応答の速い可変ノズル23のノズル翼の向きや角度によって排気ガス通路を変化させてガスエンジン10から供給される排気ガスの流速を調整して加圧空気の加圧特性を改善し、空気供給量を速く増やすことができ、空燃比を一定に保ち易くなる。   The air-fuel ratio control means 32 controls the variable nozzle 23 based on the detection result of the rotational speed of the supercharger 20 by the supercharger rotational speed detection means 31 when the setting of the fuel gas supply amount is changed. To do. For example, when the rotational speed of the supercharger 20 is lower than the required rotational speed, that is, when the air supply amount is insufficient, the exhaust gas passage is changed depending on the direction and angle of the nozzle blades of the variable nozzle 23 that responds quickly, and the gas engine 10 By adjusting the flow rate of the exhaust gas supplied from the air, the pressurization characteristics of the pressurized air can be improved, the air supply amount can be increased quickly, and the air-fuel ratio can be easily kept constant.

また、ガスエンジン10とタービン21との間の排気ガス通路から分岐し、過給機20のタービン21を迂回してタービン21の下流側の排気ガス通路に合流するバイパス経路24と、バイパス経路24に設けられてバイパス経路24を開閉するバイパス制御弁25を備える。
空燃比制御手段32は、燃料ガスの供給量の設定が変更された場合は、過給機回転数検出手段31による過給機20の回転数の検出結果に基づいて、バイパス制御弁25の開閉制御を行う。すなわち、過給機20の回転数が必要回転数より低い場合つまり空気供給量が不足する場合には、予め開けてあるバイパス経路24の開度を応答の速いバイパス制御弁25で絞り、過給機20の回転数を増し空気供給量を速く増やすことができる。また、過給機20の回転数が必要回転数より大きい場合にはバイパス制御弁25を開いてバイパス経路24に排気ガスを流し、タービン21を迂回させることで過給機20の回転数を下げて空気供給量を速く減少させることができる。
このように、排気ガスは過給機20の回転数に応じてタービン21を迂回させることで、過給機20の回転数を調整することができ、空燃比を一定に保ち易くなる。
Further, a bypass path 24 branched from the exhaust gas passage between the gas engine 10 and the turbine 21, bypasses the turbine 21 of the supercharger 20, and joins the exhaust gas passage on the downstream side of the turbine 21, and the bypass path 24 And a bypass control valve 25 that opens and closes the bypass path 24.
The air-fuel ratio control means 32 opens and closes the bypass control valve 25 based on the detection result of the rotational speed of the supercharger 20 by the supercharger rotational speed detection means 31 when the setting of the fuel gas supply amount is changed. Take control. That is, when the rotational speed of the supercharger 20 is lower than the required rotational speed, that is, when the air supply amount is insufficient, the opening degree of the bypass path 24 opened in advance is throttled by the bypass control valve 25 with quick response, and supercharging is performed. The number of rotations of the machine 20 can be increased and the air supply amount can be increased rapidly. Further, when the rotational speed of the supercharger 20 is larger than the required rotational speed, the bypass control valve 25 is opened, exhaust gas flows through the bypass path 24, and the turbine 21 is bypassed to reduce the rotational speed of the supercharger 20. The air supply amount can be reduced quickly.
As described above, the exhaust gas bypasses the turbine 21 in accordance with the rotational speed of the supercharger 20, whereby the rotational speed of the supercharger 20 can be adjusted, and the air-fuel ratio can be easily kept constant.

また、本実施形態において、プロペラ3は可変ピッチプロペラとしている。可変ピッチプロペラ3は、ガスエンジン10により駆動され、油圧やモータ等によりピッチが変更される。
空燃比制御手段32は、燃料ガスの供給量の設定が変更された場合は、過給機回転数検出手段31による過給機20の回転数の検出結果に基づいて、可変ピッチプロペラ3のピッチ制御を行う。すなわち、過給機20の回転数が必要回転数より小さい場合又は大きい場合には応答の速い可変ピッチプロペラ3のピッチを変えてガスエンジン10にかかる負荷を増減することで、空燃比を一定に保ち易くなる。
In the present embodiment, the propeller 3 is a variable pitch propeller. The variable pitch propeller 3 is driven by the gas engine 10 and the pitch is changed by hydraulic pressure, a motor or the like.
When the setting of the fuel gas supply amount is changed, the air-fuel ratio control means 32 determines the pitch of the variable pitch propeller 3 based on the detection result of the supercharger 20 rotation speed by the supercharger rotation speed detection means 31. Take control. That is, when the rotational speed of the supercharger 20 is smaller or larger than the required rotational speed, the air-fuel ratio is made constant by changing the pitch of the variable pitch propeller 3 that responds quickly to increase or decrease the load on the gas engine 10. Easy to keep.

