JP2016169959A - Method and device for measuring shape of transparent plate - Google Patents

Method and device for measuring shape of transparent plate Download PDF

Info

Publication number
JP2016169959A
JP2016169959A JP2015048085A JP2015048085A JP2016169959A JP 2016169959 A JP2016169959 A JP 2016169959A JP 2015048085 A JP2015048085 A JP 2015048085A JP 2015048085 A JP2015048085 A JP 2015048085A JP 2016169959 A JP2016169959 A JP 2016169959A
Authority
JP
Japan
Prior art keywords
measured
sample
interference
back surface
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015048085A
Other languages
Japanese (ja)
Other versions
JP6457846B2 (en
Inventor
克一 北川
Katsuichi Kitagawa
克一 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIZOJIRI OPTICAL CO Ltd
Original Assignee
MIZOJIRI OPTICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIZOJIRI OPTICAL CO Ltd filed Critical MIZOJIRI OPTICAL CO Ltd
Priority to JP2015048085A priority Critical patent/JP6457846B2/en
Publication of JP2016169959A publication Critical patent/JP2016169959A/en
Application granted granted Critical
Publication of JP6457846B2 publication Critical patent/JP6457846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring a shape that can accurately and easily determine the front surface height, the back surface height of a specific part of a transparent plate to be measured, and the absolute value of the thickness of the plate.SOLUTION: The wavelength of an illumination light from an illumination light source is temporally scanned, an interference figure is continuously imaged by imaging means while the interference figure is being changed, and a predetermined model function is applied to an interference brightness signal obtained by the imaging, whereby at least one of the front surface height and the back surface height of each part of a measurement sample and the plate thickness distribution is measured.SELECTED DRAWING: Figure 1

Description

本発明は、透明板である被測定試料の外面凹凸形状や厚さを測定する形状測定方法および形状測定装置に係り、特に、波長走査光源とフィゾー干渉計を用いて非接触で被測定試料の表面高さ、板厚の少なくともいずれかを測定する方法およびこれを用いた装置に関する。   The present invention relates to a shape measuring method and a shape measuring apparatus for measuring an uneven shape and thickness of an outer surface of a sample to be measured, which is a transparent plate, and in particular, using a wavelength scanning light source and a Fizeau interferometer in a non-contact manner. The present invention relates to a method for measuring at least one of a surface height and a plate thickness, and an apparatus using the same.

従来、ガラス板のような透明板の外面凹凸形状や厚さを測定する方法として、波長走査干渉法が知られている(特許文献1、非特許文献1)。非特許文献1の方法では、波長可変レーザーを光源とし、トワイマングリーン干渉計を用いて、参照面、対象試料の表面と裏面の3個の界面からの反射光による干渉縞をCCDカメラ等の撮像装置で撮像し、得られた干渉縞画像を解析して、試料の外面凹凸形状や厚さを測定している。   Conventionally, a wavelength scanning interferometry is known as a method for measuring the outer surface unevenness shape and thickness of a transparent plate such as a glass plate (Patent Document 1, Non-Patent Document 1). In the method of Non-Patent Document 1, using a wavelength tunable laser as a light source and using a Twiman Green interferometer, interference fringes due to reflected light from three interfaces of the reference surface and the front and back surfaces of the target sample are detected by a CCD camera or the like. An image is picked up by an image pickup device, and the obtained interference fringe image is analyzed to measure the outer surface unevenness shape and thickness of the sample.

また、特許文献1には、参照光路と測定光路が同一光路となるため振動に強く、コンパクトに構成でき、大型試料にも適用可能なフィゾー干渉計を用いた干渉縞解析法が開示されている。   Patent Document 1 discloses an interference fringe analysis method using a Fizeau interferometer that is resistant to vibration and can be compactly configured because the reference optical path and the measurement optical path are the same optical path, and can be applied to a large sample. .

これら波長走査干渉法による透明板測定においては、参照面、対象試料の表面と裏面の3個の界面からの反射光による干渉縞が重畳して観測されるため、表面高さや板厚を測定するためには、それら重畳した信号を分離する必要がある。   In the transparent plate measurement by the wavelength scanning interferometry, interference fringes due to reflected light from the three interfaces of the reference surface and the front and back surfaces of the target sample are observed, so that the surface height and thickness are measured. Therefore, it is necessary to separate these superimposed signals.

非特許文献1では、干渉縞画像から得られる輝度波形をモデル関数と最小二乗適合することにより、表面高さ、裏面高さ、厚さの位相値を含む7個の未知変数を推定している。   In Non-Patent Document 1, seven unknown variables including a surface height, a back surface height, and a phase value of thickness are estimated by fitting a luminance waveform obtained from an interference fringe image with a model function and a least-squares fit. .

特許文献1では、前記参照面と前記被測定平板表面との光軸上での距離Lと前記被測定平板の光学的厚さnTの比が、およそL=nT/3を満たすように距離Lを設定し、該被測定平板表面および裏面からの光束の光干渉により得られた干渉縞情報を撮像し、そのとき前記出力光の波長λを変化させて、該被測定平板表面および参照面からの反射光束の位相差がおよそπ/6ずつ変化する毎に、連続的に19画像撮像する撮像手段とを備えた干渉計装置において、該撮像して得られた19枚の干渉縞画像情報から、被測定平板の光学的厚さの不均一や表面高さ、裏面高さに関する位相情報を得ている。   In Patent Document 1, the distance L so that the ratio of the distance L on the optical axis between the reference surface and the surface of the plate to be measured and the optical thickness nT of the plate to be measured satisfies approximately L = nT / 3. And imaging interference fringe information obtained by optical interference of the light flux from the front and back surfaces of the measured flat plate, and changing the wavelength λ of the output light at that time, from the measured flat plate surface and the reference surface In the interferometer apparatus provided with an imaging means for continuously capturing 19 images each time the phase difference of the reflected light flux changes by approximately π / 6, from 19 pieces of interference fringe image information obtained by the imaging The phase information on the optical thickness non-uniformity of the measured flat plate, the front surface height, and the back surface height is obtained.

特開2003−139511号公報JP 2003-139511 A

K. Okada、 H. Sakuta、 T. Ose、 and J. Tsujiuchi: “Separate measurements of surface shapes and refractive index inhomogeneity of an optical element using tunable-source phase shifting interferometry,” Appl. Opt. 29, 3280-3285 (1990)K. Okada, H. Sakuta, T. Ose, and J. Tsujiuchi: “Separate measurements of surface shapes and refractive index inhomogeneity of an optical element using tunable-source phase shifting interferometry,” Appl. Opt. 29, 3280-3285 ( 1990)

しかしながら、従来の方法では、次のような問題がある。すなわち、非特許文献1の方法では、波長を走査しながら撮像された60枚の干渉縞画像から得られる輝度波形をモデル関数と最小二乗適合することにより、表面高さの変動成分、裏面高さの変動成分を含む7個の未知変数を推定している。しかし、該方法では、相対的な表面凹凸形状と厚さ分布が得られるだけで、絶対値を得ることはできない。また、未知変数が多いために、ノイズに弱い性質がある。このため、得られる測定精度も、波長の1/50以下の平均二乗偏差 (RMS)であり、現在の産業界の要求を満足するものではない。   However, the conventional method has the following problems. That is, in the method of Non-Patent Document 1, the luminance waveform obtained from 60 interference fringe images picked up while scanning the wavelength is fitted to the model function and the least-squares to thereby change the surface height fluctuation component and the back surface height. 7 unknown variables including the fluctuation components are estimated. However, this method can only obtain a relative surface irregularity shape and thickness distribution, but cannot obtain an absolute value. In addition, because there are many unknown variables, they are susceptible to noise. For this reason, the measurement accuracy obtained is also the mean square deviation (RMS) of 1/50 or less of the wavelength, which does not satisfy the current industry requirements.

