JP2016175795A - Method for producing powder raw material, method for forming molded body, and molded body - Google Patents

Method for producing powder raw material, method for forming molded body, and molded body Download PDF

Info

Publication number
JP2016175795A
JP2016175795A JP2015056954A JP2015056954A JP2016175795A JP 2016175795 A JP2016175795 A JP 2016175795A JP 2015056954 A JP2015056954 A JP 2015056954A JP 2015056954 A JP2015056954 A JP 2015056954A JP 2016175795 A JP2016175795 A JP 2016175795A
Authority
JP
Japan
Prior art keywords
raw material
powder
material powder
molded body
powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015056954A
Other languages
Japanese (ja)
Inventor
薫 谷川
Kaoru Tanigawa
薫 谷川
塚原 千幸人
Chisato Tsukahara
千幸人 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015056954A priority Critical patent/JP2016175795A/en
Publication of JP2016175795A publication Critical patent/JP2016175795A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a powder raw material which can reduce a difference between average particle diameters in a power raw material obtained from plural kinds of raw material powders and can improve a yield of a molded body obtained from the powder raw material, and to provide a method for forming a molded body and a molded body.SOLUTION: A method for producing a powder raw material includes: a raw material powder pulverizing step ST11 of individually pulverizing plural kinds of raw material powders to obtain plural kinds of the pulverized raw material powders; and a mixing step ST13 of mixing the plural kinds of the pulverized raw material powders to obtain a mixture of the plural kinds of the raw material powders.SELECTED DRAWING: Figure 2

Description

本発明は、粉体原料の製造方法、成形体の成形方法及び成形体に関し、例えば、水素センサなどに用いられる固体電解質セルを好適に成形可能な粉体原料の製造方法、成形体の成形方法及び成形体に関する。   The present invention relates to a powder raw material manufacturing method, a molded body molding method, and a molded body. For example, a powder raw material manufacturing method and a molded body molding method capable of suitably molding a solid electrolyte cell used in a hydrogen sensor or the like. And a molded body.

従来、ランタン(La)、クロム(Cr)及びカルシウム(Ca)の硝酸塩を用いた固体電解質型燃料電池の製造方法が提案されている(例えば、特許文献1参照)。この固体電解質型燃料電池の製造方法では、水に溶解させて混合した原料粉末のスラリーを乾燥固化した後、乾燥固化した固形物をボールミルにより粉砕する。そして、粉砕して得られた原料粉末を熱分解処理して硝酸分を除去し、得られた熱分解処理後の粉末を粉砕処理して結晶化した後に、Si34製のボールミルにて粒径制御することにより、固体電解質型燃料電池の相互接続部の粉体原料を調整する。 Conventionally, a method of manufacturing a solid oxide fuel cell using nitrates of lanthanum (La), chromium (Cr) and calcium (Ca) has been proposed (see, for example, Patent Document 1). In this method of manufacturing a solid oxide fuel cell, a raw material powder slurry dissolved and mixed in water is dried and solidified, and the dried and solidified solid is pulverized by a ball mill. Then, the raw material powder obtained by pulverization is pyrolyzed to remove the nitric acid content, and the obtained pyrolyzed powder is pulverized and crystallized, and then a Si 3 N 4 ball mill is used. By controlling the particle size, the powder raw material of the interconnect portion of the solid oxide fuel cell is adjusted.

特開平5−166524号公報JP-A-5-166524

しかしながら、特許文献1に記載の固体電解質型燃料電池の製造方法のように、複数種類の被成形材料の原料粉末を混合する場合には、原料粉末毎に比重及び硬度が異なるので、原料粉末毎の平均粒径がそれぞれ所定範囲とならず、原料粉末の均一な混合が困難な場合がある。そして、原料粉末が均一に混合及び粉砕されていない場合には、原料粉末を用いて得られる成形体の組成も均一にならず、成形時及び焼成後の成形体の割れの起点となる結晶構造の欠陥が発生して成形体の歩留まりが低下する場合がある。   However, when the raw material powders of a plurality of types of molding materials are mixed as in the method for manufacturing a solid oxide fuel cell described in Patent Document 1, the specific gravity and hardness differ for each raw material powder. In some cases, the average particle diameters of the raw materials do not fall within a predetermined range, and uniform mixing of the raw material powders is difficult. And when the raw material powder is not uniformly mixed and pulverized, the composition of the molded body obtained using the raw material powder is not uniform, and the crystal structure becomes the starting point of cracking of the molded body at the time of molding and after firing Defects may occur and the yield of the molded body may decrease.

本発明は、このような実情に鑑みてなされたものであり、複数種類の原料粉末から得られる粉体原料中の平均粒径の差異を低減でき、粉体原料から得られる成形体の歩留まりの向上が可能な粉体原料の成形方法、成形体の製造方法及び成形体を提供することを目的とする。   The present invention has been made in view of such circumstances, can reduce the difference in the average particle diameter in the powder raw material obtained from a plurality of types of raw material powder, the yield of compacts obtained from the powder raw material It is an object of the present invention to provide a powder raw material molding method, a molded body manufacturing method, and a molded body that can be improved.

本発明の粉体原料の製造方法は、複数種類の原料粉末をそれぞれ個別に粉砕して粉砕後の複数種類の原料粉末を得る原料粉末粉砕工程と、前記粉砕後の複数種類の原料粉末を混合して前記複数種類の原料粉末の混合物を得る混合工程とを含むことを特徴とする。   The powder raw material manufacturing method of the present invention includes a raw material powder pulverization step for individually pulverizing a plurality of types of raw material powders to obtain a plurality of types of raw material powders, and mixing the plurality of types of raw material powders after pulverization And a mixing step of obtaining a mixture of the plurality of types of raw material powders.

本発明の粉体原料の製造方法によれば、硬度及び比重が異なる複数種類の原料粉末をそれぞれ個別に粉砕するので、複数種類の原料粉末から得られる複数種類の原料粉末の平均粒径の差異を低減することが可能となり、粉体原料の成形時及び焼成後の割れなどの起点となる結晶構造の欠陥を低減して成形体の割れ及びクラックを防ぐことができる。また、硬度及び比重がそれぞれ異なる複数種類の原料粉末をそれぞれ個別に粉砕するので、粉砕された各原料粉末の混合時間の短縮が可能となる。これにより、粉体原料の製造方法は、複数種類の原料粉末から得られる粉体原料中の平均粒径の差異を低減でき、粉体原料から得られる成形体の歩留まりの向上が可能となる。   According to the method for producing a powder raw material of the present invention, a plurality of types of raw material powders having different hardness and specific gravity are pulverized individually, so that the difference in average particle size of a plurality of types of raw material powders obtained from a plurality of types of raw material powders It is possible to reduce the defects of the crystal structure, which is the starting point of cracking after molding of the powder raw material and after firing, and to prevent cracking and cracking of the molded body. Further, since plural types of raw material powders having different hardness and specific gravity are individually pulverized, the mixing time of the pulverized raw material powders can be shortened. Thereby, the manufacturing method of a powder raw material can reduce the difference of the average particle diameter in the powder raw material obtained from multiple types of raw material powder, and can improve the yield of the compacts obtained from the powder raw material.

