JP2016172216A - Cleaning method of separation membrane of membrane separation device, cleaning chemical, and separation membrane cleaning system - Google Patents

Cleaning method of separation membrane of membrane separation device, cleaning chemical, and separation membrane cleaning system Download PDF

Info

Publication number
JP2016172216A
JP2016172216A JP2015052763A JP2015052763A JP2016172216A JP 2016172216 A JP2016172216 A JP 2016172216A JP 2015052763 A JP2015052763 A JP 2015052763A JP 2015052763 A JP2015052763 A JP 2015052763A JP 2016172216 A JP2016172216 A JP 2016172216A
Authority
JP
Japan
Prior art keywords
membrane
cleaning
separation
chemical
chemical solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015052763A
Other languages
Japanese (ja)
Inventor
裕司 大塚
Yuji Otsuka
裕司 大塚
曜次朗 坂本
Yojiro Sakamoto
曜次朗 坂本
和泉 清司
Seiji Izumi
清司 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2015052763A priority Critical patent/JP2016172216A/en
Publication of JP2016172216A publication Critical patent/JP2016172216A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cleaning method of a separation membrane which can sufficiently clean a separation membrane in a short time.SOLUTION: A separation membrane of a membrane separation device 6 used in membrane separation activated sludge treatment is cleaned by using a chemical 36 containing sodium hypochlorite 20 and acid 23. A mixed amount of the acid 23 of the chemical 36 is adjusted so that pH is in a range of 7-9.SELECTED DRAWING: Figure 1

Description

本発明は、膜分離活性汚泥処理で使用される膜分離装置の分離膜の洗浄方法および洗浄用薬液ならびに分離膜洗浄システムに関する。   The present invention relates to a separation membrane cleaning method, a cleaning chemical solution, and a separation membrane cleaning system for a membrane separation apparatus used in membrane separation activated sludge treatment.

従来、図4に示すように、活性汚泥処理槽80内に膜分離装置81が浸漬配置され、膜分離装置81の各膜カートリッジ82にチューブ83を介してヘッダー管84が連通している。各膜カートリッジ82の分離膜(濾過膜)を洗浄する場合、膜分離装置81の濾過運転を停止し、次亜塩素酸ナトリウム溶液86をヘッダー管84に注入し、ヘッダー管84内の次亜塩素酸ナトリウム溶液86の液位と活性汚泥処理槽80内の被処理液87(例えば、し尿等の原水と活性汚泥との混合液等)の液位との差による自然水頭88によって、次亜塩素酸ナトリウム溶液86を各膜カートリッジ82の内部に注入する。これにより、次亜塩素酸ナトリウム溶液86が分離膜85を透過液側から被処理液側に微小流束で透過し、分離膜(図示省略)が洗浄される。   Conventionally, as shown in FIG. 4, a membrane separator 81 is immersed in an activated sludge treatment tank 80, and a header pipe 84 communicates with each membrane cartridge 82 of the membrane separator 81 via a tube 83. When the separation membrane (filtration membrane) of each membrane cartridge 82 is washed, the filtration operation of the membrane separation device 81 is stopped, the sodium hypochlorite solution 86 is injected into the header pipe 84, and the hypochlorous acid in the header pipe 84 is injected. Hypochlorite is produced by natural head 88 due to the difference between the level of sodium acid solution 86 and the level of liquid 87 to be treated in activated sludge treatment tank 80 (for example, a mixture of raw water such as human waste and activated sludge). A sodium acid solution 86 is injected into each membrane cartridge 82. As a result, the sodium hypochlorite solution 86 permeates the separation membrane 85 from the permeate side to the liquid to be treated with a minute flux, and the separation membrane (not shown) is washed.

尚、上記のように次亜塩素酸ナトリウム溶液を用いて膜カートリッジの分離膜を洗浄することについては、例えば下記特許文献1に記載されている。   Incidentally, as described above, the washing of the separation membrane of the membrane cartridge using the sodium hypochlorite solution is described in, for example, Patent Document 1 below.

特許第3290555号Japanese Patent No. 3290555

上記の従来形式では、市販品の次亜塩素酸ナトリウム原液(一般に有効塩素濃度12wt%のもの)を水で希釈し、この希釈した次亜塩素酸ナトリウム溶液を分離膜の洗浄に用いている。市販品の次亜塩素酸ナトリウム原液のpHはほぼ12〜13であるため、酸化力が低く、分離膜の洗浄が不十分であったり、洗浄に長時間を要するといった問題があった。   In the above conventional format, a commercially available sodium hypochlorite stock solution (generally having an effective chlorine concentration of 12 wt%) is diluted with water, and this diluted sodium hypochlorite solution is used for cleaning the separation membrane. Since the pH of the commercially available sodium hypochlorite stock solution is approximately 12 to 13, there is a problem that the oxidizing power is low, the separation membrane is not sufficiently cleaned, and the cleaning requires a long time.

本発明は、分離膜を短時間で十分に洗浄することができる膜分離装置の分離膜の洗浄方法および洗浄用薬液ならびに分離膜洗浄システムを提供することを目的とする。   An object of the present invention is to provide a separation membrane cleaning method, a cleaning chemical solution, and a separation membrane cleaning system of a membrane separation apparatus that can sufficiently clean the separation membrane in a short time.

上記目的を達成するために、本第1発明における膜分離装置の分離膜の洗浄方法は、膜分離活性汚泥処理で使用される膜分離装置の分離膜を、次亜塩素酸ナトリウムと酸を含む薬液を用いて洗浄するものである。   In order to achieve the above object, a method for cleaning a separation membrane of a membrane separation device according to the first aspect of the present invention includes a separation membrane of a membrane separation device used in membrane separation activated sludge treatment, containing sodium hypochlorite and an acid. Cleaning is performed using a chemical solution.

