JP2016172918A - Hypoeutectic spheroidal graphite cast iron - Google Patents

Hypoeutectic spheroidal graphite cast iron Download PDF

Info

Publication number
JP2016172918A
JP2016172918A JP2015054631A JP2015054631A JP2016172918A JP 2016172918 A JP2016172918 A JP 2016172918A JP 2015054631 A JP2015054631 A JP 2015054631A JP 2015054631 A JP2015054631 A JP 2015054631A JP 2016172918 A JP2016172918 A JP 2016172918A
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite
graphite cast
hypoeutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015054631A
Other languages
Japanese (ja)
Other versions
JP6548924B2 (en
Inventor
大輔 北岡
Daisuke Kitaoka
大輔 北岡
西川 進
Susumu Nishikawa
進 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogi Corp
Original Assignee
Kogi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogi Corp filed Critical Kogi Corp
Priority to JP2015054631A priority Critical patent/JP6548924B2/en
Publication of JP2016172918A publication Critical patent/JP2016172918A/en
Application granted granted Critical
Publication of JP6548924B2 publication Critical patent/JP6548924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hypoeutectic spheroidal graphite cast iron without crystallization of a free cementite as cast, small in area percentage of crystallized graphite, high in spheroidal graphite rate and having high Young modulus.SOLUTION: There is provided a hypoeutectic spheroidal graphite cast iron having a component composition containing C:1.5 to 2.7%, Si:1.0 to 3.0%, carbon equivalent:2.2 to 3.4%, Al:0.01 to 0.2%, Mg:0.015 to 0.060% and the balance Fe, spherical graphite rate in a substrate of 80% or more, graphite area percentage of 9% or less and Young modulus of 180 GPa or more.SELECTED DRAWING: None

Description

本発明は亜共晶球状黒鉛鋳鉄に関する。   The present invention relates to hypoeutectic spheroidal graphite cast iron.

一般に球状黒鉛鋳鉄は強度、靱性に寄与しない黒鉛を面積率で10〜13%程度含むため、鋼より機械的特性が劣る。ヤング率は鋼では200〜210GPa、球状黒鉛鋳鉄では140〜170GPa程度である。
一方、炭素含有量を減らした亜共晶組成の球状黒鉛鋳鉄では、冷却時にデンドライトが先行して生じ易い。デンドライトが先行することで、残部液相にMn等の炭化物安定化元素が濃化し、共晶セメンタイトができ易くなる。即ち、亜共晶組成の球状黒鉛鋳鉄は白鋳鉄化し易い傾向にある。このため従来は、鋳込み後に熱処理を行うことによって、組織中のセメンタイトを分解、黒鉛化して、組織を改善し、機械的特性を出すようにするのが一般的であった。
In general, spheroidal graphite cast iron contains about 10 to 13% by area of graphite that does not contribute to strength and toughness, and therefore is inferior in mechanical properties to steel. The Young's modulus is about 200 to 210 GPa for steel and about 140 to 170 GPa for spheroidal graphite cast iron.
On the other hand, in spheroidal graphite cast iron having a hypoeutectic composition with a reduced carbon content, dendrites are likely to occur prior to cooling. By leading the dendrite, a carbide stabilizing element such as Mn is concentrated in the remaining liquid phase, and eutectic cementite is easily formed. That is, spheroidal graphite cast iron having a hypoeutectic composition tends to be easily converted into white cast iron. For this reason, conventionally, heat treatment is performed after casting, so that cementite in the structure is decomposed and graphitized to improve the structure and exhibit mechanical properties.

特開平10−317093号公報Japanese Patent Laid-Open No. 10-317093 特開2000−17372号公報JP 2000-17372 A 特開2001−3134号公報Japanese Patent Laid-Open No. 2001-3134 特開2013−173969号公報JP 2013-173969 A

上記特許文献1の発明は高剛性球状黒鉛鋳鉄及びその製造方法に関し、組織中の黒鉛量を減少させ、靱性、高ヤング率、0.2%耐力の向上の面で有利な、特に低温における靱性の向上に有利なものが開示されている。しかしながら、この発明は黒鉛化促進のために、BiやBaを添加している。Bi、Baは少量で黒鉛の球状化を阻害する傾向をもたらす。
上記特許文献2の発明は高剛性球状黒鉛鋳鉄に関し、引け巣及びチルの発生を防止しながらヤング率の向上を図るものが開示されている。しかしながら、この発明では依然としてCE値が高く、組織中の黒鉛量が多くなり、機械的特性が不十分となる問題が生じ得る。
上記特許文献3の発明は亜共晶球状黒鉛鋳鉄に関し、鋳放しのままでも強度、靱性および剛性に優れたものが開示されている。しかしながら特許文献1の発明では、高コストのREM(希土類元素)、BN(窒化ホウ素)を黒鉛化促進、球状化促進に用いており、コストを重視する産業的生産には適さないという問題がある。
上記特許文献4の発明は高剛性球状黒鉛鋳鉄に関し、炭素当量(CE値)を低下させて、黒鉛晶出量を抑制し、ヤング率を高め、高剛性化を図るものが開示されている。しかしながら、この発明では、CE値が3.6〜4.2%の高い範囲では黒鉛の晶出量がかなり多くなり、機械的特性が期待できない。一方、CE値が2.8〜3.2%の低い範囲では、含有成分的からして、鋳放し状態で遊離セメンタイトを晶出させないのは難しく、そのままでは実製品に適用し難いという問題が残る。
The invention of Patent Document 1 relates to a high-rigid spheroidal graphite cast iron and a method for producing the same, which reduces the amount of graphite in the structure and is advantageous in terms of toughness, high Young's modulus, and 0.2% yield strength improvement, particularly toughness at low temperatures. What is advantageous to the improvement of is disclosed. However, in the present invention, Bi or Ba is added to promote graphitization. Bi and Ba tend to inhibit the spheroidization of graphite in a small amount.
The invention of Patent Document 2 relates to a high-rigid spheroidal graphite cast iron, which discloses an improvement in Young's modulus while preventing the formation of shrinkage cavities and chills. However, in the present invention, there is still a problem that the CE value is high, the amount of graphite in the structure increases, and the mechanical properties become insufficient.
The invention of Patent Document 3 relates to hypoeutectic spheroidal graphite cast iron, which is disclosed as having excellent strength, toughness and rigidity even when left as cast. However, in the invention of Patent Document 1, high-cost REM (rare earth element) and BN (boron nitride) are used for promoting graphitization and spheroidization, which is not suitable for industrial production with an emphasis on cost. .
The invention of Patent Document 4 relates to high-rigid spheroidal graphite cast iron, which discloses a technique for reducing the carbon equivalent (CE value), suppressing the amount of graphite crystallization, increasing the Young's modulus, and increasing the rigidity. However, in the present invention, when the CE value is in a high range of 3.6 to 4.2%, the amount of graphite crystallized becomes considerably large, and mechanical properties cannot be expected. On the other hand, in the range where the CE value is as low as 2.8 to 3.2%, it is difficult to crystallize free cementite in an as-cast state because of the content of components, and it is difficult to apply it to actual products as it is. Remains.