本発明の粉体原料の製造方法においては、前記原料粉末粉砕工程において、前記粉砕後の複数種類の原料粉末の平均粒径の相互の差異を50%以下に揃えることが好ましい。この方法により、粉体原料の製造方法は、複数種類の原料粉末の平均粒径の相互の差異が50%以下となるので、粉体原料から得られる成形体の歩留まりがより一層向上する。   In the powder raw material manufacturing method of the present invention, in the raw material powder pulverization step, it is preferable that the difference between the average particle sizes of the plurality of types of raw material powders after the pulverization is 50% or less. According to this method, the powder raw material manufacturing method has a difference of 50% or less in the average particle size of a plurality of types of raw material powders, so that the yield of compacts obtained from the powder raw material is further improved.

本発明の粉体原料の製造方法においては、前記原料粉末粉砕工程で粉砕された前記粉砕後の複数種類の原料粉末を分級して、平均粒径の相互の差異を50%以下に揃える原料粉末分級工程を含むことが好ましい。この方法により、粉体原料の製造方法は、複数種類の原料粉末の平均粒径の相互の差異が50%以下となるので、粉体原料から得られる成形体の歩留まりがより一層向上する。   In the method for producing a powder raw material of the present invention, a plurality of types of the pulverized raw material powders pulverized in the raw material powder pulverization step are classified, and the raw material powders having a difference in average particle size of 50% or less It is preferable to include a classification step. According to this method, the powder raw material manufacturing method has a difference of 50% or less in the average particle size of a plurality of types of raw material powders, so that the yield of compacts obtained from the powder raw material is further improved.

本発明の粉体原料の製造方法においては、前記原料粉末粉砕工程において、前記複数種類の原料粉末をそれぞれ当該原料粉末と同一原料で形成された粉砕治具を用いて前記複数種類の原料粉末をそれぞれ粉砕することが好ましい。この方法により、粉体原料の製造方法は、原料粉末の粉砕に用いる粉砕治具の材質が原料粉末と同一になるので、粉体原料に対する異物の混入を防ぐことが可能となる。   In the method for producing a powder raw material of the present invention, in the raw material powder pulverization step, the plural types of raw material powders are obtained by using a pulverizing jig formed of the same raw material as the raw material powders. It is preferable to grind each. With this method, the powder raw material manufacturing method uses the same material as the raw material powder for the pulverizing jig used for pulverizing the raw material powder, so that foreign substances can be prevented from being mixed into the powder raw material.

本発明の粉体原料の製造方法においては、前記混合工程において、前記複数種類の原料粉末のうち、最も硬度が高い原料で形成された粉砕治具を用いて前記複数種類の原料粉末を混合することが好ましい。この方法により、粉体原料の製造方法は、原料粉末を効率良く混合することが可能となるので、複数種類の原料粉末の混合時間の短縮が可能となる。   In the powder raw material manufacturing method of the present invention, in the mixing step, the plural types of raw material powders are mixed using a pulverizing jig formed of the raw material having the highest hardness among the plural types of raw material powders. It is preferable. According to this method, the powder raw material manufacturing method can efficiently mix the raw material powders, so that the mixing time of a plurality of types of raw material powders can be shortened.

本発明の粉体原料の製造方法においては、前記混合物を乾燥する第1乾燥工程と、乾燥後の前記混合物を解砕する解砕工程と、解砕後の前記混合物を仮焼する仮焼工程と、仮焼後の前記混合物を粉砕する粉砕工程と、粉砕後の前記混合物を乾燥する第2乾燥工程と、粉砕及び乾燥後の前記混合物を分級して粉体原料を得る分級工程と、を含むことが好ましい。この方法により、粉体原料の製造方法は、仮焼後の混合物中の原料粉末の平均粒径の差異が低減されるので、仮焼後の混合物の粉砕に要する時間を短縮でき、粉体原料の製造時間を短縮することが可能となる。   In the method for producing a powder raw material of the present invention, a first drying step for drying the mixture, a crushing step for crushing the mixture after drying, and a calcining step for calcining the mixture after crushing A pulverizing step of pulverizing the mixture after calcination, a second drying step of drying the pulverized mixture, and a classification step of classifying the mixture after pulverization and drying to obtain a powder raw material. It is preferable to include. By this method, the powder raw material manufacturing method reduces the difference in the average particle size of the raw material powder in the mixture after calcination, so the time required for pulverization of the mixture after calcination can be shortened, and the powder raw material It becomes possible to shorten the manufacturing time.

本発明の成形体の成形方法は、上記粉体原料の製造方法により得られた粉体原料を用いて成形体を成形することを特徴とする。   The molding method of the molded body of the present invention is characterized in that the molded body is molded using the powder raw material obtained by the above-described method for producing a powder raw material.

この成形体の成形方法によれば、硬度及び比重が異なる複数種類の原料粉末がそれぞれ個別に粉砕され、各原料粉末の平均粒径の差異を低減された粉体原料を用いるので、粉体原料の成形時及び焼成後の割れなどの起点となる結晶構造の欠陥を低減して成形体の割れ及びクラックを防ぐことができる。これにより、成形体の成形方法は、粉体原料から得られる成形体の歩留まりの向上が可能となる。   According to this molding method, a plurality of types of raw material powders having different hardness and specific gravity are individually pulverized, and the powder raw material in which the difference in the average particle diameter of each raw material powder is reduced is used. It is possible to reduce the defects of the crystal structure that becomes the starting point such as cracks at the time of molding and after firing, thereby preventing cracks and cracks in the molded body. Thereby, the shaping | molding method of a molded object can improve the yield of the molded object obtained from a powder raw material.

本発明の成形体は、上記成形体の成形方法により得られたことを特徴とする。   The molded body of the present invention is obtained by the molding method of the molded body.

この成形体によれば、硬度及び比重が異なる複数種類の原料粉末がそれぞれ個別に粉砕され、各原料粉末の平均粒径の差異を低減された粉体原料を用いられているので、粉体原料の成形時及び焼成後の割れなどの起点となる結晶構造の欠陥が低減されて成形体の割れ及びクラックを防ぐことができる。   According to this molded body, a plurality of types of raw material powders having different hardness and specific gravity are individually pulverized, and the powder raw material in which the difference in the average particle diameter of each raw material powder is reduced is used. Defects in the crystal structure that serve as starting points such as cracks during molding and after firing can be reduced, and cracks and cracks in the molded product can be prevented.

