JP2016173194A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2016173194A
JP2016173194A JP2015052541A JP2015052541A JP2016173194A JP 2016173194 A JP2016173194 A JP 2016173194A JP 2015052541 A JP2015052541 A JP 2015052541A JP 2015052541 A JP2015052541 A JP 2015052541A JP 2016173194 A JP2016173194 A JP 2016173194A
Authority
JP
Japan
Prior art keywords
air
temperature
compressed air
compressed
desiccant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015052541A
Other languages
Japanese (ja)
Inventor
英介 下田
Eisuke Shimoda
英介 下田
中村 卓司
Takuji Nakamura
卓司 中村
寛之 木原
Hiroyuki Kihara
寛之 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2015052541A priority Critical patent/JP2016173194A/en
Publication of JP2016173194A publication Critical patent/JP2016173194A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Central Air Conditioning (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform compression and conveyance of air without using power.SOLUTION: In air conditioning system 1, a difference of elevation is provided between a storage tank 4, a low temperature air compression vessel 7 and a high temperature air compression vessel 8, and the filled outside air is compressed by a water pressure by the difference of elevation. The low temperature air compression vessel 7 is provided inside a water tank 12 and produces low temperature compressed air. The high temperature air compression vessel 8 produces high temperature compressed air. A desiccant air conditioner 3 is provided on the roof floor of a building 2, and the low temperature compressed air and the high temperature compressed air are conveyed respectively to the desiccant air conditioner 3 via a low temperature compressed air pipeline 13 and a high temperature compressed air pipeline 14, by a pressure difference between the compressed air in the low temperature air compression vessel 7 and the high temperature air compression vessel 8 and a room 2a of the building 2. In the desiccant air conditioner 3, the low temperature compressed air is expanded in a processing flow passage, dehumidified by a desiccant rotor 19, cooled by a cooling coil, and cold air is exhausted into the room 2a. The high temperature compressed air is supplied to a regeneration flow passage and regenerates the desiccant rotor 19.SELECTED DRAWING: Figure 1

Description

本発明は、動力エネルギーを低減して屋内の冷暖房や換気等を行うようにした省エネ性能を備えた空調システムに関する。   The present invention relates to an air conditioning system having energy saving performance that reduces motive energy and performs indoor air conditioning and ventilation.

従来、ビルや家屋等の建物では高い省エネルギー性能を実現するために高気密化や高断熱化が進められている。一方で、建物内の高気密化や高断熱化に伴って人体や室内の各種機器から発する発熱を調整して室内環境をコントロールする必要性が高まっている。
省エネ性能を高めた空調システムとして、例えば放射パネルとデシカント空調機を組み合わせた潜熱顕熱分離空調方式が提案されている。この空調方式では、デシカント空調機で潜熱を処理し、放射パネルで顕熱を処理することで、従来の空調方式と比較して高い省エネ性能を発揮することができる。
2. Description of the Related Art Conventionally, buildings such as buildings and houses have been improved in airtightness and heat insulation in order to realize high energy saving performance. On the other hand, the necessity of controlling the indoor environment by adjusting the heat generated from various human bodies and various indoor devices is increasing along with the increase in airtightness and heat insulation in the building.
As an air conditioning system with improved energy saving performance, for example, a latent heat sensible heat separation air conditioning system combining a radiant panel and a desiccant air conditioner has been proposed. In this air conditioning system, high heat-saving performance can be exhibited compared with the conventional air conditioning system by processing latent heat with a desiccant air conditioner and processing sensible heat with a radiant panel.

しかしながら、このような空調方式においても、図4に示すようにデシカント空調機は給気ファンや排気ファン、デシカントローターの各駆動モーター、冷温水用のポンプ等の各種の駆動手段を駆動する動力が必要であり、また、放射パネルにおいても冷温水用ポンプを駆動する動力が必要であった。そのため、省エネ性能を向上させるには一層の動力削減が必要である。   However, even in such an air conditioning system, as shown in FIG. 4, the desiccant air conditioner has power to drive various drive means such as an air supply fan, an exhaust fan, each drive motor of a desiccant rotor, and a pump for cold / hot water. In addition, the radiant panel also requires power for driving the cold / hot water pump. Therefore, further power reduction is necessary to improve energy saving performance.

上述した空調システムにおいて、空気等の搬送動力を削減する手段として例えば特許文献1に記載されたものが知られている。特許文献1に記載された空調システムでは、外気を空気圧縮機で圧縮して冷却装置で高圧冷却空気にして室内機に搬送し、室内機の誘引吹出し口で高圧冷却空気を噴出して減圧膨張させると同時に、低圧冷却空気と室内空気を誘引して混合した空調空気を冷風として室内に吹き出す構成を備えている。   In the above-described air conditioning system, for example, a device described in Patent Document 1 is known as means for reducing conveyance power such as air. In the air conditioning system described in Patent Document 1, the outside air is compressed by an air compressor, converted into high-pressure cooling air by a cooling device and conveyed to the indoor unit, and the high-pressure cooling air is ejected from the induction outlet of the indoor unit to decompress and expand. At the same time, it has a configuration in which low-pressure cooling air and indoor air are attracted and mixed to blow out the conditioned air into the room as cold air.

