JP2016171189A - Surface planarization method - Google Patents

Surface planarization method Download PDF

Info

Publication number
JP2016171189A
JP2016171189A JP2015049628A JP2015049628A JP2016171189A JP 2016171189 A JP2016171189 A JP 2016171189A JP 2015049628 A JP2015049628 A JP 2015049628A JP 2015049628 A JP2015049628 A JP 2015049628A JP 2016171189 A JP2016171189 A JP 2016171189A
Authority
JP
Japan
Prior art keywords
solution
field light
surface flattening
substrate
flattening method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015049628A
Other languages
Japanese (ja)
Other versions
JP6560510B2 (en
Inventor
大津 元一
Genichi Otsu
元一 大津
八井 崇
Takashi Yatsui
崇 八井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RES INST OF NANOPHOTONICS
RESEARCH INSTITUTE OF NANOPHOTONICS
Original Assignee
RES INST OF NANOPHOTONICS
RESEARCH INSTITUTE OF NANOPHOTONICS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RES INST OF NANOPHOTONICS, RESEARCH INSTITUTE OF NANOPHOTONICS filed Critical RES INST OF NANOPHOTONICS
Priority to JP2015049628A priority Critical patent/JP6560510B2/en
Publication of JP2016171189A publication Critical patent/JP2016171189A/en
Application granted granted Critical
Publication of JP6560510B2 publication Critical patent/JP6560510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a surface planarization method using near-field light capable being carried out without using a chlorine gas.SOLUTION: The surface planarization method using near-field light includes steps of: coating a reactive solution 3 on a surface of an object 2 to be planarized on the surface of which a nano-order projection 22 is formed; and irradiating the object 2 to be planarized coated with the reactive solution 3 with light of a wavelength capable of generating near-field light at the projection 22.SELECTED DRAWING: Figure 3

Description

本発明は、フォトリソグラフィやドライエッチング等を行う際に、シリコンウェハ等の基板表面に残存する、フォトレジスト等よりなる不要なナノスケールの凸部を選択的に除去して平坦化するための近接場光を用いた表面平坦化方法に関する。   In the present invention, when performing photolithography, dry etching, or the like, proximity for selectively removing unnecessary nanoscale protrusions made of photoresist or the like remaining on the surface of a substrate such as a silicon wafer for planarization. The present invention relates to a surface flattening method using field light.

近年、半導体デバイスの微細化、高集積化に伴って、高度に微細化、多層化された薄膜構造を製造する技術が要求されている。このように、微細化、多層化された薄膜構造を製造する方法として、フォトリソグラフィやドライエッチングが用いられている(特許文献1参照)。   In recent years, with the miniaturization and high integration of semiconductor devices, there is a demand for a technique for manufacturing a highly miniaturized and multilayered thin film structure. As described above, photolithography or dry etching is used as a method for manufacturing a thin film structure having a fine structure and a multilayered structure (see Patent Document 1).

フォトリソグラフィやドライエッチング等を用いて電子デバイスの配線形成や微細構造の加工を行う場合、一般的に、基板上にはフォトレジストや金属薄膜等、複数の異種材料からなる薄層が形成される。こうした基板およびその表面に薄層が形成された構造体を、以下基板構造体と称する。このような基板構造体の加工が進むに従い、異種材料からなる薄層は必要に応じて基板上から除去され、基板上には必要なパターンのみが残される。   When wiring of electronic devices and fine structure processing are performed using photolithography, dry etching, etc., generally, a thin layer made of a plurality of different materials such as a photoresist and a metal thin film is formed on a substrate. . Such a substrate and a structure having a thin layer formed on the surface thereof are hereinafter referred to as a substrate structure. As processing of such a substrate structure proceeds, a thin layer made of a different material is removed from the substrate as necessary, and only a necessary pattern is left on the substrate.

しかし、加工を行う基板上に微細な塵等が付着して、この塵により不要となった層の除去が十分に行われない場合等に、本来除去されるはずであった薄層が、数nmのサイズ(ナノオーダー)の凸部として基板表面に僅かに残存してしまうことがある。   However, when fine dust or the like adheres to the substrate to be processed and the layer unnecessary by this dust is not sufficiently removed, there are several thin layers that should have been removed. There may be a slight remaining on the surface of the substrate as a convex portion of nm size (nano order).