なお、本実施形態において燃料供給量制御手段(ソレノイド弁)30は、燃料ガスの供給量を制御するものとして説明したが、予め燃料ガスと空気とを混合し、この空気を混合した燃料ガスの供給量を制御するものであってもよく、例えば予混合リーンバーン燃焼方式ガスエンジンにも適用することができる。また、燃料供給量制御手段30には、パイロット燃料を供給する型式のパイロット燃料弁や、追加燃料の供給を行う型式の複数の燃料供給弁等、およそ燃料供給に係わる手段は全て含むものとする。また、過給機回転数検出手段31の検出結果は、負荷変動時の制御以外にも、定常運転時の運転の監視や過給機20の管理に役立てることができる。また、過給機回転数は、過給機特性と加圧圧力等を用いて間接的に検出してもよい。   In the present embodiment, the fuel supply amount control means (solenoid valve) 30 has been described as controlling the supply amount of the fuel gas. However, the fuel gas and air are mixed in advance, and the fuel gas mixed with the air is supplied. The supply amount may be controlled, and can be applied to, for example, a premixed lean burn combustion type gas engine. Further, the fuel supply amount control means 30 includes all the means related to fuel supply such as a pilot fuel valve of a type for supplying pilot fuel and a plurality of fuel supply valves of a type for supplying additional fuel. Further, the detection result of the supercharger rotation speed detection means 31 can be used for monitoring the operation during steady operation and managing the supercharger 20 in addition to the control at the time of load fluctuation. Moreover, you may detect a supercharger rotation speed indirectly using a supercharger characteristic, pressurization pressure, etc. FIG.

図4及び図5を用いて、本発明の他の実施形態によるガスエンジンの空燃比制御装置について説明する。図4は本発明の他の実施形態によるガスエンジンの空燃比制御装置の概略構成図、図5は同空燃比制御装置のエンジン負荷変動に対する空燃比制御を示す図である。なお、上記した実施形態と同一機能部材には同一符号を付して説明を省略する。
本実施形態によるガスエンジンの空燃比制御装置は、可変ノズル23、バイパス経路24、バイパス制御弁25、スロットル弁26、及びエンジン回転数検出手段33を備えず、加勢手段であるモータ/ジェネレータ40を備える点において上記した実施形態と異なる。
A gas engine air-fuel ratio control apparatus according to another embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a schematic configuration diagram of an air-fuel ratio control device for a gas engine according to another embodiment of the present invention, and FIG. 5 is a diagram showing air-fuel ratio control for engine load fluctuations of the air-fuel ratio control device. Note that members having the same functions as those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
The air-fuel ratio control apparatus for a gas engine according to the present embodiment does not include the variable nozzle 23, the bypass path 24, the bypass control valve 25, the throttle valve 26, and the engine speed detection means 33, but includes a motor / generator 40 that is an urging means. It differs from the above-mentioned embodiment in the point provided.