一方、特許文献1の方法では、試料位置の制約がある。すなわち、重畳する正弦波の周波数が整数比となるように、参照面と試料面との距離を厳密に調整する必要がある。また、本方法でも、位相を求めているため、相対的な外面凹凸形状と厚さ分布が得られるだけで、絶対値を得ることはできない。   On the other hand, in the method of Patent Document 1, there is a restriction on the sample position. That is, it is necessary to strictly adjust the distance between the reference surface and the sample surface so that the frequency of the superimposed sine wave becomes an integer ratio. Also, in this method, since the phase is obtained, only the relative outer surface uneven shape and thickness distribution are obtained, and the absolute value cannot be obtained.

したがって、従来の方法では、被測定試料の表面高さ、裏面高さ、板厚の絶対値を高精度で、かつ、簡単な操作で得ることができないという問題がある。   Therefore, in the conventional method, there is a problem that the absolute values of the surface height, the back surface height, and the plate thickness of the sample to be measured cannot be obtained with high accuracy and simple operation.

本発明は、このような事情に鑑みてなされたものであって、透明板である被測定試料の特定箇所の表面高さ、裏面高さ、板厚の少なくともいずれかの絶対値を精度よく、かつ、簡単な操作で求めることのできる透明板の形状測定方法および形状測定装置を提供することを主たる目的とする。   The present invention has been made in view of such circumstances, and the surface height of a specific portion of the sample to be measured, which is a transparent plate, the height of the back surface, the absolute value of at least one of the plate thicknesses, And it aims at providing the shape measuring method and shape measuring apparatus of a transparent plate which can be calculated | required by simple operation.

本発明は、このような目的を達成するため、次のような構成をとる。
すなわち、本発明の形状測定方法は、
出力光の波長を時間的に変化させ得る照明光源と、
前記照明光源からの光束を平行光束とした後、該平行光束を参照面上および透明板である被測定試料に導く光学系ユニットと、
前記参照面と、前記被測定試料の表面と、前記被測定試料の裏面とからの反射光の干渉により得られた干渉像を連続的に撮像する撮像手段と、
を備えた形状測定装置を用いた透明板の形状測定方法であって、
前記照明光源からの照明光の波長を時間的に走査して、前記干渉像を変化させながら、該干渉像を前記撮像手段により連続的に撮像し、
撮像して得られた干渉輝度信号に対して、下記式(1)に基づくモデル関数を適合することによって、前記被測定試料の各位置での表面高さ、裏面高さ、板厚分布のうち少なくともいずれかを測定することを特徴とする。
In order to achieve such an object, the present invention has the following configuration.
That is, the shape measuring method of the present invention is
An illumination light source capable of temporally changing the wavelength of the output light;
An optical system unit that guides the parallel light flux to the sample to be measured on the reference surface and a transparent plate after making the light flux from the illumination light source a parallel light flux;
Imaging means for continuously capturing an interference image obtained by interference of reflected light from the reference surface, the surface of the sample to be measured, and the back surface of the sample to be measured;
A method for measuring the shape of a transparent plate using a shape measuring device comprising:
The wavelength of the illumination light from the illumination light source is temporally scanned and the interference image is continuously captured by the imaging unit while changing the interference image.
By fitting a model function based on the following equation (1) to the interference luminance signal obtained by imaging, the surface height, the back surface height, and the plate thickness distribution at each position of the sample to be measured It is characterized by measuring at least one of them.

前記式(1)において、
I(t):観測輝度モデル関数値
t:時間(s)
0:参照面入射光量
S:参照面と被測定試料表面間の物理的距離(表面高さ)
B:参照面と被測定試料裏面間の光学的距離
B−LS:光学的板厚
c:波長走査の速度(nm/s)
λ0:初期波長(nm)
a:I0=1の時の干渉輝度信号の直流成分
S:参照面と被測定試料表面による干渉輝度信号の振幅
B:参照面と被測定試料裏面による干渉輝度信号の振幅
T:被測定試料表面と被測定試料裏面による干渉輝度信号の振幅
である。
In the formula (1),
I (t): Observation luminance model function value t: Time (s)
I 0 : Light incident on the reference surface L S : Physical distance (surface height) between the reference surface and the surface of the sample to be measured
L B : Optical distance between the reference surface and the back of the sample to be measured L B -L S : Optical plate thickness c: Speed of wavelength scanning (nm / s)
λ 0 : initial wavelength (nm)
a: DC component b S of interference luminance signal when I 0 = 1: Amplitude b B of interference luminance signal by reference surface and back surface of sample to be measured b B : Amplitude b T of interference luminance signal by reference surface and back surface of sample to be measured: This is the amplitude of the interference luminance signal from the measured sample surface and the measured sample back surface.

また、本発明の形状測定装置は、
出力光の波長を時間的に変化させ得る照明光源と、
前記照明光源からの光束を平行光束とした後、該平行光束を参照面上および透明板である被測定試料に導く光学系ユニットと、
前記参照面と、前記被測定試料の表面と、前記被測定試料の裏面とからの反射光の干渉により得られた干渉像を連続的に撮像する撮像手段と、
前記撮像手段により撮像された干渉画像を解析する解析手段と、
を備えた透明板の形状測定装置であって、
前記照明光源からの照明光の波長を時間的に走査して、前記干渉像を変化させながら、該干渉像を前記撮像手段により連続的に撮像し、
前記解析手段において、撮像して得られた前記干渉画像の干渉輝度信号に対して、下記式(1)に基づくモデル関数を適合することによって、前記被測定試料の各位置での表面高さ、裏面高さ、板厚分布のうち少なくともいずれかを測定することを特徴とする形状測定方法。
The shape measuring device of the present invention is
An illumination light source capable of temporally changing the wavelength of the output light;
An optical system unit that guides the parallel light flux to the sample to be measured on the reference surface and a transparent plate after making the light flux from the illumination light source a parallel light flux;
Imaging means for continuously capturing an interference image obtained by interference of reflected light from the reference surface, the surface of the sample to be measured, and the back surface of the sample to be measured;
Analyzing means for analyzing an interference image captured by the imaging means;
A transparent plate shape measuring apparatus comprising:
The wavelength of the illumination light from the illumination light source is temporally scanned and the interference image is continuously captured by the imaging unit while changing the interference image.
In the analysis means, by applying a model function based on the following formula (1) to the interference luminance signal of the interference image obtained by imaging, the surface height at each position of the measured sample, A shape measuring method comprising measuring at least one of a back surface height and a plate thickness distribution.

前記式(1)において、
I(t):観測輝度モデル関数値
t:時間(s)
0:参照面入射光量
S:参照面と被測定試料表面間の物理的距離(表面高さ)
B:参照面と被測定試料裏面間の光学的距離
B−LS:光学的板厚
c:波長走査の速度(nm/s)
λ0:初期波長(nm)
a:I0=1の時の干渉輝度信号の直流成分
S:参照面と被測定試料表面による干渉輝度信号の振幅
B:参照面と被測定試料裏面による干渉輝度信号の振幅
T:被測定試料表面と被測定試料裏面による干渉輝度信号の振幅
である。
In the formula (1),
I (t): Observation luminance model function value t: Time (s)
I 0 : Light incident on the reference surface L S : Physical distance (surface height) between the reference surface and the surface of the sample to be measured
L B : Optical distance between the reference surface and the back of the sample to be measured L B -L S : Optical plate thickness c: Speed of wavelength scanning (nm / s)
λ 0 : initial wavelength (nm)
a: DC component b S of interference luminance signal when I 0 = 1: Amplitude b B of interference luminance signal by reference surface and back surface of sample to be measured b B : Amplitude b T of interference luminance signal by reference surface and back surface of sample to be measured: This is the amplitude of the interference luminance signal from the measured sample surface and the measured sample back surface.

このような形状測定方法および形状測定装置とすることにより、被測定試料の干渉縞の物理モデルに基づいて、被測定試料である透明板の表面高さ、裏面高さ、板厚が同時に、かつ独立して求めることができる。   By using such a shape measuring method and shape measuring apparatus, based on the physical model of the interference fringes of the sample to be measured, the surface height, the back surface height, the plate thickness of the transparent plate as the sample to be measured are simultaneously Can be obtained independently.

