JP2016169830A - Vibration-proof structure - Google Patents

Vibration-proof structure Download PDF

Info

Publication number
JP2016169830A
JP2016169830A JP2015051001A JP2015051001A JP2016169830A JP 2016169830 A JP2016169830 A JP 2016169830A JP 2015051001 A JP2015051001 A JP 2015051001A JP 2015051001 A JP2015051001 A JP 2015051001A JP 2016169830 A JP2016169830 A JP 2016169830A
Authority
JP
Japan
Prior art keywords
vibration
component
damping structure
structure according
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015051001A
Other languages
Japanese (ja)
Other versions
JP6249178B2 (en
Inventor
則彦 持田
Norihiko Mochida
則彦 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2015051001A priority Critical patent/JP6249178B2/en
Publication of JP2016169830A publication Critical patent/JP2016169830A/en
Application granted granted Critical
Publication of JP6249178B2 publication Critical patent/JP6249178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-reliable vibration-proof structure for the space.SOLUTION: A vibration-proof structure of this invention includes a direct advance member having a first component directly or indirectly connected to a vibration generating device, a second component directly or indirectly connected to a vibration receiving device and configured in non-symmetrical form in respect to an axis center, and a resilient member connected between the first component and the second component arranged symmetrically in respect to the axis center to connect between the first component and the second component and deformed as the first component and the second component are relatively moved in an axial direction.SELECTED DRAWING: Figure 2

Description

本発明は、制振構造に関する。   The present invention relates to a vibration damping structure.

近年、科学観測衛星や地球観測衛星では、軌道上で複雑かつ高速な姿勢制御を行うために大型のアクチュエータを搭載する。このアクチュエータは、モータと減速機で構成されているのが一般的であり、モータを駆動することで振動が発生する。この振動が衛星の構造部分を伝播し搭載している観測機器を加振するため、観測機器の性能が劣化することから、この振動を機器に対する擾乱振動と呼んでいる。   In recent years, scientific observation satellites and earth observation satellites are equipped with large actuators to perform complex and high-speed attitude control in orbit. This actuator is generally composed of a motor and a speed reducer, and vibration is generated by driving the motor. Since this vibration propagates through the structural part of the satellite and vibrates the installed observation equipment, the performance of the observation equipment deteriorates, so this vibration is called disturbance vibration for the equipment.

そこで、この解決手法として、例えば自動車に使用されるサスペンション機構と同様に、減衰機能を持った支持機構を組込み、振動減衰を図ることが提案されている。この方法は支持機構の両端の相対変位を利用するものであるので、擾乱源となるアクチュエータとその支持構造の間を弱い支持剛性で結合する必要がある。   Thus, as a solution to this problem, it has been proposed to incorporate a support mechanism having a damping function in the same manner as, for example, a suspension mechanism used in an automobile to reduce vibration. Since this method uses relative displacement at both ends of the support mechanism, it is necessary to couple the actuator as a disturbance source and its support structure with a weak support rigidity.

サスペンション機構の一例として、図11に示す支持機構5では、相対運動する部材が回転可能なヒンジ51a、bで固定され、該部材の間に系の固有振動数調節と原点復帰のためのばね52、および減衰付与のためのダッシュポットが固定されている。ダッシュポットはシリンダ53とピストン54を含み、ピストン54にはオリフィス55が設けられており、ピストン54が動いた時にそこを通過するオイル56の粘性抵抗力を減衰力としている。またダッシュポットは、シリンダ53とピストン54の間には、直進運動を維持するためのオイルシール機能を兼ねたすべり軸受け57、58を装着している。   As an example of the suspension mechanism, in the support mechanism 5 shown in FIG. 11, members that move relative to each other are fixed by rotatable hinges 51 a and 51 b, and a spring 52 for adjusting the natural frequency of the system and returning to the origin is interposed between the members. , And a dashpot for damping is fixed. The dashpot includes a cylinder 53 and a piston 54, and the piston 54 is provided with an orifice 55. The damping force is a viscous resistance force of the oil 56 that passes through the piston 54 when the piston 54 moves. Further, the dashpot is provided with sliding bearings 57 and 58 that also function as an oil seal for maintaining a straight movement between the cylinder 53 and the piston 54.

特許文献1や非特許文献1のように、支持機構として6個の直進運動機構を組み合わせることで、並進3軸と回転3軸の合計6自由度を持つパラレルリンク機構を構成することが考えられる。この機構は回転の自由度も直進運動の組合せで達成するものであり、直進運動に対して減衰機能を有する装置を少なくとも6個を組込む必要がある。   As in Patent Document 1 and Non-Patent Document 1, it is conceivable to construct a parallel link mechanism having a total of 6 degrees of freedom of three translational axes and three rotational axes by combining six linear motion mechanisms as support mechanisms. . In this mechanism, the degree of freedom of rotation is also achieved by a combination of linear movements, and it is necessary to incorporate at least six devices having a damping function for linear movements.