そこで本発明は上記従来の問題点を解消し、鋳放しのままで、遊離セメンタイトが晶出することなく、しかも晶出する黒鉛の面積率が小さく、黒鉛球状化率が高い、高ヤング率を有する亜共晶球状黒鉛鋳鉄の提供を課題とする。   Therefore, the present invention solves the above-mentioned conventional problems, and as it is as cast, free cementite does not crystallize, and the area ratio of the crystallized graphite is small, the graphite spheroidization ratio is high, and the high Young's modulus is high. An object is to provide hypoeutectic spheroidal graphite cast iron.

上記課題を解決する本発明の亜共晶球状黒鉛鋳鉄は、質量パーセントで、C:1.5〜2.7%、Si:1.0〜3.0%、炭素当量:2.2〜3.4%、Al:0.01〜0.2%、Mg:0.015〜0.060%を含有し、残部がFeからなる成分組成を有し、
基地中における黒鉛球状化率が80%以上、黒鉛面積率が9%以下、ヤング率が180GPa以上であることを第1の特徴としている。
また本発明の亜共晶球状黒鉛鋳鉄は、上記第1の特徴に加えて、質量パーセントで、C:1.5〜2.7%、Si:1.0〜3.0%、炭素当量:2.2〜3.4%、Al:0.01〜0.2%、Cu+Ni:0.01〜2.0%、Mg:0.015〜0.060%を含有し、残部がFeからなる成分組成を有することを第2の特徴としている。
また本発明の亜共晶球状黒鉛鋳鉄は、上記第2の特徴に加えて、質量パーセントで、C:1.5〜2.7%、Si:1.0〜3.0%、炭素当量:2.2〜3.4%、Al:0.01〜0.2%、Ni:0.01〜2.0%、Cu+Ni:0.01〜2.0%、Mg:0.015〜0.060%を含有し、残部がFeからなる成分組成を有することを第3の特徴としている。
また本発明の亜共晶球状黒鉛鋳鉄は、上記第3の特徴に加えて、質量パーセントで、C:1.5〜2.7%、Si:1.0〜3.0%、炭素当量:2.2〜3.4%、Al:0.01〜0.2%、Ni:0.05〜1.6%、Cu:0.05〜1.6%、Cu+Ni:0.1〜2.0%、Mg:0.015〜0.060%を含有し、残部がFeからなる成分組成を有することを第4の特徴としている。
また本発明の亜共晶球状黒鉛鋳鉄は、上記第4の特徴に加えて、質量パーセントで、C:1.5〜2.7%、Si:1.0〜3.0%、炭素当量:2.2〜3.4%、Al:0.01〜0.2%、Ni:0.1〜1.2%、Cu:0.1〜1.2%、Cu+Ni:0.2〜1.6%、Mg:0.015〜0.060%を含有し、残部がFeからなる成分組成を有することを第5の特徴としている。
また本発明の亜共晶球状黒鉛鋳鉄は、上記第1〜第5の何れかの特徴に加えて、質量パーセントで、C:1.7〜2.5%、Si:1.4〜2.6%、炭素当量:2.3〜3.0%とすることを第6の特徴としている。
また本発明の亜共晶球状黒鉛鋳鉄は、上記第6の特徴に加えて、質量パーセントで、C:1.8〜2.3%、Si:1.6〜2.4%、炭素当量:2.4〜2.7%とすることを第7の特徴としている。
また本発明の亜共晶球状黒鉛鋳鉄は、上記第1〜第7の何れかの特徴に加えて、質量パーセントで、Mn:1.0%未満とすることを第8の特徴としている。
The hypoeutectic spheroidal graphite cast iron of the present invention that solves the above problems is, by mass percent, C: 1.5-2.7%, Si: 1.0-3.0%, carbon equivalent: 2.2-3 .4%, Al: 0.01 to 0.2%, Mg: 0.015 to 0.060%, with the balance being composed of Fe,
The first feature is that the graphite spheroidization ratio in the base is 80% or more, the graphite area ratio is 9% or less, and the Young's modulus is 180 GPa or more.
Further, the hypoeutectic spheroidal graphite cast iron of the present invention has, in addition to the first feature, C: 1.5 to 2.7%, Si: 1.0 to 3.0%, and carbon equivalent: Contains 2.2 to 3.4%, Al: 0.01 to 0.2%, Cu + Ni: 0.01 to 2.0%, Mg: 0.015 to 0.060%, with the balance being Fe It has the 2nd characteristic to have a component composition.
Further, the hypoeutectic spheroidal graphite cast iron of the present invention has, in addition to the second feature, C: 1.5 to 2.7%, Si: 1.0 to 3.0%, and carbon equivalent: 2.2-3.4%, Al: 0.01-0.2%, Ni: 0.01-2.0%, Cu + Ni: 0.01-2.0%, Mg: 0.015-0. The third feature is that it has a component composition containing 060% and the balance being Fe.
The hypoeutectic spheroidal graphite cast iron of the present invention has, in addition to the third feature, C: 1.5 to 2.7%, Si: 1.0 to 3.0%, and carbon equivalent: 2.2-3.4%, Al: 0.01-0.2%, Ni: 0.05-1.6%, Cu: 0.05-1.6%, Cu + Ni: 0.1-2. The fourth feature is that it contains 0%, Mg: 0.015 to 0.060%, and the balance is composed of Fe.
Further, the hypoeutectic spheroidal graphite cast iron of the present invention has, in addition to the fourth feature, C: 1.5 to 2.7%, Si: 1.0 to 3.0%, and carbon equivalent: 2.2 to 3.4%, Al: 0.01 to 0.2%, Ni: 0.1 to 1.2%, Cu: 0.1 to 1.2%, Cu + Ni: 0.2 to 1. The fifth feature is that it contains 6%, Mg: 0.015 to 0.060%, and the balance is composed of Fe.
The hypoeutectic spheroidal graphite cast iron of the present invention has, in addition to any of the above first to fifth features, C: 1.7 to 2.5%, Si: 1.4 to 2.2. The sixth feature is that the carbon equivalent is 6% and 2.3 to 3.0%.
Further, the hypoeutectic spheroidal graphite cast iron of the present invention, in addition to the sixth feature, C: 1.8 to 2.3%, Si: 1.6 to 2.4%, carbon equivalent: The seventh feature is that the content is 2.4 to 2.7%.
Further, the hypoeutectic spheroidal graphite cast iron of the present invention is characterized in that, in addition to any one of the first to seventh features, the Mn is less than 1.0% by mass percent.