また本発明では、下記式(20)、(21)に基づいて、前記被測定試料の板厚T’、裏面高さLB’を求めることを特徴とする。 In the present invention, the plate thickness T ′ and the back surface height L B ′ of the sample to be measured are obtained based on the following formulas (20) and (21).

前記式(20)、(21)において、
n:被測定試料屈折率
である。
In the formulas (20) and (21),
n: Refractive index of the sample to be measured.

また本発明では、前記適合の手法として、下記式(2)で表される実測値(Ii)と観測輝度モデル関数値(I(ti))の二乗誤差和を最小にする最小二乗法を用いて、前記式(1)の未知変数を求めることを特徴とする。   In the present invention, the least square method that minimizes the sum of square errors of the actual measurement value (Ii) and the observed luminance model function value (I (ti)) represented by the following formula (2) is used as the adaptation method. Thus, the unknown variable of the equation (1) is obtained.

前記式(2)において、
i:観測データ番号
n:観測データ数
i:実測値
i(ti):観測輝度モデル関数値
である。
In the formula (2),
i: Observation data number n: Number of observation data I i : Actual measurement value i (t i ): Observation luminance model function value.

このようにすることにより、観測される輝度値に含まれる各種のノイズ成分の影響を極小とすることができ、安定して形状測定を行うことができる。   By doing so, the influence of various noise components included in the observed luminance value can be minimized, and the shape can be measured stably.

また本発明では、前記式(1)における未知変数が、参照面入射光量(I0)と、被測定試料の表面高さ(LS)、被測定試料の光学的裏面距離(LB)、および被測定試料の光学的板厚(LB−LS)からなる群から限定選択されたものであることを特徴とする。 Further, in the present invention, the unknown variables in the equation (1) include the reference surface incident light quantity (I 0 ), the surface height of the sample to be measured (L S ), the optical back surface distance (L B ) of the sample to be measured, And a limited selection from the group consisting of the optical plate thickness (L B -L S ) of the sample to be measured.

このようにすることにより、適合により求める未知変数が、通常、参照面入射光量、被測定試料の表面高さ、被測定試料の裏面高さの3個に限定されることにより、安定かつノイズに強い形状測定を行うことができる。   By doing in this way, the unknown variable calculated | required by a conformity is normally limited to three of reference surface incident light quantity, the surface height of a to-be-measured sample, and the back surface height of a to-be-measured sample, and is stable and becomes noise. Strong shape measurement can be performed.

また本発明では、前記式(1)の中のパラメータであるa、bS、bB、bTが、参照板屈折率nR、被測定試料屈折率nを既知として、それぞれ下記式(3)〜(6)により求められることを特徴とする。 In the present invention, the parameters a, b S , b B , and b T in the formula (1) are set to the following formulas (3) assuming that the reference plate refractive index n R and the measured sample refractive index n are known. ) To (6).

前記式(3)〜(6)において、RRは参照面の界面反射率、RSは被測定試料表面の界面反射率であり、下記式(7)、(8)により求められる。 In the above formulas (3) to (6), R R is the interface reflectance of the reference surface, R S is the interface reflectance of the surface of the sample to be measured, and is obtained by the following formulas (7) and (8).

このようにすることにより、光学ユニットとして、光学的に単純なフィゾー干渉計を採用し、また、参照板屈折率nRと被測定試料屈折率nが既知であることを利用して、未知変数の数を削減することができる。 By doing so, an optically simple Fizeau interferometer is adopted as the optical unit, and the unknown variable is utilized by utilizing the known reference plate refractive index n R and measured sample refractive index n. The number of can be reduced.

また本発明では、前記被測定試料の表面高さ(LS)、前記被測定試料の光学的裏面距離(LB)、前記被測定試料の光学的板厚(LB−LS)のうち少なくともいずれかの初期値を変えて、式(1)のモデル関数への適合を複数回行い、前記適合の最適値を探索することを特徴とする。 In the present invention, among the surface height (L S ) of the sample to be measured, the optical back surface distance (L B ) of the sample to be measured, and the optical plate thickness (L B −L S ) of the sample to be measured It is characterized in that at least one of the initial values is changed, and the model function of the equation (1) is adapted a plurality of times and the optimum value of the adaptation is searched.

このようにすることにより、被測定試料の表面高さ、裏面高さ、板厚について、相対値ではなく絶対値を求めたい場合にも、波長の1/2刻みで存在する局所解の中から、正しい結果を探索することができる。   By doing in this way, even when it is desired to obtain the absolute value, not the relative value, of the surface height, the back surface height, and the plate thickness of the sample to be measured, it is possible to select from the local solutions that exist at half the wavelength. You can search for the correct result.

本発明では、フィゾー干渉計と波長走査光源を用いて得られた輝度データ(インターフェログラム)に対して、モデル関数を、好ましくは最小二乗適合することで、被測定試料の表面高さ、裏面高さ、板厚を同時に求めることができる。
特に、モデル関数に概略の初期値を与えることで、被測定試料の表面高さ、裏面高さ、板厚をnmオーダーの高精度で絶対値測定することができる。
In the present invention, the surface height and the back surface of the sample to be measured are preferably fitted to the luminance data (interferogram) obtained by using the Fizeau interferometer and the wavelength scanning light source, preferably by the least square fitting. Height and plate thickness can be obtained simultaneously.
In particular, by giving a rough initial value to the model function, the absolute value of the surface height, the back surface height, and the plate thickness of the sample to be measured can be measured with high accuracy on the order of nm.

さらに、本発明の形状測定装置としては、フィゾー干渉計、波長走査光源、CCDカメラなどの撮像手段、パソコンなどの解析手段を備えていればよく、産業用測定装置として、容易に構成することができる。   Furthermore, the shape measuring apparatus of the present invention only needs to be provided with an imaging means such as a Fizeau interferometer, a wavelength scanning light source, a CCD camera, and an analyzing means such as a personal computer, and can be easily configured as an industrial measuring apparatus. it can.

また、従来の方法では必要であった被測定試料と参照面との距離調整が不要で、操作性を著しく向上させることができる。   Further, it is not necessary to adjust the distance between the sample to be measured and the reference surface, which is necessary in the conventional method, and the operability can be remarkably improved.

図1は、本発明の形状測定装置の第1の実施例を説明するための概略構成図である。FIG. 1 is a schematic configuration diagram for explaining a first embodiment of the shape measuring apparatus of the present invention. 図2は、3光束干渉画像の一例である。FIG. 2 is an example of a three-beam interference image. 図3は、第1の実施例におけるフィゾー干渉計の入射光および反射光を示す模式図である。FIG. 3 is a schematic diagram showing incident light and reflected light of the Fizeau interferometer in the first embodiment. 図4は、表面高さ変更時の二乗誤差を示す図である。FIG. 4 is a diagram illustrating a square error when the surface height is changed. 図5は、図4の縦軸を拡大した拡大図である。FIG. 5 is an enlarged view in which the vertical axis of FIG. 4 is enlarged. 図6は、第1の実施例の波長走査条件を示す図である。FIG. 6 is a diagram showing the wavelength scanning conditions of the first embodiment. 図7は、第1の実施例の輝度信号を示す図である。FIG. 7 is a diagram showing the luminance signal of the first embodiment. 図8は、第2の実施例による測定結果を示す図である。FIG. 8 is a diagram showing the measurement results according to the second example. 図9は、第3の実施例の3光束干渉画像の一例を示す図である。FIG. 9 is a diagram illustrating an example of a three-beam interference image according to the third embodiment. 図10は、第3の実施例の輝度信号を示す図である。FIG. 10 is a diagram showing the luminance signal of the third embodiment. 図11は、第3の実施例による測定結果を示す図である。FIG. 11 is a diagram showing a measurement result according to the third example. 図12は、第3の実施例による測定結果を示す図である。FIG. 12 is a diagram showing a measurement result according to the third example. 図13は、第3の実施例による測定結果を示す図である。FIG. 13 is a diagram showing a measurement result according to the third example.