特開2001−116298号公報JP 2001-116298 A

しかしながら、図4に示すデシカント空調機では、冷却コイルや加熱コイルや再生コイルに冷水や温水を供給するポンプ、デシカントローターや給気ファンや排気ファンの駆動モータ、更には温水や冷水をデシカント空調機に供給するポンプ等、多くの動力源を必要としていた。そのため、空調機の消費エネルギーが大きいという欠点があった。
また、特許文献1に記載された空調システムでは、空気圧縮機で製造した高圧冷却空気を室内機に供給すると共にその一部を誘引圧として低圧冷却空気を室内機に誘導する機構を備えているため一定の省エネ効果を発揮できるが、空気圧縮機やドライヤー等を備えているため、動力の十分な削減を達成できなかった。
However, in the desiccant air conditioner shown in FIG. 4, a pump for supplying cold water and hot water to the cooling coil, heating coil and regeneration coil, a drive motor for the desiccant rotor, air supply fan and exhaust fan, and further, hot water and cold water are supplied to the desiccant air conditioner. Many power sources, such as a pump to supply to, were needed. For this reason, there is a drawback that the energy consumption of the air conditioner is large.
In addition, the air conditioning system described in Patent Document 1 includes a mechanism for supplying high-pressure cooling air manufactured by an air compressor to an indoor unit and guiding low-pressure cooling air to the indoor unit using a part of the high-pressure cooling air as an induced pressure. Therefore, although a certain energy-saving effect can be exhibited, since an air compressor, a dryer, and the like are provided, a sufficient reduction in power cannot be achieved.

本発明は、上述した課題に鑑みてなされたものであり、動力を用いることなく空気の圧縮と搬送を行えるようにした空調システムを提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide an air conditioning system capable of compressing and conveying air without using power.

本発明に係る空調システムは、水貯留手段と、水貯留手段との間の高低差による水圧によって空気を圧縮する空気圧縮容器と、空気圧縮容器内で製造した圧縮空気を搬送する圧縮空気配管と、圧縮空気配管によって搬送された圧縮空気を除湿または/及び温度調整して建物の室内に供給する空調機とを備え、空気圧縮容器内の圧縮空気と建物の室内との圧力差によって圧縮空気を空調機に搬送することを特徴とする。
本発明による空調システムによれば、水貯留手段との間の高低差による水圧によって空気圧縮容器内の空気を圧縮させ、この圧縮空気を圧縮空気配管によって空調機に搬送し、空調機で圧縮空気の湿度と温度の少なくとも一方を調整した空気を建物の室内に供給することができ、しかも、空気の圧縮は水貯留手段と空気圧縮容器との高低差による水圧で行うので動力を必要とせず、更に製造した空気圧縮容器内の圧縮空気を建物の室内との圧力差によって空調機を通して室内に供給できるので、動力が少なくて済み省エネ性能を向上できる。
なお、本発明による空調システムは、空調機内に設けられていて圧縮空気を温度調整する熱交換器を備えていてもよく、熱交換器によって圧縮空気を温度調整して空気を室内に供給できる。
An air conditioning system according to the present invention includes a water storage unit, an air compression container that compresses air by a water pressure due to a height difference between the water storage unit, and a compressed air pipe that conveys compressed air produced in the air compression container. An air conditioner that dehumidifies and / or adjusts the temperature of the compressed air conveyed by the compressed air pipe and supplies the compressed air to the interior of the building, and compresses the compressed air by the pressure difference between the compressed air in the air compression container and the interior of the building. It is transported to an air conditioner.
According to the air conditioning system of the present invention, the air in the air compression container is compressed by the water pressure due to the height difference from the water storage means, and this compressed air is conveyed to the air conditioner by the compressed air piping, and the compressed air is compressed by the air conditioner. The air adjusted at least one of humidity and temperature can be supplied to the building interior, and the compression of the air is performed by the water pressure due to the height difference between the water storage means and the air compression container, so no power is required, Further, since the compressed air in the manufactured air compression container can be supplied to the room through the air conditioner by the pressure difference from the room interior, less power is required and energy saving performance can be improved.
In addition, the air conditioning system by this invention may be provided in the air conditioner, and may be provided with the heat exchanger which adjusts the temperature of compressed air, and can adjust the temperature of compressed air with a heat exchanger and can supply air indoors.

また、本発明による空調システムでは、空気圧縮容器は低温空気圧縮容器と高温空気圧縮容器を備え、空調機は、低温空気圧縮容器から搬送される低温圧縮空気を膨張させてデシカントローターで除湿して室内に供給する処理流路と、高温空気圧縮容器から搬送される高温圧縮空気によってデシカントローターを再生する再生流路とを備えたデシカント空調機であってもよい。
デシカント空調機によれば、低温空気圧縮容器で製造した低温圧縮空気を処理流路に搬送してデシカントローターによって吸湿することができ、高温空気圧縮容器で製造した高温圧縮空気を再生流路に搬送してデシカントローターを再生することができる。
In the air conditioning system according to the present invention, the air compression container includes a low-temperature air compression container and a high-temperature air compression container, and the air conditioner expands the low-temperature compressed air conveyed from the low-temperature air compression container and dehumidifies it with a desiccant rotor. It may be a desiccant air conditioner provided with a processing flow path supplied into the room and a regeneration flow path for regenerating the desiccant rotor with the high temperature compressed air conveyed from the high temperature air compression container.
According to the desiccant air conditioner, the low-temperature compressed air produced in the low-temperature air compression container can be transported to the treatment channel and absorbed by the desiccant rotor, and the high-temperature compressed air produced in the high-temperature air compression vessel can be conveyed to the regeneration channel. The desiccant rotor can be regenerated.