本発明によれば、複数種類の原料粉末から得られる粉体原料中の平均粒径の差異を低減でき、粉体原料から得られる成形体の歩留まりの向上が可能な粉体原料の製造方法、成形体の成形方法及び成形体を実現できる。   According to the present invention, a method for producing a powder raw material that can reduce the difference in average particle diameter in the powder raw material obtained from a plurality of types of raw material powder, and that can improve the yield of the molded body obtained from the powder raw material, A molding method and a molded body of the molded body can be realized.

図1は、本発明の一実施の形態に係る粉体原料の製造方法のフロー図である。FIG. 1 is a flowchart of a method for producing a powder raw material according to an embodiment of the present invention. 図2は、本発明の一実施の形態に係る粉体原料の製造方法の具体例の一例を示すフロー図である。FIG. 2 is a flowchart showing an example of a method for producing a powder raw material according to an embodiment of the present invention. 図3は、本発明の一実施の形態に係る成形体の成形方法に用いられる成形用治具の断面模式図である。FIG. 3 is a schematic cross-sectional view of a molding jig used in the molding method for a molded body according to an embodiment of the present invention. 図4Aは、本実施の形態に係る成形体の成形方法の説明図である。FIG. 4A is an explanatory diagram of the molding method of the molded body according to the present embodiment. 図4Bは、本実施の形態に係る成形体の成形方法の説明図である。FIG. 4B is an explanatory diagram of the molding method of the molded body according to the present embodiment. 図4Cは、本実施の形態に係る成形体の成形方法の説明図である。FIG. 4C is an explanatory diagram of the molding method of the molded body according to the present embodiment.

以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、以下の各実施の形態に限定されるものではなく、適宜変更して実施可能である。また、以下の各実施の形態は適宜組み合わせて実施可能である。また、各実施の形態において共通する構成要素には同一の符号を付し、説明の重複を避ける。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, it is not limited to each following embodiment, It can implement by changing suitably. Also, the following embodiments can be implemented in combination as appropriate. Moreover, the same code | symbol is attached | subjected to the component which is common in each embodiment, and duplication of description is avoided.

図1は、本発明の一実施の形態に係る粉体原料の製造方法のフロー図である。図1に示すように、本発明の一実施の形態に係る粉体原料の製造方法は、複数種類の原料粉末をそれぞれ個別に粉砕する原料粉末粉砕工程ST11と、原料粉末粉砕工程ST11で粉砕された複数種類の原料粉末を分級して、平均粒径の相互の差異を所定値(例えば、50%以下)に揃えた分級後の複数種類の原料粉末を得る原料粉末分級工程ST12と、分級後の複数種類の原料粉末を混合して混合粉末を得る混合工程ST13とを含む。なお、原料粉末分級工程ST12は、原料粉末粉砕工程ST11で得られた複数種類の原料粉末の平均粒径の相互の差異が所定値(例えば、50%以下)となれば必ずしも実施する必要はない。   FIG. 1 is a flowchart of a method for producing a powder raw material according to an embodiment of the present invention. As shown in FIG. 1, the powder raw material manufacturing method according to one embodiment of the present invention is pulverized in a raw material powder pulverization step ST11 and a raw material powder pulverization step ST11. A plurality of types of raw material powders, and a raw material powder classification step ST12 for obtaining a plurality of types of raw material powders after classification in which the difference in average particle diameter is set to a predetermined value (for example, 50% or less); A mixing step ST13 in which a plurality of types of raw material powders are mixed to obtain a mixed powder. The raw material powder classification step ST12 is not necessarily performed if the difference between the average particle diameters of the plurality of types of raw material powders obtained in the raw material powder grinding step ST11 is a predetermined value (for example, 50% or less). .

原料粉末粉砕工程ST11では、複数種類の原料粉末をそれぞれボールミルなどの粉砕機でそれぞれ個別に粉砕して所定の平均粒径とする。原料粉末としては、粉砕機で粉砕できるものであれば特に制限はなく、例えば、SrCO、ZrO及びYbOなどが挙げられる。この原料粉末粉砕工程ST11では、硬度及び比重がそれぞれ異なる複数種類の原料粉末をそれぞれ個別に粉砕するので、複数種類の原料粉末の粉砕及び混合時間の短縮が可能になると共に、複数種類の原料粉末を予め混合して粉砕する場合と比較して、各原料粉末の平均粒径の差異を低減することが可能となる。 In the raw material powder pulverization step ST11, a plurality of types of raw material powders are individually pulverized by a pulverizer such as a ball mill to obtain a predetermined average particle size. The raw material powder is not particularly limited as long as it can be pulverized by a pulverizer, and examples thereof include SrCO 3 , ZrO 2 and YbO 3 . In this raw material powder crushing step ST11, since plural types of raw material powders having different hardness and specific gravity are individually pulverized, the plural types of raw material powders can be pulverized and the mixing time can be shortened. It is possible to reduce the difference in the average particle diameter of the raw material powders as compared with the case of previously mixing and pulverizing.

原料粉末粉砕工程ST11では、複数種類の原料粉末の平均粒径の相互の差異が50%以下となるように複数種類の原料粉末を粉砕することが好ましい。これにより、本実施の形態に係る粉体原料の製造方法は、複数種類の原料粉末の平均粒径の相互の差異が50%以下となるので、粉体原料の成形時及び焼成後の割れなどの起点となる結晶構造の欠陥をより一層低減して成形体の割れ及びクラックを防いで、粉体原料から得られる成形体の歩留まりがより一層向上する。複数種類の原料粉末の平均粒径の差異は、相互に25%以下となるように粉砕することがより好ましく、相互に10%以下となるように粉砕することがより好ましい。さらに、原料粉末粉砕工程ST11では、複数種類の原料粉末をそれぞれ当該原料粉末と同一原料で形成されたボール(粉砕治具)を有するボールミルなどの粉砕機を用いて複数種類の原料粉末をそれぞれ粉砕することが好ましい。これにより、原料粉末の粉砕に用いる粉砕治具の材質が原料粉末と同一になるので、粉体原料への異物の混入を防ぐことが可能となる。なお、粉砕治具としては、ボールに限定されず、原料粉末を粉砕可能な各種粉砕治具を適用可能である。また、本発明においては、平均粒径とは、粒度分布測定装置を用いてJIS Z 8825に準拠したレーザ光による光回折散乱法によって測定される50%径の値である。   In the raw material powder pulverization step ST11, it is preferable to pulverize the plurality of types of raw material powders so that the difference between the average particle sizes of the plurality of types of raw material powders is 50% or less. Thereby, in the method for producing a powder raw material according to the present embodiment, the difference between the average particle diameters of a plurality of types of raw material powders is 50% or less, so that cracks at the time of molding the powder raw material and after firing, etc. The defects of the crystal structure that is the starting point of the above are further reduced to prevent cracking and cracking of the molded body, and the yield of the molded body obtained from the powder raw material is further improved. It is more preferable to grind so that the difference in the average particle diameters of the plural types of raw material powders is 25% or less, and it is more desirable to grind so that the difference is 10% or less. Further, in the raw material powder pulverization step ST11, plural types of raw material powders are pulverized using a pulverizer such as a ball mill having balls (grinding jigs) each formed of the same raw material as the raw material powder. It is preferable to do. Thereby, since the material of the crushing jig used for crushing the raw material powder is the same as that of the raw material powder, it is possible to prevent foreign matters from being mixed into the powder raw material. The pulverizing jig is not limited to a ball, and various pulverizing jigs capable of pulverizing the raw material powder are applicable. Moreover, in this invention, an average particle diameter is a value of a 50% diameter measured by the light diffraction scattering method by the laser beam based on JISZ8825 using a particle size distribution measuring apparatus.