以下、図面を参照して本発明の実施例について具体的に説明をする。
図1は、本発明の形状測定装置の第1の実施例を説明するための概略構成図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram for explaining a first embodiment of the shape measuring apparatus of the present invention.

この形状測定装置1は、光学系ユニット20と、光学系ユニット20からの干渉信号を解析する解析手段22とを備えて構成されている。
光学系ユニット20は、フィゾー干渉計であり、照明光源10から射出されたレーザー光の光束は、コリメートレンズ11を経て平行光束となり、参照板13と被測定試料14に照射される。そして、参照板13の参照面R、および被測定試料14の表面S、裏面Bからの反射光は、互いに干渉して照射光の光路を逆行し、ビームスプリッタ12を経て、結像レンズ15により干渉像が結像され、結像された干渉像はCCDカメラなどの撮像手段16により撮像される。撮像された干渉像(干渉画像)は、後述するように、解析手段22で解析され、被測定試料14の表面高さ、裏面高さ、板厚が測定される。
The shape measuring apparatus 1 includes an optical system unit 20 and an analysis unit 22 that analyzes an interference signal from the optical system unit 20.
The optical system unit 20 is a Fizeau interferometer, and the light beam of the laser light emitted from the illumination light source 10 is converted into a parallel light beam through the collimating lens 11 and is applied to the reference plate 13 and the sample 14 to be measured. Then, the reflected light from the reference surface R of the reference plate 13 and the front surface S and back surface B of the sample 14 to be measured interferes with each other and travels backward in the optical path of the irradiation light, passes through the beam splitter 12, and passes through the imaging lens 15. An interference image is formed, and the formed interference image is picked up by an image pickup means 16 such as a CCD camera. As will be described later, the captured interference image (interference image) is analyzed by the analysis means 22 to measure the surface height, the back surface height, and the plate thickness of the sample 14 to be measured.

なお、本明細書において、「表面高さ」とは、参照板13の参照面Rから被測定試料14の表面Sまでの物理的距離(後述するR−S面間距離LS)を意味し、「裏面高さ」とは、参照板13の参照面Rから被測定試料14の裏面Bまでの物理的距離(後述する式(21)で定義される物理的裏面距離LB’)を意味している。 In the present specification, the “surface height” means a physical distance from the reference surface R of the reference plate 13 to the surface S of the sample 14 to be measured (RS surface distance L S described later). , “Back surface height” means the physical distance from the reference surface R of the reference plate 13 to the back surface B of the sample 14 to be measured (physical back surface distance L B ′ defined by equation (21) described later). doing.

照明光源10は、波長可変レーザーであり、この実施例では、市販のNew Focus社製Velocity6700 ワイドレンジ波長可変レーザー(波長範囲630〜640nm)が使用され、波長が時間とともに直線的に走査される。   The illumination light source 10 is a wavelength tunable laser. In this embodiment, a commercially available Velocity6700 wide range tunable laser (wavelength range of 630 to 640 nm) manufactured by New Focus is used, and the wavelength is scanned linearly with time.

撮像手段16は、照明光の波長の変化に応じて変化する干渉縞の画像を撮像するもので、本実施例では、市販のモノクロCCDカメラが使用される。その画像データが解析手段22によって収集される。なお、撮像手段16としては、特に限定されるものではなく、例えば、カラーCCDカメラやCMOSカメラなどを用いることもできる。   The image pickup means 16 picks up an image of interference fringes that changes in accordance with the change in the wavelength of the illumination light. In this embodiment, a commercially available monochrome CCD camera is used. The image data is collected by the analysis means 22. The imaging means 16 is not particularly limited, and for example, a color CCD camera or a CMOS camera can be used.

解析手段22は、所定の演算処理を行うCPU、データを記憶するメモリ、設定情報を入力するマウスやキーボードなどの入力部、画像などを表示するモニタなどを備えるコンピュータシステムで構成することができる。   The analysis unit 22 can be configured by a computer system including a CPU that performs predetermined arithmetic processing, a memory that stores data, an input unit such as a mouse and a keyboard that inputs setting information, a monitor that displays an image, and the like.

このように構成される形状測定装置1では、照明光源10に波長可変レーザーを使用し、任意の速度で走査可能としている。被測定試料が透明な場合、図2に示すように、撮像手段16により撮像される干渉画像は、(1)参照面と被測定試料表面、(2)参照面と被測定試料裏面、(3)被測定試料表面と被測定試料裏面、による3個の干渉画像が重畳した3光束干渉画像となり、本発明では、これら3個の干渉画像を分離することにより、被測定試料の表面高さ、裏面高さ、板厚の測定を行っている。   In the shape measuring apparatus 1 configured as described above, a tunable laser is used as the illumination light source 10, and scanning is possible at an arbitrary speed. When the sample to be measured is transparent, as shown in FIG. 2, the interference image captured by the imaging unit 16 includes (1) a reference surface and a surface of the sample to be measured, (2) a reference surface and a back surface of the sample to be measured, (3 ) A three-beam interference image is formed by superimposing three interference images of the measured sample surface and the measured sample back surface. In the present invention, by separating these three interference images, the surface height of the measured sample is The back surface height and plate thickness are measured.

上記表面形状測定装置を用いて得られた干渉縞の輝度信号に対して、式(1)に基づくモデル関数を適合して、被測定試料の表面の各位置での表面高さ、裏面高さ、板厚のうち少なくともいずれかを求める。   By applying the model function based on Equation (1) to the interference fringe luminance signal obtained using the surface shape measuring apparatus, the surface height and back surface height at each position of the surface of the sample to be measured Find at least one of the plate thicknesses.

以下、式(1)について説明する。
フィゾー干渉計において、参照面R、被測定試料表面S、被測定試料裏面Bが図3のように配置されている場合、各界面からの反射光量をIS、IB、IRとし、R−S面間距離をLS、 R−B面間光学的距離(OPD)をLBとすると、観測輝度Iは、RS干渉(参照面からの反射光と被測定試料表面からの反射光の干渉)、SB干渉(被測定試料表面からの反射光と被測定試料裏面からの反射光)が位相反転することに注目して、式(9)のように表される。
Hereinafter, Formula (1) is demonstrated.
In the Fizeau interferometer, when the reference surface R, the sample surface S to be measured, and the sample back surface B to be measured are arranged as shown in FIG. 3, the amount of light reflected from each interface is I S , I B , I R , R -S interplanar distance L S, the R-B plane between the optical distance (OPD) and L B, the observed intensity I is the reflected light from the reflection light and the measured sample surface from RS interference (reference plane (Interference) and SB interference (reflected light from the surface of the sample to be measured and reflected light from the back surface of the sample to be measured) are expressed as shown in Expression (9) by focusing on the phase inversion.

ここで、フィゾー干渉計の各界面の反射光量について検討する。
参照板屈折率をnR、被測定試料屈折率をnとすると、参照面の界面反射率RR、被測定試料の界面反射率RSは、フレネルの公式より、それぞれ、
Here, the amount of reflected light at each interface of the Fizeau interferometer is examined.
When the refractive index of the reference plate is n R and the refractive index of the sample to be measured is n, the interface reflectance R R of the reference surface and the interface reflectance R S of the sample to be measured are respectively calculated from the Fresnel formula.

で表される。 It is represented by

また、参照面入射光量をI0とすると、
参照面反射光量IR=I0R (25)
被測定試料表面反射光量IS=I0(1−RR2S (26)
被測定試料裏面反射光量IB=I0(1−RR2(1−RS2 (27)
である。
Also, if the reference surface incident light quantity is I 0 ,
Reference surface reflection light quantity I R = I 0 R R (25)
Sample surface reflected light quantity I S = I 0 (1−R R ) 2 R S (26)
Measured sample back surface reflected light quantity I B = I 0 (1-R R ) 2 (1-R S ) 2 (27)
It is.

次に、波長走査を考える。初期波長をλ0、波長走査速度をc、時間をtとすると、波長は式(10)で表すことができる。 Next, wavelength scanning is considered. Assuming that the initial wavelength is λ 0 , the wavelength scanning speed is c, and the time is t, the wavelength can be expressed by Expression (10).