また、低温空気圧縮容器内の低温圧縮空気をデシカント空調機の処理流路に供給する低温圧縮空気配管と、高温空気圧縮容器内の高温圧縮空気をデシカント空調機の再生流路に供給する高温圧縮空気配管とをそれぞれ設けてもよい。
低温空気圧縮容器内の低温圧縮空気を低温圧縮空気と建物の室内との圧力差によって低温圧縮空気配管で処理流路に搬送すると共に、高温空気圧縮容器内の高温圧縮空気を高温圧縮空気と建物の室内との圧力差によって高温圧縮空気配管で再生流路に搬送することができ、低温と高温の各圧縮空気を各圧力差によって個別に搬送できる。
In addition, low-temperature compressed air piping that supplies the low-temperature compressed air in the low-temperature air compression container to the processing flow path of the desiccant air conditioner, and high-temperature compression that supplies the high-temperature compressed air in the high-temperature air compression container to the regeneration flow path of the desiccant air conditioner An air pipe may be provided.
The low-temperature compressed air in the low-temperature compressed air container is transported to the processing flow path by the low-temperature compressed air piping due to the pressure difference between the low-temperature compressed air and the building interior, and the high-temperature compressed air in the high-temperature compressed air container is transferred to the high-temperature compressed air and the building. The high-temperature compressed air pipe can convey the low-temperature and high-temperature compressed air individually according to the pressure difference.

また、本発明による空調システムでは、空調機は、空気圧縮容器から搬送される高温圧縮空気を膨張させて低温にしてデシカントローターで除湿して室内に供給する処理流路と、空気圧縮容器から搬送される高温圧縮空気によってデシカントローターを再生する再生流路とを備えたデシカント空調機であってもよい。   Further, in the air conditioning system according to the present invention, the air conditioner expands the high temperature compressed air conveyed from the air compression container to a low temperature, dehumidifies it with a desiccant rotor, and supplies it to the room, and conveys it from the air compression container. It may be a desiccant air conditioner provided with a regeneration flow path for regenerating the desiccant rotor with the high-temperature compressed air.

本発明に係る空調システムによれば、水貯留手段と空気圧縮容器との高低差による水圧によって空気を圧縮することができると共に、空気圧縮容器内で製造した圧縮空気と建物の室内との圧力差によって圧縮空気を空調機に搬送することができるため、空調システムを作動するための動力源を削減することができて省エネ性能を向上できる。   According to the air conditioning system of the present invention, the air can be compressed by the water pressure due to the height difference between the water storage means and the air compression container, and the pressure difference between the compressed air produced in the air compression container and the room interior of the building. Therefore, the compressed air can be conveyed to the air conditioner, so that the power source for operating the air conditioning system can be reduced and the energy saving performance can be improved.

本発明の実施形態による空調システムを示す説明図である。It is explanatory drawing which shows the air conditioning system by embodiment of this invention. 図1に示す空調システムに設けたデシカント空調機の構成を示す図である。It is a figure which shows the structure of the desiccant air conditioner provided in the air conditioning system shown in FIG. 変形例による空調機の構成を示す図である。It is a figure which shows the structure of the air conditioner by a modification. 一般的なデシカント空調機の構成を示す説明図である。It is explanatory drawing which shows the structure of a general desiccant air conditioner.

以下、本発明の実施形態による空調システムについて図1及び図2に基づいて説明する。
図1は本発明の実施形態による空調システム1を示すものであり、空調システム1は建物2の例えば屋上に設置された空調機である例えばデシカント空調機3と、地上等に設置された貯水槽4と、貯水槽4よりも下方、例えば地下に設置された空気圧縮機構5とを備えている。
本実施形態による空調システム1において、地上に設置された貯水槽4は例えば雨水や中水を貯留したものであるが、雨水や中水等に代えて上水道、河川、湖沼、海水等の水を用いてもよい。
Hereinafter, an air conditioning system according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 shows an air conditioning system 1 according to an embodiment of the present invention. The air conditioning system 1 is, for example, a desiccant air conditioner 3 that is an air conditioner installed on a rooftop of a building 2, for example, and a water tank installed on the ground or the like. 4 and an air compression mechanism 5 installed below the water storage tank 4, for example, underground.
In the air conditioning system 1 according to the present embodiment, the water tank 4 installed on the ground stores, for example, rainwater or middle water. Instead of rainwater or middle water, water such as waterworks, rivers, lakes, and seawater is used. It may be used.

また、空気圧縮機構5では、低温圧縮空気を製造するための低温空気圧縮容器7が1または複数、例えば2基設置され、高温圧縮空気を製造するための高温空気圧縮容器8が1または複数、例えば2基設置されている。そして、貯水槽4の下部には配水管9aが設置され、配水管9aはその下流側で分岐されて各圧縮容器7,8の上端に接続されている。また、各圧縮容器7,8の下端にもそれぞれ配水管9bが接続されており、各圧縮容器7,8内の下側に水が貯水されている。
空気圧縮機構5には外気を取り込む配気管10が配設され、その下流側は分岐されて各圧縮容器7,8にそれぞれ接続されている。各圧縮容器7,8に配気管10から外気を充填して閉弁状態にして、貯水槽4と各圧縮容器7,8の高低差による水圧を利用して各圧縮容器7,8内に充填した空気の圧縮を行えるようになっている。
In the air compression mechanism 5, one or a plurality of, for example, two low-temperature air compression containers 7 for producing low-temperature compressed air are installed, and one or a plurality of high-temperature air compression containers 8 for producing high-temperature compressed air, For example, two are installed. A water distribution pipe 9 a is installed in the lower part of the water storage tank 4, and the water distribution pipe 9 a is branched downstream thereof and connected to the upper ends of the compression containers 7 and 8. A water distribution pipe 9 b is also connected to the lower ends of the compression containers 7 and 8, respectively, and water is stored in the lower side of the compression containers 7 and 8.
The air compression mechanism 5 is provided with an air distribution pipe 10 for taking in outside air, and the downstream side is branched and connected to the compression containers 7 and 8, respectively. The compressed containers 7 and 8 are filled with outside air from the air distribution pipe 10 to be in a valve-closed state, and the compressed containers 7 and 8 are filled using the water pressure due to the difference in height between the water storage tank 4 and the compressed containers 7 and 8. Compressed air can be compressed.