原料粉末分級工程ST12では、原料粉末粉砕工程ST11で粉砕した複数種類の原料粉末をそれぞれふるいなどの分級機で分級して、各原料粉末の平均粒径の相互の差異を所定値以下(例えば、50%以下)とする。このように原料粉末分級工程ST12を実施することにより、複数種類の原料粉末の平均粒径の相互の差異が50%以下となるので、粉体原料から得られる成形体の歩留まりがより一層向上する。   In the raw material powder classification step ST12, the plurality of types of raw material powders pulverized in the raw material powder pulverization step ST11 are each classified by a classifier such as a sieve, and the difference between the average particle sizes of the raw material powders is less than a predetermined value (for example, 50% or less). By carrying out the raw material powder classification step ST12 in this way, the difference in the average particle diameters of the plural types of raw material powders is 50% or less, so that the yield of compacts obtained from the powder raw material is further improved. .

混合工程ST13では、粉砕された複数種類の原料粉末をボールミルなどの粉砕機で混合して平均粒径の相互の差異が50%以下となった複数種類の原料粉末の混合粉末を得る。この混合工程ST13では、複数種類の原料粉末のうち、最も硬度が高い原料で形成されたボール(粉砕治具)を用いて複数種類の原料粉末を混合することが好ましい。これにより、原料粉末を効率良く混合することが可能となるので、複数種類の原料粉末の混合時間の短縮が可能となる。なお、粉砕治具としては、ボールに限定されず、原料粉末を粉砕可能な各種粉砕治具を適用可能である。以下、本実施の形態に係る粉体原料の製造方法の具体例について詳細に説明する。   In the mixing step ST13, the pulverized raw material powders are mixed with a pulverizer such as a ball mill to obtain a mixed powder of the raw material powders having a difference in average particle size of 50% or less. In this mixing step ST13, it is preferable to mix a plurality of types of raw material powders using a ball (grinding jig) formed of a raw material having the highest hardness among the plurality of types of raw material powders. Thereby, since it becomes possible to mix raw material powder efficiently, the mixing time of multiple types of raw material powder can be shortened. The pulverizing jig is not limited to a ball, and various pulverizing jigs capable of pulverizing the raw material powder are applicable. Hereinafter, specific examples of the powder raw material manufacturing method according to the present embodiment will be described in detail.

図2は、本発明の一実施の形態に係る粉体原料の製造方法の具体例の一例を示すフロー図である。図2に示すように、本実施の形態に係る粉体原料の製造方法では、第1原料粉末を粉砕する第1原料粉末粉砕工程ST111、第2原料粉末を粉砕する第2原料粉末粉砕工程ST112及び第3原料粉末を粉砕する第3原料粉末粉砕工程ST113を含む原料粉末粉砕工程ST11と、粉砕された第1原料粉末を分級する第1原料粉末分級工程ST121、粉砕された第2原料粉末を分級する第2原料粉末分級工程ST122及び粉砕された第3原料粉末を分級する第3原料粉末分級工程ST123を含む原料粉末分級工程ST12と、それぞれ平均粒径が所定値となるように分級された第1原料粉末、第2原料粉末及び第3原料粉末を混合して混合物とする混合工程ST13と、混合物を乾燥する第1乾燥工程ST14と、乾燥後の混合物を解砕する解砕工程ST15と、解砕後の混合物を仮焼する仮焼工程ST16と、仮焼後の混合物を粉砕する粉砕工程ST17と、粉砕後の混合物を乾燥する第2乾燥工程ST18と、乾燥後の混合物を分級して粉体原料を得る分級工程ST19と、を含む。   FIG. 2 is a flowchart showing an example of a method for producing a powder raw material according to an embodiment of the present invention. As shown in FIG. 2, in the method for producing a powder raw material according to the present embodiment, a first raw material powder pulverizing step ST111 for pulverizing a first raw material powder, and a second raw material powder pulverizing step ST112 for pulverizing a second raw material powder. And a raw material powder grinding step ST11 including a third raw material powder grinding step ST113 for grinding the third raw material powder, a first raw material powder classification step ST121 for classifying the ground first raw material powder, and the ground second raw material powder. The second raw material powder classification step ST122 for classifying and the raw material powder classification step ST12 including the third raw material powder classification step ST123 for classifying the pulverized third raw material powder, and the average particle size was classified so as to have a predetermined value, respectively. Mixing step ST13 in which the first raw material powder, the second raw material powder, and the third raw material powder are mixed to form a mixture, the first drying step ST14 for drying the mixture, and the mixture after drying Crushing step ST15 for crushing, calcining step ST16 for calcining the mixture after crushing, crushing step ST17 for crushing the mixture after calcining, and second drying step ST18 for drying the mixture after crushing And a classification step ST19 for classifying the dried mixture to obtain a powder raw material.

本実施の形態に係る粉体原料の製造方法で製造される粉体原料としては、例えば、SrZr0.95Yb0.05、CaZr0.95Yb0.05、SrZr0.95Yb0.05、CaZr0.95Al0.05、SrZr0.95Al0.05、SrZr0.95In0.05及びSrZr0.95Sm0.05などのSrZrO系ペロブスカイト型化合物にYbがドーピングされた化合物など、用いる第1原料粉末、第2原料粉末及び第3原料粉末の割合によって種々の組成の粉体原料を得ることができる。本実施の形態においては、第1原料粉末としてSrCOを用い、第2原料粉末としてZrOを用い、第3原料粉末としてYbOを用いる例について説明する。 The powder material produced by the production method of the powder raw material according to the present embodiment, for example, SrZr 0.95 Yb 0.05 O 3, CaZr 0.95 Yb 0.05 O 3, SrZr 0.95 Yb 0.05 O 3, CaZr 0.95 Al 0.05 O 3, SrZr 0.95 Al 0.05 O 3, SrZr 0.95 In 0.05 O 3 and SrZr 0.95 Sm 0.05 O 3 Powder raw materials having various compositions can be obtained depending on the ratio of the first raw material powder, the second raw material powder, and the third raw material powder to be used, such as a compound obtained by doping Yb with a SrZrO 3 perovskite type compound. In the present embodiment, an example will be described in which SrCO 3 is used as the first raw material powder, ZrO 2 is used as the second raw material powder, and YbO 3 is used as the third raw material powder.