こうして基板上に残存したナノオーダーの凸部を除去するために、更にドライエッチングを行うと、残すべきパターン等の構造部分までもエッチングしてしまう恐れがあった。この問題は特に、残すべき構造部分が不要な凸部と同じくナノオーダーである場合に特に顕著なものとなっていた。   If dry etching is further performed in order to remove the nano-order convex portions remaining on the substrate in this way, there is a possibility that even the structure portion such as a pattern to be left is etched. This problem is particularly noticeable when the structure to be left is in the nano-order, as is the unnecessary protrusion.

そのため、ナノオーダーの不要な凸部のみを選択的に除去することが可能なエッチング方法が強く望まれていた。   Therefore, there has been a strong demand for an etching method that can selectively remove only the unnecessary convex portions in the nano order.

こうしたエッチングを可能とする方法として、特許文献2には、近接場光を用いた表面平坦化方法が開示されている。   As a method for enabling such etching, Patent Document 2 discloses a surface flattening method using near-field light.

近接場光を用いた表面平坦化方法は、従来、塩素系ガスが導入されたチャンバ内に基板等のエッチング対象物を配置して行われていた。そして、塩素系ガスのガス分子の吸収端波長よりも長波長からなる光をエッチング対象物に照射することで、エッチング対象物の表面の凸部に近接場光を発生させ、この近接場光により塩素系ガスが解離し発生する活性種により上記凸部が化学反応しエッチングが行われていた。   Conventionally, the surface planarization method using near-field light has been performed by placing an etching object such as a substrate in a chamber into which a chlorine-based gas has been introduced. Then, by irradiating the etching object with light having a wavelength longer than the absorption edge wavelength of the gas molecule of the chlorine-based gas, near-field light is generated on the convex portion of the surface of the etching object, and this near-field light Etching is performed by the chemical reaction of the convex portion by the active species generated by dissociation of the chlorine-based gas.

特開平08−031827号公報Japanese Patent Laid-Open No. 08-031827 特開2009−167030号公報JP 2009-167030 A

上述した従来の近接場光を用いた表面平坦化方法は、有害な塩素系ガスを用いるものであったが、こうした有害なガスを用いることなく近接場光を用いたエッチングができれば安全性の面から見てより好ましい。   The conventional surface flattening method using near-field light described above uses a harmful chlorine-based gas. However, if etching using near-field light can be performed without using such a harmful gas, the surface of safety can be improved. More preferable from the viewpoint.

そして、塩素系ガスが不要になれば、従来塩素系ガスを用いるエッチングを行う際に必要であった真空装置等が不要となり、エッチングを行うための設備が大幅に簡略化されるため更に好ましい。   If the chlorine-based gas is not required, a vacuum apparatus or the like that has been conventionally required when etching using the chlorine-based gas is not required, and the equipment for performing the etching is greatly simplified, which is further preferable.

そこで、本発明は、上述した問題点に鑑みて案出されたものであり、近接場光を用いた表面平坦化方法であって、塩素系ガスを用いることなく行うことができるものを提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and provides a surface flattening method using near-field light that can be performed without using a chlorine-based gas. For the purpose.

本発明者は、上述した課題を解決するために、塩素系ガスを用いることなく行う近接場光を用いた表面平坦化方法を発明した。   In order to solve the above-described problems, the present inventors have invented a surface flattening method using near-field light that is performed without using a chlorine-based gas.

第1発明に係る表面平坦化方法は、近接場光を用いた表面平坦化方法であって、表面にナノオーダーの凸部が形成された平坦化対象物の表面に近接場光と反応して活性種を発生する反応性溶液を塗布する工程と、前記反応性溶液が塗布された前記平滑化対象物に対し、前記凸部に近接場光を発生しうる波長の光を照射する工程と、を有することを特徴とする。   The surface flattening method according to the first aspect of the present invention is a surface flattening method using near-field light, which reacts with near-field light on the surface of a flattened object having nano-order convex portions formed on the surface. Applying a reactive solution that generates active species, irradiating the smoothing object to which the reactive solution is applied with light having a wavelength capable of generating near-field light on the convex portion, and It is characterized by having.