この時、距離Lの位相値φは、通常、λ0>>ctであるため、各波形の周波数をfとして、 At this time, the phase value φ of the distance L is usually λ 0 >> ct, so that the frequency of each waveform is f.

ただし、 However,

と近似できる。 Can be approximated.

式(9)を書き換え、光学的板厚をT=LB−LSと置くと、 Rewriting equation (9) and placing the optical plate thickness as T = L B −L S ,

ここで、fS、fB、fTはそれぞれ、式(13)において、L=LS、L=LB、L=Tとした場合の干渉輝度信号I(t)に含まれる各信号成分の周波数を意味している。 Here, f S , f B , and f T are signal components included in the interference luminance signal I (t) when L = L S , L = L B , and L = T in Equation (13), respectively. Means the frequency.

式(14)に式(25)、(26)、(27)を代入すると   Substituting equations (25), (26), and (27) into equation (14)

ただし、 However,

が得られる。 Is obtained.

aは、I0=1の時の干渉輝度信号のDC成分であり、bSは参照面Rと被測定試料表面Sによる干渉信号の振幅であり、bBは参照面Rと被測定試料裏面Bによる干渉信号の振幅である。これらの値は、既知の値である参照板屈折率nR、被測定試料屈折率nの値から式(16)〜(19)により求められる。 a is the DC component of the interference luminance signal when I 0 = 1, b S is the amplitude of the interference signal from the reference surface R and the sample surface S to be measured, and b B is the reference surface R and the sample back surface to be measured. B is the amplitude of the interference signal. These values are obtained by equations (16) to (19) from the values of the reference plate refractive index n R and the measured sample refractive index n, which are known values.

そして、式(15)に式(12)、(13)を代入して、   Then, substituting Equations (12) and (13) into Equation (15),

が得られる。 Is obtained.

このモデル式は、周波数が異なる3個のcos波の和であり、未知変数はI0、LS、LBの3個である。これらは、観測値Ii(i=1,2,・・・,n)との最小二乗適合(次式で示す二乗誤差和SSEであるFを最小にする)することにより求められる。 This model formula is the sum of three cos waves with different frequencies, and there are three unknown variables, I 0 , L S , and L B. These are obtained by least squares fitting with the observed values I i (i = 1, 2,..., N) (minimizing F which is the square error sum SSE shown by the following equation).

本発明の形状測定方法で、各測定値を求めるためには、cos波の周波数が互いに相違していなければならない。そのためには、LS、LB、LB−LSが互いに相違すればよく、通常、特別な操作を必要としない。これは、特許文献1による従来の方法が位置調整を必要とするのに対し、大きな長所である。 In order to obtain each measurement value with the shape measurement method of the present invention, the frequencies of the cosine waves must be different from each other. For this purpose, L S , L B , and L B -L S need only be different from each other, and usually no special operation is required. This is a great advantage compared to the conventional method according to Patent Document 1 that requires position adjustment.

得られたLS、LBと被測定試料屈折率nとから、式(20)、(21)により、板厚T’と物理的裏面距離LB’が求められる。 From the obtained L S and L B and the measured sample refractive index n, the plate thickness T ′ and the physical back surface distance L B ′ are obtained by the equations (20) and (21).

以上に述べた方法で、各測定値の絶対値を求めることができるが、そのためには正しい初期値を与える必要がある。すなわち、上記の最小二乗適合は、波長の約1/2の間隔で局所解を持つため、正しい絶対値測定のためには、波長の1/2以下の精度で初期値を与える必要がある。しかしながら、この精度での予備推定は、実用上、容易ではない。   Although the absolute value of each measurement value can be obtained by the method described above, it is necessary to give a correct initial value for this purpose. In other words, the least square fit described above has local solutions at intervals of about ½ of the wavelength, and therefore it is necessary to give an initial value with an accuracy of ½ or less of the wavelength for correct absolute value measurement. However, preliminary estimation with this accuracy is not easy in practice.

波長走査で得られる輝度データから絶対値を推定する手法として、フーリエ変換法が知られている。これは、周波数スペクトルのピークを求め、式(13)により光学的距離(OPD)に換算する。   A Fourier transform method is known as a method for estimating an absolute value from luminance data obtained by wavelength scanning. This obtains the peak of the frequency spectrum and converts it to the optical distance (OPD) by the equation (13).

しかし、離散的フーリエ変換(FFT;Fast Fourier Transform)により得られる周波数分解能をOPDに換算した距離分解能ΔLは、波長走査の初期波長λ0と走査幅Δλに依存し、式(22)で表される。 However, the distance resolution ΔL obtained by converting the frequency resolution obtained by discrete Fourier transform (FFT) into OPD depends on the initial wavelength λ 0 of wavelength scanning and the scanning width Δλ, and is expressed by equation (22). The

初期波長λ0=600nmの場合、Δλ=10nmでΔL=18μm、Δλ=100nmでΔL=1.8μmであり、波長の1/2である300nmの精度を得ることは困難である。そこで、以下のような方法を用いることにより、高精度の測定を可能とする。 In the case of the initial wavelength λ 0 = 600 nm, ΔL = 18 μm when Δλ = 10 nm, ΔL = 1.8 μm when Δλ = 100 nm, and it is difficult to obtain an accuracy of 300 nm which is ½ of the wavelength. Therefore, high-precision measurement is possible by using the following method.

まず、次数飛び現象を解析する。モデル式はcos関数の和であり、周期関数である。
ctは波長走査量で、ct<<λ0であるから、
First, the order skip phenomenon is analyzed. The model formula is a sum of cos functions and is a periodic function.
Since ct is the wavelength scanning amount and ct << λ 0 ,

よって、式(1)の右辺のLSに関するcos関数は、次式のように表される。 Therefore, the cos function related to L S on the right side of Expression (1) is expressed as the following expression.

これは、LSに関して、周期がλ0/2の周期関数である。すなわち、式(2)の最小二乗適合問題がλ0/2間隔で、局所解をもつ。このことは、二乗誤差和SSEとSの誤差との関係をプロットした図8からも明らかである。 This respect L S, the period is a periodic function of λ 0/2. That is, in the least squares fit problems of formula (2) is lambda 0/2 intervals, with local solutions. This is apparent from FIG. 8 in which the relationship between the square error sum SSE and the error of S is plotted.

上記(24)式で無視したcos関数内の第1項に注目する。これが無視できない状態では、SSEが完全な周期関数ではなくなるので、局所解のSSEに差が生じ、大域的最適解が求められる可能性がある。   Pay attention to the first term in the cos function ignored in the above equation (24). In a state where this cannot be ignored, the SSE is not a complete periodic function, so there is a possibility that a difference occurs in the SSE of the local solution and a global optimum solution is obtained.

図4は、表面高さ変更時の二乗誤差を示す図である。図5は、図4の縦軸を拡大したもので、真値から離れるに従って、SSEが大きくなっている。すなわち、局所解のSSEを比較して、それが最も小さくなる解が大域的最適解であり、真値である。   FIG. 4 is a diagram illustrating a square error when the surface height is changed. FIG. 5 is an enlarged view of the vertical axis of FIG. 4, and the SSE increases as the distance from the true value increases. That is, comparing the SSEs of local solutions, the solution with the smallest SSE is the global optimal solution and is a true value.

一方、実データにはノイズがあるので、SSEにノイズ成分が加算される。ノイズによるSSEの変動よりも局所解のSSEの差を有意に大きくするためには、波長走査幅Δλ=cτ(τは走査時間)をできるだけ大きくすればよい。このような条件を選択すれば、初期値を変えた複数の適合を実施する「マルチスタート法」により大域的最適解を得ることができる。   On the other hand, since real data has noise, a noise component is added to SSE. In order to significantly increase the SSE difference of the local solution than the SSE variation due to noise, the wavelength scanning width Δλ = cτ (τ is the scanning time) may be made as large as possible. If such conditions are selected, a global optimum solution can be obtained by the “multi-start method” in which a plurality of adaptations with different initial values are performed.