従来、一般に、次亜塩素酸ナトリウム溶液を酸と混合すると、塩素ガスが発生する虞があるため、次亜塩素酸ナトリウム溶液と酸を含む薬液を用いて分離膜を洗浄するといった発想は得られなかった。今回、本発明の発明者は、次亜塩素酸ナトリウム溶液に酸を加えた薬液を使用することにより、薬液のpHが低下し、薬液の酸化力が上がって洗浄力が向上することを見い出した。これにより、少量の薬液を用いて、分離膜を短時間で十分に洗浄することができる。   Conventionally, in general, when sodium hypochlorite solution is mixed with an acid, chlorine gas may be generated. Therefore, the idea of washing a separation membrane using a sodium hypochlorite solution and a chemical solution containing an acid can be obtained. There wasn't. This time, the inventors of the present invention have found that by using a chemical solution obtained by adding an acid to a sodium hypochlorite solution, the pH of the chemical solution is lowered, the oxidizing power of the chemical solution is increased, and the detergency is improved. . Thereby, the separation membrane can be sufficiently washed in a short time using a small amount of chemical solution.

本第2発明における膜分離装置の分離膜の洗浄方法は、薬液はpHが7以上かつ9以下の範囲となるように酸の混合量が調整されるものである。
これによると、次亜塩素酸ナトリウム溶液と酸を混合して、薬液のpHを9以下に調整することにより、薬液の酸化力が上がって洗浄力が向上する。また、薬液のpHを7以上に調整することにより、塩素ガスの発生を抑制(低減)することができる。
In the separation membrane cleaning method of the membrane separation apparatus according to the second aspect of the present invention, the amount of acid mixed is adjusted so that the chemical solution has a pH in the range of 7 to 9.
According to this, by mixing the sodium hypochlorite solution and the acid and adjusting the pH of the chemical solution to 9 or less, the oxidizing power of the chemical solution is increased and the cleaning power is improved. Moreover, generation | occurrence | production of chlorine gas can be suppressed (reduced) by adjusting pH of a chemical | medical solution to 7 or more.

本第3発明における膜分離装置の分離膜の洗浄方法は、薬液は、次亜塩素酸ナトリウムを分離膜と接触させるために送液する途中で酸を添加することにより、pH調整されるものである。   In the method for cleaning a separation membrane of the membrane separation apparatus according to the third aspect of the invention, the chemical solution is adjusted in pH by adding an acid during the feeding of sodium hypochlorite in contact with the separation membrane. is there.

これによると、薬液が分離膜と接触する直前に、次亜塩素酸ナトリウムのpH調整が行われるため、塩素ガスの発生を抑制(低減)することができる。
本第4発明における膜分離装置の分離膜の洗浄方法は、予め求めた次亜塩素酸ナトリウムに対する酸の混合量とpHとの関係から、酸の混合量を決めるものである。
According to this, since the pH of sodium hypochlorite is adjusted immediately before the chemical solution comes into contact with the separation membrane, generation of chlorine gas can be suppressed (reduced).
The separation membrane cleaning method of the membrane separation apparatus according to the fourth aspect of the present invention determines the acid mixing amount from the relationship between the acid mixing amount with respect to sodium hypochlorite and the pH determined in advance.

これによると、容易かつ正確に薬液を所定のpHに調整することができる。
本第5発明における膜分離装置の分離膜の洗浄方法は、薬液の有効塩素濃度が0.01〜0.2wt%であるものである。
According to this, a chemical | medical solution can be adjusted to predetermined | prescribed pH easily and correctly.
In the fifth aspect of the present invention, the separation membrane cleaning method of the membrane separation apparatus is such that the effective chlorine concentration of the chemical solution is 0.01 to 0.2 wt%.

本第6発明は、洗浄前の膜間差圧に応じて、洗浄回数と薬液の有効塩素濃度との少なくともいずれかを変更するものである。
これによると、洗浄前の膜間差圧を測定することにより、分離膜の汚れ具合を判断することができ、これに応じて洗浄回数や薬液の有効塩素濃度を変更することにより、分離膜の汚れ具合に応じた洗浄を行うことができる。例えば、膜間差圧が高い場合は、分離膜の汚れ具合が大きいと判断し、洗浄回数を増やしたり或いは薬液の有効塩素濃度を増加させる。また、膜間差圧が低い場合は、分離膜の汚れ具合が小さいと判断し、洗浄回数を減らしたり或いは薬液の有効塩素濃度を低下させる。これにより、無駄のない有効な洗浄が可能となる。
In the sixth aspect of the present invention, at least one of the number of times of cleaning and the effective chlorine concentration of the chemical solution is changed according to the transmembrane pressure difference before cleaning.
According to this, by measuring the transmembrane pressure difference before washing, it is possible to determine the degree of contamination of the separation membrane, and by changing the number of washings and the effective chlorine concentration of the chemical solution accordingly, the separation membrane Cleaning according to the degree of contamination can be performed. For example, when the transmembrane pressure difference is high, it is determined that the degree of contamination of the separation membrane is large, and the number of washings is increased or the effective chlorine concentration of the chemical solution is increased. Further, when the transmembrane pressure difference is low, it is determined that the degree of contamination of the separation membrane is small, and the number of washings is reduced or the effective chlorine concentration of the chemical solution is reduced. Thereby, effective cleaning without waste becomes possible.

本第7発明は、膜分離活性汚泥処理で使用される膜分離装置の分離膜を洗浄するための薬液であって、所定のpHとなるように次亜塩素酸ナトリウムと酸を混合したものである。   The seventh invention is a chemical solution for cleaning a separation membrane of a membrane separation device used in membrane separation activated sludge treatment, which is a mixture of sodium hypochlorite and an acid so as to have a predetermined pH. is there.

本第8発明は、膜分離活性汚泥処理で使用される膜分離装置の分離膜を洗浄するための分離膜洗浄システムであって、
次亜塩素酸ナトリウムを貯留する第一の薬液貯留部と、
酸を貯留する第二の薬液貯留部と、
希釈水を貯留する希釈水貯留部と、
希釈水貯留部から膜分離装置へ希釈水を供給するための薬液供給経路と、
薬液供給経路に接続されて希釈水中に次亜塩素酸ナトリウムを供給する第一の薬液供給手段と、
薬液供給経路に接続されて希釈水中に酸を供給する第二の薬液供給手段と、
第一および第二の薬液供給手段よりも下流側における薬液供給経路に配置される薬液混合手段とを備えるものである。
The eighth invention is a separation membrane cleaning system for cleaning a separation membrane of a membrane separation device used in membrane separation activated sludge treatment,
A first chemical reservoir for storing sodium hypochlorite;
A second chemical storage section for storing acid;
A dilution water reservoir for storing dilution water;
A chemical solution supply path for supplying dilution water from the dilution water reservoir to the membrane separation device;
A first chemical supply means connected to the chemical supply path for supplying sodium hypochlorite into the diluted water;
A second chemical supply means connected to the chemical supply path for supplying acid into the diluted water;
And a chemical liquid mixing means arranged in a chemical liquid supply path downstream of the first and second chemical liquid supply means.