モータ/ジェネレータ40は、過給機20に接続されている。
空燃比制御手段32は、燃料ガスの供給量の設定が変更された場合は、過給機回転数検出手段31による過給機20の回転数の検出結果に基づいて、モータ/ジェネレータ40の制御を行う。すなわち、過給機20の回転数が必要回転数より小さい場合つまり空気供給量が不足する場合には、過給機20を加勢するモータとして使用して過給機20の回転数を上げて必要空気量を速く確保し、過給機20の回転数が必要回転数より大きい場合つまり空気供給量が過多の場合には、ジェネレータとして発電することで過給機20の回転を抑えて空気供給量を減らす。モータとしての加勢又はジェネレータとしての発電は電気的なものであるため、その動作は瞬時に行われる。したがって、過給機20の回転数の検出結果に基づいて、モータ/ジェネレータ40の制御を行った場合には、図5(a)に示すように、空燃比の変動を一定以下に抑え易くなると共に、エンジン回転数の落ち込みも比較的短時間に留めることができる。
さらに、本実施形態において空燃比制御手段32は、過給機回転数検出手段31の検出結果に基づいて、モータ/ジェネレータ40の制御に加えて、ソレノイド弁30による燃料ガスの供給量の時間的変化を遅くする制御を併せて行うため、図5(b)に示すように、空燃比を一定にすることができる。
なお、加勢手段40は、ジェネレータ機能を有さないモータであってもよく、また、空気圧縮機など空気圧や油圧を利用して過給機20を加勢するものであってもよい。
The motor / generator 40 is connected to the supercharger 20.
The air-fuel ratio control means 32 controls the motor / generator 40 based on the detection result of the rotational speed of the supercharger 20 by the supercharger rotational speed detection means 31 when the setting of the fuel gas supply amount is changed. I do. That is, when the rotational speed of the supercharger 20 is smaller than the required rotational speed, that is, when the air supply amount is insufficient, the supercharger 20 is used as a motor for energizing the turbocharger 20 to increase the rotational speed. When the amount of air is secured fast and the rotational speed of the supercharger 20 is greater than the required rotational speed, that is, when the air supply amount is excessive, the generator 20 generates power and suppresses the rotation of the supercharger 20 to reduce the air supply amount. Reduce. Since the energization as a motor or the power generation as a generator is electrical, the operation is performed instantaneously. Therefore, when the motor / generator 40 is controlled based on the detection result of the rotational speed of the supercharger 20, it becomes easy to suppress the fluctuation of the air-fuel ratio below a certain level as shown in FIG. At the same time, the drop in engine speed can be kept in a relatively short time.
Further, in the present embodiment, the air-fuel ratio control means 32 determines the amount of fuel gas supplied by the solenoid valve 30 over time based on the detection result of the supercharger rotation speed detection means 31 in addition to the control of the motor / generator 40. Since the control for delaying the change is also performed, the air-fuel ratio can be made constant as shown in FIG.
The urging means 40 may be a motor that does not have a generator function, or may urge the supercharger 20 using air pressure or hydraulic pressure such as an air compressor.

以上、各実施形態で説明したように、本発明のガスエンジンの空燃比制御装置は、過給機20の回転数を検出し、その検出結果に基づいて燃料供給量制御手段30による燃料ガスの供給量の時間的変化を遅くすることで空気の供給量の時間的変化に合わせ、空燃比を一定にすることができる。したがって、ガスエンジン10における燃焼を安定させることができる。
また、その空燃比制御装置付きガスエンジン10を搭載した船舶を提供することができる。
As described above, the air-fuel ratio control device for a gas engine according to the present invention detects the number of rotations of the supercharger 20 and determines the amount of fuel gas by the fuel supply amount control means 30 based on the detection result. By delaying the temporal change in the supply amount, the air-fuel ratio can be made constant in accordance with the temporal change in the air supply amount. Therefore, combustion in the gas engine 10 can be stabilized.
Moreover, the ship carrying the gas engine 10 with the air-fuel ratio control apparatus can be provided.

本発明のガスエンジンの空燃比制御装置は、過給機の回転数に基づいて燃料供給量制御手段による燃料ガスの供給量の時間的変化を遅くすることで、空燃比を一定に保つことができるため、船舶をはじめとした陸舶産業用の各種のガスエンジンに適用することができる。   The air-fuel ratio control device for a gas engine of the present invention can keep the air-fuel ratio constant by slowing the temporal change in the fuel gas supply amount by the fuel supply amount control means based on the rotation speed of the supercharger. Therefore, it can be applied to various gas engines for land and marine industries including ships.

10 ガスエンジン
20 過給機
21 タービン
22 コンプレッサー
23 可変ノズル
24 バイパス経路
25 バイパス制御弁
26 スロットル弁
30 燃料供給量制御手段(ソレノイド弁)
31 過給機回転数検出手段
32 空燃比制御手段
33 エンジン回転数検出手段
40 加勢手段(モータ/ジェネレータ)
DESCRIPTION OF SYMBOLS 10 Gas engine 20 Supercharger 21 Turbine 22 Compressor 23 Variable nozzle 24 Bypass path 25 Bypass control valve 26 Throttle valve 30 Fuel supply amount control means (solenoid valve)
31 Supercharger speed detection means 32 Air-fuel ratio control means 33 Engine speed detection means 40 Energizing means (motor / generator)

Claims (12)