請求項1に記載の亜共晶球状黒鉛鋳鉄によれば、そこに示された成分組成により、現に、鋳放しのままで、遊離セメンタイトが晶出することなく、しかも晶出する黒鉛の面積率が小さく、黒鉛球状化率が高い、高ヤング率を有する実用に適した亜共晶球状黒鉛鋳鉄を提供することが可能となる。より具体的には、基地中における黒鉛球状化率が80%以上で、黒鉛面積率が9%以下、ヤング率が180GPa以上の亜共晶球状黒鉛鋳鉄を鋳放し状態で得ることが可能となる。また鋳放し状態で引張り強さが690N/mm以上とすることが可能となる。 According to the hypoeutectic spheroidal graphite cast iron according to claim 1, due to the component composition shown therein, the area ratio of the graphite that is actually crystallized without crystallization of free cementite as it is as cast. Thus, it is possible to provide hypoeutectic spheroidal graphite cast iron suitable for practical use having a small graphite, a high graphite spheroidization ratio, and a high Young's modulus. More specifically, hypoeutectic spheroidal graphite cast iron having a graphite spheroidization ratio in the base of 80% or more, a graphite area ratio of 9% or less, and a Young's modulus of 180 GPa or more can be obtained in an as-cast state. . Moreover, it becomes possible to make tensile strength into 690 N / mm < 2 > or more in the as-cast state.

また請求項2に記載の亜共晶球状黒鉛鋳鉄によれば、上記請求項1に記載の構成による作用効果に加えて、CuとNiの何れか1つ若しくは両方を総量で0.01〜2.0質量%含有させることにより、より黒鉛化の促進を図ることができ、容易に黒鉛の面積率が小さく黒鉛球状化率が高い、高ヤング率の亜共晶球状黒鉛鋳鉄を鋳放し状態で得ることが可能となる。
また請求項3に記載の亜共晶球状黒鉛鋳鉄によれば、上記請求項2に記載の構成による作用効果に加えて、Niを0.01〜2.0質量%、CuとNiの総量を0.01〜2.0質量%とすることにより、より一層、黒鉛化の促進を図ることができ、確実に黒鉛面積率が小さく黒鉛球状化率が高い、高ヤング率の亜共晶球状黒鉛鋳鉄を鋳放し状態で得ることが可能となる。
また請求項4に記載の亜共晶球状黒鉛鋳鉄によれば、上記請求項3に記載の構成による作用効果に加えて、Niを0.05〜1.6質量%、Cuを0.05〜1.6質量%、CuとNiの総量を0.1〜2.0質量%とすることにより、更に一層、黒鉛化の促進を図ることができ、より確実に黒鉛面積率が低く黒鉛球状化率が高い、高ヤング率の亜共晶球状黒鉛鋳鉄を鋳放し状態で得ることが可能となる。
また請求項5に記載の亜共晶球状黒鉛鋳鉄によれば、上記請求項4に記載の構成による作用効果に加えて、Niを0.1〜1.2質量%、Cuを0.1〜1.2質量%、CuとNiの総量を0.2〜1.6質量%とすることにより、更により一層、黒鉛化の促進を図ることができ、更により確実に黒鉛面積率が小さく黒鉛球状化率が高い、高ヤング率の亜共晶球状黒鉛鋳鉄を鋳放し状態で得ることが可能となる。
Moreover, according to the hypoeutectic spheroidal graphite cast iron according to claim 2, in addition to the function and effect of the structure according to claim 1, 0.01 or 2 in total of any one or both of Cu and Ni is added. By containing 0.0% by mass, graphitization can be further promoted, and a hypoeutectic spheroidal graphite cast iron having a high Young's modulus and a high graphite spheroidization ratio can be easily obtained in an as-cast state. Can be obtained.
Moreover, according to the hypoeutectic spheroidal graphite cast iron according to claim 3, in addition to the function and effect of the configuration according to claim 2, Ni is 0.01 to 2.0 mass%, and the total amount of Cu and Ni is By setting the content to 0.01 to 2.0% by mass, graphitization can be further promoted, and the high eutectic spheroidal graphite having a small graphite area ratio and a high graphite spheroidization ratio is ensured. It becomes possible to obtain cast iron in an as-cast state.
According to the hypoeutectic spheroidal graphite cast iron according to claim 4, in addition to the operational effects of the configuration according to claim 3, 0.05 to 1.6 mass% of Ni and 0.05 to By making the total amount of 1.6% by mass and Cu and Ni 0.1 to 2.0% by mass, the graphitization can be further promoted, and the graphite area ratio is more reliably reduced and the graphite spheroidized. It is possible to obtain hypoeutectic spheroidal graphite cast iron having a high rate and high Young's modulus in an as-cast state.
Moreover, according to the hypoeutectic spheroidal graphite cast iron according to claim 5, in addition to the operational effect of the configuration according to claim 4, 0.1 to 1.2 mass% of Ni and 0.1 to Cu of 0.1 to By making the total amount of 1.2% by mass and Cu and Ni 0.2 to 1.6% by mass, the graphitization can be further promoted, and the graphite area ratio is further reliably reduced. It becomes possible to obtain hypoeutectic spheroidal graphite cast iron having a high spheroidization rate and a high Young's modulus in an as-cast state.