これによると、希釈水を希釈水貯留部から薬液供給経路に供給するとともに、第一の薬液供給手段によって次亜塩素酸ナトリウムを第一の薬液貯留部から薬液供給経路の希釈水に供給し、第二の薬液供給手段によって酸を第二の薬液貯留部から薬液供給経路の希釈水に供給し、薬液混合手段によって希釈水と次亜塩素酸ナトリウムと酸とが混合することにより、薬液が生成され、この薬液が薬液供給経路を通って膜分離装置の分離膜に供給される。尚、希釈水には、上水やMBR処理水、河川水等が利用できる。   According to this, while supplying dilution water from a dilution water storage part to a chemical solution supply path, it supplies sodium hypochlorite from the first chemical solution storage part to dilution water of a chemical solution supply path by the first chemical solution supply means, The second chemical solution supply means supplies acid from the second chemical solution reservoir to the dilution water in the chemical solution supply path, and the chemical solution mixing means mixes the dilution water, sodium hypochlorite, and acid, thereby generating a chemical solution. The chemical solution is supplied to the separation membrane of the membrane separation device through the chemical solution supply path. As dilution water, clean water, MBR treated water, river water, etc. can be used.

以上のように本発明によると、次亜塩素酸ナトリウム溶液に酸を加えた薬液を使用することにより、薬液のpHが低下し、薬液の酸化力が上がって洗浄力が向上するため、分離膜を少量の薬液で又は短時間で十分に洗浄することができる。また、薬液のpHを7以上かつ9以下の範囲に調整することにより、薬液の酸化力が上がって洗浄力が向上するとともに、塩素ガスの発生を抑制することができる。   As described above, according to the present invention, by using a chemical solution obtained by adding an acid to a sodium hypochlorite solution, the pH of the chemical solution is lowered, the oxidizing power of the chemical solution is increased, and the detergency is improved. Can be sufficiently washed with a small amount of chemical solution or in a short time. Further, by adjusting the pH of the chemical solution to a range of 7 or more and 9 or less, the oxidizing power of the chemical solution is increased, the cleaning power is improved, and generation of chlorine gas can be suppressed.

本発明の実施の形態における活性汚泥処理槽の構成を示す図である。It is a figure which shows the structure of the activated sludge processing tank in embodiment of this invention. 薬液のpHとORPとの関係を示すグラフである。It is a graph which shows the relationship between pH of a chemical | medical solution, and ORP. 次亜塩素酸ナトリウムに塩酸を添加したときの中和曲線を示すグラフである。It is a graph which shows the neutralization curve when hydrochloric acid is added to sodium hypochlorite. 従来の活性汚泥処理槽の構成を示す図である。It is a figure which shows the structure of the conventional activated sludge processing tank.

以下、本発明における実施の形態を、図面を参照して説明する。
(第1の実施の形態)
第1の実施の形態では、図1に示すように、1は活性汚泥処理槽であり、槽本体2の上部には、有機性排水(例えば、下水、し尿、工場排水等)を供給するための供給系4が連通し、槽本体2の下部には、余剰汚泥を排出するための排出系5が連通している。槽本体2の内部には、被処理液3(有機性排水と活性汚泥との混合液)が貯留され、浸漬型の膜分離装置6が浸漬配置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
In the first embodiment, as shown in FIG. 1, reference numeral 1 denotes an activated sludge treatment tank for supplying organic waste water (for example, sewage, human waste, factory waste water, etc.) to the upper part of the tank body 2. The supply system 4 communicates, and a discharge system 5 for discharging excess sludge communicates with the lower portion of the tank body 2. Inside the tank body 2, a liquid to be treated 3 (mixed liquid of organic waste water and activated sludge) is stored, and a submerged membrane separation device 6 is disposed so as to be immersed therein.

膜分離装置6は、上下が開口した箱状のケーシング7と、ケーシング7内に配列された複数の平板状の浸漬型膜カートリッジ8とを有している。各膜カートリッジ8は、上下方向に沿って平行に配置されており、膜支持板と、膜支持板の表面を覆って備えられた分離膜9(濾過膜)と、分離膜9の背面側において膜支持板の表面又は内部に形成された透過液流路とを有している。   The membrane separation device 6 includes a box-shaped casing 7 that is open at the top and bottom, and a plurality of flat-plate-shaped immersion membrane cartridges 8 arranged in the casing 7. Each membrane cartridge 8 is arranged in parallel in the vertical direction, and on the back side of the separation membrane 9, a membrane support plate, a separation membrane 9 (filtration membrane) provided to cover the surface of the membrane support plate, and And a permeate passage formed on the surface or inside of the membrane support plate.

各膜カートリッジ8はチューブ10を介して吸引管12に接続されており、吸引管12には吸引ポンプ13が設けられている。また、膜カートリッジ8の配列群の下方には散気装置14が設置されており、散気装置14には給気管15を介してブロワ16が設けられている。   Each membrane cartridge 8 is connected to a suction pipe 12 via a tube 10, and a suction pump 13 is provided in the suction pipe 12. An air diffuser 14 is installed below the arrangement group of the membrane cartridges 8, and the air diffuser 14 is provided with a blower 16 via an air supply pipe 15.