燃料ガスと空気とを混合して燃焼させ動力を得るガスエンジンの空燃比制御装置であって、前記ガスエンジンへ供給する前記燃料ガスの供給量を制御する燃料供給量制御手段と、前記空気を加圧するコンプレッサー及び前記ガスエンジンの排気ガスにより駆動されるタービンを有した過給機と、前記過給機の回転数を検出する過給機回転数検出手段と、前記燃料ガスの前記供給量の設定変更がされた場合に前記過給機回転数検出手段の検出結果に基づいて前記燃料供給量制御手段による前記燃料ガスの前記供給量の時間的変化を遅くするように制御する空燃比制御手段とを備えたことを特徴とするガスエンジンの空燃比制御装置。   An air-fuel ratio control device for a gas engine that obtains power by mixing fuel gas and air for combustion, a fuel supply amount control means for controlling the supply amount of the fuel gas supplied to the gas engine, and the air A turbocharger having a compressor for pressurization and a turbine driven by exhaust gas of the gas engine, a supercharger rotation speed detection means for detecting the rotation speed of the supercharger, and the supply amount of the fuel gas. An air-fuel ratio control means for controlling the fuel gas supply amount control means so as to delay the temporal change in the fuel gas supply amount based on the detection result of the supercharger rotation speed detection means when the setting is changed. An air-fuel ratio control device for a gas engine, comprising: 前記燃料供給量制御手段は、デジタル的にオン/オフするソレノイド弁であることを特徴とする請求項1に記載のガスエンジンの空燃比制御装置。   2. The air-fuel ratio control apparatus for a gas engine according to claim 1, wherein the fuel supply amount control means is a solenoid valve that is digitally turned on / off. 前記空燃比制御手段は、前記ソレノイド弁のデューティー比を制御することを特徴とする請求項2に記載のガスエンジンの空燃比制御装置。   The air-fuel ratio control device for a gas engine according to claim 2, wherein the air-fuel ratio control means controls a duty ratio of the solenoid valve. 前記ガスエンジンのエンジン回転数を検出するエンジン回転数検出手段を備え、前記空燃比制御手段は、前記エンジン回転数検出手段の検出結果に基づいて制御を行うことを特徴とする請求項1から請求項3のうちの1項に記載のガスエンジンの空燃比制御装置。   The engine speed detection means for detecting the engine speed of the gas engine is provided, and the air-fuel ratio control means performs control based on the detection result of the engine speed detection means. Item 4. The air-fuel ratio control device for a gas engine according to item 1 of item 3. 前記過給機を加勢する加勢手段を備え、前記空燃比制御手段は、前記燃料ガスの前記供給量の設定変更がされた場合に前記過給機回転数検出手段の前記検出結果に基づいて前記加勢手段を制御することを特徴とする請求項1から請求項4のうちの1項に記載のガスエンジンの空燃比制御装置。   The air-fuel ratio control means includes an urging means for urging the supercharger, and the air-fuel ratio control means is configured to change the setting of the supply amount of the fuel gas based on the detection result of the supercharger rotation speed detection means. The air-fuel ratio control apparatus for a gas engine according to any one of claims 1 to 4, wherein the urging means is controlled. 前記加勢手段は、前記過給機を駆動するとともに前記過給機により回転され発電を行う機能を有したモータ/ジェネレータであることを特徴とする請求項5に記載のガスエンジンの空燃比制御装置。   6. The air / fuel ratio control apparatus for a gas engine according to claim 5, wherein the urging means is a motor / generator that has a function of driving the supercharger and rotating the supercharger to generate electric power. . 前記過給機の前記コンプレッサーと前記ガスエンジンの間の経路にスロットル弁を備え、
前記空燃比制御手段は、前記燃料ガスの前記供給量の設定変更がされた場合に前記過給機回転数検出手段の前記検出結果に基づいて前記スロットル弁を制御することを特徴とする請求項1から請求項4のうちの1項に記載のガスエンジンの空燃比制御装置。
A throttle valve is provided in a path between the compressor of the supercharger and the gas engine;