それぞれの直進運動機構では、例えば特許文献2のように所定の剛性を持つばねとダッシュポットが組み込まれる。また、バネ剛性は支持部材の弾性率と形状で決定し、減衰係数は内部に封入するオイルの粘性特性と装置内部のオリフィス径により決定する。また、特許文献3のように、平行板ばねで支持した直進機構の例がある。   In each of the linear motion mechanisms, a spring and a dashpot having a predetermined rigidity are incorporated as in Patent Document 2, for example. The spring stiffness is determined by the elastic modulus and shape of the support member, and the damping coefficient is determined by the viscosity characteristics of the oil sealed inside and the orifice diameter inside the apparatus. Moreover, there exists an example of the rectilinear mechanism supported by the parallel leaf | plate spring like patent document 3. FIG.

また、特許文献4は、振動や騒音を緩和する機能を有する制振合金部材や床振動減衰装置等を開示する。この制振合金部材を使用した床振動減衰装置は、スプリング状の制振合金部材を用い、スプリング構造を高さ方向にばね定数の異なる複数のスプリングを組み合わせたもので低荷重では低ばね定数のスプリングで制振する。また、高荷重では低ばね定数のスプリングは蓋に密着して高ばね定数のスプリングで制振するように構成する。   Patent Document 4 discloses a damping alloy member, a floor vibration damping device and the like having a function of mitigating vibration and noise. This floor vibration damping device using a damping alloy member uses a spring-like damping alloy member and combines a spring structure with a plurality of springs having different spring constants in the height direction. Damping with a spring. In addition, the spring having a low spring constant is configured to be in close contact with the lid and to be damped by the spring having a high spring constant at a high load.

特開2010−264526号公報JP 2010-264526 A 特開2002−323083号公報JP 2002-323083 A 特開2013−022666号公報JP2013-022666A 特開2005−121207号公報JP-A-2005-121207

小菅他、「スチュワートプラットホーム形パラレルリンクマニピュレータの動力学計算方法」、日本機械学会論文集(C編)、60巻569号、pp218-224Ogura et al., "Method of calculating the dynamics of a Stewart platform type parallel link manipulator", Transactions of the Japan Society of Mechanical Engineers (C), Vol. 60, No. 569, pp218-224

しかしながら、これらの特許文献1から4及び非特許文献1には以下のような課題があり、宇宙用の制振構造として選択するには難点があった。まず、特許文献1、2及び非特許文献1では、減衰装置はオイルを封入した圧力容器になっているため、オイル漏れや強度に対する信頼性、安全性の保証の検証が必要であり、確認試験を幾つも重ねる必要がある。また、一般にオイルは高分子材料であるため、真空環境や放射線環境に対して減衰性能の劣化を防ぐ配慮が必要である。さらに、ピストン・シリンダの摺動部があり、摩擦の変動や摩耗に対する信頼性の評価が難しい。   However, these Patent Documents 1 to 4 and Non-Patent Document 1 have the following problems, and there is a difficulty in selecting them as a vibration damping structure for space. First, in Patent Documents 1 and 2 and Non-Patent Document 1, since the damping device is a pressure vessel filled with oil, it is necessary to verify reliability of oil leakage and strength, and guarantee of safety. It is necessary to stack several times. Moreover, since oil is generally a polymer material, consideration must be given to prevent deterioration of attenuation performance against a vacuum environment or a radiation environment. Furthermore, there are sliding parts of pistons and cylinders, and it is difficult to evaluate the reliability against frictional fluctuations and wear.

特許文献3では、板ばねが変形したときに長さ方向に縮むことに対する引張力発生の変形抵抗が大きくなる非線形性を持つ難点がある。特許文献4のように減衰材として材料の内部摩擦が大きい制振合金を採用した支持構造があるが、この構造では様々な方向に変形するため、直進運動機構に組み込むことはできない。   In patent document 3, there exists a difficulty which has the nonlinearity from which the deformation | transformation resistance of the tensile force generation with respect to contracting to a length direction when a leaf | plate spring deform | transforms becomes large. Although there is a support structure that employs a damping alloy having a large internal friction as a damping material as in Patent Document 4, this structure deforms in various directions and cannot be incorporated into a linear motion mechanism.

本発明の目的は、上記の課題に鑑みてなされたものであり、上記課題を解決する制振構造を提供することにある。   An object of the present invention has been made in view of the above problems, and is to provide a vibration damping structure that solves the above problems.

上述の課題に鑑み、本発明の一態様は、振動発生装置に直接的に又は間接的に連結される第1の部品と、振動受け装置に直接的に又は間接的に連結される第2の部品とを有し、軸心に対して非対称に構成される直進運動部材と、上記軸心に対して対称に配置されかつ上記第1の部品及び上記第2の部品間を接続し、軸方向における上記第1の部品と上記第2の部品の相対移動に伴って変形する弾性部材と、を備えることを特徴とする制振構造に関する。   In view of the above-described problems, one embodiment of the present invention includes a first component that is directly or indirectly connected to the vibration generator and a second component that is directly or indirectly connected to the vibration receiver. A linear motion member configured asymmetrically with respect to the shaft center, and symmetrically disposed with respect to the shaft center and connected between the first component and the second component, the axial direction The present invention relates to a vibration damping structure comprising: an elastic member that deforms with relative movement of the first part and the second part.