また、活性汚泥処理槽1には、各膜カートリッジ8の分離膜9を洗浄するための分離膜洗浄システム19(分離膜洗浄装置)が備えられている。分離膜洗浄システム19は、次亜塩素酸ナトリウム溶液20を貯留する第一の薬液貯留タンク21(第一の薬液貯留部の一例)と、塩酸23(酸の一例)を貯留する第二の薬液貯留タンク24(第二の薬液貯留部の一例)と、希釈水26を貯留する希釈水貯留タンク27(希釈水貯留部の一例)と、希釈水貯留タンク27から膜分離装置6の各膜カートリッジ8へ希釈水26を供給するための薬液供給経路29と、薬液供給経路29に接続されて希釈水26中に次亜塩素酸ナトリウム溶液20を供給する第一の薬液供給手段30と、薬液供給経路29に接続されて希釈水26中に塩酸23を供給する第二の薬液供給手段31と、希釈水26を薬液供給経路29に供給する希釈水供給手段32と、第一および第二の薬液供給手段30,31よりも下流側における薬液供給経路29に配置されるスタティックミキサー33(薬液混合手段の一例)とを備えている。   Further, the activated sludge treatment tank 1 is provided with a separation membrane cleaning system 19 (separation membrane cleaning device) for cleaning the separation membrane 9 of each membrane cartridge 8. The separation membrane cleaning system 19 includes a first chemical solution storage tank 21 (an example of a first chemical solution storage unit) that stores a sodium hypochlorite solution 20 and a second chemical solution that stores hydrochloric acid 23 (an example of an acid). A storage tank 24 (an example of a second chemical solution storage unit), a dilution water storage tank 27 (an example of a dilution water storage unit) that stores dilution water 26, and each membrane cartridge of the membrane separation device 6 from the dilution water storage tank 27 8, a chemical supply path 29 for supplying the dilution water 26, a first chemical supply means 30 connected to the chemical supply path 29 for supplying the sodium hypochlorite solution 20 into the dilution water 26, and a chemical supply Second chemical liquid supply means 31 connected to the path 29 for supplying the hydrochloric acid 23 into the dilution water 26, dilution water supply means 32 for supplying the dilution water 26 to the chemical liquid supply path 29, and first and second chemical liquids From supply means 30, 31 And a static mixer 33 (an example of a chemical-liquid mixing means) disposed in the chemical supply path 29 on the downstream side.

薬液供給経路29は、配管からなり、上流側が希釈水貯留タンク27に接続され、下流側が吸引管12に接続されている。また、スタティックミキサー33と吸引管12との間における薬液供給経路29には薬液供給用弁35が設けられている。尚、第一および第二の薬液供給手段30,31と希釈水供給手段32とはそれぞれバルブおよび供給用ポンプ等によって構成されている。   The chemical solution supply path 29 is composed of a pipe, the upstream side is connected to the dilution water storage tank 27, and the downstream side is connected to the suction pipe 12. A chemical solution supply valve 35 is provided in the chemical solution supply path 29 between the static mixer 33 and the suction pipe 12. The first and second chemical liquid supply means 30, 31 and the dilution water supply means 32 are each constituted by a valve, a supply pump, and the like.

以下、上記構成における作用を説明する。
濾過運転時においては、薬液供給用弁35を閉じ、吸引ポンプ13を駆動することにより、各膜カートリッジ8の内部に吸引負圧を作用させ、この吸引負圧によって被処理液3を濾過する。被処理液3は、各膜カートリッジ8の分離膜9を透過することにより濾過され、透過液として透過液流路に流入し、吸引管12を通じて系外に取り出される。また、ブロワ16を駆動して、散気装置14から散気を行う。
Hereinafter, the operation of the above configuration will be described.
During the filtration operation, the chemical solution supply valve 35 is closed and the suction pump 13 is driven to apply a suction negative pressure to the inside of each membrane cartridge 8, and the liquid to be treated 3 is filtered by this suction negative pressure. The liquid 3 to be treated is filtered by passing through the separation membrane 9 of each membrane cartridge 8, flows into the permeate flow path as a permeate, and is taken out of the system through the suction pipe 12. Further, the blower 16 is driven to diffuse air from the air diffuser 14.

また、上記のような濾過運転を所定期間実施した場合又は濾過運転の継続により各膜カートリッジ8の分離膜9の膜面にケーキ層が付着した場合、以下のようにして分離膜9を洗浄する。   When the filtration operation as described above is performed for a predetermined period or when a cake layer adheres to the membrane surface of the separation membrane 9 of each membrane cartridge 8 due to the continuation of the filtration operation, the separation membrane 9 is washed as follows. .

先ず、吸引ポンプ13とブロワ16とを停止して濾過運転を停止する。
その後、薬液供給用弁35を開き、希釈水貯留タンク27内の希釈水26を希釈水供給手段32によって薬液供給経路29に供給するとともに、第一の薬液貯留タンク21内の次亜塩素酸ナトリウム溶液20を第一の薬液供給手段30によって薬液供給経路29の希釈水26に供給し、第二の薬液貯留タンク24内の塩酸23を第二の薬液供給手段31によって薬液供給経路29の希釈水26に供給し、スタティックミキサー33によって希釈水26と次亜塩素酸ナトリウム溶液20と塩酸23とを混合する。これにより、次亜塩素酸ナトリウム溶液20と塩酸23とを含み希釈水26で希釈された薬液36が生成され、この薬液36が薬液供給経路29から吸引管12を通って各膜カートリッジ8に供給されて分離膜9に接触し、分離膜9が薬液36によって洗浄される。
First, the suction pump 13 and the blower 16 are stopped to stop the filtration operation.
Thereafter, the chemical solution supply valve 35 is opened, the dilution water 26 in the dilution water storage tank 27 is supplied to the chemical solution supply path 29 by the dilution water supply means 32, and the sodium hypochlorite in the first chemical solution storage tank 21 is supplied. The solution 20 is supplied to the dilution water 26 of the chemical solution supply path 29 by the first chemical solution supply means 30, and the hydrochloric acid 23 in the second chemical solution storage tank 24 is diluted with the dilution water of the chemical solution supply path 29 by the second chemical solution supply means 31. 26, the diluted water 26, the sodium hypochlorite solution 20, and the hydrochloric acid 23 are mixed by the static mixer 33. As a result, a chemical solution 36 containing the sodium hypochlorite solution 20 and hydrochloric acid 23 and diluted with the dilution water 26 is generated, and this chemical solution 36 is supplied from the chemical solution supply path 29 to the membrane cartridges 8 through the suction pipe 12. In contact with the separation membrane 9, the separation membrane 9 is washed with the chemical liquid 36.