The air-fuel ratio control means controls the throttle valve based on the detection result of the supercharger rotation speed detection means when the setting of the supply amount of the fuel gas is changed. The air-fuel ratio control device for a gas engine according to any one of claims 1 to 4.
前記空燃比制御手段は、前記スロットル弁を定常負荷時は絞った位置に臨ませる制御をすることを特徴とする請求項7に記載のガスエンジンの空燃比制御装置。   8. The air-fuel ratio control apparatus for a gas engine according to claim 7, wherein the air-fuel ratio control means controls the throttle valve to face a throttle position during a steady load. 前記過給機の前記タービンの上流側に可変ノズルを備え、前記空燃比制御手段は、前記燃料ガスの前記供給量の設定変更がされた場合に前記過給機回転数検出手段の前記検出結果に基づいて前記可変ノズルを制御することを特徴とする請求項1から請求項4のうちの1項に記載のガスエンジンの空燃比制御装置。   A variable nozzle is provided on the upstream side of the turbine of the supercharger, and the air-fuel ratio control means detects the detection result of the supercharger rotation speed detection means when the setting of the supply amount of the fuel gas is changed. 5. The air-fuel ratio control apparatus for a gas engine according to claim 1, wherein the variable nozzle is controlled based on the control. 前記過給機の前記タービンを迂回するバイパス経路と、前記バイパス経路を開閉するバイパス制御弁を備え、前記空燃比制御手段は、前記燃料ガスの前記供給量の設定変更がされた場合に前記過給機回転数検出手段の前記検出結果に基づいて前記バイパス制御弁を制御することを特徴とする請求項1から請求項4のうちの1項に記載のガスエンジンの空燃比制御装置。   A bypass path that bypasses the turbine of the turbocharger; and a bypass control valve that opens and closes the bypass path, and the air-fuel ratio control means is configured to perform the overload when the setting of the supply amount of the fuel gas is changed. The air-fuel ratio control apparatus for a gas engine according to any one of claims 1 to 4, wherein the bypass control valve is controlled based on the detection result of the charger rotation speed detection means. 前記ガスエンジンにより駆動される可変ピッチプロペラを備え、前記空燃比制御手段は、前記燃料ガスの前記供給量の設定変更がされた場合に前記過給機回転数検出手段の前記検出結果に基づいて前記可変ピッチプロペラを制御することを特徴とする請求項1から請求項4のうちの1項に記載のガスエンジンの空燃比制御装置。   A variable pitch propeller driven by the gas engine, wherein the air-fuel ratio control means is based on the detection result of the supercharger rotation speed detection means when the supply amount of the fuel gas is changed. The air-fuel ratio control apparatus for a gas engine according to any one of claims 1 to 4, wherein the variable pitch propeller is controlled. 請求項1から請求項11のうちの1項に記載のガスエンジンの空燃比制御装置を備えたことを特徴とする空燃比制御装置付きガスエンジンを搭載した船舶。
A ship equipped with a gas engine with an air-fuel ratio control device, comprising the air-fuel ratio control device for a gas engine according to one of claims 1 to 11.
JP2015054816A 2015-03-18 2015-03-18 Air-fuel ratio control device for gas engine and ship equipped with gas engine with air-fuel ratio control device Active JP6508709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054816A JP6508709B2 (en) 2015-03-18 2015-03-18 Air-fuel ratio control device for gas engine and ship equipped with gas engine with air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054816A JP6508709B2 (en) 2015-03-18 2015-03-18 Air-fuel ratio control device for gas engine and ship equipped with gas engine with air-fuel ratio control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019062522A Division JP6704149B2 (en) 2019-03-28 2019-03-28 A ship equipped with an air-fuel ratio controller for a gas engine and a gas engine with an air-fuel ratio controller