本発明によれば、減衰効果が得られる信頼性の高い制振構造を提供することができる。   According to the present invention, it is possible to provide a highly reliable vibration damping structure that can obtain a damping effect.

本発明の更なる利点及び実施形態を、記述と図面を用いて下記に詳細に説明する。   Further advantages and embodiments of the present invention are described in detail below using the description and the drawings.

本発明の第1の実施形態による制振構造を適用した人工衛星の概略を示す概略構成図である。It is a schematic block diagram which shows the outline of the artificial satellite to which the damping structure by the 1st Embodiment of this invention is applied. 図1に示す制振構造における直進運動部材の構成を示す側面図である。It is a side view which shows the structure of the rectilinear motion member in the damping structure shown in FIG. 図2に示す直進運動部材の概略構成を示す立体図である。FIG. 3 is a three-dimensional view illustrating a schematic configuration of the rectilinear motion member illustrated in FIG. 2. 図2に示す直進運動部材の動作を説明するための図である。It is a figure for demonstrating operation | movement of the rectilinear motion member shown in FIG. (a)及び(b)は、本発明の第2の実施形態による制振構造における直進運動部材に用いられる板ばねの例を示す図である。(A) And (b) is a figure which shows the example of the leaf | plate spring used for the rectilinear motion member in the damping structure by the 2nd Embodiment of this invention. 本発明の第1の実施形態による制振構造で利用される平板ばねの応力分布を説明するための図である。It is a figure for demonstrating the stress distribution of the flat spring utilized with the damping structure by the 1st Embodiment of this invention. 本発明の第2の実施形態による制振構造で利用される平板ばねの応力分布を説明するための図である。It is a figure for demonstrating the stress distribution of the flat spring utilized with the damping structure by the 2nd Embodiment of this invention. 本発明の第2の実施形態による制振構造で利用される平板ばねの応力分布を説明するための図である。It is a figure for demonstrating the stress distribution of the flat spring utilized with the damping structure by the 2nd Embodiment of this invention. 関連する制振構造における直進運動部材の構成を示す側面図である。It is a side view which shows the structure of the rectilinear motion member in the related damping structure. 図9に示す直進運動部材の動作を説明するための部分拡大図である。It is the elements on larger scale for demonstrating operation | movement of the rectilinearly-moving member shown in FIG. 関連する制振構造における支持機構の構成を示す側面図である。It is a side view which shows the structure of the support mechanism in a related damping structure.

はじめに、本発明者が検討した技術及びその課題について図9及び図10を参照して説明する。図9は、関連する制振構造における直進運動部材4の構成を示す図である。図10は、図9に示す直進運動部材4の動作を説明するための図である。   First, a technique studied by the present inventor and problems thereof will be described with reference to FIGS. 9 and 10. FIG. 9 is a diagram showing a configuration of the rectilinear motion member 4 in the related vibration control structure. FIG. 10 is a view for explaining the operation of the rectilinear motion member 4 shown in FIG.

図9を参照すると、図11の支持機構で用いられているダッシュポットは使わず、直進運動のためのすべり軸受けもない直進運動部材4が例示されている。この直進運動部材4では、相対運動するシリンダ42aとピストン42bの間に平板ばね44a、b、c、dを組み込んである。   Referring to FIG. 9, there is illustrated a rectilinear motion member 4 that does not use the dashpot used in the support mechanism of FIG. 11 and does not have a sliding bearing for rectilinear motion. In the linearly moving member 4, flat springs 44a, 44b, 44c, and 42d are incorporated between a cylinder 42a and a piston 42b that move relative to each other.

この平板ばね44a〜dを制振合金で製作すれば、直進運動機能と減衰機能を同時に達成することができる。しかし、このような両端支持点の軸心45に対して対称な配置では、平板ばね44a〜dが変形したときに図10のように平板ばね44a〜dの変形による縮み46が発生し、長さ方向に縮むことに対する引張力発生の変形抵抗が大きくなる非線形性を持つ難点がある。また、引張力が発生することで、曲げ変形で発生する曲げ応力に引張応力が重畳することになり、同じ変形量での強度が低下する難点もある。   If the flat springs 44a to 44d are made of a damping alloy, the linear motion function and the damping function can be achieved simultaneously. However, in such a symmetrical arrangement with respect to the axis 45 of the both end support points, when the flat springs 44a to 44d are deformed, a contraction 46 due to the deformation of the flat springs 44a to 44d occurs as shown in FIG. There is a difficulty with non-linearity that increases the deformation resistance of the generation of tensile force against shrinking in the vertical direction. Further, since the tensile force is generated, the tensile stress is superimposed on the bending stress generated by the bending deformation, and there is a difficulty in that the strength at the same deformation amount is lowered.