また請求項6に記載の亜共晶球状黒鉛鋳鉄によれば、上記請求項1〜5の何れかに記載の構成による作用効果に加えて、Cを1.7〜2.5質量%、Siを1.4〜2.6質量%、炭素当量を2.3〜3.0質量%とすることで、基地中の黒鉛面積率が低く、黒鉛球状化率の高い、より高ヤング率の亜共晶球状黒鉛鋳鉄を、より確実に鋳放し状態で得ることが可能となる。
また請求項7に記載の亜共晶球状黒鉛鋳鉄によれば、上記請求項6に記載の構成による作用効果に加えて、Cを1.8〜2.3質量%、Siを1.6〜2.4質量%、炭素当量を2.4〜2.7質量%とすることで、基地中の黒鉛面積率が低く、黒鉛球状化率の高い、より高ヤング率の高い亜共晶球状黒鉛鋳鉄を、更により確実に鋳放し状態で得ることが可能となる。
また請求項8に記載の亜共晶球状黒鉛鋳鉄によれば、上記請求項1〜7に何れかに記載の構成による作用効果に加えて、Mnを1.0質量%未満とすることで、共晶セメンタイトの晶出を抑制することができ、鋳放し状態での黒鉛化を促進することができる。
Moreover, according to the hypoeutectic spheroidal graphite cast iron according to claim 6, in addition to the function and effect of the structure according to any one of claims 1 to 5, C is 1.7 to 2.5 mass%, Si Is 1.4 to 2.6 mass% and the carbon equivalent is 2.3 to 3.0 mass%, so that the graphite area ratio in the base is low, the graphite spheroidization ratio is high, and the higher Young's modulus It becomes possible to obtain eutectic spheroidal graphite cast iron more reliably in an as-cast state.
Moreover, according to the hypoeutectic spheroidal graphite cast iron according to claim 7, in addition to the operational effect of the structure according to claim 6, C is 1.8 to 2.3 mass%, Si is 1.6 to Hypoeutectic spheroidal graphite having a low graphite area ratio in the matrix, a high graphite spheroidization ratio, and a higher high Young's modulus by making 2.4 mass% and carbon equivalent 2.4 to 2.7 mass%. It becomes possible to obtain cast iron in an as-cast state even more reliably.
Moreover, according to the hypoeutectic spheroidal graphite cast iron according to claim 8, in addition to the function and effect by the configuration according to any one of claims 1 to 7, by making Mn less than 1.0 mass%, Crystallization of eutectic cementite can be suppressed, and graphitization in an as-cast state can be promoted.

本発明の亜共晶球状黒鉛鋳鉄について、使用する鋳鉄材料の成分組成における各成分元素の含有範囲について、以下に説明する。なお、以下において各成分の含有量は質量%で記載する。   About the hypoeutectic spheroidal graphite cast iron of this invention, the containing range of each component element in the component composition of the cast iron material to be used is demonstrated below. In addition, below, content of each component is described in the mass%.

Cの含有量は、1.5〜2.7%とする。
亜共晶鋳鉄としては、Cの含有量は前提として4.3%未満ということになるが、Cの含有量が多くなりすぎると、黒鉛面積率が増加して、機械的特性が劣る。このためCの含有量は2.7%以下とする。
Cの含有量が2.7%を超えると、基地中の黒鉛の量が多く、黒鉛面積率が9%を超え易く、機械的特性としてヤング率が180GPa未満、引張り強さが600N/mm未満となり易い。Cの含有量が1.5%未満では、黒鉛が晶出し難くなり、初析セメンタイトが生成する。
Cの含有量は、得られる亜共晶球状黒鉛鋳鉄が黒鉛球状化率80%以上、黒鉛面積率が9%以下、引張り強さが690N/mm以上、ヤング率が180GPa以上となることを考慮して、1.7〜2.5%が好ましく、更に好ましくは1.8〜2.3%とするのがよい。
The content of C is 1.5 to 2.7%.
As hypoeutectic cast iron, the C content is supposed to be less than 4.3%, but if the C content is too large, the graphite area ratio increases and the mechanical properties are inferior. Therefore, the C content is 2.7% or less.
When the content of C exceeds 2.7%, the amount of graphite in the base is large, the graphite area ratio tends to exceed 9%, Young's modulus is less than 180 GPa as mechanical properties, and tensile strength is 600 N / mm 2. It tends to be less than. If the C content is less than 1.5%, graphite is difficult to crystallize and proeutectoid cementite is generated.
The content of C indicates that the obtained hypoeutectic spheroidal graphite cast iron has a graphite spheroidization rate of 80% or more, a graphite area ratio of 9% or less, a tensile strength of 690 N / mm 2 or more, and a Young's modulus of 180 GPa or more. Considering it, 1.7 to 2.5% is preferable, and 1.8 to 2.3% is more preferable.

Siの含有量は、1.0〜3.0%とする。
Siは強い黒鉛化作用があり、Cの1/3程度の割合で状態図を低C側に動かす。1.0%未満では黒鉛化作用が十分発揮しない。3.0%を超えると、フェライト基地に固溶し、靱性を下げる。
Siの含有量は、Cの黒鉛化促進と基地への固溶(靱性の低下)を考慮して、1.4〜2.6%が好ましく、更に好ましくは1.6〜2.4%とするのがよい。
The Si content is set to 1.0 to 3.0%.
Si has a strong graphitizing action, and moves the phase diagram to the low C side at a rate of about 1/3 of C. If it is less than 1.0%, the graphitization effect is not sufficiently exhibited. If it exceeds 3.0%, it will dissolve in the ferrite matrix and lower the toughness.
The content of Si is preferably 1.4 to 2.6%, more preferably 1.6 to 2.4% in consideration of C graphitization promotion and solid solution in the base (decrease in toughness). It is good to do.