Publications (2)

Publication Number Publication Date
JP2016176338A true JP2016176338A (en) 2016-10-06
JP6508709B2 JP6508709B2 (en) 2019-05-08

Family

ID=57070346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054816A Active JP6508709B2 (en) 2015-03-18 2015-03-18 Air-fuel ratio control device for gas engine and ship equipped with gas engine with air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JP6508709B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123745A (en) * 2017-01-31 2018-08-09 三菱重工業株式会社 Engine controller, engine and engine control method
JP2020094576A (en) * 2018-12-14 2020-06-18 株式会社Ihi Engine system
CN113389642A (en) * 2021-07-31 2021-09-14 济南和利时自动化工程有限公司 Control system for gas generator set
CN114635785A (en) * 2022-03-04 2022-06-17 潍柴动力股份有限公司 Gas machine, control method and device and gas machine system
JP2022160373A (en) * 2021-04-06 2022-10-19 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド Method and large turbocharged two-stroke internal combustion engine for delivering mechanical energy and pressurized gas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221207A (en) * 1993-01-29 1994-08-09 Mazda Motor Corp Air-fuel ratio control device for engine
JPH09184425A (en) * 1995-12-28 1997-07-15 Toyota Motor Corp Supercharging pressure controller of supercharger
JP2000145524A (en) * 1998-11-09 2000-05-26 Mitsubishi Motors Corp Internal combustion engine having variable turbo charger
JP2007132298A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Control device for internal combustion engine
JP2007218223A (en) * 2006-02-20 2007-08-30 Mitsubishi Heavy Ind Ltd Gas engine with motor driving supercharger
JP2007263127A (en) * 2007-07-23 2007-10-11 Hitachi Ltd Fuel control system for engine, and fuel control method for engine
JP2009057870A (en) * 2007-08-30 2009-03-19 Mitsubishi Heavy Ind Ltd Gas engine integration control method and its device
JP2013181444A (en) * 2012-03-01 2013-09-12 Yanmar Co Ltd Engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221207A (en) * 1993-01-29 1994-08-09 Mazda Motor Corp Air-fuel ratio control device for engine
JPH09184425A (en) * 1995-12-28 1997-07-15 Toyota Motor Corp Supercharging pressure controller of supercharger
JP2000145524A (en) * 1998-11-09 2000-05-26 Mitsubishi Motors Corp Internal combustion engine having variable turbo charger
JP2007132298A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Control device for internal combustion engine
JP2007218223A (en) * 2006-02-20 2007-08-30 Mitsubishi Heavy Ind Ltd Gas engine with motor driving supercharger
JP2007263127A (en) * 2007-07-23 2007-10-11 Hitachi Ltd Fuel control system for engine, and fuel control method for engine
JP2009057870A (en) * 2007-08-30 2009-03-19 Mitsubishi Heavy Ind Ltd Gas engine integration control method and its device
JP2013181444A (en) * 2012-03-01 2013-09-12 Yanmar Co Ltd Engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123745A (en) * 2017-01-31 2018-08-09 三菱重工業株式会社 Engine controller, engine and engine control method
JP2020094576A (en) * 2018-12-14 2020-06-18 株式会社Ihi Engine system
JP7309111B2 (en) 2018-12-14 2023-07-18 株式会社三井E&S Du engine system
JP2022160373A (en) * 2021-04-06 2022-10-19 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド Method and large turbocharged two-stroke internal combustion engine for delivering mechanical energy and pressurized gas
JP7512319B2 (en) 2021-04-06 2024-07-08 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド Large turbocharged two-stroke internal combustion engine and method for delivering mechanical energy and pressurized gas
CN113389642A (en) * 2021-07-31 2021-09-14 济南和利时自动化工程有限公司 Control system for gas generator set
CN114635785A (en) * 2022-03-04 2022-06-17 潍柴动力股份有限公司 Gas machine, control method and device and gas machine system

Also Published As

Publication number Publication date
JP6508709B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP6508709B2 (en) Air-fuel ratio control device for gas engine and ship equipped with gas engine with air-fuel ratio control device
US6637205B1 (en) Electric assist and variable geometry turbocharger
JP5583697B2 (en) Method and system for controlling a gas turbine, and a gas turbine including such a system
CA2845182C (en) System and method for engine transient power response
KR101232393B1 (en) Control method and device for turbine generator
WO2015129369A1 (en) Engine device
US20170002748A1 (en) Gas-turbine control device, gas turbine, and gas-turbine control method
JP5138643B2 (en) Turbine generator, turbine generator control method, control device, and ship equipped with the turbine generator
WO2016031355A1 (en) Control device, system, and control method
JP6704149B2 (en) A ship equipped with an air-fuel ratio controller for a gas engine and a gas engine with an air-fuel ratio controller
US20160024961A1 (en) Turbine of a turbocompound engine with variable load and a controller thereof
CN107923258B (en) Control device for power generation system, and power generation method
JP2011027053A5 (en)
US20180030905A1 (en) Gas Engine Fast Start Fuel Strategy
JP6341511B2 (en) Load followability improvement system for lean premixed gas engine
JP6226775B2 (en) Engine equipment
JP2013029111A (en) Power generation method, turbine power generator, method of controlling turbine power generator, control device, and ship including the turbine power generator
KR101589424B1 (en) Power generation system and method for controlling power generation system
JP2015161201A (en) Engine device
JP6391253B2 (en) Engine equipment
WO2017038033A1 (en) Engine system
JP5675932B2 (en) Power generation method, turbine generator, turbine generator control method, control apparatus, and ship equipped with the turbine generator
JP2011038478A (en) Control device and control method of gas turbine engine
JP6509610B2 (en) Control method of supercharged internal combustion engine and supercharger internal combustion engine
JP6035413B1 (en) Gas engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R150 Certificate of patent or registration of utility model

Ref document number: 6508709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250