原料粉末粉砕工程ST11では、第1原料粉末であるSrCOをボールミルなどの粉砕機で所定時間(例えば、5時間)粉砕する第1原料粉末粉砕工程ST111と、第2原料粉末であるZrOをボールミルなどの粉砕機で所定時間(例えば、15時間)粉砕する第2原料粉末粉砕工程ST112と、第3原料粉末であるYbOをボールミルなどの粉砕機で所定時間(例えば、8時間)粉砕する第3原料粉末粉砕工程ST113とを並行して実施する。このように、第1原料粉末粉砕工程ST111、第2原料粉末粉砕工程ST112及び第3原料粉末粉砕工程ST113を並行して実施することにより、第1原料粉末粉砕工程ST111、第2原料粉末粉砕工程ST112及び第3原料粉末粉砕工程ST113を順次実施する場合に対して、原料粉末粉砕工程ST11の作業時間を最も原料粉末の硬度が高いZrOの粉砕時間に合わせて短縮することができる。また、第1原料粉末粉砕工程ST111では、SrCO製のボールを備えたボールミルで第1原料粉末であるSrCOを粉砕することが好ましく、第2原料粉末粉砕工程ST112では、ZrO製のボールを備えたボールミルで第2原料粉末であるZrOを粉砕することが好ましく、第3原料粉末粉砕工程ST113では、YbO製のボールを備えたボールミルで第3原料粉末であるYbOを粉砕することが好ましい。これらにより、第1原料粉末、第2原料粉末及び第3原料粉末から得られる粉体原料への異物の混入を防ぐことができる。 In the raw material powder pulverization step ST11, the first raw material powder pulverization step ST111 for pulverizing the first raw material powder SrCO 3 with a pulverizer such as a ball mill for a predetermined time (for example, 5 hours) and the second raw material powder ZrO 2 are performed. Second raw material powder pulverization step ST112 for pulverizing with a pulverizer such as a ball mill for a predetermined time (for example, 15 hours), and YbO 3 as the third raw material powder is pulverized for a predetermined time (for example, 8 hours) with a pulverizer such as a ball mill. The third raw material powder grinding step ST113 is performed in parallel. In this way, the first raw material powder pulverization step ST111, the second raw material powder pulverization step ST112, and the third raw material powder pulverization step ST113 are carried out in parallel, so that the first raw material powder pulverization step ST111 and the second raw material powder pulverization step ST113 are performed. In contrast to the case where ST112 and the third raw material powder grinding step ST113 are sequentially performed, the working time of the raw material powder grinding step ST11 can be shortened according to the grinding time of ZrO 2 having the highest hardness of the raw material powder. In the first raw material powder pulverization step ST111, it is preferable to pulverize the first raw material powder SrCO 3 with a ball mill equipped with SrCO 3 balls. In the second raw material powder pulverization step ST112, ZrO balls are used. preferably grinding the ZrO 2 is a ball mill in the second raw material powder having, in the third raw material powder grinding step ST113, grinding the YbO 3 is a third raw material powder by a ball mill having a ball made of YbO 3 Is preferred. Accordingly, it is possible to prevent foreign matters from being mixed into the powder raw material obtained from the first raw material powder, the second raw material powder, and the third raw material powder.

原料粉末分級工程ST12では、粉砕された第1原料粉末であるSrCOをふるいなどの分級機で平均粒径が所定値(例えば、18.6μm:50%径)となるように分級する第1原料粉末分級工程ST121と、粉砕された第2原料粉末であるZrOをふるいなどの分級機で平均粒径が所定値(例えば、24.7μm:50%径)となるように分級する第2原料粉末分級工程ST122と、第3原料粉末であるYbOをふるいなどの分級機で平均粒径が所定値(例えば、22.8μm:50%径)となるように分級する第3原料粉末分級工程ST123とを並行して実施する。これにより、第1原料粉末、第2原料粉末及び第3原料粉末の平均粒径の差異を所定値(例えば、50%以下)とすることができる。なお、原料粉末分級工程ST12は、上述した原料粉末粉砕工程ST11で第1原料粉末、第2原料粉末及び第3原料粉末をそれぞれ平均粒径が所定値以下の原料粉末に粉砕することができれば、必ずしも実施する必要はない。 In the raw material powder classification step ST12, the first raw powder SrCO 3 is classified by a classifier such as a sieve so that the average particle diameter becomes a predetermined value (for example, 18.6 μm: 50% diameter). The raw material powder classifying step ST121 and the second raw material powder ZrO 2 that has been pulverized are classified by a classifier such as a sieve so that the average particle diameter becomes a predetermined value (for example, 24.7 μm: 50% diameter). Raw material powder classification step ST122 and third raw material powder classification in which the average particle diameter is classified to a predetermined value (for example, 22.8 μm: 50% diameter) with a classifier such as a sieve of YbO 3 as the third raw material powder. The process ST123 is performed in parallel. Thereby, the difference of the average particle diameter of a 1st raw material powder, a 2nd raw material powder, and a 3rd raw material powder can be made into predetermined value (for example, 50% or less). In the raw material powder classification step ST12, if the first raw material powder, the second raw material powder, and the third raw material powder can be pulverized into raw material powders each having an average particle size of a predetermined value or less in the above-described raw material powder pulverization step ST11, It is not always necessary to implement it.

原料粉末粉砕工程ST11及び原料粉末分級工程ST12後に得られる第1原料粉末、第2原料粉末及び第3原料粉末の各原料粉末の平均粒径(50%径)の範囲としては、例えば、10m以上50μm以下とすることが好ましい。各原料粉末の平均粒径(50%径)を10m以上50μm以下の範囲とすることにより、第1原料粉末、第2原料粉末及び第3原料粉末から得られる粉体原料中の平均粒径の差異を低減でき、粉体原料から得られる成形体の歩留まりの向上が可能となる。各原料粉末の平均粒径(50%径)の範囲は、12.5m以上40μm以下とすることがより好ましく、15m以上30μm以下とすることが更に好ましい。   The range of the average particle diameter (50% diameter) of each raw material powder of the first raw material powder, the second raw material powder and the third raw material powder obtained after the raw material powder grinding step ST11 and the raw material powder classification step ST12 is, for example, 10 m or more The thickness is preferably 50 μm or less. By setting the average particle diameter (50% diameter) of each raw material powder in the range of 10 m to 50 μm, the average particle diameter in the powder raw material obtained from the first raw material powder, the second raw material powder, and the third raw material powder The difference can be reduced, and the yield of the molded body obtained from the powder raw material can be improved. The range of the average particle diameter (50% diameter) of each raw material powder is more preferably 12.5 m or more and 40 μm or less, and further preferably 15 m or more and 30 μm or less.