炭素当量(CE値)は、2.2〜3.4%とする。
炭素当量は、これが高いと黒鉛の晶出量が多くなり、機械的特性が低下する。一方、少ないと遊離セメンタイトが晶出し易く、白鋳鉄化する。2.2%未満では鋳放しで白鋳鉄化し、実用に供せない。3.4%を超えると、黒鉛の晶出量が多く、ヤング率を180GPaにするのが難しくなる。また引張り強さが690N/mmを超えるのが難しくなる。
炭素当量は、得られる亜共晶球状黒鉛鋳鉄が黒鉛球状化率80%以上、黒鉛面積率が9%以下、引張り強さが690N/mm以上、ヤング率が180GPa以上となることを考慮して、2.3〜3.0%が好ましく、更に好ましくは2.4〜2.7%とするのがよい。
なお炭素当量(CE値)は、例えばCE=C%+(1/3)・Si%として、簡易演算することができる。本発明では、原則としてCE=C%+(1/3)・Si%として演算している。
勿論、前記C、Si以外の成分元素、不純物元素が含まれる場合には、それら成分元素、不純物元素についての炭素当量を加算、減算して総炭素当量を演算し、これを炭素当量としてもよい。
The carbon equivalent (CE value) is 2.2 to 3.4%.
If the carbon equivalent is high, the amount of graphite crystallized increases, and the mechanical properties deteriorate. On the other hand, when the amount is small, free cementite is easily crystallized and white cast iron is formed. If it is less than 2.2%, it is cast as white cast iron and cannot be put to practical use. If it exceeds 3.4%, the amount of crystallization of graphite is large, and it becomes difficult to make the Young's modulus 180 GPa. Moreover, it becomes difficult for the tensile strength to exceed 690 N / mm 2 .
The carbon equivalent is considered considering that the obtained hypoeutectic spheroidal graphite cast iron has a graphite spheroidization ratio of 80% or more, a graphite area ratio of 9% or less, a tensile strength of 690 N / mm 2 or more, and a Young's modulus of 180 GPa or more. 2.3 to 3.0% is preferable, and 2.4 to 2.7% is more preferable.
The carbon equivalent (CE value) can be simply calculated as, for example, CE = C% + (1/3) · Si%. In the present invention, in principle, the calculation is performed as CE = C% + (1/3) · Si%.
Of course, when component elements other than C and Si and impurity elements are included, the carbon equivalents of these component elements and impurity elements are added and subtracted to calculate the total carbon equivalent, which may be used as the carbon equivalent. .

Alの含有量は、0.01〜0.2%とする。
本発明では、Alを添加、含有させるのが1つの特徴である。
AlはSiと同様に、強い黒鉛化促進作用がある。また溶湯中の窒素濃度を下げ、セメンタイトの発生を抑制する作用がある。しかし0.2%以上添加すると、湯流れが悪くなる。また0.01%未満では効果が薄い。
The Al content is set to 0.01 to 0.2%.
In the present invention, one feature is that Al is added and contained.
Al, like Si, has a strong graphitization promoting effect. It also has the effect of reducing the nitrogen concentration in the molten metal and suppressing the generation of cementite. However, if 0.2% or more is added, the hot water flow becomes worse. If the content is less than 0.01%, the effect is weak.

Niは黒鉛化促進作用がある。またフェライトに固溶して、基地を強化する作用がある。よって必須ではないが、含有させるのがよい。
Niを含有させる場合は、0.01〜2.0%とする。2.0%を超えるとフェライト基地の脆化につながる。0.01%未満では効果が薄い。
Niの含有量は、黒鉛化促進作用、基地強化作用、フェライト基地の脆化作用を考慮して、0.05〜1.6%がより好ましく、更には0.1〜1.2%が最も好ましい。
Ni has a graphitization promoting action. It also has the effect of strengthening the base by dissolving in ferrite. Therefore, although it is not essential, it is good to contain.
When Ni is contained, the content is set to 0.01 to 2.0%. If it exceeds 2.0%, it will lead to embrittlement of the ferrite base. Less than 0.01% is less effective.
The Ni content is more preferably 0.05 to 1.6%, and most preferably 0.1 to 1.2% in consideration of the graphitization promoting effect, the matrix strengthening effect, and the brittleness effect of the ferrite matrix. preferable.

Cuは黒鉛化促進作用がある。またパーライトのラメラ間隔を密にして、耐力を向上させる。よって必須ではないが、含有させるのがよい。
Cuを含有させる場合は、0.01〜2.0%とする。2.0%を超えるとパーライト基地を脆化し、靱性が低下し、また黒鉛球状化を阻害する。0.01%未満では効果が薄い。
Cuの含有量は、黒鉛化促進作用、耐力向上作用、パーライト基地の脆化作用、黒鉛球状化阻害作用を考慮して、0.05〜1.6%がより好ましく、更には0.1〜1.2%が最も好ましい。
Cu has a graphitization promoting action. In addition, the pearlite lamella spacing is increased to improve the yield strength. Therefore, although it is not essential, it is good to contain.
When Cu is contained, the content is 0.01 to 2.0%. If it exceeds 2.0%, the pearlite matrix becomes brittle, the toughness is lowered, and graphite spheroidization is inhibited. Less than 0.01% is less effective.
The content of Cu is more preferably 0.05 to 1.6% in consideration of the graphitization promoting effect, the yield strength improving effect, the embrittlement effect of the pearlite base, and the graphite spheroidization inhibiting effect, and further 0.1 to 0.1%. 1.2% is most preferred.

なおNiとCuは何れも黒鉛化促進作用がある点で共通する。その合計、即ちNi+Cuの合計としての含有は必須ではないが、上記NiやCuの含有に伴って、Ni+Cuの合計量としても含有させることになる。但し、Ni+Cuの合計量としては、0.01〜2.0%とする。0.01%未満では黒鉛化促進効果が薄い。また2.0%を超えると基地の脆化につながる。
Ni+Cuの合計含有量は、黒鉛化促進作用、耐力向上作用、基地の強化と脆化の作用、黒鉛球状化阻害作用を考慮して、0.1〜2.0%がより好ましく、更には0.2〜1.6%が最も好ましい。
Both Ni and Cu are common in that they have a graphitization promoting action. Although the total content, that is, the total content of Ni + Cu is not essential, the total content of Ni + Cu is included with the content of Ni and Cu. However, the total amount of Ni + Cu is 0.01 to 2.0%. If it is less than 0.01%, the graphitization promoting effect is small. If it exceeds 2.0%, the base will become brittle.
The total content of Ni + Cu is more preferably 0.1 to 2.0% in consideration of graphitization promoting action, yield strength improving action, base strengthening and embrittlement action, and graphite spheroidization inhibiting action, and further 0 .2 to 1.6% is most preferable.