上記した問題点を解決できる本発明の各実施形態について図面を参照しつつ説明する。但し、以下の説明は本発明の技術的範囲は何ら限定解釈されないことは云うまでもない。   Embodiments of the present invention that can solve the above-described problems will be described with reference to the drawings. However, needless to say, the following description does not limit the technical scope of the present invention.

(第1の実施形態)
まず、本発明の第1の実施形態について説明する、
(First embodiment)
First, a first embodiment of the present invention will be described.

図1は、第1の実施形態による制振構造が人工衛星本体1と観測機器3の間に組み込まれた例を示す。制振構造として、複数の直進運動部材2a〜fの一端が人工衛星本体1に固定され、複数の直進運動部材2a〜fの他端に観測機器3が支持されパラレルメカニズム2を構成している。人工衛星本体1には、例えば太陽電池パドル駆動部などの人工衛星搭載アクチュエータ1aが搭載されている。この人工衛星搭載アクチュエータ1aを駆動すると振動が発生する。本実施形態では、パラレルメカニズム2を構成する直進運動部材2a〜fにより、観測機器3に対する擾乱振動の原因となる外部からの振動が観測機器3へ伝わることを抑制する。   FIG. 1 shows an example in which the vibration damping structure according to the first embodiment is incorporated between the artificial satellite body 1 and the observation device 3. As a vibration control structure, one end of a plurality of rectilinear motion members 2a to 2f is fixed to the artificial satellite body 1, and an observation device 3 is supported on the other end of the plurality of rectilinear motion members 2a to 2f to constitute a parallel mechanism 2. . The artificial satellite body 1 is equipped with an artificial satellite-mounted actuator 1a such as a solar battery paddle driving unit. When this artificial satellite mounted actuator 1a is driven, vibration is generated. In this embodiment, the linear motion members 2 a to 2 f constituting the parallel mechanism 2 suppress the transmission of external vibrations that cause disturbance vibration to the observation device 3 to the observation device 3.

観測機器3は、例えば高解像度望遠鏡などの天体観測衛星用光学系や微光天体分光撮像装置、高分散分光器、光学顕微鏡などの地球観測衛星用光学系といったものが例示されるが、これに限定されるものではない。   Examples of the observation device 3 include an optical system for an astronomical observation satellite such as a high-resolution telescope, an optical system for an earth observation satellite such as a low-light astronomical spectroscopic imaging device, a high dispersion spectrometer, and an optical microscope. It is not limited.

図2は、本発明の第1の実施形態による制振構造における直進運動部材2aの構成を示す側面図である。図3は、図2に示す直進運動部材2aの概略構成を示す。図4は、図2に示す直進運動部材2aの動作を説明するための図である。パラレルメカニズム2を構成する直進運動部材2a〜fのそれぞれは、人工衛星本体1に搭載する観測機器3に伝わる振動を制振するためのものである。ここでは直進運動部材2aを例にしてこれらの直進運動部材2a〜fの構成について具体的に説明する。なお、本明細書の説明において直進運動部材2aとは、第1の部品と第2の部品とを有する部材として説明することがあるし、平板ばね24a、bをも含んだ部材として説明することもある。   FIG. 2 is a side view showing the configuration of the rectilinear motion member 2a in the vibration damping structure according to the first embodiment of the present invention. FIG. 3 shows a schematic configuration of the rectilinear motion member 2a shown in FIG. FIG. 4 is a view for explaining the operation of the rectilinear motion member 2a shown in FIG. Each of the linear motion members 2a to 2f constituting the parallel mechanism 2 is for suppressing vibration transmitted to the observation device 3 mounted on the satellite main body 1. Here, the configuration of these rectilinear motion members 2a to 2f will be specifically described taking the rectilinear motion member 2a as an example. In the description of the present specification, the rectilinear motion member 2a may be described as a member having a first component and a second component, and may be described as a member including flat springs 24a and 24b. There is also.

図2及び図3を参照すると、本実施形態の制振構造は第1の部品と第2の部品とを有する直進運動部材2aと、平板ばね(板ばね)24a、bとを備える。第1部品は、人工衛星本体(振動発生装置)1又は観測機器(振動受け装置)3と連結する連結部21aと、該連結部21aの一端から軸方向(X方向)へ延び平板ばね24a、bと接続する平板ばね支持部22aとを有する。また、第2の部品は、人工衛星本体1又は観測機器3と連結する連結部21bと、該連結部21bの一端から軸方向(X方向)へ延び平板ばね24a、bと接続する平板ばね支持部22bとを有する。平板ばね24a、bは、軸心30に対して対称に配置されかつ第1の部品と第2の部品間を接続し、軸方向における第1の部品と第2の部品の相対移動に伴って変形する。   2 and 3, the vibration damping structure of the present embodiment includes a linear motion member 2a having a first part and a second part, and flat springs (leaf springs) 24a and 24b. The first part includes a connecting portion 21a connected to the satellite body (vibration generating device) 1 or the observation device (vibration receiving device) 3, a flat plate spring 24a extending from one end of the connecting portion 21a in the axial direction (X direction), a flat spring support 22a connected to b. The second part includes a connecting portion 21b connected to the satellite body 1 or the observation device 3, and a flat spring support extending from one end of the connecting portion 21b in the axial direction (X direction) and connected to the flat springs 24a and 24b. Part 22b. The flat springs 24a and 24b are arranged symmetrically with respect to the axis 30 and connect between the first part and the second part, and with the relative movement of the first part and the second part in the axial direction. Deform.