混合工程ST13では、原料粉末粉砕工程ST11で平均粒径の差異が所定値以下となるように粉砕された第1原料粉末であるSrCO、第2原料粉末であるZrO、及び第3原料粉末であるYbOと、例えば、エタノールなどのアルコール系溶媒と、分散剤とを混合したスラリーをボールミルなどの粉砕機で所定時間(例えば、1時間)混合する。この混合工程ST13では、予め平均粒径の相互の差異が所定値以下となった第1原料粉末、第2原料粉末及び第3原料粉末を混合するので、短時間で混合作業を完了することができる。また、この混合工程ST13では、原料粉末粉砕工程ST11を実施せずに、第1原料粉末であるSrCO、第2原料粉末であるZrO、及び第3原料粉末であるYbOをボールミルなどの粉砕機で粉砕しながら混合する場合と比較して、短時間で完了することが可能となる。これにより、時間の短縮(例えば、10時間)が可能となるだけでなく、各原料粉末の平均粒径の差異を効率良く所定値以下にすることが可能となる。 In the mixing step ST13, SrCO 3 that is the first raw material powder, ZrO 2 that is the second raw material powder, and the third raw material powder that are pulverized so that the difference in average particle diameter is equal to or less than a predetermined value in the raw material powder pulverizing step ST11. A slurry obtained by mixing YbO 3 , an alcohol solvent such as ethanol, and a dispersant is mixed with a pulverizer such as a ball mill for a predetermined time (for example, 1 hour). In the mixing step ST13, the first raw material powder, the second raw material powder, and the third raw material powder whose difference in average particle size is equal to or less than a predetermined value are mixed in advance, so that the mixing operation can be completed in a short time. it can. Further, in this mixing step ST13, the raw material powder grinding step ST11 is not performed, and the first raw material powder SrCO 3 , the second raw material powder ZrO 2 , and the third raw material powder YbO 3 are mixed with a ball mill or the like. Compared with the case of mixing while pulverizing with a pulverizer, it can be completed in a short time. Thereby, not only can the time be shortened (for example, 10 hours), but also the difference in the average particle diameter of the raw material powders can be efficiently reduced to a predetermined value or less.

混合工程ST13では、第1原料粉末、第2原料粉末及び第3原料粉末の中で最も硬度が高いZrOのボールを備えたボールミルを用いることが好ましい。これにより、第1原料粉末、第2原料粉末及び第3原料粉末を効率良く混合できるだけでなく、第1原料粉末、第2原料粉末及び第3原料粉末の混合時のボールの成分の混入を防ぐことができ、粉体原料への異物の混入及び原料粉末の混合物の組成の変化を防止できる。 In the mixing step ST13, it is preferable to use a ball mill including a ZrO 2 ball having the highest hardness among the first raw material powder, the second raw material powder, and the third raw material powder. As a result, not only the first raw material powder, the second raw material powder and the third raw material powder can be mixed efficiently, but also the mixing of the ball components during the mixing of the first raw material powder, the second raw material powder and the third raw material powder is prevented. It is possible to prevent foreign substances from being mixed into the powder raw material and change in the composition of the raw material powder mixture.

第1乾燥工程ST14では、エバポレータなどの乾燥機で第1原料粉末、第2原料粉末及び第3原料粉末の混合物を乾燥する。解砕工程ST15では、第1乾燥工程ST14で乾燥させた混合物を乳鉢などで解砕する。仮焼工程ST16では、解砕工程ST15で解砕した第1原料粉末、第2原料粉末及び第3原料粉末の混合物を所定温度(例えば、1250℃)で所定時間(例えば、5時間)保持して仮焼きする。   In the first drying step ST14, the mixture of the first raw material powder, the second raw material powder, and the third raw material powder is dried with a dryer such as an evaporator. In the crushing step ST15, the mixture dried in the first drying step ST14 is crushed with a mortar or the like. In the calcination step ST16, the mixture of the first raw material powder, the second raw material powder, and the third raw material powder crushed in the crushing step ST15 is held at a predetermined temperature (for example, 1250 ° C.) for a predetermined time (for example, 5 hours). And calcine it.

粉砕工程ST17では、仮焼工程ST16で仮焼きした第1原料粉末、第2原料粉末及び第3原料粉末の混合物に、例えば、エタノールなどのアルコール系の溶媒、分散剤を加えたスラリーをボールミルなどの粉砕機で所定時間(例えば、1時間)粉砕する。この粉砕工程ST17では、予め平均粒径の相互の差異が所定値以下となった第1原料粉末、第2原料粉末及び第3原料粉末の混合物を用いているので、原料粉末粉砕工程ST11を実施せずに混合物を粉砕する場合と比較して短時間で完了でき、時間の短縮(例えば、10時間)が可能となる。また、粉砕工程ST17では、第1原料粉末、第2原料粉末及び第3原料粉末の中で最も硬度が高いZrOのボールを備えたボールミルを用いることが好ましい。これにより、第1原料粉末、第2原料粉末及び第3原料粉末を効率良く混合できるだけでなく、第1原料粉末、第2原料粉末及び第3原料粉末の混合時のボールの成分の混入を防ぐことができ、粉体原料への異物の混入及び得られる粉体原料の組成の変化を防止できる。 In the pulverization step ST17, a slurry obtained by adding an alcohol solvent such as ethanol and a dispersant to the mixture of the first raw material powder, the second raw material powder, and the third raw material powder calcined in the calcining step ST16, for example, a ball mill or the like. Pulverize for a predetermined time (for example, 1 hour). In this pulverization step ST17, since the mixture of the first raw material powder, the second raw material powder, and the third raw material powder whose difference in average particle size is equal to or less than a predetermined value is used in advance, the raw material powder pulverization step ST11 is performed. Compared with the case where the mixture is pulverized without shortening, it can be completed in a short time, and the time can be shortened (for example, 10 hours). In the pulverization step ST17, it is preferable to use a ball mill including balls of ZrO 2 having the highest hardness among the first raw material powder, the second raw material powder, and the third raw material powder. As a result, not only the first raw material powder, the second raw material powder and the third raw material powder can be mixed efficiently, but also the mixing of the ball components during the mixing of the first raw material powder, the second raw material powder and the third raw material powder is prevented. It is possible to prevent foreign matters from being mixed into the powder raw material and a change in the composition of the obtained powder raw material.