第2発明に係る表面平坦化方法は、第1発明において、前記反応性溶液は、次亜塩素酸カルシウム水溶液であることを特徴とする。   The surface flattening method according to a second invention is characterized in that, in the first invention, the reactive solution is a calcium hypochlorite aqueous solution.

第3発明に係る表面平坦化方法は、第1発明において、前記反応性溶液は、次亜塩素酸ナトリウム水溶液であることを特徴とする。   The surface flattening method according to a third invention is characterized in that, in the first invention, the reactive solution is a sodium hypochlorite aqueous solution.

第4発明に係る表面平坦化方法は、第1発明において、前記反応性溶液は、過酸化水素水であることを特徴とする。   According to a fourth aspect of the present invention, there is provided the surface flattening method according to the first aspect, wherein the reactive solution is a hydrogen peroxide solution.

第5発明に係る表面平坦化方法は、第1発明において、前記反応性溶液は、ヨウ素カリウムとヨウ素溶液の混合物であることを特徴とする。   According to a fifth aspect of the present invention, there is provided the surface flattening method according to the first aspect, wherein the reactive solution is a mixture of potassium potassium and iodine solution.

上述した構成からなる本発明によれば、従来用いられていた塩素系ガスのかわりに反応性溶液を用いることで、従来の近接場光を用いた表面平坦化方法よりも安全かつ簡易な設備で平坦化対象物の表面平坦化を行うことができる。   According to the present invention having the above-described configuration, by using a reactive solution instead of the conventionally used chlorine-based gas, it is possible to use safer and simpler equipment than the conventional surface flattening method using near-field light. The surface of the object to be flattened can be flattened.

平坦化対象物の表面の形状を示す模式図である。It is a schematic diagram which shows the shape of the surface of the planarization target object. 本発明に係る表面平坦化方法を実行するために用いられる表面平坦化装置の構成を示す概略構造図である。It is a schematic structure figure showing composition of a surface flattening device used in order to perform a surface flattening method concerning the present invention. 凸部の局所領域で発生する反応について説明する模式図である。It is a schematic diagram explaining the reaction generate | occur | produced in the local area | region of a convex part. 凸部を有する基板を平坦化する工程を示し、(A)は平坦化前の基板を示す模式図、(B)は凸部に近接場光が発生し平坦化が行われている状態の基板を示す模式図、(C)は基板が平坦化された状態を示す模式図である。The process of planarizing the board | substrate which has a convex part is shown, (A) is a schematic diagram which shows the board | substrate before planarization, (B) is the board | substrate of the state in which the near field light generate | occur | produced in the convex part and planarization is performed (C) is a schematic diagram which shows the state by which the board | substrate was planarized. 本発明に係る表面平坦化方法と従来の近接場光を用いた表面平坦化方法によるエッチング効果を比較するグラフである。It is a graph which compares the etching effect by the surface planarization method based on this invention, and the surface planarization method using the conventional near field light.

以下、本発明に係る、近接場光を用いたエッチングによる表面平坦化方法の実施形態について説明する。   Hereinafter, an embodiment of a surface flattening method by etching using near-field light according to the present invention will be described.

まず、本実施形態において平坦化対象物となる基板について説明する。図1は、平坦化対象物の表面の形状を示す模式図である。   First, a substrate that is an object to be planarized in the present embodiment will be described. FIG. 1 is a schematic diagram showing the shape of the surface of the object to be flattened.

本実施形態に係る表面平坦化方法による表面平坦化の対象となる基板2は、例えば図1に模式的に示すように、ガラス、プラスチック、シリコンウェハ、ダイヤモンド、ガリウムナイトライド等の素材により形成されている基板2の表面21に、ナノオーダーの微細な凸部22が形成されている。   The substrate 2 to be surface flattened by the surface flattening method according to the present embodiment is formed of a material such as glass, plastic, silicon wafer, diamond, gallium nitride, etc., as schematically shown in FIG. On the surface 21 of the substrate 2, a nano-order fine protrusion 22 is formed.