Mgは黒鉛の球状化に用いる。
Mgの含有量は0.015〜0.060%とする。
Mgは溶湯中で気化し、その気泡中にCが拡散して、球状黒鉛が生成されるため必須である。0.060%を超えると、Mgによる炭化物促進作用が働き、好ましくない。0.015%未満では、黒鉛が自由に成長して片状になり易いので、好ましくない。
Mg is used for spheroidizing graphite.
The Mg content is 0.015 to 0.060%.
Mg is essential because it vaporizes in the molten metal and C diffuses into the bubbles to produce spherical graphite. If it exceeds 0.060%, the carbide promoting action by Mg works, which is not preferable. If it is less than 0.015%, the graphite tends to grow freely into a piece, which is not preferable.

Mnは炭化物を安定化するので好ましくなく、含有させないのが原則である。ただし原料の鉄屑から混入する。混入量を1.0%未満にするのが好ましい。より好ましくは0.5%未満とするのが良い。
またPやSは、実際の製品では不純物として含有され得るが、本発明ではそれらの不純物は含有させる対象ではない。
Since Mn stabilizes the carbide, Mn is not preferable, and in principle, Mn is not included. However, it is mixed from raw iron scrap. The mixing amount is preferably less than 1.0%. More preferably, it is less than 0.5%.
Further, P and S can be contained as impurities in an actual product, but these impurities are not included in the present invention.

Feの含有量は、100%から各含有元素の含有量(%)を差し引いた残部となる。   The content of Fe is the balance obtained by subtracting the content (%) of each contained element from 100%.

なお黒鉛化促進のため、Zr、Ca、Ba等を含有する接種剤を溶湯に添加するようにしてもよい。   In order to accelerate graphitization, an inoculum containing Zr, Ca, Ba or the like may be added to the molten metal.

本発明の亜共晶球状黒鉛鋳鉄は、例えば、原料となる各材料を亜共晶組成となるようにして、溶解炉に入れ、1350〜1550℃で溶解し、その後1550℃で取鍋に移して球状化処理を行い、1450℃で鋳型に鋳込むことで製造することができる。Alは溶解後に溶湯に添加する。また必要に応じて、Zr、Ca、Ba等を含有する接種剤を鋳込み直前に添加することができる。
上記によって、鋳放し状態で亜共晶球状黒鉛鋳鉄を現に製造することができる。
The hypoeutectic spheroidal graphite cast iron of the present invention is, for example, placed in a melting furnace so that each raw material has a hypoeutectic composition, melted at 1350 to 1550 ° C., and then transferred to a ladle at 1550 ° C. Can be produced by spheroidizing and casting into a mold at 1450 ° C. Al is added to the molten metal after melting. If necessary, an inoculum containing Zr, Ca, Ba or the like can be added immediately before casting.
By the above, hypoeutectic spheroidal graphite cast iron can actually be produced in an as-cast state.

原則として、後処理としての熱処理は不要であるが、更に良好な組織、機械的特性を得るために、熱処理を後処理として施すことも可能である。
後処理としての熱処理は、例えば600〜900℃で一定時間保持し、その後徐冷する、いわゆるフェライト化焼鈍を行うことができる。このフェライト化焼鈍をすることで、パーライトを分解し、例えば後述の実施例2に示したように、伸びを例えば7%以上とする等、伸びを適当に増加させ、一方、引張り強度を適当に減少させる等の、引張り強度と伸びのバランス調整を行うことができる。ただし、そのようなフェライト化焼鈍処理を施しても、ヤング率は低下することがない。
In principle, a heat treatment as a post-treatment is not necessary, but a heat treatment can be applied as a post-treatment in order to obtain better structure and mechanical properties.
The heat treatment as the post-treatment can be performed, for example, so-called ferrite annealing, which is held at 600 to 900 ° C. for a certain time and then gradually cooled. By this ferritic annealing, the pearlite is decomposed and, for example, as shown in Example 2 described later, the elongation is appropriately increased, for example, the elongation is set to 7% or more, while the tensile strength is appropriately adjusted. It is possible to adjust the balance between the tensile strength and the elongation, for example, by reducing it. However, the Young's modulus does not decrease even when such a ferritic annealing treatment is performed.

実施例1〜6、比較例1の各鋳鉄材料を、電気炉で1350〜1550℃で約1時間溶融し、これを約1550℃で取鍋に移した後、約1450℃で、鋳型に鋳造した。得られた鋳放し鋳鉄の成分組成と炭素当量(CE値:C+1/3・Si)を表1に示す。
なお実施例2においては、鋳造後、900℃で1時間、焼なましを行った。
また比較例2として、特開2013−173969号公報に開示された実施例8の成分組成を表1に併せて示す。比較例2はAlを含有していない点で、本発明と本質的に異なる。
更に実施例1〜6、比較例1〜2について、黒鉛面積率(%)、球状化率(%)、黒鉛粒数(個/mm)、0.2%耐力(N/mm)、引張り強さ(N/mm)、伸び(%)、ヤング率(GPa)を測定した。結果を表1に示す。
The cast iron materials of Examples 1 to 6 and Comparative Example 1 were melted in an electric furnace at 1350 to 1550 ° C for about 1 hour, transferred to a ladle at about 1550 ° C, and then cast into a mold at about 1450 ° C. did. Table 1 shows the component composition and carbon equivalent (CE value: C + 1/3 · Si) of the as-cast iron obtained.
In Example 2, after casting, annealing was performed at 900 ° C. for 1 hour.
In addition, as Comparative Example 2, the component composition of Example 8 disclosed in JP2013-173969A is also shown in Table 1. Comparative Example 2 is essentially different from the present invention in that it does not contain Al.
Further, for Examples 1 to 6 and Comparative Examples 1 and 2, the graphite area ratio (%), the spheroidization ratio (%), the number of graphite particles (pieces / mm 2 ), the 0.2% proof stress (N / mm 2 ), Tensile strength (N / mm 2 ), elongation (%), and Young's modulus (GPa) were measured. The results are shown in Table 1.