また、2基の低温空気圧縮容器7は冷却用水槽12内に収容されており、各容器7の外側を水冷することで低温空気圧縮容器7内の空気の冷却を圧縮と同時に行うことができる。本実施形態では、低温として例えば20℃程度の空気を製造することができる。また高温空気圧縮容器8は内部の空気を貯水槽4の水で圧縮することで高温の空気を製造することができ、高温として例えば50℃程度の空気を製造できる。なお、低温空気圧縮容器7と高温空気圧縮容器8で圧縮して製造する空気圧は大気圧よりも若干高い程度とされている。   Moreover, the two low-temperature air compression containers 7 are accommodated in the cooling water tank 12, and the cooling of the air in the low-temperature air compression containers 7 can be performed simultaneously with the compression by cooling the outside of each container 7 with water. . In the present embodiment, for example, air at about 20 ° C. can be produced as a low temperature. Moreover, the high temperature air compression container 8 can manufacture high temperature air by compressing internal air with the water of the water storage tank 4, and can manufacture air, for example, about 50 degreeC as high temperature. Note that the air pressure produced by compression in the low-temperature air compression container 7 and the high-temperature air compression container 8 is set to be slightly higher than the atmospheric pressure.

そして、各低温空気圧縮容器7の側部には低温圧縮空気配管13の一端が接続され、各低温圧縮空気配管13は合流して建物2の屋上に設置したデシカント空調機3に他端が接続されている。同様に、各高温空気圧縮容器8の側部には高温圧縮空気配管14の一端が接続され、各高温圧縮空気配管14は合流して建物2の屋上に設置したデシカント空調機3に他端が接続されている。各圧縮容器7,8の上下流側の配気管10と低温圧縮空気配管13及び高温圧縮空気配管14とにはそれぞれ開閉可能な弁体11a、11bが設置されている。   And one end of the low temperature compressed air piping 13 is connected to the side part of each low temperature air compression container 7, and each other low temperature compressed air piping 13 joins and the other end connects to the desiccant air conditioner 3 installed on the roof of the building 2 Has been. Similarly, one end of a high-temperature compressed air pipe 14 is connected to the side portion of each high-temperature air compressed container 8, and the other end of each high-temperature compressed air pipe 14 is joined to the desiccant air conditioner 3 installed on the roof of the building 2. It is connected. Valve bodies 11 a and 11 b that can be opened and closed are respectively installed in the air distribution pipes 10, the low-temperature compressed air pipes 13, and the high-temperature compressed air pipes 14 on the upstream and downstream sides of the compression containers 7 and 8.

各圧縮容器7,8内で圧縮された低温圧縮空気や高温圧縮空気は、各圧縮容器7,8とデシカント空調機3との高低差を乗り越えて上昇してデシカント空調機3に流入する程度の高圧に圧縮されている。即ち、低温圧縮空気と高温圧縮空気は建物2の室内2aの気圧との差圧によって低温空気圧縮容器7と高温空気圧縮容器8から室内2a内に搬送される程度の差圧を有している。
しかも、低温空気圧縮容器7と高温空気圧縮容器8の配管系統はそれぞれ少なくとも2系統有しており、一方の系統で空気を圧縮していると共に、他方の系統で圧縮空気をデシカント空調機3に向けて搬送する処理を交互に行うように、各弁体11a、11bを開閉制御する。
The low-temperature compressed air and the high-temperature compressed air compressed in the compression containers 7 and 8 rise over the height difference between the compression containers 7 and 8 and the desiccant air conditioner 3 and flow into the desiccant air conditioner 3. Compressed to high pressure. That is, the low-temperature compressed air and the high-temperature compressed air have a differential pressure such that the low-temperature compressed air and the high-temperature compressed air are conveyed from the low-temperature air compressed container 7 and the high-temperature air compressed container 8 into the room 2a due to the differential pressure between the room 2a and the building 2 .
In addition, each of the piping systems of the low-temperature air compression container 7 and the high-temperature air compression container 8 has at least two systems, and one system compresses air and the other system compresses the compressed air to the desiccant air conditioner 3. The valve bodies 11a and 11b are controlled to be opened and closed so as to alternately carry out the conveying process.

次にデシカント空調機3について図2により説明する。
図2において、デシカント空調機3は、低温圧縮空気配管13から供給される低温圧縮空気を流入させて膨張させる処理流路16と、高温圧縮空気配管14から高温圧縮空気を流入させる再生流路17とを備えている。処理流路16と再生流路17とにまたがる領域にデシカントローター19が図示しない駆動源によって回転可能に配設されている。
Next, the desiccant air conditioner 3 will be described with reference to FIG.
In FIG. 2, the desiccant air conditioner 3 includes a processing flow path 16 that allows low-temperature compressed air supplied from a low-temperature compressed air pipe 13 to flow and expands, and a regeneration flow path 17 that flows high-temperature compressed air from a high-temperature compressed air pipe 14. And. A desiccant rotor 19 is rotatably disposed in a region extending between the processing channel 16 and the regeneration channel 17 by a driving source (not shown).