次亜塩素酸ナトリウム溶液20は市販品を使用しており、そのpHはほぼ12〜13である。これに対して、薬液36は、市販品の次亜塩素酸ナトリウム溶液20に塩酸23と希釈水26とを混合することで、pHが7以上かつ9以下の範囲内に調整されているとともに、有効塩素濃度が0.01wt%以上かつ0.2wt%以下の範囲内に調整されている。   The sodium hypochlorite solution 20 uses a commercial product, and its pH is approximately 12-13. In contrast, the chemical solution 36 is adjusted to have a pH of 7 or more and 9 or less by mixing hydrochloric acid 23 and dilution water 26 with a commercially available sodium hypochlorite solution 20. The effective chlorine concentration is adjusted within the range of 0.01 wt% or more and 0.2 wt% or less.

上記のように、薬液36のpHを9以下にすることにより、薬液36の酸化力が上がって洗浄力が向上する。また、薬液36のpHを7以上にすることにより、塩素ガスの発生を抑制(低減)することができる。尚、pHが7以上かつ9以下の範囲内において、好ましくはpHを8以上かつ9以下の範囲内にすることにより、洗浄力の向上と塩素ガスの発生の抑制とがバランス良く実現でき、添加する塩酸23の比率を低く抑えることができる。   As described above, by setting the pH of the chemical liquid 36 to 9 or less, the oxidizing power of the chemical liquid 36 is increased and the cleaning power is improved. Further, by setting the pH of the chemical liquid 36 to 7 or more, generation of chlorine gas can be suppressed (reduced). In addition, when the pH is in the range of 7 or more and 9 or less, preferably by making the pH in the range of 8 or more and 9 or less, the improvement of the cleaning power and the suppression of the generation of chlorine gas can be realized in a balanced manner. It is possible to keep the ratio of hydrochloric acid 23 to be low.

尚、塩酸23は例えば濃度が4wt%のものを使用している。
下記表1は、市販品の有効塩素濃度12wt%の次亜塩素酸ナトリウム原液を水で希釈したときのpHとORP(酸化還元電位)の測定値、および、水で希釈した次亜塩素酸ナトリウム溶液に塩酸を混合してpHをほぼ8に調整したときのORPの測定値を示す。尚、ORPの値は白金電極値を水素電極換算値に換算したものである。
For example, hydrochloric acid 23 having a concentration of 4 wt% is used.
Table 1 below shows measured values of pH and ORP (redox potential) when diluting a commercially available sodium hypochlorite stock solution having an effective chlorine concentration of 12 wt% with water, and sodium hypochlorite diluted with water. The measured value of ORP when the pH is adjusted to approximately 8 by mixing hydrochloric acid into the solution is shown. The ORP value is a value obtained by converting a platinum electrode value into a hydrogen electrode equivalent value.

これによると、例えば最下欄に記載したように、有効塩素濃度12wt%の次亜塩素酸ナトリウム原液を水で5倍希釈した場合、次亜塩素酸ナトリウム溶液の有効塩素濃度が2.4wt%となり、その時のpHが12.1、ORPが740mVとなる。この希釈した次亜塩素酸ナトリウム溶液に塩酸を混合してpHを8.0に調整したときのORPが1089mVである。このように塩酸を混合してpHを12.1から8.0に下げることによって、ORPが740mVから1089mVに上昇しているため、酸化力が向上していることがわかる。また、10〜80倍希釈においても同様に、pHを8.0又は8.1に下げることによって、ORPが上昇するため、酸化力が向上する。   According to this, for example, as described in the bottom column, when a sodium hypochlorite stock solution having an effective chlorine concentration of 12 wt% is diluted five times with water, the effective chlorine concentration of the sodium hypochlorite solution is 2.4 wt%. The pH at that time is 12.1 and the ORP is 740 mV. The ORP when the pH is adjusted to 8.0 by mixing hydrochloric acid with this diluted sodium hypochlorite solution is 1089 mV. Thus, it can be seen that by reducing the pH from 12.1 to 8.0 by mixing hydrochloric acid, the ORP increases from 740 mV to 1089 mV, so that the oxidizing power is improved. Similarly, in the 10 to 80-fold dilution, the ORP increases by lowering the pH to 8.0 or 8.1, so that the oxidizing power is improved.

Figure 2016172216
また、下記表2は、有効塩素濃度0.6wt%の次亜塩素酸ナトリウム溶液100mLに濃度4wt%の塩酸を混合したときのpHとORP(水素電極換算値)との測定値を示し、例えば次亜塩素酸ナトリウム溶液に塩酸を15mL添加した場合、このときの塩酸の添加量は16.4ミリ当量となり、混合液のpHが8.14、ORPが1069mVとなる。
Figure 2016172216
Table 2 below shows measured values of pH and ORP (hydrogen electrode equivalent) when 100 mL of sodium hypochlorite solution having an effective chlorine concentration of 0.6 wt% was mixed with hydrochloric acid having a concentration of 4 wt%. When 15 mL of hydrochloric acid is added to the sodium hypochlorite solution, the amount of hydrochloric acid added at this time is 16.4 milliequivalent, the pH of the mixture is 8.14, and the ORP is 1069 mV.

Figure 2016172216
図2に、上記表2のpHとORPの関係を示すグラフを記載している。これによると、次亜塩素酸ナトリウム溶液に塩酸を混合してpHを12から下げていくことにより、ORPが上昇するため、酸化力が向上することが分かる。
Figure 2016172216
FIG. 2 is a graph showing the relationship between pH and ORP in Table 2 above. According to this, it can be understood that ORP increases by mixing hydrochloric acid with sodium hypochlorite solution and lowering the pH from 12, so that the oxidizing power is improved.

このようなことから、市販品の次亜塩素酸ナトリウム溶液20を希釈水26で希釈するとともに塩酸23を混合して薬液36のpHを7以上かつ9以下の範囲内に調整することにより、薬液36の酸化力が上がって洗浄力が向上するため、分離膜9を短時間で十分に洗浄することができる。   Therefore, by diluting the commercially available sodium hypochlorite solution 20 with the dilution water 26 and mixing hydrochloric acid 23 to adjust the pH of the chemical solution 36 within the range of 7 or more and 9 or less, the chemical solution Since the oxidizing power of 36 is increased and the cleaning power is improved, the separation membrane 9 can be sufficiently cleaned in a short time.