Figure 2016172918
Figure 2016172918

表1より明らかなように、鋳放し状態の実施例1、3〜6において、黒鉛面積率3.95〜7.04%、球状化率88.7〜90.4%、0.2%耐力375.4〜506.4N/mm、引張り強さ698.8〜848.1N/mm、ヤング率183.4〜198.1GPaであった。
これに対して比較例1では、Cの含有量、炭素当量(CE値)が過剰であり、また黒鉛面積率が9.26%と過剰で、球状化率が85.6%、0.2%耐力が334.0N/mm、引張り強さが552.6N/mm、ヤング率が178.0GPaで何れも低調であった。
また比較例2では、黒鉛面積率、球状化率、0.2%耐力は不明である。一方、引張り強さが684.8N/mmと本発明に比べてかなり低い。またヤング率は183.0GPaで、180GPaを超えるが、本発明と比べて低いと言える。
また実施例2では、鋳造後に焼きなましを行うことで、ヤング率が大きいまま、引張り強度を若干低下させるも、700N/mm以上を保持しつつ、伸びを7.0%以上(7.68%)にすることができた。またヤング率は高いまま保持することができた。
As apparent from Table 1, in Examples 1 and 3 to 6 in the as-cast state, the graphite area ratio was 3.95 to 7.04%, the spheroidization ratio was 88.7 to 90.4%, and 0.2% proof stress. They were 375.4-506.4N / mm < 2 >, tensile strength 698.8-848.1N / mm < 2 >, and Young's modulus 183.4-198.1GPa.
In contrast, in Comparative Example 1, the C content and carbon equivalent (CE value) are excessive, the graphite area ratio is excessive at 9.26%, and the spheroidization ratio is 85.6%, 0.2. The% yield strength was 334.0 N / mm 2 , the tensile strength was 552.6 N / mm 2 , and the Young's modulus was 178.0 GPa.
In Comparative Example 2, the graphite area ratio, spheroidization ratio, and 0.2% yield strength are unknown. On the other hand, the tensile strength is 684.8 N / mm 2 , which is considerably lower than that of the present invention. The Young's modulus is 183.0 GPa and exceeds 180 GPa, but it can be said to be lower than that of the present invention.
Also, in Example 2, annealing was performed after casting, and while the Young's modulus was large, the tensile strength was slightly reduced, but the elongation was 7.0% or more (7.68% while maintaining 700 N / mm 2 or more. ) Also, the Young's modulus could be kept high.

Claims (8)

質量パーセントで、
C :1.5〜2.7%
Si :1.0〜3.0%
炭素当量 :2.2〜3.4%
Al :0.01〜0.2%
Mg :0.015〜0.060%
を含有し、残部がFeからなる成分組成を有し、
基地中における黒鉛球状化率が80%以上、黒鉛面積率が9%以下、ヤング率が180GPa以上であることを特徴とする亜共晶球状黒鉛鋳鉄。
In weight percent,
C: 1.5 to 2.7%
Si: 1.0-3.0%
Carbon equivalent: 2.2-3.4%
Al: 0.01 to 0.2%
Mg: 0.015-0.060%
And the balance has a component composition consisting of Fe,
A hypoeutectic spheroidal graphite cast iron having a graphite spheroidization rate of 80% or more, a graphite area ratio of 9% or less, and a Young's modulus of 180 GPa or more.
質量パーセントで、
C :1.5〜2.7%
Si :1.0〜3.0%
炭素当量 :2.2〜3.4%
Al :0.01〜0.2%
Cu+Ni :0.01〜2.0%
Mg :0.015〜0.060%
を含有し、残部がFeからなる成分組成を有することを特徴とする請求項1に記載の亜共晶球状黒鉛鋳鉄。
In weight percent,
C: 1.5 to 2.7%
Si: 1.0-3.0%
Carbon equivalent: 2.2-3.4%
Al: 0.01 to 0.2%
Cu + Ni: 0.01 to 2.0%
Mg: 0.015-0.060%
2. The hypoeutectic spheroidal graphite cast iron according to claim 1, having a component composition in which the balance is made of Fe.
質量パーセントで、
C :1.5〜2.7%
Si :1.0〜3.0%
炭素当量 :2.2〜3.4%
Al :0.01〜0.2%
Ni :0.01〜2.0%
Cu+Ni :0.01〜2.0%
Mg :0.015〜0.060%
を含有し、残部がFeからなる成分組成を有することを特徴とする請求項2に記載の亜共晶球状黒鉛鋳鉄。
In weight percent,
C: 1.5 to 2.7%
Si: 1.0-3.0%
Carbon equivalent: 2.2-3.4%
Al: 0.01 to 0.2%
Ni: 0.01 to 2.0%
Cu + Ni: 0.01 to 2.0%
Mg: 0.015-0.060%
3. The hypoeutectic spheroidal graphite cast iron according to claim 2, which has a component composition in which the balance is made of Fe.
質量パーセントで、
C :1.5〜2.7%
Si :1.0〜3.0%
炭素当量 :2.2〜3.4%
Al :0.01〜0.2%
Ni :0.05〜1.6%
Cu :0.05〜1.6%
Cu+Ni :0.1〜2.0%
Mg :0.015〜0.060%
を含有し、残部がFeからなる成分組成を有することを特徴とする請求項3に記載の亜共晶球状黒鉛鋳鉄。
In weight percent,
C: 1.5 to 2.7%
Si: 1.0-3.0%
Carbon equivalent: 2.2-3.4%
Al: 0.01 to 0.2%
Ni: 0.05-1.6%
Cu: 0.05 to 1.6%
Cu + Ni: 0.1-2.0%
Mg: 0.015-0.060%
4. The hypoeutectic spheroidal graphite cast iron according to claim 3, wherein the hypoeutectic spheroidal graphite cast iron has a component composition in which the balance is Fe.
質量パーセントで、
C :1.5〜2.7%
Si :1.0〜3.0%
炭素当量 :2.2〜3.4%
Al :0.01〜0.2%
Ni :0.1〜1.2%
Cu :0.1〜1.2%
Cu+Ni :0.2〜1.6%
Mg :0.015〜0.060%
を含有し、残部がFeからなる成分組成を有することを特徴とする請求項4に記載の亜共晶球状黒鉛鋳鉄。
In weight percent,
C: 1.5 to 2.7%
Si: 1.0-3.0%
Carbon equivalent: 2.2-3.4%
Al: 0.01 to 0.2%
Ni: 0.1-1.2%
Cu: 0.1-1.2%
Cu + Ni: 0.2 to 1.6%
Mg: 0.015-0.060%
5. The hypoeutectic spheroidal graphite cast iron according to claim 4, wherein the iron eutectic has a component composition consisting of Fe and the balance being Fe.
質量パーセントで、
C :1.7〜2.5%
Si :1.4〜2.6%
炭素当量 :2.3〜3.0%
とすることを特徴とする請求項1〜5の何れかに記載の亜共晶球状黒鉛鋳鉄。
In weight percent,
C: 1.7-2.5%
Si: 1.4-2.6%
Carbon equivalent: 2.3-3.0%
The hypoeutectic spheroidal graphite cast iron according to any one of claims 1 to 5.
質量パーセントで、
C :1.8〜2.3%
Si :1.6〜2.4%
炭素当量 :2.4〜2.7%
とすることを特徴とする請求項6に記載の亜共晶球状黒鉛鋳鉄。
In weight percent,
C: 1.8 to 2.3%
Si: 1.6-2.4%
Carbon equivalent: 2.4-2.7%
The hypoeutectic spheroidal graphite cast iron according to claim 6.
質量パーセントで、
Mn :1.0%未満
とすることを特徴とする請求項1〜7の何れかに記載の亜共晶球状黒鉛鋳鉄。
In weight percent,
The hypoeutectic spheroidal graphite cast iron according to any one of claims 1 to 7, wherein Mn: less than 1.0%.
JP2015054631A 2015-03-18 2015-03-18 Hypoeutectic spheroidal graphite cast iron Active JP6548924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054631A JP6548924B2 (en) 2015-03-18 2015-03-18 Hypoeutectic spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054631A JP6548924B2 (en) 2015-03-18 2015-03-18 Hypoeutectic spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JP2016172918A true JP2016172918A (en) 2016-09-29
JP6548924B2 JP6548924B2 (en) 2019-07-24