処理流路16に導入される低温圧縮空気は処理流路16内で膨張することで温度と圧力が低下させられ、デシカントローター19を通すことによって水分が吸着されて除湿処理される。そして、デシカントローター19の下流側には、熱交換器としての冷却コイル20と室内2aに冷気を供給する給気ダンパ21とが順次配設され、これらを通過する低温圧縮空気は屋外の空気と共に配管24を介して各階の室内2aに供給される。
冷却コイル20は、例えば図示しないクーリングタワー(冷凍機)等から供給される冷気を低温圧縮空気に接触させて所要の温度に調整するものであり、図示しない冷水ポンプによって作動させられる。給気ダンパ21はその開度と低温圧縮空気配管13による供給量、そして外気の取り込み量とによって室内への給気量を調整するものである。
The low-temperature compressed air introduced into the processing channel 16 is expanded in the processing channel 16 so that the temperature and pressure are reduced, and moisture is adsorbed by passing through the desiccant rotor 19 to be dehumidified. On the downstream side of the desiccant rotor 19, a cooling coil 20 as a heat exchanger and an air supply damper 21 for supplying cold air to the room 2a are sequentially arranged, and the low-temperature compressed air passing through these air and outdoor air It is supplied to the room 2a on each floor via the pipe 24.
The cooling coil 20 adjusts the cold air supplied from, for example, a cooling tower (refrigerator) or the like (not shown) to a required temperature by contacting the cold compressed air, and is operated by a cold water pump (not shown). The air supply damper 21 adjusts the air supply amount to the room according to the opening degree, the supply amount by the low-temperature compressed air pipe 13, and the intake amount of the outside air.

また、デシカント空調機3の再生流路17に導入される高温圧縮空気はそのままデシカントローター19に搬送され、高温圧縮空気の温風によってデシカントローター19は吸着した水分を放出して再生する。デシカントローター19を通過した高温圧縮空気はその下流側に配設された排気ダンパ23の開口を通して排気される。再生流路17から屋外への排気量は排気ダンパ23の開度と高温圧縮空気配管14による供給量とによって調整される。
なお、給気ダンパ21と排気ダンパ23に関し、室内2aへの給気流量と屋外への排気流量が一定であれば、各ダンパ21、23の開度は一定でよく、動力を使って開度を調整する必要はない。また、各ダンパ21、23の開度を手動等で制御するようにしてもよい。
Further, the high-temperature compressed air introduced into the regeneration flow path 17 of the desiccant air conditioner 3 is conveyed as it is to the desiccant rotor 19, and the desiccant rotor 19 releases the adsorbed moisture by the hot air of the high-temperature compressed air and regenerates it. The high-temperature compressed air that has passed through the desiccant rotor 19 is exhausted through the opening of the exhaust damper 23 disposed on the downstream side thereof. The exhaust amount from the regeneration channel 17 to the outside is adjusted by the opening degree of the exhaust damper 23 and the supply amount by the high temperature compressed air pipe 14.
In addition, regarding the air supply damper 21 and the exhaust damper 23, if the supply air flow rate to the room 2a and the exhaust flow rate to the outdoors are constant, the opening degree of each damper 21, 23 may be constant, and the opening degree using power is used. There is no need to adjust. Moreover, you may make it control the opening degree of each damper 21 and 23 manually.

本実施形態による空調システム1は上述した構成を備えており、次にこの空調システム1の空調方法について説明する。
まず図1において、空気圧縮工程では、空気圧縮機構5の配気管10を通して一方の低温空気圧縮容器7内と高温空気圧縮容器8内に外気を充填した後、配気管10の各外気側の弁体11aと低温圧縮空気配管13及び高温圧縮空気配管14側の弁体11bを閉弁し、貯水槽4と各空気圧縮容器7,8との高低差による水圧を利用して空気の圧縮を行う。しかも、高温空気圧縮容器8内の空気は圧縮によって例えば50℃程度の高温に設定されると共に、低温空気圧縮容器7は水槽12に供給される冷水によって容器が冷却されているために例えば20℃程度の低温に調整される。
The air conditioning system 1 according to the present embodiment has the above-described configuration. Next, an air conditioning method of the air conditioning system 1 will be described.
First, in FIG. 1, in the air compression process, after the outside air is filled into one of the low-temperature air compression container 7 and the high-temperature air compression container 8 through the air distribution pipe 10 of the air compression mechanism 5, a valve on each air side of the air distribution pipe 10 is provided. The body 11a, the low-temperature compressed air pipe 13 and the valve body 11b on the high-temperature compressed air pipe 14 side are closed, and the air is compressed using the water pressure due to the difference in height between the water storage tank 4 and the air compression containers 7 and 8. . Moreover, the air in the high-temperature air compression container 8 is set to a high temperature of, for example, about 50 ° C. by compression, and the low-temperature air compression container 7 is, for example, 20 ° C. because the container is cooled by cold water supplied to the water tank 12. It is adjusted to a low temperature.

次の空気搬送工程において、圧縮空気がそれぞれ製造された一方の低温空気圧縮容器7と高温空気圧縮容器8では、デシカント空調機3側の弁体11bを開弁すると、各圧縮容器7,8と建物2の各室内2aとの圧力差によって低温圧縮空気配管13内を低温圧縮空気が搬送され、高温圧縮空気配管14内を高温圧縮空気が搬送される。   In the next air conveyance process, in one of the low-temperature air compression container 7 and the high-temperature air compression container 8 in which compressed air is produced, when the valve body 11b on the desiccant air conditioner 3 side is opened, the compression containers 7 and 8 Due to the pressure difference with each room 2a of the building 2, the low-temperature compressed air pipe 13 is conveyed through the low-temperature compressed air pipe 13, and the high-temperature compressed air is conveyed through the high-temperature compressed air pipe 14.