なお、本発明の方法においては、被測定試料14の表面高さ、被測定試料14の裏面高さ、あるいは被測定試料14の板厚Tの初期値を変えて、式(1)のモデル関数への複数回の適合をおこない、適合の最適値を探索することが好ましい。   In the method of the present invention, the model function of equation (1) is changed by changing the surface height of the sample 14 to be measured, the back surface height of the sample 14 to be measured, or the initial value of the plate thickness T of the sample 14 to be measured. It is preferable to search for an optimal value of the matching by performing a plurality of times of matching.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

[実施例1]
上記による算出方法を用いて求めた実験事例を実施例1として示す。
(1)実験方法
以下の条件で、理論インターフェログラムを作成した。
波長走査速度c:0.01nm/s(図6)
初期波長λ0:600nm
観測データ数:256
カメラ撮像速度:30fps
表面距離(参照面基準)LS:10mm
物理的板厚T’:10mm
参照板、被測定試料屈折率:1.46
[Example 1]
An experimental example obtained using the above calculation method is shown as Example 1.
(1) Experimental method A theoretical interferogram was created under the following conditions.
Wavelength scanning speed c: 0.01 nm / s (FIG. 6)
Initial wavelength λ 0 : 600 nm
Number of observation data: 256
Camera imaging speed: 30 fps
Surface distance (reference surface standard) L S : 10 mm
Physical thickness T ': 10mm
Reference plate, measured sample refractive index: 1.46

よって、裏面距離(参照面基準;OPD)LB:24.6mmである。得られた波形を図7(a)に示す。
最小二乗法適合は、MS Excel(登録商標)の最適化ツールであるSolverを使用した。初期値は、I0=95、LS=10000050nm、LB=24600025nmとした。
Therefore, the back surface distance (reference surface standard; OPD) L B : 24.6 mm. The obtained waveform is shown in FIG.
For the least squares fit, Solver, an optimization tool of MS Excel (registered trademark), was used. The initial values were set to I 0 = 95, L S = 10000050 nm, and L B = 24600025 nm.

(2)実験結果
結果を表1に示す。表面・裏面の距離の推定誤差は1nm以下であった。また、適合抽出された表面、裏面、板厚の信号波形を図7(b)(c)(d)に示す。式(13)に示すように、各波形の周波数(表面が0.56Hz、裏面が1.37Hz、板厚が0.81Hz)が界面間距離(それぞれ、10mm、24.6mm、14.6mm)に比例している。
(2) Experimental results Table 1 shows the results. The estimation error of the distance between the front surface and the back surface was 1 nm or less. In addition, signal waveforms of the front surface, back surface, and plate thickness extracted by conformity are shown in FIGS. 7B, 7C, and 7D. As shown in Equation (13), the frequency of each waveform (the front surface is 0.56 Hz, the back surface is 1.37 Hz, the plate thickness is 0.81 Hz) is the inter-interface distance (10 mm, 24.6 mm, and 14.6 mm, respectively). It is proportional to

[実施例2]
上記、マルチスタート法による算出方法を用いて、被測定試料のライン形状の絶対値測定を行った実験事例を実施例2として示す。
(1)実験方法
実施例1の条件に、表面が1000nm傾斜し、板厚が中央で100nm球面突起している条件を追加して理論インターフェログラムを作成した。横方向(x座標)の画素数は164とし、測定条件を、波長走査速度0.1nm/s、観測データ数256とした。マルチスタート条件は、LS、LBの初期値を、x=82点における推定値であるLS=10000500nm、LB=24600500nmを中心に、変更レンジを±500nm、刻みを250nmとした。すなわち、5×5=25個の初期値の組み合わせで適合を行い、二乗誤差和SSEが最小の解を大域的最適解とした。なお、刻みは、波長の1/2である300nm以下の必要があり、ここでは250nmとした。
(2)実験結果
得られた結果を図8に示す。表面形状LS、裏面形状LBとも正しく絶対値測定ができている。
[Example 2]
An experimental example in which the absolute value of the line shape of the sample to be measured was measured using the calculation method based on the multi-start method is shown as Example 2.
(1) Experimental Method A theoretical interferogram was created by adding the condition that the surface was inclined by 1000 nm and the plate thickness was 100 nm spherically projected at the center to the conditions of Example 1. The number of pixels in the horizontal direction (x coordinate) was 164, and the measurement conditions were a wavelength scanning speed of 0.1 nm / s and an observation data number of 256. Multistart conditions, L S, the initial value of L B, x = an estimated value of 82 points L S = 10000500nm, mainly L B = 24600500nm, ± 500nm changed range, and the increments of the 250 nm. That is, 5 × 5 = 25 combinations of initial values are used for adaptation, and a solution having the smallest square error sum SSE is defined as a global optimum solution. Note that the step needs to be 300 nm or less, which is a half of the wavelength, and is 250 nm here.
(2) Experimental results The results obtained are shown in FIG. Both the front surface shape L S and the back surface shape L B are correctly measured.

[実施例3]
本発明による方法を用いて、実際の試料を測定した例を実施例3として示す。
(1)実験方法
以下の条件で、インターフェログラムを取得した。
被測定試料:透明ガラス(屈折率:1.51)
波長走査速度c:0.1nm/s
初期波長λ0:630nm
観測データ数:256
カメラ撮像速度:25fps
表面距離(参照面基準)LS:約11.35mm
物理的板厚T’:約2.85mm
参照板屈折率:1.46
[Example 3]
An example in which an actual sample was measured using the method according to the present invention is shown as Example 3.
(1) Experimental method Interferogram was acquired on condition of the following.
Sample to be measured: transparent glass (refractive index: 1.51)
Wavelength scanning speed c: 0.1 nm / s
Initial wavelength λ 0 : 630 nm
Number of observation data: 256
Camera imaging speed: 25 fps
Surface distance (reference surface standard) L S : about 11.35 mm
Physical thickness T ′: about 2.85 mm
Reference plate refractive index: 1.46

カメラで撮像された干渉縞画像の一部(75×75画素)を被測定試料とした。その画像の一例を図9に示す。
最小二乗法適合は、MS Excel(登録商標)の最適化ツールであるSolverを使用した。初期値は、LS=11.35mm、T’=2.85mmとし、探索範囲±1000nm、刻み250nmのマルチスタート法を採用した。
(2)実験結果
画面中央画素における輝度波形と、それに対して適合したモデル波形を図10に示す。また、表面形状、裏面形状、板厚分布の測定結果を図11〜図13に示す。表面が水平方向に傾斜していて、また、板厚分布が垂直方向に存在することが測定されている。
A part of the interference fringe image captured by the camera (75 × 75 pixels) was used as a sample to be measured. An example of the image is shown in FIG.
The least square method fit used Solver, an optimization tool of MS Excel (registered trademark). The initial values were L S = 11.35 mm, T ′ = 2.85 mm, and a multi-start method with a search range of ± 1000 nm and a step of 250 nm was adopted.
(2) Experimental result FIG. 10 shows a luminance waveform at the center pixel of the screen and a model waveform adapted thereto. Moreover, the measurement result of surface shape, back surface shape, and plate | board thickness distribution is shown in FIGS. It has been measured that the surface is inclined in the horizontal direction and the thickness distribution is present in the vertical direction.