直進運動部材2aの両端の支持点からはそれぞれ片側だけに平板ばね支持部22a、22bを出して軸心30に対して非対称にしてある。この構造は、平板ばね24a、bが変形して長さ方向に縮む時の力を両端支持点の回転で逃がして変形抵抗にならないようにしているところに特徴がある。   Flat spring support portions 22a and 22b are provided only on one side from the support points at both ends of the rectilinear motion member 2a so as to be asymmetric with respect to the axis 30. This structure is characterized in that the force when the flat springs 24a and 24b are deformed and contracted in the length direction is released by the rotation of both end support points so as not to cause deformation resistance.

平板ばね24a、bは、例えば制振合金材で作成され、直進運動部材2aの軸方向における移動や人工衛星本体1に搭載された人工衛星搭載アクチュエータ1aの振動に応じて変形する。例示の図ではZ方向と平行に2枚の平板ばね24a、bが平板ばね支持部22aと平板ばね支持部22bの間に接続されるが、本発明はこの例に限定されず実現したい制振構造の設計に伴い3枚や4枚以上の平板ばねを接続し所望の減衰効果を達成させても良い。   The flat springs 24a and 24b are made of, for example, a damping alloy material, and are deformed in accordance with the movement of the linear motion member 2a in the axial direction or the vibration of the artificial satellite mounting actuator 1a mounted on the artificial satellite body 1. In the illustrated example, two flat springs 24a and 24b are connected between the flat spring support 22a and the flat spring support 22b in parallel with the Z direction. However, the present invention is not limited to this example and is to be realized. In connection with the design of the structure, three or four or more flat springs may be connected to achieve a desired damping effect.

また、第1の部品及び第2の部品は便宜上、それぞれ連結部21a、21bと平板ばね支持部22a、22bとの各部位に分けて説明しているが、別々のものではなく一体として製造したものを使用しても良い。   In addition, the first part and the second part are described separately for each part of the connecting parts 21a and 21b and the flat spring support parts 22a and 22b for convenience, but they are manufactured separately rather than separately. You may use things.

図4に示すように、人工衛星本体1に連結された第2の部品が人工衛星搭載アクチュエータ1aからの振動を受けると、連結部21bと平板ばね支持部22bが加振される。この振動は、弾性部材である平板ばね24a、bが減衰材の役割をして第1の部品へ伝わることを防ぐため、結果的に第1の部品に連結された観測機器3が振動の影響を受けることを防止することが可能となる。   As shown in FIG. 4, when the second part connected to the satellite body 1 receives vibration from the satellite-mounted actuator 1a, the connecting portion 21b and the flat spring support portion 22b are vibrated. This vibration prevents the flat springs 24a and 24b, which are elastic members, from acting as a damping material and being transmitted to the first component. As a result, the observation device 3 connected to the first component is affected by the vibration. Can be prevented.

上述した平板ばね24a、bの材質、板厚、幅、長さなどの形状は、固有振動数および強度を評定して決定され、制振合金材は必要な減衰力を発生することを評定として決定される。   The shape of the flat springs 24a and 24b, such as the material, plate thickness, width, and length, is determined by evaluating the natural frequency and strength, and it is evaluated that the damping alloy material generates the necessary damping force. It is determined.

以上説明した本発明の第1の実施形態においては、以下に記載するような効果を奏する。   The first embodiment of the present invention described above has the following effects.

第1の効果は、オイル漏れや放射線劣化あるいは摩擦摩耗に対して関連する制振機構に比べて信頼性の高い構造で減衰効果が得られる効果がある。その理由は、本実施形態による制振機構は、平板ばねを用いた支持機構を使用することで、オイルを使わずかつ摺動部がない直進運動機構を構成するようにしたからである。   The first effect is that a damping effect is obtained with a highly reliable structure as compared with a vibration damping mechanism related to oil leakage, radiation deterioration, or frictional wear. The reason is that the vibration damping mechanism according to the present embodiment uses a support mechanism using a flat spring to constitute a linear motion mechanism that does not use oil and has no sliding portion.

第2の効果は、高い減衰機能を持たせ、搭載する機器へ擾乱振動の伝達を防ぎつつ、制振構造の小型化を実現する効果がある。その理由は、直進運動部材の配置を両端支持点の軸心に対して非対称にすることで発生する応力を低減しているからである。   The second effect is that a high damping function is provided to reduce the size of the vibration damping structure while preventing transmission of disturbance vibration to the mounted device. The reason is that the stress generated by making the arrangement of the linearly moving member asymmetric with respect to the axial center of the both end support points is reduced.