第2乾燥工程ST18では、例えば、エバポレータなどの乾燥機で仮焼後に粉砕された第1原料粉末、第2原料粉末及び第3原料粉末の混合物を乾燥する。分級工程ST19では、乾燥後の第1原料粉末、第2原料粉末及び第3原料粉末の混合粉末をふるいなどの分級機で平均粒径が所定値となるように分級して粉体原料を得る。   In the second drying step ST18, for example, a mixture of the first raw material powder, the second raw material powder, and the third raw material powder that has been pulverized after calcination by a dryer such as an evaporator is dried. In the classification step ST19, the mixed powder of the first raw material powder, the second raw material powder and the third raw material powder after drying is classified by a classifier such as a sieve so that the average particle diameter becomes a predetermined value to obtain a powder raw material. .

次に、以上のようにして得られた粉体原料を用いた成形体の成形方法について説明する。図3は、本実施の形態に係る成形体の成形方法に用いられる成形用治具1の断面模式図であり、図4A〜図4Cは、本実施の形態に係る成形体の成形方法の説明図である。図3に示すように、本実施の形態に係る成形用治具1は、概略円筒形状の外型11と、この外型11内に挿抜可能に形成された略円柱形状の中子部12aを有する内型12と、外型11と内型12の中子部12aとの間に設けられ、被成形原料粉末としての粉体原料を投入する粉末投入口13aが設けられたシリコンゴム型13と、シリコンゴム型13の粉末投入口13aを閉止するシリコンゴム蓋14とを備える。   Next, a method for forming a molded body using the powder raw material obtained as described above will be described. FIG. 3 is a schematic cross-sectional view of a molding jig 1 used in the molding method of the molded body according to the present embodiment, and FIGS. 4A to 4C illustrate the molding method of the molded body according to the present embodiment. FIG. As shown in FIG. 3, the forming jig 1 according to the present embodiment includes a substantially cylindrical outer die 11 and a substantially cylindrical core 12 a formed so as to be able to be inserted into and removed from the outer die 11. A silicon rubber mold 13 provided between the inner mold 12 and the outer mold 11 and the core 12a of the inner mold 12 and provided with a powder inlet 13a for feeding a powder raw material as a raw material powder to be molded; And a silicon rubber lid 14 for closing the powder inlet 13a of the silicon rubber mold 13.

図4A〜図4Cに示すように、本実施の形態に係る成形体の成形方法においては、シリコンゴム蓋14を外して粉末投入口13aから粉体原料をシリコンゴム型13と内型12の中子部12aとの間の隙間に充填した後、シリコンゴム蓋14で蓋をする。そして、常温下で外型11の外側から所定の水圧(例えば、1.5t/cm)を印加して加圧成形して成形した粉体原料を焼成することにより粉体原料の成形体10が得られる。ここでは、用いる原料粉末の第1原料粉末、第2原料粉末及び第3原料粉末の平均粒径の差異が所定値以下となっているので、焼成時及び焼成後における成形体10の割れ、クラックなどを防ぐことができる。最後に、外型11、シリコンゴム型13及びシリコンゴム蓋14を成形体10から外した後、成形体10から内型12を外すことにより、粉体原料の成形体10が得られる。得られる粉体原料の成形体10としては、例えば、水素センサの固体電解質セル、及び脱硝触媒などのセラミックス製の混合材料の触媒などが得られる。 As shown in FIGS. 4A to 4C, in the molding method of the molded body according to the present embodiment, the silicon rubber lid 14 is removed and the powder raw material is fed into the silicon rubber mold 13 and the inner mold 12 from the powder inlet 13a. After filling the gap with the child part 12a, the silicon rubber cover 14 is used to cover it. Then, a powder raw material compact 10 is formed by firing a powder raw material that is molded by applying a predetermined water pressure (for example, 1.5 t / cm 2 ) from the outside of the outer mold 11 at room temperature. Is obtained. Here, since the difference in average particle size of the first raw material powder, the second raw material powder, and the third raw material powder of the raw material powder to be used is a predetermined value or less, cracks and cracks in the molded body 10 during and after firing. Etc. can be prevented. Finally, the outer mold 11, the silicon rubber mold 13 and the silicon rubber lid 14 are removed from the molded body 10, and then the inner mold 12 is removed from the molded body 10, whereby the powder raw material molded body 10 is obtained. As the powder raw material molded body 10 obtained, for example, a solid electrolyte cell of a hydrogen sensor and a catalyst of a mixed material made of ceramics such as a denitration catalyst are obtained.

以上説明したように、上記実施の形態によれば、硬度及び比重が異なる複数種類の原料粉末をそれぞれ個別に粉砕するので、複数種類の原料粉末から得られる複数種類の原料粉末の平均粒径の差異を低減することが可能となり、粉体原料の成形時及び焼成後の割れなどの起点となる結晶構造の欠陥を低減して成形体の割れ及びクラックを防ぐことができる。また、硬度及び比重がそれぞれ異なる複数種類の原料粉末をそれぞれ個別に粉砕するので、粉砕された各原料粉末の混合時間の短縮が可能となる。これにより、上記実施の形態によれば、複数種類の原料粉末から得られる粉体原料中の平均粒径の差異を低減でき、粉体原料から得られる成形体の歩留まりの向上が可能となる。   As described above, according to the above-described embodiment, since multiple types of raw material powders having different hardness and specific gravity are individually pulverized, the average particle size of the multiple types of raw material powders obtained from the multiple types of raw material powders is reduced. It becomes possible to reduce the difference, and it is possible to reduce cracks and cracks in the molded body by reducing defects in the crystal structure that are the starting points such as cracks at the time of molding the powder raw material and after firing. Further, since plural types of raw material powders having different hardness and specific gravity are individually pulverized, the mixing time of the pulverized raw material powders can be shortened. Thereby, according to the said embodiment, the difference of the average particle diameter in the powder raw material obtained from multiple types of raw material powder can be reduced, and the improvement of the yield of the molded object obtained from a powder raw material is attained.