凸部22は、基板2自体の表面粗さにより生じるものの他、基板2に対するエッチング等の各種加工を経た後に残存する、不要な酸化膜やフォトレジスト、金属薄膜等により生じるものであってもよい。   In addition to the surface roughness of the substrate 2 itself, the protrusion 22 may be generated by an unnecessary oxide film, photoresist, metal thin film, or the like remaining after various processing such as etching on the substrate 2. .

本実施形態に係る近接場光を用いた表面平坦化方法では、不要な凸部22に近接場光を発生させるとともに、その凸部22に近接場光と反応して活性種を発生する反応性溶液に由来する活性種を反応させることで、基板2の他の部分に影響を及ぼすことなく、凸部22のみを選択的に除去することが可能となる。   In the surface flattening method using near-field light according to this embodiment, near-field light is generated at unnecessary convex portions 22 and the reactive species that reacts with near-field light at the convex portions 22 to generate active species. By reacting the active species derived from the solution, it is possible to selectively remove only the convex portion 22 without affecting other portions of the substrate 2.

本実施形態に係る表面平坦化方法は、図2に概略的に示すような表面平坦化装置1を用いて行われる。   The surface flattening method according to the present embodiment is performed using a surface flattening apparatus 1 as schematically shown in FIG.

この表面平坦化装置1は、基板2に光を照射するための光源11と、光源から照射された光を反射し基板2に導く反射ミラー12と、反射ミラー12と基板2の間に設けられ光の形状や偏向方向を制御可能とする照明光学系13とを備えて構成されている。   This surface flattening device 1 is provided between a light source 11 for irradiating light onto a substrate 2, a reflection mirror 12 that reflects light emitted from the light source and guides it to the substrate 2, and between the reflection mirror 12 and the substrate 2. An illumination optical system 13 that can control the shape and deflection direction of light is provided.

光源11は、開示しない駆動電源による制御に基づき、所定の波長を有する光を照射するものである。この光源11からは、反応性溶液3に含まれる反応性イオンの吸収端波長よりも長波長からなる光であって、基板2の凸部22に近接場光を発生しうる波長の光が射出される。この光源11は、例えば、He−Neレーザー発振器やArレーザー発振器によって構成されている。   The light source 11 irradiates light having a predetermined wavelength based on control by a driving power source not disclosed. The light source 11 emits light having a wavelength longer than the absorption edge wavelength of the reactive ions contained in the reactive solution 3 and having a wavelength capable of generating near-field light on the convex portion 22 of the substrate 2. Is done. The light source 11 is composed of, for example, a He—Ne laser oscillator or an Ar laser oscillator.

なお、凸部22に近接場光が発生するのは、凸部22のみが周りの反応性溶液3と屈折率が異なるためである。   Note that the near-field light is generated at the convex portion 22 because only the convex portion 22 has a refractive index different from that of the surrounding reactive solution 3.

照射光学系13は、図示しない偏光レンズや集束レンズ等を備えて構成されている。照射光学系13により、凸部22の位置、大きさ、範囲等に応じて、ビーム径やビーム形状を制御し、光を照射する範囲を絞ることができる。   The irradiation optical system 13 includes a polarization lens and a focusing lens (not shown). The irradiation optical system 13 can control the beam diameter and the beam shape in accordance with the position, size, range, and the like of the convex portion 22, and can narrow down the light irradiation range.

なお、反射ミラー12及び照明光学系13は本発明に係る表面平坦化方法を実行する上で必須の構成ではなく、表面平坦化装置1の構成は適宜変更することができる。   The reflection mirror 12 and the illumination optical system 13 are not essential components for executing the surface flattening method according to the present invention, and the configuration of the surface flattening device 1 can be changed as appropriate.

この表面平坦化装置1内には、表面平坦化装置1による表面平坦化の対象となる、表面にナノオーダーの凸部22が形成された基板2が、その表面に反応性溶液3が塗布された状態で載置される。   In this surface flattening device 1, a substrate 2 with a nano-order convex portion 22 formed on the surface, which is a target of surface flattening by the surface flattening device 1, is coated with a reactive solution 3 on the surface. It is mounted in the state.