(第2の実施形態)
続いて、本発明の第2の実施形態について説明する。本発明の第2の実施形態は、上述した第1の実施形態の変形例である。以下、本実施形態において、第1の実施形態においてすでに説明した部分と同様な機能を有する部分には同一符号を付し、説明は省略する。
(Second Embodiment)
Subsequently, a second embodiment of the present invention will be described. The second embodiment of the present invention is a modification of the above-described first embodiment. Hereinafter, in the present embodiment, parts having the same functions as those already described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図5(a)及び(b)は、本発明の第2の実施形態による制振構造に用いられる平板ばね(板ばね)24aを示す。図6から図8は、各実施形態で用いられる平板ばね24aの変形と応力分布の関係を説明するための図である。   FIGS. 5A and 5B show a flat spring (leaf spring) 24a used in the vibration damping structure according to the second embodiment of the present invention. 6 to 8 are views for explaining the relationship between the deformation of the flat spring 24a used in each embodiment and the stress distribution.

図6を参照すると、平板ばね24aの板厚が一様な場合の応力分布とその変形状態を示す。平板ばね24aの板厚が均等であると、応力分布は長さ方向に線形に分布し、振動などによる平板ばね24aの変形に対して特に端部に加わる応力が集中することとなる。応力が一部に集中する場合には、平板ばね24aの減衰性能に影響を与えることがあるため、本実施形態では以下に示す平板ばね24aを採用している。   Referring to FIG. 6, the stress distribution and its deformation state when the plate spring 24a has a uniform thickness are shown. When the plate thickness of the flat spring 24a is uniform, the stress distribution is linearly distributed in the length direction, and stress applied particularly to the end portion concentrates on the deformation of the flat spring 24a due to vibration or the like. When the stress is concentrated on a part, the damping performance of the flat spring 24a may be affected. Therefore, the flat spring 24a shown below is employed in the present embodiment.

図7は、図5(a)に示す平板ばね24aの変形と応力分布を示す図である。平板ばね24aの端部を厚く中央部を薄くした場合には、端部にかかる応力を軽減することができ、平板ばね24aが頑丈なものとなる。そのため、減衰性能の優れた平板ばね24aを使用することで制振構造における直進運動部材2aの減衰性能を向上できる。また、平板ばね24aの広い範囲の歪を大きくできるので、減衰性能を改善できる。   FIG. 7 is a diagram showing the deformation and stress distribution of the flat spring 24a shown in FIG. When the end portion of the flat spring 24a is thick and the central portion is thin, the stress applied to the end portion can be reduced, and the flat plate spring 24a becomes sturdy. Therefore, the damping performance of the rectilinear motion member 2a in the damping structure can be improved by using the flat spring 24a having excellent damping performance. Moreover, since the wide range distortion of the flat spring 24a can be increased, the damping performance can be improved.

図8は、図5(b)に示す平板ばね24aの変形と応力分布を示す図である。図8の平板ばね24aは、板厚を調整するかわりに端部を広くし中央部を狭くしたものであり、この場合にも端部に加わる応力を軽減することができ、頑丈な平板ばね24aとなる。そのため、減衰性能の優れた平板ばね24aを使用することで制振構造における直進運動部材2aの減衰性能を向上できる。また、平板ばね24aの広い範囲の歪を大きくできるので、減衰性能を改善できる。   FIG. 8 is a diagram showing the deformation and stress distribution of the flat spring 24a shown in FIG. The flat spring 24a shown in FIG. 8 has a wide end portion and a narrow central portion instead of adjusting the plate thickness. In this case as well, the stress applied to the end portion can be reduced, and the sturdy flat spring 24a can be reduced. It becomes. Therefore, the damping performance of the rectilinear motion member 2a in the damping structure can be improved by using the flat spring 24a having excellent damping performance. Moreover, since the wide range distortion of the flat spring 24a can be increased, the damping performance can be improved.

また、振動減衰性能は平板ばね24aに発生する歪に依存するので、図7や図8のように板厚分布を中央部が薄くするあるいは幅分布を中央部が狭くすることで、相対運動したときに平板ばね24aに発生する応力つまり歪を均等化することができる。その結果、板厚が一様で歪が端部に集中する場合よりも減衰性能を大きくすることができる。平板ばね24aの材質、板厚、幅、長さなどの形状は固有振動数および強度を評定として決定され、制振合金材は必要な減衰力を発生することを評定として決定される。   Further, since the vibration damping performance depends on the strain generated in the flat spring 24a, relative movement is achieved by reducing the thickness distribution at the center or narrowing the width distribution at the center as shown in FIGS. Sometimes the stress generated in the flat spring 24a, that is, the strain, can be equalized. As a result, the damping performance can be increased as compared with the case where the plate thickness is uniform and the strain is concentrated at the end. The shape, such as the material, plate thickness, width, and length, of the flat spring 24a is determined by evaluating the natural frequency and strength, and the damping alloy material is determined by generating the necessary damping force.