1 形状測定装置
10 照明光源
11 コリメートレンズ
12 ビームスプリッタ
13 参照板
14 被測定試料
15 結像レンズ
16 撮像手段
20 光学系ユニット
22 解析手段
DESCRIPTION OF SYMBOLS 1 Shape measuring apparatus 10 Illumination light source 11 Collimating lens 12 Beam splitter 13 Reference plate 14 Sample 15 to be measured Imaging lens 16 Imaging means 20 Optical system unit 22 Analysis means

Claims (12)

出力光の波長を時間的に変化させ得る照明光源と、
前記照明光源からの光束を平行光束とした後、該平行光束を参照面上および透明板である被測定試料に導く光学系ユニットと、
前記参照面と、前記被測定試料の表面と、前記被測定試料の裏面とからの反射光の干渉により得られた干渉像を連続的に撮像する撮像手段と、
を備えた形状測定装置を用いた透明板の形状測定方法であって、
前記照明光源からの照明光の波長を時間的に走査して、前記干渉像を変化させながら、該干渉像を前記撮像手段により連続的に撮像し、
撮像して得られた干渉輝度信号に対して、下記式(1)に基づくモデル関数を適合することによって、前記被測定試料の各位置での表面高さ、裏面高さ、板厚分布のうち少なくともいずれかを測定することを特徴とする形状測定方法。
前記式(1)において、
I(t):観測輝度モデル関数値
t:時間(s)
0:参照面入射光量
S:参照面と被測定試料表面間の物理的距離(表面高さ)
B:参照面と被測定試料裏面間の光学的距離
B−LS:光学的板厚
c:波長走査の速度(nm/s)
λ0:初期波長(nm)
a:I0=1の時の干渉輝度信号の直流成分
S:参照面と被測定試料表面による干渉輝度信号の振幅
B:参照面と被測定試料裏面による干渉輝度信号の振幅
T:被測定試料表面と被測定試料裏面による干渉輝度信号の振幅
である。
An illumination light source capable of temporally changing the wavelength of the output light;
An optical system unit that guides the parallel light flux to the sample to be measured on the reference surface and a transparent plate after making the light flux from the illumination light source a parallel light flux;
Imaging means for continuously capturing an interference image obtained by interference of reflected light from the reference surface, the surface of the sample to be measured, and the back surface of the sample to be measured;
A method for measuring the shape of a transparent plate using a shape measuring device comprising:
The wavelength of the illumination light from the illumination light source is temporally scanned and the interference image is continuously captured by the imaging unit while changing the interference image.
By fitting a model function based on the following equation (1) to the interference luminance signal obtained by imaging, the surface height, the back surface height, and the plate thickness distribution at each position of the sample to be measured A shape measuring method characterized by measuring at least one of them.
In the formula (1),
I (t): Observation luminance model function value t: Time (s)
I 0 : Light incident on the reference surface L S : Physical distance (surface height) between the reference surface and the surface of the sample to be measured
L B : Optical distance between the reference surface and the back of the sample to be measured L B -L S : Optical plate thickness c: Speed of wavelength scanning (nm / s)
λ 0 : initial wavelength (nm)
a: DC component b S of interference luminance signal when I 0 = 1: Amplitude b B of interference luminance signal by reference surface and back surface of sample to be measured b B : Amplitude b T of interference luminance signal by reference surface and back surface of sample to be measured: This is the amplitude of the interference luminance signal from the measured sample surface and the measured sample back surface.
下記式(20)、(21)に基づいて、前記被測定試料の板厚T’、裏面高さLB’を求めることを特徴とする請求項1に記載の形状測定方法。
前記式(20)、(21)において、
n:被測定試料屈折率
である。
The shape measuring method according to claim 1, wherein the thickness T ′ and the back surface height L B ′ of the sample to be measured are obtained based on the following formulas (20) and (21).
In the formulas (20) and (21),
n: Refractive index of the sample to be measured.
前記適合の手法として、下記式(2)で表される実測値(Ii)と観測輝度モデル関数値(I(ti))の二乗誤差和を最小にする最小二乗法を用いて、前記式(1)の未知変数を求めることを特徴とする請求項1または2に記載の形状測定方法。
前記式(2)において、
i:観測データ番号
n:観測データ数
i:実測値
i(ti):観測輝度モデル関数値
である。
As the fitting method, a least square method that minimizes the sum of square errors of the actual measurement value (Ii) and the observed luminance model function value (I (ti)) represented by the following equation (2) is used. 3. The shape measuring method according to claim 1, wherein the unknown variable of 1) is obtained.
In the formula (2),
i: Observation data number n: Number of observation data I i : Actual measurement value i (t i ): Observation luminance model function value.
前記式(1)における未知変数が、参照面入射光量(I0)と、被測定試料の表面高さ(LS)、被測定試料の光学的裏面距離(LB’)、および被測定試料の光学的板厚(LB−LS)からなる群から限定選択されたものであることを特徴とする請求項1から3のいずれかに記載の形状測定方法。 The unknown variables in the equation (1) are the reference plane incident light quantity (I 0 ), the surface height (L S ) of the sample to be measured, the optical back surface distance (L B ′) of the sample to be measured, and the sample to be measured. 4. The shape measuring method according to claim 1, wherein the shape measuring method is selected from the group consisting of the optical plate thicknesses (L B -L S ). 前記式(1)の中のパラメータであるa、bS、bB、bTが、参照板屈折率nR、被測定試料屈折率nを既知として、それぞれ下記式(3)〜(6)により求められることを特徴とする請求項1から4のいずれかに記載の形状測定方法。
前記式(3)〜(6)において、RRは参照面の界面反射率、RSは被測定試料表面の界面反射率であり、下記式(7)、(8)により求められる。
The parameters a, b S , b B , and b T in the formula (1) are the following formulas (3) to (6) with the reference plate refractive index n R and the measured sample refractive index n known, respectively. It is calculated | required by these, The shape measuring method in any one of Claim 1 to 4 characterized by the above-mentioned.
In the above formulas (3) to (6), RR is the interface reflectance of the reference surface, and RS is the interface reflectance of the surface of the sample to be measured, which is determined by the following formulas (7) and (8).
前記被測定試料の表面高さ(LS)、前記被測定試料の光学的裏面距離(LB)、前記被測定試料の光学的板厚(LB−LS)のうち少なくともいずれかの初期値を変えて、式(1)のモデル関数への適合を複数回行い、前記適合の最適値を探索することを特徴とする請求項1から5のいずれかに記載の形状測定方法。 Initial stage of at least one of the surface height (L S ) of the sample to be measured, the optical back surface distance (L B ) of the sample to be measured, and the optical plate thickness (L B −L S ) of the sample to be measured The shape measurement method according to claim 1, wherein the value is changed, and the fit to the model function of the expression (1) is performed a plurality of times to search for the optimum value of the fit. 出力光の波長を時間的に変化させ得る照明光源と、
前記照明光源からの光束を平行光束とした後、該平行光束を参照面上および透明板である被測定試料に導く光学系ユニットと、
前記参照面と、前記被測定試料の表面と、前記被測定試料の裏面とからの反射光の干渉により得られた干渉像を連続的に撮像する撮像手段と、
前記撮像手段により撮像された干渉画像を解析する解析手段と、
を備えた透明板の形状測定装置であって、
前記照明光源からの照明光の波長を時間的に走査して、前記干渉像を変化させながら、該干渉像を前記撮像手段により連続的に撮像し、
前記解析手段において、撮像して得られた前記干渉画像の干渉輝度信号に対して、下記式(1)に基づくモデル関数を適合することによって、前記被測定試料の各位置での表面高さ、裏面高さ、板厚分布のうち少なくともいずれかを測定することを特徴とする形状測定装置。
前記式(1)において、
I(t):観測輝度モデル関数値
t:時間(s)
0:参照面入射光量
S:参照面と被測定試料表面間の物理的距離(表面高さ)
B:参照面と被測定試料裏面間の光学的距離
B−LS:光学的板厚
c:波長走査の速度(nm/s)
λ0:初期波長(nm)
a:I0=1の時の干渉輝度信号の直流成分
S:参照面と被測定試料表面による干渉輝度信号の振幅
B:参照面と被測定試料裏面による干渉輝度信号の振幅
T:被測定試料表面と被測定試料裏面による干渉輝度信号の振幅
である。
An illumination light source capable of temporally changing the wavelength of the output light;
An optical system unit that guides the parallel light flux to the sample to be measured on the reference surface and a transparent plate after making the light flux from the illumination light source a parallel light flux;
Imaging means for continuously capturing an interference image obtained by interference of reflected light from the reference surface, the surface of the sample to be measured, and the back surface of the sample to be measured;
Analyzing means for analyzing an interference image captured by the imaging means;
A transparent plate shape measuring apparatus comprising:
The wavelength of the illumination light from the illumination light source is temporally scanned and the interference image is continuously captured by the imaging unit while changing the interference image.
In the analysis means, by applying a model function based on the following formula (1) to the interference luminance signal of the interference image obtained by imaging, the surface height at each position of the measured sample, A shape measuring apparatus for measuring at least one of a back surface height and a plate thickness distribution.
In the formula (1),
I (t): Observation luminance model function value t: Time (s)
I 0 : Light incident on the reference surface L S : Physical distance (surface height) between the reference surface and the surface of the sample to be measured
L B : Optical distance between the reference surface and the back of the sample to be measured L B -L S : Optical plate thickness c: Speed of wavelength scanning (nm / s)
λ 0 : initial wavelength (nm)
a: DC component b S of interference luminance signal when I 0 = 1: Amplitude b B of interference luminance signal by reference surface and back surface of sample to be measured b B : Amplitude b T of interference luminance signal by reference surface and back surface of sample to be measured: This is the amplitude of the interference luminance signal from the measured sample surface and the measured sample back surface.
下記式(20)、(21)に基づいて、前記被測定試料の板厚T’、裏面高さLB’を求めることを特徴とする請求項7に記載の形状測定装置。
前記式(20)、(21)において、
n:被測定試料屈折率
である。
The shape measuring apparatus according to claim 7, wherein the thickness T ′ and the back surface height L B ′ of the sample to be measured are obtained based on the following formulas (20) and (21).
In the formulas (20) and (21),
n: Refractive index of the sample to be measured.
前記適合の手法として、下記式(2)で表される実測値(Ii)と観測輝度モデル関数値(I(ti))の二乗誤差和を最小にする最小二乗法を用いて、前記式(1)の未知変数を求めることを特徴とする請求項7または8に記載の形状測定装置。
前記式(2)において、
i:観測データ番号
n:観測データ数
i:実測値
i(ti):観測輝度モデル関数値
である。
As the fitting method, a least square method that minimizes the sum of square errors of the actual measurement value (Ii) and the observed luminance model function value (I (ti)) represented by the following equation (2) is used. 9. The shape measuring apparatus according to claim 7, wherein the unknown variable of 1) is obtained.
In the formula (2),
i: Observation data number n: Number of observation data I i : Actual measurement value i (t i ): Observation luminance model function value.
前記式(1)における未知変数が、参照面入射光量(I0)と、被測定試料の表面高さ(LS)、被測定試料の光学的裏面距離(LB)、および被測定試料の光学的板厚(LB−LS)からなる群から限定選択されたものであることを特徴とする請求項7から9のいずれかに記載の形状測定装置。 The unknown variables in the equation (1) are the reference surface incident light quantity (I 0 ), the surface height (L S ) of the sample to be measured, the optical back surface distance (L B ) of the sample to be measured, and the 10. The shape measuring device according to claim 7, wherein the shape measuring device is selected from a group consisting of optical plate thicknesses (L B -L S ). 前記式(1)の中のパラメータであるa、bS、bB、bTが、参照板屈折率nR、被測定試料屈折率nを既知として、それぞれ下記式(3)〜(6)により求められることを特徴とする請求項7から10のいずれかに記載の形状測定方法。
前記式(3)〜(6)において、RRは参照面の界面反射率、RSは被測定試料表面の界面反射率であり、下記式(7)、(8)により求められる。
The parameters a, b S , b B , and b T in the formula (1) are the following formulas (3) to (6) with the reference plate refractive index n R and the measured sample refractive index n known, respectively. It is calculated | required by these, The shape measuring method in any one of Claim 7 to 10 characterized by the above-mentioned.
In the above formulas (3) to (6), RR is the interface reflectance of the reference surface, and RS is the interface reflectance of the surface of the sample to be measured, which is determined by the following formulas (7) and (8).
前記被測定試料の表面高さ(LS)、前記被測定試料の光学的裏面距離(LB)、前記被測定試料の光学的板厚(LB−LS)のうち少なくともいずれかの初期値を変えて、式(1)のモデル関数への適合を複数回行い、前記適合の最適値を探索することを特徴とする請求項7から11のいずれかに記載の形状測定装置。 Initial stage of at least one of the surface height (L S ) of the sample to be measured, the optical back surface distance (L B ) of the sample to be measured, and the optical plate thickness (L B −L S ) of the sample to be measured The shape measuring apparatus according to claim 7, wherein the value is changed, the model function of the expression (1) is adapted a plurality of times, and the optimum value of the adaptation is searched.
JP2015048085A 2015-03-11 2015-03-11 Method and apparatus for measuring shape of transparent plate Active JP6457846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015048085A JP6457846B2 (en) 2015-03-11 2015-03-11 Method and apparatus for measuring shape of transparent plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015048085A JP6457846B2 (en) 2015-03-11 2015-03-11 Method and apparatus for measuring shape of transparent plate