反応性溶液3は、次亜塩素酸カルシウム、次亜塩素酸ナトリウム、過酸化水素水、及びヨウ化カリウムとヨウ素との混合物等の水溶液である。この反応性溶液3は、基板2に対し、スポイト等を用いて液滴として滴下される他、スプレーや筆等を用いて塗布されてもよい。あるいは、所定の容器に反応性溶液3を入れ、その中に基板2を浸けてもよい。   The reactive solution 3 is an aqueous solution such as calcium hypochlorite, sodium hypochlorite, hydrogen peroxide, and a mixture of potassium iodide and iodine. The reactive solution 3 may be applied to the substrate 2 as droplets using a dropper or the like, or may be applied using a spray or a brush. Alternatively, the reactive solution 3 may be placed in a predetermined container, and the substrate 2 may be immersed therein.

次に、反応性溶液3として次亜塩素酸カルシウムを用いた場合を例に、本実施形態に係る表面平坦化方法について説明する。   Next, the surface flattening method according to this embodiment will be described by taking as an example the case where calcium hypochlorite is used as the reactive solution 3.

図3は、凸部の局所領域で発生する反応について説明する模式図である。反応性溶液3である次亜塩素酸カルシウム溶液が基板2に滴下され、基板2の凸部22が反応性溶液3に覆われた状態となる。反応性溶液3は、次亜塩素酸カルシウムCa(ClO)2が水に溶け、Ca2+とClO-の2つのイオンが含まれた状態となっている。 FIG. 3 is a schematic diagram for explaining a reaction that occurs in a local region of a convex portion. The calcium hypochlorite solution that is the reactive solution 3 is dropped onto the substrate 2, and the convex portion 22 of the substrate 2 is covered with the reactive solution 3. The reactive solution 3 is in a state in which calcium hypochlorite Ca (ClO) 2 is dissolved in water and contains two ions, Ca 2+ and ClO .

こうした状態で光源11から光が照射されると、凸部22の周囲に近接場光が発生する。   When light is irradiated from the light source 11 in such a state, near-field light is generated around the convex portion 22.

そして、凸部22の周囲に生成された近接場光によって次亜塩素酸カルシウム溶液中のClO-イオンが励起され、その結果、塩素ラジカル(Cl・)が生成される。 Then, the ClO - ions in the calcium hypochlorite solution are excited by the near-field light generated around the convex portion 22, and as a result, chlorine radicals (Cl.) Are generated.

こうして生成された塩素ラジカルが凸部22を形成する分子と反応すると、図4に示すように、基板2の凸部22が平坦化される。図4は、凸部22を有する基板2を平坦化する工程を示し、(A)は平坦化前の基板2を示す模式図、(B)は凸部22に近接場光が発生し平坦化が行われている状態の基板2を示す模式図、(C)は基板2が平坦化された状態を示す模式図である。   When the chlorine radicals thus generated react with the molecules forming the convex portions 22, the convex portions 22 of the substrate 2 are flattened as shown in FIG. 4A and 4B show a process of flattening the substrate 2 having the convex portion 22, where FIG. 4A is a schematic diagram showing the substrate 2 before flattening, and FIG. (C) is a schematic diagram which shows the state by which the board | substrate 2 was planarized.

凸部22の周辺に近接場光が発生し、この近接場光により塩素ラジカルが生じて凸部22と反応することにより、凸部22を構成する分子が次第に脱離し、平坦化される。   Near-field light is generated around the convex portion 22, and chlorine radicals are generated by the near-field light and react with the convex portion 22, whereby the molecules constituting the convex portion 22 are gradually detached and flattened.

なお、こうした平坦化は、次亜塩素酸カルシウム溶液と同様に近接場光によって活性種を生成する過酸化水素水や、ヨウ素カリウムとヨウ素溶液の混合物等を用いても行うことができる。   Such flattening can also be performed using a hydrogen peroxide solution that generates active species by near-field light, a mixture of potassium potassium and iodine solution, or the like, as in the calcium hypochlorite solution.