以上説明した本発明の第2の実施形態においては、第1の実施形態において得られる第1及び第2の効果に加え、以下に記載するような効果を奏する。   In the second embodiment of the present invention described above, the following effects are obtained in addition to the first and second effects obtained in the first embodiment.

第3の効果は、構造的に頑丈で、かつ、高い減衰機能を実現できる効果がある。その理由は、本実施形態による制振機構において、直進運動部材の配置を両端支持点の軸心に対して非対称にし、また、平板ばねの形状を中央部が薄くあるいは狭くして構成したからである。   The third effect is that the structure is robust and a high damping function can be realized. The reason is that in the vibration damping mechanism according to the present embodiment, the arrangement of the linearly moving member is asymmetric with respect to the axial center of the both end support points, and the shape of the flat spring is made thin or narrow at the center. is there.

以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

1 人工衛星本体
1a 人工衛星搭載アクチュエータ
2 パラレルメカニズム
2a〜f 直進運動部材
21a、b ヒンジ(連結部)
22a、b 平板ばね支持部
24a、b 平板ばね(弾性部材)
3 観測機器
30 軸心
DESCRIPTION OF SYMBOLS 1 Artificial satellite main body 1a Artificial-satellite mounted actuator 2 Parallel mechanism 2a-f Linear motion member 21a, b Hinge (connection part)
22a, b Flat spring support 24a, b Flat spring (elastic member)
3 Observation equipment 30 axis

Claims (8)

振動発生装置に直接的に又は間接的に連結される第1の部品と、振動受け装置に直接的に又は間接的に連結される第2の部品とを有し、軸心に対して非対称に構成される直進運動部材と、
前記軸心に対して対称に配置されかつ前記第1の部品及び前記第2の部品間を接続し、軸方向における前記第1の部品と前記第2の部品の相対移動に伴って変形する弾性部材と、を備えることを特徴とする制振構造。
A first part that is directly or indirectly connected to the vibration generator and a second part that is directly or indirectly connected to the vibration receiver, and is asymmetric with respect to the axis. A rectilinear motion member configured;
Elasticity arranged symmetrically with respect to the axis and connecting between the first part and the second part, and deforming with relative movement of the first part and the second part in the axial direction A vibration control structure comprising: a member;
前記弾性部材は、前記軸方向に直交する2以上の平面にそれぞれ配置された2以上の板ばねであることを特徴とする請求項1に記載の制振構造。   2. The vibration damping structure according to claim 1, wherein the elastic member is two or more leaf springs respectively disposed on two or more planes orthogonal to the axial direction. 前記板ばねは、端部より中央部の厚さが小さいことを特徴とする請求項1又は2に記載の制振構造。   The damping structure according to claim 1 or 2, wherein the leaf spring has a thickness at a central portion smaller than that of an end portion. 前記板ばねは、端部より中央部の幅が小さいことを特徴とする請求項1又は2に記載の制振構造。   3. The vibration damping structure according to claim 1, wherein the leaf spring has a width at a center portion smaller than that of an end portion. 前記板ばねは、制振合金材からなることを特徴とする請求項2乃至4のいずれか一項に記載の制振構造。   The damping structure according to any one of claims 2 to 4, wherein the leaf spring is made of a damping alloy material. 前記第1の部品及び第2の部品は、前記振動発生装置又は振動受け装置と連結する連結部と、前記第1の部品及び第2の部品の一端から軸方向へ延び前記板ばねと接続する板ばね支持部と、を有することを特徴とする請求項2乃至5のいずれか一項に記載の制振構造。   The first component and the second component are connected to the vibration generating device or the vibration receiving device, and are connected to the leaf spring extending in an axial direction from one end of the first component and the second component. A vibration damping structure according to any one of claims 2 to 5, further comprising a leaf spring support portion. 前記第1の部品は人工衛星本体に連結され、前記第2の部品は観測機器に連結される前記直進運動部材であって、前記直進運動部材は複数組み合わせて搭載されパラレルメカニズムを構成することを特徴とする請求項1乃至6のいずれか一項に記載の制振構造。   The first component is connected to a satellite body, and the second component is the linear motion member connected to an observation device, and the linear motion member is mounted in combination to form a parallel mechanism. The vibration damping structure according to any one of claims 1 to 6, wherein the vibration damping structure is characterized in that: 請求項1乃至7のいずれか一項に記載の制振構造を有する人工衛星。   An artificial satellite having the vibration damping structure according to any one of claims 1 to 7.
JP2015051001A 2015-03-13 2015-03-13 Vibration control structure Active JP6249178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015051001A JP6249178B2 (en) 2015-03-13 2015-03-13 Vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051001A JP6249178B2 (en) 2015-03-13 2015-03-13 Vibration control structure

Publications (2)

Publication Number Publication Date
JP2016169830A true JP2016169830A (en) 2016-09-23
JP6249178B2 JP6249178B2 (en) 2017-12-20

Family

ID=56983403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051001A Active JP6249178B2 (en) 2015-03-13 2015-03-13 Vibration control structure

Country Status (1)