Publications (2)

Publication Number Publication Date
JP2016169959A true JP2016169959A (en) 2016-09-23
JP6457846B2 JP6457846B2 (en) 2019-01-23

Family

ID=56983547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015048085A Active JP6457846B2 (en) 2015-03-11 2015-03-11 Method and apparatus for measuring shape of transparent plate

Country Status (1)

Country Link
JP (1) JP6457846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402273B1 (en) * 2018-05-18 2018-10-10 大塚電子株式会社 Optical measuring apparatus and optical measuring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139511A (en) * 2001-10-30 2003-05-14 National Institute Of Advanced Industrial & Technology Interference fringe analyzing method for surface shape measurement and thickness ununiformity measurement of transparent parallel flat plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139511A (en) * 2001-10-30 2003-05-14 National Institute Of Advanced Industrial & Technology Interference fringe analyzing method for surface shape measurement and thickness ununiformity measurement of transparent parallel flat plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402273B1 (en) * 2018-05-18 2018-10-10 大塚電子株式会社 Optical measuring apparatus and optical measuring method
JP2019200185A (en) * 2018-05-18 2019-11-21 大塚電子株式会社 Optical measurement unit and optical measurement method

Also Published As

Publication number Publication date
JP6457846B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
US20080068617A1 (en) Fast 3d height measurement method and system
KR102580107B1 (en) Facilitating spectroscopic measurements during semiconductor device manufacturing
JP5663758B2 (en) Shape measuring method and shape measuring apparatus
US8269980B1 (en) White light scanning interferometer with simultaneous phase-shifting module
KR101637252B1 (en) Method for compensating error of fringe order in white-light phase-shifting interferometry
JP6750813B2 (en) Shape measuring method and shape measuring device for transparent plate
JP6457846B2 (en) Method and apparatus for measuring shape of transparent plate
JP2015230264A (en) Film thickness measurement method and film thickness measurement device
JP5701159B2 (en) Method and apparatus for measuring surface shape by fitting interference fringe model
JP5493152B2 (en) Shape measuring device
JP2009526978A (en) Optical surface sensor
JP2013068489A (en) Surface profiling method using multiple wavelengths and apparatus using the same
JP6674619B2 (en) Image generation method and image generation device
JP6700071B2 (en) Method and apparatus for measuring refractive index distribution of cylindrical optical waveguide
JP7296844B2 (en) Analysis device, analysis method, interference measurement system, and program
Schake et al. Perturbation resistant rgb-interferometry with pulsed led illumination
JP6047764B2 (en) White interferometer, image processing method, and image processing program
US7956630B1 (en) Real-time effective-wavelength error correction for HDVSI
Morimoto et al. Shape Measurement by Whole‐space Tabulation Method Using Phase‐shifting LED Projector
JP2007333428A (en) Shape measuring device, and shape measuring method
JP2007071817A (en) Two-light flux interferometer and method for measuring shape of object to be measured using interferometer
JP2003269923A (en) Instrument for measuring absolute thickness
Farahi et al. On machine test of Inverse Projected-Fringe system for measurement of form deviation and surface profile of axisymmetric objects
JP2018159557A (en) Film thickness measurement device and film thickness measurement method
JP7016304B2 (en) Interferometer measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181221

R150 Certificate of patent or registration of utility model

Ref document number: 6457846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250