上述した本実施形態に係る表面平坦化方法によると、反応性溶液を用いることで、従来の塩素系ガスを用いた近接場光による表面平坦化方法よりも安全に表面平坦化を行うことができる。また、塩素系ガスを用いないため、従来必要であった真空装置等が不要となり、エッチングを行うための設備を大幅に簡略化することができる。   According to the surface flattening method according to the present embodiment described above, by using the reactive solution, the surface flattening can be performed more safely than the conventional surface flattening method using near-field light using a chlorine-based gas. . In addition, since no chlorine-based gas is used, a conventionally required vacuum apparatus or the like is unnecessary, and the equipment for performing etching can be greatly simplified.

更に、本実施形態に係る表面平坦化方法は、従来の塩素系ガスを用いた近接場光による表面平坦化よりも平坦化の効率が高い。   Furthermore, the surface planarization method according to the present embodiment has higher planarization efficiency than the conventional surface planarization by near-field light using a chlorine-based gas.

図5は、本発明に係る表面平坦化方法と従来の近接場光を用いた表面平坦化方法によるエッチング効果を比較するグラフである。   FIG. 5 is a graph comparing the etching effects of the surface flattening method according to the present invention and the conventional surface flattening method using near-field light.

図5に示すように、本実施形態に係る次亜塩素酸カルシウム溶液を用いる表面平坦化は、従来の塩素系ガスを用いる表面平坦化と比較し、表面の粗さRa(nm)が低く、より高効率な表面平坦化を実現している。具体的には、本実施形態に係る表面平坦化を用いることで、Ra=0.10nm程度という、極めて高効率な表面平坦化を行うことができる。   As shown in FIG. 5, the surface flattening using the calcium hypochlorite solution according to the present embodiment has a low surface roughness Ra (nm) compared to the surface flattening using the conventional chlorine-based gas, More efficient surface flattening is realized. Specifically, by using the surface flattening according to the present embodiment, it is possible to perform surface flattening with extremely high efficiency of Ra = 0.10 nm.

また、図5に示すように、過酸化水素水や、ヨウ素カリウムとヨウ素溶液の混合物を用いた場合でも、Ra=0.10nm程度の極めて高効率な表面平坦化を行うことができる。   Further, as shown in FIG. 5, even when hydrogen peroxide solution or a mixture of potassium potassium and iodine solution is used, extremely high-efficiency surface planarization with Ra = 0.10 nm can be performed.

このように、本発明に係る表面平坦化方法によると、反応性溶液を用いることで、簡易な設備で安全に、かつ高効率に表面平坦化を行うことができる。   Thus, according to the surface flattening method according to the present invention, the surface flattening can be performed safely and efficiently with simple equipment by using the reactive solution.

1 表面平坦化装置
2 基板
3 反応性溶液
11 光源
12 反射ミラー
13 照射光学系
21 表面
22 凸部
DESCRIPTION OF SYMBOLS 1 Surface planarization apparatus 2 Substrate 3 Reactive solution 11 Light source 12 Reflection mirror 13 Irradiation optical system 21 Surface 22 Convex part

Claims (5)

近接場光を用いた表面平坦化方法であって、
表面にナノオーダーの凸部が形成された平坦化対象物の表面に反応性溶液を塗布する工程と、
前記反応性溶液が塗布された前記平滑化対象物に対し、前記凸部に近接場光を発生しうる波長の光を照射する工程と、
を有することを特徴とする表面平坦化方法。
A surface flattening method using near-field light,
A step of applying a reactive solution to the surface of the planarized object having nano-order convex portions formed on the surface;
Irradiating the smoothed object coated with the reactive solution with light having a wavelength capable of generating near-field light on the convex portion;
A surface flattening method characterized by comprising:
前記反応性溶液は、次亜塩素酸カルシウム水溶液であることを特徴とする請求項1記載の表面平坦化方法。   2. The surface flattening method according to claim 1, wherein the reactive solution is a calcium hypochlorite aqueous solution. 前記反応性溶液は、次亜塩素酸ナトリウム水溶液であることを特徴とする請求項1記載の表面平坦化方法。   2. The surface flattening method according to claim 1, wherein the reactive solution is a sodium hypochlorite aqueous solution. 前記反応性溶液は、過酸化水素水であることを特徴とする請求項1記載の表面平坦化方法。   2. The surface flattening method according to claim 1, wherein the reactive solution is a hydrogen peroxide solution. 前記反応性溶液は、ヨウ素カリウムとヨウ素溶液の混合物であることを特徴とする請求項1記載の表面平坦化方法。   2. The surface flattening method according to claim 1, wherein the reactive solution is a mixture of potassium iodine and an iodine solution.
JP2015049628A 2015-03-12 2015-03-12 Surface flattening method Active JP6560510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015049628A JP6560510B2 (en) 2015-03-12 2015-03-12 Surface flattening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049628A JP6560510B2 (en) 2015-03-12 2015-03-12 Surface flattening method