また、図3は上記表2の塩酸の添加量と混合液のpHの関係をグラフにした中和曲線を示し、塩酸の添加量(mg/リットル)が増加するほど、混合液のpHが低下していくが、pHが8の近辺からは、塩酸の添加量の増加に対してpHは緩やかに低下する傾向にある。尚、pHが7以上かつ9以下の範囲では、上記のように塩酸の添加量の増加に対してpHが緩やかに低下する。したがって、塩素ガスの発生を十分に抑制する観点及び塩酸23の添加量を抑える観点に基づけば、pHが8以上かつ9以下の範囲がより好ましい。   FIG. 3 shows a neutralization curve in which the relationship between the addition amount of hydrochloric acid and the pH of the mixed solution shown in Table 2 is graphed, and the pH of the mixed solution decreases as the added amount of hydrochloric acid (mg / liter) increases. However, from the vicinity of pH 8, the pH tends to gradually decrease with an increase in the amount of hydrochloric acid added. In addition, when the pH is in the range of 7 or more and 9 or less, the pH gradually decreases as the amount of hydrochloric acid added increases as described above. Therefore, based on the viewpoint of sufficiently suppressing the generation of chlorine gas and the viewpoint of suppressing the addition amount of hydrochloric acid 23, the pH is more preferably in the range of 8 or more and 9 or less.

図3に示したような中和曲線を様々な有効塩素濃度の次亜塩素酸ナトリウム溶液について予め作成しておくことにより、様々な有効塩素濃度の次亜塩素酸ナトリウム溶液に対する塩酸の混合量とpHとの関係を前以て把握することができる。この関係に基づいて、分離膜洗浄システム19の第一の薬液供給手段30と第二の薬液供給手段31と希釈水供給手段32とを制御手段(図示省略)により制御し、希釈水26と次亜塩素酸ナトリウム溶液20と塩酸23との混合量を調節することにより、容易かつ正確に薬液36のpHを7以上かつ9以下の範囲内に調整することができる。   By preparing a neutralization curve as shown in FIG. 3 for sodium hypochlorite solutions with various effective chlorine concentrations in advance, the amount of hydrochloric acid mixed with the sodium hypochlorite solution with various effective chlorine concentrations and The relationship with pH can be grasped in advance. Based on this relationship, the first chemical solution supply means 30, the second chemical solution supply means 31, and the dilution water supply means 32 of the separation membrane cleaning system 19 are controlled by the control means (not shown), and the dilution water 26 and the next By adjusting the mixing amount of the sodium chlorite solution 20 and the hydrochloric acid 23, the pH of the chemical solution 36 can be easily and accurately adjusted within the range of 7 or more and 9 or less.

(第2の実施の形態)
第2の実施の形態では、膜カートリッジ8の洗浄前の膜間差圧を測定し、この膜間差圧に応じて、洗浄回数と薬液36の有効塩素濃度との少なくともいずれかを変更する。
(Second Embodiment)
In the second embodiment, the transmembrane differential pressure before cleaning the membrane cartridge 8 is measured, and at least one of the number of cleanings and the effective chlorine concentration of the chemical liquid 36 is changed according to the intermembrane differential pressure.

例えば、膜カートリッジ8の膜間差圧に閾値Aを設定しておき、洗浄前に測定した膜間差圧が閾値A以上の場合、分離膜9の汚れ具合が大きいと判断し、洗浄回数を1回ではなく2回又はそれ以上の複数回に増やして洗浄する。また、洗浄前に測定した膜間差圧が閾値A未満の場合、分離膜9の汚れ具合が小さいと判断し、洗浄回数を1回にして洗浄する。   For example, when the threshold A is set for the transmembrane pressure difference of the membrane cartridge 8 and the transmembrane pressure difference measured before washing is equal to or greater than the threshold A, it is determined that the degree of contamination of the separation membrane 9 is large, and the number of washings is set. Rinse more than two times instead of once. Further, when the transmembrane pressure difference measured before the cleaning is less than the threshold A, it is determined that the degree of contamination of the separation membrane 9 is small, and the cleaning is performed once.

これにより、分離膜9の汚れ具合に応じた洗浄を行うことができ、無駄のない有効な洗浄が可能となる。
上記第2の実施の形態では、洗浄前に測定した膜間差圧に応じて洗浄回数を変更しているが、薬液36の有効塩素濃度を変更してもよい。例えば、洗浄前に測定した膜間差圧が閾値A以上の場合、分離膜9の汚れ具合が大きいと判断し、有効塩素濃度の高い(例えば濃度0.2wt%)薬液36を使用して洗浄する。また、洗浄前に測定した膜間差圧が閾値A未満の場合、分離膜9の汚れ具合が小さいと判断し、有効塩素濃度の低い(例えば濃度0.01wt%)薬液36を使用して洗浄する。
As a result, cleaning according to the degree of contamination of the separation membrane 9 can be performed, and efficient cleaning without waste becomes possible.
In the second embodiment, the number of cleanings is changed according to the transmembrane pressure difference measured before cleaning, but the effective chlorine concentration of the chemical liquid 36 may be changed. For example, when the transmembrane pressure difference measured before cleaning is equal to or higher than the threshold A, it is determined that the separation membrane 9 is heavily soiled, and cleaning is performed using a chemical solution 36 having a high effective chlorine concentration (for example, a concentration of 0.2 wt%). To do. When the transmembrane pressure difference measured before washing is less than the threshold value A, it is judged that the separation membrane 9 is dirty, and washing is performed using a chemical solution 36 having a low effective chlorine concentration (for example, a concentration of 0.01 wt%). To do.

また、洗浄前に測定した膜間差圧に応じて洗浄回数と薬液36の有効塩素濃度との両者を変更してもよい。
また、上記第2の実施の形態において、各判断や各変更を、制御手段(図示省略)を用いて行ってもよい。
Moreover, you may change both the frequency | count of washing | cleaning and the effective chlorine concentration of the chemical | medical solution 36 according to the transmembrane differential pressure measured before washing | cleaning.
In the second embodiment, each determination and each change may be performed using a control unit (not shown).