Country Link
JP (1) JP6249178B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782988B1 (en) * 2017-02-16 2017-09-28 주식회사 에스엘랩 Mobile astronomical observation device
WO2018084925A1 (en) * 2016-11-04 2018-05-11 Raytheon Company Vibration suspension system
US10337577B2 (en) 2016-11-04 2019-07-02 Raytheon Company Bi-directional non-linear spring
JP2021504647A (en) * 2017-11-29 2021-02-15 レイセオン カンパニー Vibration insulation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108448U (en) * 1985-12-27 1987-07-10
JP2000081018A (en) * 1998-09-04 2000-03-21 T Katou:Kk Washer for vibration prevention
US20030183995A1 (en) * 2001-07-05 2003-10-02 The Boeing Company Elastomeric suspension and mounting system
JP2007270898A (en) * 2006-03-30 2007-10-18 Hitachi Plant Technologies Ltd Vibration removing device and vibration removing method
JP2013137102A (en) * 2011-12-20 2013-07-11 Honeywell Internatl Inc Passive vibration isolation device for achieving low frequency damping of low mass payload and spacecraft vibration isolation system employing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108448U (en) * 1985-12-27 1987-07-10
JP2000081018A (en) * 1998-09-04 2000-03-21 T Katou:Kk Washer for vibration prevention
US20030183995A1 (en) * 2001-07-05 2003-10-02 The Boeing Company Elastomeric suspension and mounting system
JP2007270898A (en) * 2006-03-30 2007-10-18 Hitachi Plant Technologies Ltd Vibration removing device and vibration removing method
JP2013137102A (en) * 2011-12-20 2013-07-11 Honeywell Internatl Inc Passive vibration isolation device for achieving low frequency damping of low mass payload and spacecraft vibration isolation system employing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084925A1 (en) * 2016-11-04 2018-05-11 Raytheon Company Vibration suspension system
US10041622B2 (en) 2016-11-04 2018-08-07 Raytheon Company Vibration suspension system
US10221993B2 (en) 2016-11-04 2019-03-05 Raytheon Company Vibration suspension system
US10337577B2 (en) 2016-11-04 2019-07-02 Raytheon Company Bi-directional non-linear spring
JP2020500281A (en) * 2016-11-04 2020-01-09 レイセオン カンパニー Vibration suspension system
US11015669B2 (en) 2016-11-04 2021-05-25 Raytheon Company Bi-directional non-linear spring
KR101782988B1 (en) * 2017-02-16 2017-09-28 주식회사 에스엘랩 Mobile astronomical observation device
WO2018151435A1 (en) * 2017-02-16 2018-08-23 주식회사 에스엘랩 Mobile astronomical observation apparatus
US11287640B2 (en) 2017-02-16 2022-03-29 Sl Lab, Inc. Mobile astronomical observation apparatus
JP2021504647A (en) * 2017-11-29 2021-02-15 レイセオン カンパニー Vibration insulation system
JP7150848B2 (en) 2017-11-29 2022-10-11 レイセオン カンパニー vibration isolation system

Also Published As

Publication number Publication date
JP6249178B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP6249178B2 (en) Vibration control structure
JP3375996B2 (en) Vibration isolation and damping device for passively isolating vibration between a supporting structure and a supported structure
US10260586B2 (en) Adjustable negative stiffness systems
JP6309170B2 (en) Seismic isolation unit and seismic isolation device
Erkaya et al. Modeling and simulation of joint clearance effects on mechanisms having rigid and flexible links
Dunning et al. A compact low-stiffness six degrees of freedom compliant precision stage
CN104265829B (en) Possess hinge and the integrated shock absorber of vibration isolation function and vibration isolation system
US10355622B2 (en) Lifting system, method for electrical testing, vibration damper, and machine assembly
Zhou et al. An asymmetric quasi-zero stiffness vibration isolator with long stroke and large bearing capacity
JP5889119B2 (en) Parallel link type multi-degree-of-freedom vibration isolator
WO2020165757A1 (en) Nonlinear spring mechanism for actuation systems and its design method
JP7064770B2 (en) Axial dynamic response bearings for precise positioning
Chen et al. A variable positive-negative stiffness joint with low frequency vibration isolation performance
Kocak et al. Design of a compliant lever-type passive vibration isolator with quasi-zero-stiffness mechanism
US9222544B2 (en) Device for mechanical vibration decoupling
US20100090380A1 (en) Vibration Isolation
JP2010265987A (en) Friction damper
EP3357813A1 (en) Hydraulic torque compensation device
US9458877B2 (en) Multi-directional elastomeric dampened ball joint assembly
US8235351B1 (en) Shock load isolation mounting
CN106523568B (en) A kind of damping amplifying type vibration isolator
CN115163736B (en) Stewart mechanism with variable rigidity
JP7225543B2 (en) Anti-vibration devices and optical products
JP7027173B2 (en) 3-parameter insulator containing rotary seal damper assembly
JP6797341B2 (en) Seismic isolation unit and seismic isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171107

R150 Certificate of patent or registration of utility model

Ref document number: 6249178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150