Publications (2)

Publication Number Publication Date
JP2016171189A true JP2016171189A (en) 2016-09-23
JP6560510B2 JP6560510B2 (en) 2019-08-14

Family

ID=56984098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049628A Active JP6560510B2 (en) 2015-03-12 2015-03-12 Surface flattening method

Country Status (1)

Country Link
JP (1) JP6560510B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210238739A1 (en) * 2020-02-04 2021-08-05 Kioxia Corporation Processing apparatus and processing method
US11789365B2 (en) 2019-09-17 2023-10-17 Kioxia Corporation Substrate processing method and substrate processing apparatus

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395928A (en) * 1989-09-07 1991-04-22 Hoya Corp Etchant liquid
JPH08274057A (en) * 1995-03-30 1996-10-18 Nec Corp Semiconductor substrate cleaning device, cleaning method and formation of cleaning liquid
JP2001269781A (en) * 2000-03-27 2001-10-02 Sumitomo Heavy Ind Ltd Etching method and device stimulated by laser beam and using proximity field optical probe
JP2001284294A (en) * 2000-03-31 2001-10-12 Sumitomo Heavy Ind Ltd Laser beam stimulated etching processing device, wherein near field optical probe is used, and processing method thereof
JP2003318139A (en) * 2002-04-22 2003-11-07 Tokai Univ Method for polishing silicon wafer
JP2004172482A (en) * 2002-11-21 2004-06-17 Japan Science & Technology Agency Etching method and method for manufacturing nano device
JP2005167181A (en) * 2003-11-10 2005-06-23 Daikin Ind Ltd Etching liquid for low-k film and method of etching low-k film
JP2007073806A (en) * 2005-09-08 2007-03-22 Toshiba Ceramics Co Ltd Silicon wafer cleansing method
JP2009167030A (en) * 2008-01-11 2009-07-30 Sigma Koki Kk Surface flattening method
JP2009280432A (en) * 2008-05-21 2009-12-03 Sigma Koki Kk Surface smoothing method of optical element
JP2010110897A (en) * 2008-11-04 2010-05-20 Dainippon Printing Co Ltd Method of manufacturing flattened object, flattened object, and method of flattening treated surface
JP2011086723A (en) * 2009-10-14 2011-04-28 Stanley Electric Co Ltd Etchant of compound semiconductor, etching method of compound semiconductor, and method of manufacturing compound semiconductor light emitting device
JP2012160487A (en) * 2011-01-28 2012-08-23 Research Institute Of Nanophotonics Substrate surface planarization method
JP2013143169A (en) * 2012-01-12 2013-07-22 Research Institute Of Nanophotonics Surface planarization method of translucent substrate
JP2013538169A (en) * 2010-07-07 2013-10-10 廈門大学 Nano-accurate photo / electrochemical planarization and polishing method and apparatus therefor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395928A (en) * 1989-09-07 1991-04-22 Hoya Corp Etchant liquid
JPH08274057A (en) * 1995-03-30 1996-10-18 Nec Corp Semiconductor substrate cleaning device, cleaning method and formation of cleaning liquid
JP2001269781A (en) * 2000-03-27 2001-10-02 Sumitomo Heavy Ind Ltd Etching method and device stimulated by laser beam and using proximity field optical probe
JP2001284294A (en) * 2000-03-31 2001-10-12 Sumitomo Heavy Ind Ltd Laser beam stimulated etching processing device, wherein near field optical probe is used, and processing method thereof
JP2003318139A (en) * 2002-04-22 2003-11-07 Tokai Univ Method for polishing silicon wafer
JP2004172482A (en) * 2002-11-21 2004-06-17 Japan Science & Technology Agency Etching method and method for manufacturing nano device
JP2005167181A (en) * 2003-11-10 2005-06-23 Daikin Ind Ltd Etching liquid for low-k film and method of etching low-k film
JP2007073806A (en) * 2005-09-08 2007-03-22 Toshiba Ceramics Co Ltd Silicon wafer cleansing method
JP2009167030A (en) * 2008-01-11 2009-07-30 Sigma Koki Kk Surface flattening method
JP2009280432A (en) * 2008-05-21 2009-12-03 Sigma Koki Kk Surface smoothing method of optical element
JP2010110897A (en) * 2008-11-04 2010-05-20 Dainippon Printing Co Ltd Method of manufacturing flattened object, flattened object, and method of flattening treated surface
JP2011086723A (en) * 2009-10-14 2011-04-28 Stanley Electric Co Ltd Etchant of compound semiconductor, etching method of compound semiconductor, and method of manufacturing compound semiconductor light emitting device
JP2013538169A (en) * 2010-07-07 2013-10-10 廈門大学 Nano-accurate photo / electrochemical planarization and polishing method and apparatus therefor
JP2012160487A (en) * 2011-01-28 2012-08-23 Research Institute Of Nanophotonics Substrate surface planarization method
JP2013143169A (en) * 2012-01-12 2013-07-22 Research Institute Of Nanophotonics Surface planarization method of translucent substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11789365B2 (en) 2019-09-17 2023-10-17 Kioxia Corporation Substrate processing method and substrate processing apparatus
US20210238739A1 (en) * 2020-02-04 2021-08-05 Kioxia Corporation Processing apparatus and processing method