上記各実施の形態では、酸の一例として塩酸23を用いたが、塩酸23以外の鉱酸を用いてもよい。   In each of the above embodiments, hydrochloric acid 23 is used as an example of the acid, but a mineral acid other than hydrochloric acid 23 may be used.

6 膜分離装置
9 分離膜
19 分離膜洗浄システム
20 次亜塩素酸ナトリウム溶液
21 第一の薬液貯留タンク(第一の薬液貯留部)
23 塩酸(酸)
24 第二の薬液貯留タンク(第二の薬液貯留部)
26 希釈水
27 希釈水貯留タンク(希釈水貯留部)
29 薬液供給経路
30 第一の薬液供給手段
31 第二の薬液供給手段
33 スタティックミキサー(薬液混合手段)
36 薬液
6 Membrane Separator 9 Separation Membrane 19 Separation Membrane Cleaning System 20 Sodium Hypochlorite Solution 21 First Chemical Solution Storage Tank (First Chemical Solution Storage Unit)
23 Hydrochloric acid (acid)
24 2nd chemical | medical solution storage tank (2nd chemical | medical solution storage part)
26 Dilution water 27 Dilution water storage tank (dilution water storage part)
29 Chemical liquid supply path 30 First chemical liquid supply means 31 Second chemical liquid supply means 33 Static mixer (chemical liquid mixing means)
36 chemicals

Claims (8)

膜分離活性汚泥処理で使用される膜分離装置の分離膜を、次亜塩素酸ナトリウムと酸を含む薬液を用いて洗浄することを特徴とする膜分離装置の分離膜の洗浄方法。 A method for cleaning a separation membrane of a membrane separation device, comprising: cleaning a separation membrane of a membrane separation device used in membrane separation activated sludge treatment using a chemical solution containing sodium hypochlorite and an acid. 薬液はpHが7以上かつ9以下の範囲となるように酸の混合量が調整されることを特徴とする請求項1記載の膜分離装置の分離膜の洗浄方法。 The method for cleaning a separation membrane of a membrane separation apparatus according to claim 1, wherein the amount of the acid mixed is adjusted so that the chemical solution has a pH in the range of 7 or more and 9 or less. 薬液は、次亜塩素酸ナトリウムを分離膜と接触させるために送液する途中で酸を添加することにより、pH調整されることを特徴とする請求項1又は請求項2に記載の膜分離装置の分離膜の洗浄方法。 The membrane separation apparatus according to claim 1 or 2, wherein the chemical solution is adjusted in pH by adding an acid in the middle of feeding sodium hypochlorite in contact with the separation membrane. Method for cleaning the separation membrane. 予め求めた次亜塩素酸ナトリウムに対する酸の混合量とpHとの関係から、酸の混合量を決めることを特徴とする請求項2又は請求項3に記載の膜分離装置の分離膜の洗浄方法。 4. The method for cleaning a separation membrane of a membrane separation apparatus according to claim 2, wherein the acid mixing amount is determined from the relationship between the acid mixing amount with respect to sodium hypochlorite and the pH determined in advance. . 薬液の有効塩素濃度が0.01wt%以上かつ0.2wt%以下の範囲であることを特徴とする請求項1から請求項4のいずれか1項に記載の膜分離装置の分離膜の洗浄方法。 The method for cleaning a separation membrane of a membrane separation device according to any one of claims 1 to 4, wherein the effective chlorine concentration of the chemical solution is in the range of 0.01 wt% or more and 0.2 wt% or less. . 洗浄前の膜間差圧に応じて、洗浄回数と薬液の有効塩素濃度との少なくともいずれかを変更することを特徴とする請求項1から請求項5のいずれか1項に記載の膜分離装置の分離膜の洗浄方法。 6. The membrane separation device according to claim 1, wherein at least one of the number of times of cleaning and the effective chlorine concentration of the chemical solution is changed according to the transmembrane pressure difference before cleaning. Method for cleaning the separation membrane. 膜分離活性汚泥処理で使用される膜分離装置の分離膜を洗浄するための薬液であって、所定のpHとなるように次亜塩素酸ナトリウムと酸を混合したことを特徴とする分離膜の洗浄用薬液。 A chemical solution for cleaning a separation membrane of a membrane separation device used in membrane separation activated sludge treatment, characterized in that sodium hypochlorite and an acid are mixed so as to have a predetermined pH. Chemical solution for cleaning. 膜分離活性汚泥処理で使用される膜分離装置の分離膜を洗浄するための分離膜洗浄システムであって、
次亜塩素酸ナトリウムを貯留する第一の薬液貯留部と、
酸を貯留する第二の薬液貯留部と、
希釈水を貯留する希釈水貯留部と、
希釈水貯留部から膜分離装置へ希釈水を供給するための薬液供給経路と、
薬液供給経路に接続されて希釈水中に次亜塩素酸ナトリウムを供給する第一の薬液供給手段と、
薬液供給経路に接続されて希釈水中に酸を供給する第二の薬液供給手段と、
第一および第二の薬液供給手段よりも下流側における薬液供給経路に配置される薬液混合手段と
を備えることを特徴とする分離膜洗浄システム。
A separation membrane cleaning system for cleaning a separation membrane of a membrane separation device used in membrane separation activated sludge treatment,
A first chemical reservoir for storing sodium hypochlorite;
A second chemical storage section for storing acid;
A dilution water reservoir for storing dilution water;
A chemical solution supply path for supplying dilution water from the dilution water reservoir to the membrane separation device;
A first chemical supply means connected to the chemical supply path for supplying sodium hypochlorite into the diluted water;
A second chemical supply means connected to the chemical supply path for supplying acid into the diluted water;
A separation membrane cleaning system comprising: a chemical liquid mixing unit disposed in a chemical liquid supply path downstream of the first and second chemical liquid supply units.
JP2015052763A 2015-03-17 2015-03-17 Cleaning method of separation membrane of membrane separation device, cleaning chemical, and separation membrane cleaning system Pending JP2016172216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015052763A JP2016172216A (en) 2015-03-17 2015-03-17 Cleaning method of separation membrane of membrane separation device, cleaning chemical, and separation membrane cleaning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015052763A JP2016172216A (en) 2015-03-17 2015-03-17 Cleaning method of separation membrane of membrane separation device, cleaning chemical, and separation membrane cleaning system