Family

ID=57008826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054631A Active JP6548924B2 (en) 2015-03-18 2015-03-18 Hypoeutectic spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JP6548924B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6254655B1 (en) * 2016-09-15 2017-12-27 虹技株式会社 Method for producing hypoeutectic spheroidal graphite cast iron castings
JP6254656B1 (en) * 2016-09-15 2017-12-27 虹技株式会社 Method for producing hypoeutectic spheroidal graphite cast iron castings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174358A (en) * 1985-01-30 1986-08-06 Toyota Motor Corp Spheroidal graphite cast steel of high strength
JPH01152240A (en) * 1987-12-10 1989-06-14 Toyota Motor Corp High toughness cast steel
WO2011145194A1 (en) * 2010-05-20 2011-11-24 虹技株式会社 Heat-resistant cast iron type metallic short fiber, and process for production thereof
JP2013173969A (en) * 2012-02-24 2013-09-05 Riken Corp High rigidity spherical graphite cast iron
JP2014028987A (en) * 2012-07-31 2014-02-13 Hinode Ltd Ferro alloy for casting and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174358A (en) * 1985-01-30 1986-08-06 Toyota Motor Corp Spheroidal graphite cast steel of high strength
JPH01152240A (en) * 1987-12-10 1989-06-14 Toyota Motor Corp High toughness cast steel
WO2011145194A1 (en) * 2010-05-20 2011-11-24 虹技株式会社 Heat-resistant cast iron type metallic short fiber, and process for production thereof
JP2013173969A (en) * 2012-02-24 2013-09-05 Riken Corp High rigidity spherical graphite cast iron
JP2014028987A (en) * 2012-07-31 2014-02-13 Hinode Ltd Ferro alloy for casting and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6254655B1 (en) * 2016-09-15 2017-12-27 虹技株式会社 Method for producing hypoeutectic spheroidal graphite cast iron castings
JP6254656B1 (en) * 2016-09-15 2017-12-27 虹技株式会社 Method for producing hypoeutectic spheroidal graphite cast iron castings
JP2018044217A (en) * 2016-09-15 2018-03-22 虹技株式会社 Manufacturing method of hypoeutectic spheroidal graphite cast iron cast
JP2018044216A (en) * 2016-09-15 2018-03-22 虹技株式会社 Manufacturing method of hypoeutectic spheroidal graphite cast iron cast

Also Published As

Publication number Publication date
JP6548924B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP5012231B2 (en) High-strength spheroidal graphite cast iron with excellent wear resistance
JP4835424B2 (en) High strength spheroidal graphite cast iron
JP6728150B2 (en) Cast iron molten metal treatment method
JP5113104B2 (en) Spheroidal graphite cast iron pipe and manufacturing method thereof
JP5712560B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
JP2011144443A (en) Aluminum alloy for semisolid casting
JP6254656B1 (en) Method for producing hypoeutectic spheroidal graphite cast iron castings
CN108203786B (en) Silicon solid solution high-strength plastic ferrite nodular cast iron, manufacturing method and railway locomotive part
JP6548924B2 (en) Hypoeutectic spheroidal graphite cast iron
JP5618466B2 (en) High rigidity high damping capacity cast iron
JP5712525B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
JP5589646B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
JP5367041B2 (en) Thin wall spheroidal graphite cast iron casting
JP6763377B2 (en) Black core malleable cast iron and its manufacturing method
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP2014105342A (en) Spheroidal graphite cast iron excellent in high temperature ductility and high temperature creep rupture life and production method thereof
JP6254655B1 (en) Method for producing hypoeutectic spheroidal graphite cast iron castings
JP5952455B1 (en) High rigidity spheroidal graphite cast iron
JP6087402B2 (en) Spheroidal graphite cast iron and method for producing the same
JP2006316341A (en) Castable aluminum alloy and aluminum alloy cast made therefrom
JP2014214343A (en) Iron cast and manufacturing method therefor
JP5712531B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
JP2006057139A (en) Spheroidal graphite cast iron having excellent machinability and mechanical property
JP2022052437A (en) Aluminum alloy casting and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190626

R150 Certificate of patent or registration of utility model

Ref document number: 6548924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250