Also Published As

Publication number Publication date
JP6560510B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
US10811256B2 (en) Method for etching a carbon-containing feature
JP3993549B2 (en) Resist pattern forming method
KR101845180B1 (en) Use of topography to direct assembly of block copolymers in grapho-epitaxial applications
US7921859B2 (en) Method and apparatus for an in-situ ultraviolet cleaning tool
KR20090095460A (en) Method for fabricating euvl mask
JP5264237B2 (en) Nanostructure and method for producing nanostructure
TWI641026B (en) Photonic activation of reactants for sub-micron feature formation using depleted beams
JP2016538726A (en) System for processing substrates using two or more ultraviolet light sources of different wavelengths
JP6560510B2 (en) Surface flattening method
JP2010503993A (en) Improved etching techniques for lift-off patterning
JP6961201B2 (en) Surface flattening method and manufacturing method of microstructure
JP5782460B2 (en) Method and system for material removal and pattern transfer
TWI598954B (en) Method for etching with controlled wiggling
JP2007081373A (en) Liquid immersion lithography method and system
JP2008504714A (en) System and method for cleaning and etching a substrate
KR20220042466A (en) A hybrid wafer dicing approach using a uniform rotating beam laser scribing process and a plasma etching process
JP5708071B2 (en) Resist pattern improving material, resist pattern forming method, and semiconductor device manufacturing method
JP5659872B2 (en) Resist pattern improving material, resist pattern forming method, and semiconductor device manufacturing method
KR20210137178A (en) Substrate processing method and substrate processing apparatus
EP1032026B1 (en) Method of photoresist ash residue removal
JP6274717B2 (en) Etching method using near-field light
US20140251947A1 (en) Method and apparatus for light induced etching of glass substrates in the fabrication of electronic circuits
TWI825242B (en) Roughness reduction methods for materials using illuminated etch solutions
WO2024024987A1 (en) Substrate processing method
KR100568159B1 (en) Photo-assisted etching technique of gold and apparatus for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190719

R150 Certificate of patent or registration of utility model

Ref document number: 6560510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250