低温圧縮空気は高湿な空気であり、図2に示すデシカント空調機3内の処理流路16内に供給されることで膨張させて温度を低下させる。そして、膨張した低温空気をデシカントローター19の半円部分に通すことで低温空気中の水分が乾燥剤に吸着され除湿される。除湿された低温空気は冷却コイル20を通すことで冷却コイル20内の冷水に間接的に接触して所要の低温になるよう温度調整され、給気ダンパ21を通って配管24から建物2の室内2aに供給される。また、吸湿したデシカントローター19は図示しない駆動源によって再生流路17側に回転させられる。   The low-temperature compressed air is high-humidity air, and is expanded by being supplied into the processing flow path 16 in the desiccant air conditioner 3 shown in FIG. Then, by passing the expanded low-temperature air through the semicircular portion of the desiccant rotor 19, moisture in the low-temperature air is adsorbed by the desiccant and dehumidified. The dehumidified low-temperature air passes through the cooling coil 20 to indirectly contact the cold water in the cooling coil 20 to be adjusted to a required low temperature, and passes through the air supply damper 21 from the pipe 24 to the interior of the building 2. 2a. Further, the desiccant rotor 19 that has absorbed moisture is rotated toward the regeneration channel 17 by a drive source (not shown).

一方、高温圧縮空気配管14を通して搬送される高温圧縮空気はデシカント空調機3内の再生流路17に供給され、高温で低湿の圧縮空気のまま、デシカントローター19の吸湿した半円部分に通すことで乾燥剤から水分を放出させ、デシカントローター19を再生する。吸湿された高温圧縮空気は排気ダンパ23の開口から外気に放出される。乾燥したデシカントローター19は駆動源によって回転させられて再び除湿用の処理流路16に戻る。   On the other hand, the high-temperature compressed air conveyed through the high-temperature compressed air pipe 14 is supplied to the regeneration channel 17 in the desiccant air conditioner 3 and passes through the semicircular portion of the desiccant rotor 19 that absorbs moisture while maintaining the high-temperature and low-humidity compressed air. Then, moisture is released from the desiccant to regenerate the desiccant rotor 19. The absorbed high-temperature compressed air is discharged from the opening of the exhaust damper 23 to the outside air. The dried desiccant rotor 19 is rotated by the driving source and returns to the dehumidifying treatment flow path 16 again.

本実施形態による空調システム1によれば、空気圧縮機構5における各2系統の低温空気圧縮容器7と高温空気圧縮容器8は交互に充填された外気の圧縮と供給を繰り返すことで、低温圧縮空気配管13と高温圧縮空気配管14を介してデシカント空調機3に順次圧縮空気を供給して、デシカントローター19の吸湿と再生を行いながら、建物2の各室内2aに温度と湿度を調整した冷却空気を供給できる。
なお、上述した説明ではデシカント空調機3によって空気の冷房と除湿を行うようにしたが、両者の一方だけを制御するようにしてもよい。
According to the air conditioning system 1 according to the present embodiment, the low temperature compressed air 7 and the high temperature air compressed container 8 of the two systems in the air compression mechanism 5 are repeatedly compressed and supplied with the external air that is alternately filled. The compressed air is supplied to the desiccant air conditioner 3 sequentially through the pipe 13 and the high-temperature compressed air pipe 14 to absorb and regenerate the desiccant rotor 19, while adjusting the temperature and humidity to each room 2 a of the building 2. Can supply.
In the above description, the desiccant air conditioner 3 performs air cooling and dehumidification, but only one of them may be controlled.

上述のように本実施形態による空調システム1によれば、低温空気圧縮容器7と高温空気圧縮容器8における空気の圧縮を空気圧縮機を用いずに貯水槽4との高低差によって水圧で行うことができ、しかも各空気圧縮容器7,8内で製造した圧縮空気を建物2の室内2aとの圧力差によってデシカント空調機3に搬送できる。そのため、冷房空調用の動力としてデシカントローター19の駆動源と冷却コイル20の駆動ポンプだけを用いればよいため、省エネ性能を向上させることができる。   As described above, according to the air conditioning system 1 according to the present embodiment, the compression of air in the low-temperature air compression container 7 and the high-temperature air compression container 8 is performed by water pressure by the height difference from the water storage tank 4 without using an air compressor. Moreover, the compressed air produced in each of the air compression containers 7 and 8 can be conveyed to the desiccant air conditioner 3 due to a pressure difference with the room 2a of the building 2. Therefore, since only the drive source of the desiccant rotor 19 and the drive pump of the cooling coil 20 need be used as power for cooling air conditioning, the energy saving performance can be improved.

なお、本発明による空調システム1は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜の変更や置換等が可能である。以下に、上述した実施形態で用いた部材や部品と同一または同様なものについては同一の符号を用いて本発明の変形例等について説明を行う。   The air-conditioning system 1 according to the present invention is not limited to the above-described embodiment, and can be appropriately changed or replaced without departing from the gist of the present invention. Hereinafter, the same reference numerals are used for the same or similar members and parts used in the above-described embodiments, and modifications of the present invention will be described.

上述した実施形態では、デシカント空調機3の処理流路16において、低温用の圧縮空気を膨張させた上で水冷方式の冷却コイル20に接触させて空気を冷却させるようにしたが、これに代えて冷却コイル20を設けなくてもよく、例えば寒冷地等であれば外気によって直接空冷するようにしてもよい。あるいは、低温空気圧縮容器7内に注入する貯水槽4の水による冷却だけで十分に低温空気圧縮容器7を冷却することができる場合には、冷却コイル20のような外部冷却装置は不要である。これらの場合には冷却コイル20等の外部冷却装置に用いる冷水ポンプ等も不要であるため、一層省エネ性能を向上できる。   In the embodiment described above, in the processing flow path 16 of the desiccant air conditioner 3, the compressed air for low temperature is expanded and then brought into contact with the cooling coil 20 of the water cooling system to cool the air. The cooling coil 20 may not be provided. For example, in a cold district, the air may be directly cooled by the outside air. Alternatively, in the case where the low-temperature air compression container 7 can be sufficiently cooled only by the cooling of the water storage tank 4 injected into the low-temperature air compression container 7, an external cooling device such as the cooling coil 20 is not necessary. . In these cases, since a chilled water pump or the like used for an external cooling device such as the cooling coil 20 is unnecessary, the energy saving performance can be further improved.