1 成形用治具
10 成形体
11 外型
12 内型
12a 中子部
13 シリコンゴム型
13a 粉末投入口
14 シリコンゴム蓋
DESCRIPTION OF SYMBOLS 1 Molding tool 10 Molded body 11 Outer mold 12 Inner mold 12a Core part 13 Silicon rubber mold 13a Powder inlet 14 Silicon rubber lid

Claims (8)

複数種類の原料粉末をそれぞれ個別に粉砕して粉砕後の複数種類の原料粉末を得る原料粉末粉砕工程と、
前記粉砕後の複数種類の原料粉末を混合して前記複数種類の原料粉末の混合物を得る混合工程とを含むことを特徴とする、粉体原料の製造方法。
A raw material powder grinding step for individually grinding a plurality of types of raw material powders to obtain a plurality of types of raw material powders after grinding,
And a mixing step of mixing the pulverized raw material powders to obtain a mixture of the raw material powders.
前記原料粉末粉砕工程において、前記複数種類の原料粉末の平均粒径の相互の差異を50%以下に揃える、請求項1に記載の粉体原料の製造方法。   2. The method for producing a powder raw material according to claim 1, wherein in the raw material powder pulverization step, the difference between the average particle diameters of the plurality of types of raw material powders is adjusted to 50% or less. 前記原料粉末粉砕工程で粉砕された前記粉砕後の複数種類の原料粉末を分級して、平均粒径の相互の差異を50%以下に揃える原料粉末分級工程を含む、請求項1に記載の粉体原料の製造方法。   2. The powder according to claim 1, further comprising a raw material powder classification step of classifying the plurality of types of raw powders after pulverization pulverized in the raw material powder pulverization step so that the difference in average particle diameter is 50% or less. A method for producing body materials. 前記原料粉末粉砕工程において、前記複数種類の原料粉末をそれぞれ当該原料粉末と同一原料で形成された粉砕治具を用いて前記複数種類の原料粉末をそれぞれ粉砕する、請求項1から請求項3のいずれか1項に記載の粉体原料の製造方法。   The said raw material powder grinding | pulverization process WHEREIN: The said multiple types of raw material powder is each grind | pulverized using the grinding | pulverization jig | tool formed with the said raw material powder and the said multiple types of raw material powder, respectively. The manufacturing method of the powder raw material of any one. 前記混合工程において、前記複数種類の原料粉末のうち、最も硬度が高い原料で形成された粉砕治具を用いて前記複数種類の原料粉末を混合する、請求項1から請求項4のいずれか1項に記載の粉体原料の製造方法。   The said mixing process WHEREIN: The said multiple types of raw material powder is mixed using the grinding jig | tool formed with the raw material with the highest hardness among the said multiple types of raw material powder. The manufacturing method of the powder raw material of description. 前記混合物を乾燥する第1乾燥工程と、
乾燥後の前記混合物を解砕する解砕工程と、
解砕後の前記混合物を仮焼する仮焼工程と、
仮焼後の前記混合物を粉砕する粉砕工程と、
粉砕後の前記混合物を乾燥する第2乾燥工程と、
粉砕及び乾燥後の前記混合物を分級して粉体原料を得る分級工程と、を含む、請求項1から請求項4のいずれか1項に記載の粉体原料の製造方法。
A first drying step of drying the mixture;
A crushing step of crushing the mixture after drying;
A calcining step of calcining the mixture after pulverization;
Crushing step of crushing the mixture after calcination;
A second drying step of drying the mixture after pulverization;
A method for producing a powder material according to any one of claims 1 to 4, further comprising a classification step of classifying the mixture after pulverization and drying to obtain a powder material.
請求項1から請求項6のいずれか1項に記載の粉体原料の製造方法により得られた粉体原料を用いて成形体を成形することを特徴とする、成形体の成形方法。   A method for molding a molded body, comprising molding a molded body using the powder raw material obtained by the method for producing a powder raw material according to any one of claims 1 to 6. 請求項7に記載の成形体の成形方法により得られたことを特徴とする、成形体。   A molded product obtained by the molding method of the molded product according to claim 7.
JP2015056954A 2015-03-19 2015-03-19 Method for producing powder raw material, method for forming molded body, and molded body Pending JP2016175795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015056954A JP2016175795A (en) 2015-03-19 2015-03-19 Method for producing powder raw material, method for forming molded body, and molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015056954A JP2016175795A (en) 2015-03-19 2015-03-19 Method for producing powder raw material, method for forming molded body, and molded body

Publications (1)

Publication Number Publication Date
JP2016175795A true JP2016175795A (en) 2016-10-06

Family

ID=57070906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056954A Pending JP2016175795A (en) 2015-03-19 2015-03-19 Method for producing powder raw material, method for forming molded body, and molded body

Country Status (1)

Country Link
JP (1) JP2016175795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016005738T5 (en) 2015-12-15 2018-10-04 Denso Corporation antenna device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016005738T5 (en) 2015-12-15 2018-10-04 Denso Corporation antenna device

Similar Documents

Publication Publication Date Title
KR101208896B1 (en) Manufacturing method of alumina abrasive grains and alumina abrasive grains manufactured by the method
JP6161467B2 (en) Composite oxide powder for solid oxide fuel cell and method for producing the same
JP2016175795A (en) Method for producing powder raw material, method for forming molded body, and molded body
JP2018172263A (en) Zirconia powder and method for producing the same
CN104788094B (en) A kind of preparation method of bismuth titanate ceramics material
KR100887650B1 (en) Method for manufacturing isotropic u3o8 powder using uranium oxide scraps and manufacturing sintered uo2 using the u3o8
Buyakova et al. Effect of mechanical processing of ultrafine ZrO 2+ 3 wt% MgO powder on the microstructure of ceramics produced from it
CN103833079A (en) Method for preparation of lithium tantalate nano-powder by hydrothermal process
JP2005294330A (en) Method of manufacturing ferrite magnet
Galakhov Powder compact structure. Part 2. Methods for increasing particle packing uniformity
CN107954705A (en) A kind of manufacturing technique method of high-performance permanent-magnet ferrite Preburning material
JP2010013310A (en) Ceramic sintered body for solid pressure medium and solid pressure medium
JP5352218B2 (en) Method for producing composite oxide
DE102012200654A1 (en) Slurry useful e.g. for producing or coating medical implants or technical engineering parts, comprises liquid medium having dispersed solid zirconium dioxide particles that are doped with magnesium oxide exhibiting monoclinic modification
TWI710541B (en) Manufacturing method of sputtering target component and sputtering target component
KR102646245B1 (en) Method for manufacturing of lead-free piezoelectric ceramics
TWM515201U (en) System for preparing lead-free piezoelectric ceramic material
US11268042B2 (en) Abradable coating hBN filler material and method of manufacture
CN115784754B (en) Ceramic chopper and preparation method thereof
DE102012200652B4 (en) Slips, granules and ceramics, process for their preparation and use
JPS63151680A (en) High-strength normal pressure-sintering silicon nitride sintered body and manufacture
RU2707832C1 (en) Method of producing high-density aqueous slurries based on lithium-aluminosilicate glass
JP5660947B2 (en) Method for producing BaTi2O5 composite oxide
KR100600378B1 (en) Fabrication method for CANDU nuclear fuel pellet by dry process of spent PWR fuel with 1 cycle OREOXOxidation and REduction of OXide fuel process and additive material
JP2000169201A (en) Production of admixture for cement and composition using the admixture