Publications (1)

Publication Number Publication Date
JP2016172216A true JP2016172216A (en) 2016-09-29

Family

ID=57008586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015052763A Pending JP2016172216A (en) 2015-03-17 2015-03-17 Cleaning method of separation membrane of membrane separation device, cleaning chemical, and separation membrane cleaning system

Country Status (1)

Country Link
JP (1) JP2016172216A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067818A1 (en) * 2015-10-21 2017-04-27 Itn Nanovation Ag Method for cleaning a porous membrane
CN111447988A (en) * 2017-12-13 2020-07-24 株式会社久保田 Management device for water treatment facility, cleaning chemical solution ordering system for water treatment facility, chemical solution ordering method for water treatment facility, and chemical solution cleaning plan making method for water treatment facility
CN114956312A (en) * 2022-04-07 2022-08-30 天津美天水环境科技有限公司 Method for cleaning membrane of MBR system for aldehyde-containing wastewater and preventing scaling

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281082A (en) * 1995-04-13 1996-10-29 Kubota Corp Washing method of immersion type membrane cartridge
JP2001252536A (en) * 2000-03-10 2001-09-18 Mitsubishi Heavy Ind Ltd Method for cleaning filter membrane and apparatus for filtering seawater using the same
JP3085356U (en) * 2001-10-15 2002-04-26 株式会社オーエスジー・コーポレーション Sterilization water production equipment
JP2004154707A (en) * 2002-11-07 2004-06-03 Mitsubishi Rayon Co Ltd Method for washing separation membrane
JP2006204996A (en) * 2005-01-26 2006-08-10 Toray Ind Inc Method for washing porous membrane, water treatment apparatus, and method for cleaning porous membrane module
JP2007061697A (en) * 2005-08-30 2007-03-15 Toray Ind Inc Separation film cleaning method and organic wastewater treatment system
WO2012077506A1 (en) * 2010-12-10 2012-06-14 東レ株式会社 Chemical cleaning method for immersed membrane element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281082A (en) * 1995-04-13 1996-10-29 Kubota Corp Washing method of immersion type membrane cartridge
JP2001252536A (en) * 2000-03-10 2001-09-18 Mitsubishi Heavy Ind Ltd Method for cleaning filter membrane and apparatus for filtering seawater using the same
JP3085356U (en) * 2001-10-15 2002-04-26 株式会社オーエスジー・コーポレーション Sterilization water production equipment
JP2004154707A (en) * 2002-11-07 2004-06-03 Mitsubishi Rayon Co Ltd Method for washing separation membrane
JP2006204996A (en) * 2005-01-26 2006-08-10 Toray Ind Inc Method for washing porous membrane, water treatment apparatus, and method for cleaning porous membrane module
JP2007061697A (en) * 2005-08-30 2007-03-15 Toray Ind Inc Separation film cleaning method and organic wastewater treatment system
WO2012077506A1 (en) * 2010-12-10 2012-06-14 東レ株式会社 Chemical cleaning method for immersed membrane element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067818A1 (en) * 2015-10-21 2017-04-27 Itn Nanovation Ag Method for cleaning a porous membrane
CN111447988A (en) * 2017-12-13 2020-07-24 株式会社久保田 Management device for water treatment facility, cleaning chemical solution ordering system for water treatment facility, chemical solution ordering method for water treatment facility, and chemical solution cleaning plan making method for water treatment facility
CN111447988B (en) * 2017-12-13 2022-07-19 株式会社久保田 Management device for water treatment facility, cleaning chemical solution ordering system, ordering method, and chemical solution cleaning plan making method
US11471835B2 (en) 2017-12-13 2022-10-18 Kubota Corporation Management device for water treatment facility, cleaning chemical solution order placement system for water treatment facility, chemical solution order placement method for water treatment facility, and chemical solution cleaning planning method for water treatment facility
CN114956312A (en) * 2022-04-07 2022-08-30 天津美天水环境科技有限公司 Method for cleaning membrane of MBR system for aldehyde-containing wastewater and preventing scaling

Similar Documents

Publication Publication Date Title
US20170298552A1 (en) Electrolyzed water generating device, electrolyte for generating electrolyzed water, and electrolyzed water for disinfection
WO2017006837A1 (en) Electrolysis device and apparatus for producing electrolyzed ozonated water
JP5786080B1 (en) Washing machine, electrolyte for generating electrolyzed water and electrolyzed water for rinsing
JP5714060B2 (en) Dialysate preparation water production equipment
WO2014006740A1 (en) Device for producing water for preparing dialysate
JP2015181973A (en) Membrane filtration system, membrane filtration method, and apparatus of producing rearing water for aquatic organism
JP5840248B2 (en) Dialysate production equipment
JP2017113729A (en) Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane
JP2016172216A (en) Cleaning method of separation membrane of membrane separation device, cleaning chemical, and separation membrane cleaning system
JP5471242B2 (en) Water treatment method and apparatus
JP2005177672A (en) Electrolysis type ozonizer
JP4984460B2 (en) Separation membrane cleaning method and organic sewage treatment apparatus
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP6576062B2 (en) Separation membrane cleaning method for membrane separation apparatus
JP4394941B2 (en) Electrolytic ozonizer
JP2016013349A (en) Device for manufacturing hydrogen water for diluting dialysis fluid
JP2008178845A (en) Electrolyzed hypochlorous water production apparatus
JP6171047B1 (en) Electrolyzed water production apparatus and operation method thereof
JP6494346B2 (en) Separation membrane cleaning method and system for membrane separation apparatus
JP2012086182A (en) Water treatment method and water treatment device
JP2005329331A (en) Water treatment method and water treatment apparatus
JPWO2012057176A1 (en) Water treatment method and water production method
JP6650586B2 (en) Electrolyzed water generator
JP7067678B1 (en) Filtration membrane cleaning equipment, water treatment equipment and filtration membrane cleaning method
JP7282953B1 (en) Water treatment device and hydrogen bacteria growth determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190219