また、上述した実施形態において、低温空気圧縮容器7と高温空気圧縮容器8の配管系統は2系統に代えてそれぞれ1系統であってもよく、各1系統の低温空気圧縮容器7と高温空気圧縮容器8によって空気を圧縮する工程と圧縮空気をデシカント空調機3に向けて搬送する工程とを交互に行うように各弁体11a、11bを開閉制御してもよい。
また、デシカント空調機3の処理流路16において、熱交換器として冷却コイル20と共に加熱コイルを設置して加温できるようにしてもよい。
また、上述した実施形態では、地上に貯水槽4を設置したが、貯水槽4の設置位置は建物2の屋上や建物2の内部等であってもよい。また、貯水槽4に代えて上水道、河川、湖沼、海を直接使用してもよく、これらを総称して水貯留手段という。
In the above-described embodiment, the piping system of the low-temperature air compression container 7 and the high-temperature air compression container 8 may be one system each instead of two systems. The valve bodies 11a and 11b may be controlled to be opened and closed so that the process of compressing air by the container 8 and the process of conveying the compressed air toward the desiccant air conditioner 3 are alternately performed.
Moreover, in the process flow path 16 of the desiccant air conditioner 3, you may enable it to install and heat a heating coil with the cooling coil 20 as a heat exchanger.
In the above-described embodiment, the water tank 4 is installed on the ground. However, the installation position of the water tank 4 may be on the roof of the building 2 or inside the building 2. Moreover, instead of the water tank 4, a water supply, a river, a lake, and the sea may be used directly, and these are collectively referred to as a water storage means.

また、上述した実施形態では、低温空気圧縮容器7と高温空気圧縮容器8を別個に設けてデシカント空調機3に低温圧縮空気と高温圧縮空気をそれぞれ搬送するように構成したが、圧縮空気の高圧化を図れる場合には圧縮容器を1種類だけ設置するようにしてもよい。
この場合、圧縮容器によって外気を充填して圧縮且つ冷却しながら、吸湿したデシカントローター19を再生できる50℃以上になるまで加圧する。そして、高圧の圧縮空気をデシカント空調機3に供給する際、再生流路17にはこの圧縮空気をそのまま供給し、処理流路16では圧縮空気を一旦大気圧より若干高い程度の空気圧になるまで膨張させることで圧縮空気を冷却させ、デシカントローター19に通して吸湿させて室内2aに給気するようにすればよい。
In the above-described embodiment, the low-temperature compressed air container 7 and the high-temperature compressed air container 8 are separately provided to convey the low-temperature compressed air and the high-temperature compressed air to the desiccant air conditioner 3, respectively. If it is possible to achieve this, only one type of compression container may be installed.
In this case, pressurization is performed until the desiccant rotor 19 that has absorbed moisture reaches 50 ° C. or higher, which can be regenerated while being compressed and cooled by filling the outside air with a compression container. When high-pressure compressed air is supplied to the desiccant air conditioner 3, the compressed air is supplied as it is to the regeneration channel 17, and the compressed air is temporarily increased to a pressure slightly higher than atmospheric pressure in the processing channel 16. The compressed air may be cooled by being expanded, and the compressed air may be passed through the desiccant rotor 19 to be absorbed into the room 2a.

なお、上述した実施形態では空調機としてデシカント空調機3を用いたが、これに代えてデシカントローター19を用いない空調機を採用してもよい。この場合には、図3に示すように、空調機25に再生流路17は設置する必要がなく、圧縮容器から圧縮空気配管26を介して圧縮空気を空調機25の処理流路16に供給して膨張させることで圧縮空気の温度を低下させる。そして、冷却コイル20や加熱コイル27によって圧縮空気を所要の温度に調整して配管24を通して各室内2に供給できる。そのため、デシカントローター19の駆動源が不要になり、省エネ性能を更に向上できる。   In the above-described embodiment, the desiccant air conditioner 3 is used as the air conditioner, but an air conditioner that does not use the desiccant rotor 19 may be used instead. In this case, as shown in FIG. 3, it is not necessary to install the regeneration channel 17 in the air conditioner 25, and compressed air is supplied from the compressed container to the processing channel 16 of the air conditioner 25 through the compressed air pipe 26. Then, the temperature of the compressed air is lowered by the expansion. Then, the compressed air can be adjusted to a required temperature by the cooling coil 20 and the heating coil 27 and supplied to each room 2 through the pipe 24. Therefore, the drive source of the desiccant rotor 19 becomes unnecessary, and the energy saving performance can be further improved.

1 空調システム
2 建物
2a 部屋
3 デシカント空調機
4 貯水槽
5 空気圧縮機構
7 低温空気圧縮容器
8 高温空気圧縮容器
10 配気管
13 低温圧縮空気配管
14 高温圧縮空気配管
16 処理流路
17 再生流路
19 デシカントローター
20 冷却コイル
21 給気ダンパ
23 排気ダンパ
25 空調機
DESCRIPTION OF SYMBOLS 1 Air conditioning system 2 Building 2a Room 3 Desiccant air conditioner 4 Water storage tank 5 Air compression mechanism 7 Low temperature air compression container 8 High temperature air compression container 10 Air distribution pipe 13 Low temperature compression air piping 14 High temperature compression air piping 16 Processing flow path 17 Regeneration flow path 19 Desiccant rotor 20 Cooling coil 21 Air supply damper 23 Exhaust damper 25 Air conditioner

Claims (4)

水貯留手段と、
前記水貯留手段との間の高低差による水圧によって空気を圧縮する空気圧縮容器と
前記空気圧縮容器内で製造した圧縮空気を搬送する圧縮空気配管と、
前記圧縮空気配管によって搬送された圧縮空気を除湿または/及び温度調整して建物の室内に供給する空調機とを備え、
前記空気圧縮容器内の圧縮空気と建物の室内との圧力差によって圧縮空気を前記空調機に搬送することを特徴とする空調システム。
Water storage means;
An air compression container that compresses air by water pressure due to a height difference between the water storage means, a compressed air pipe that conveys compressed air produced in the air compression container, and
An air conditioner that dehumidifies and / or adjusts the temperature of the compressed air conveyed by the compressed air pipe and supplies the compressed air to the building interior;
An air conditioning system, wherein compressed air is conveyed to the air conditioner by a pressure difference between the compressed air in the compressed air container and a room interior.
前記空気圧縮容器は低温空気圧縮容器と高温空気圧縮容器を備え、
前記空調機は、前記低温空気圧縮容器から搬送される低温圧縮空気を膨張させてデシカントローターで除湿して前記室内に供給する処理流路と、前記高温空気圧縮容器から搬送される高温圧縮空気によってデシカントローターを再生する再生流路とを備えたデシカント空調機である請求項1に記載された空調システム。
The air compression container comprises a low temperature air compression container and a high temperature air compression container,
The air conditioner expands the low-temperature compressed air conveyed from the low-temperature air compressed container, dehumidifies it with a desiccant rotor, and supplies it to the room, and the high-temperature compressed air conveyed from the high-temperature air compressed container The air conditioning system according to claim 1, wherein the air conditioning system is a desiccant air conditioner provided with a regeneration flow path for regenerating the desiccant rotor.
前記低温空気圧縮容器内の低温圧縮空気をデシカント空調機の処理流路に供給する低温圧縮空気配管と、前記高温空気圧縮容器内の高温圧縮空気をデシカント空調機の再生流路に供給する高温圧縮空気配管とをそれぞれ設けた請求項2に記載された空調システム。   Low-temperature compressed air piping for supplying the low-temperature compressed air in the low-temperature air compression container to the processing flow path of the desiccant air conditioner, and high-temperature compression for supplying the high-temperature compressed air in the high-temperature air compression container to the regeneration flow path of the desiccant air conditioner The air conditioning system according to claim 2 provided with air piping. 前記空調機は、前記空気圧縮容器から搬送される高温圧縮空気を膨張させて低温にしてデシカントローターで除湿して前記室内に供給する処理流路と、前記空気圧縮容器から搬送される高温圧縮空気によってデシカントローターを再生する再生流路とを備えたデシカント空調機である請求項1に記載された空調システム。   The air conditioner expands the hot compressed air conveyed from the air compressed container to a low temperature, dehumidifies it with a desiccant rotor, and supplies it to the room, and the hot compressed air conveyed from the air compressed container The air conditioning system according to claim 1, which is a desiccant air conditioner provided with a regeneration flow path for regenerating the desiccant rotor.
JP2015052541A 2015-03-16 2015-03-16 Air conditioning system Pending JP2016173194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015052541A JP2016173194A (en) 2015-03-16 2015-03-16 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015052541A JP2016173194A (en) 2015-03-16 2015-03-16 Air conditioning system

Publications (1)

Publication Number Publication Date
JP2016173194A true JP2016173194A (en) 2016-09-29

Family

ID=57008034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015052541A Pending JP2016173194A (en) 2015-03-16 2015-03-16 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2016173194A (en)

Similar Documents

Publication Publication Date Title
US9885486B2 (en) Heat pump humidifier and dehumidifier system and method
US10184675B2 (en) Dehumidification system and method
TWI665415B (en) Dehumidifier
JP5576327B2 (en) Air conditioning system
US9303885B1 (en) Desiccant dehumidification system and method
JP2007315694A (en) Desiccant air conditioning system and its operating method
JP6059266B2 (en) Dehumidifier
CN107677010B (en) Air conditioning system without dew point control and control method
CN107477740A (en) A kind of fresh air treatment system using two phase flow separate heat pipe temperature control
CN103890495A (en) Refrigeration and air-conditioning device, and humidity adjustment device
JP2018122268A (en) Dehumidification system for dry room
JP6018938B2 (en) Air conditioning system for outside air treatment
JP2007093085A (en) Carbon dioxide gas removing device
CN103017404B (en) Heat pump dehumidifier
KR101638524B1 (en) Eco-friendly 100% outdoor air conditioning system for ship and 100% outdoor air conditioning method thereof
JP2016173194A (en) Air conditioning system
JP6059302B1 (en) Dehumidifier
CN108955224A (en) A kind of enclosed earth source heat pump drying system
JP2020041796A (en) Air conditioner with dehumidifying function and control method thereof
CN103776113B (en) A kind of dehumidified air adjusting means
CN111089352A (en) Fresh air processing system and method
KR101219786B1 (en) Hybrid cooling system for operating dehumidification and air-cooling using night electric power heat storage
JP4348526B2 (en) Dehumidifying air conditioner
CN202885181U (en) Energy-saving air conditioner
CN219572341U (en) Mine shaft anti-freezing dehumidification and waste heat utilization system