JP2016166385A - Stainless steel for surface modified spring and production method therefor - Google Patents

Stainless steel for surface modified spring and production method therefor Download PDF

Info

Publication number
JP2016166385A
JP2016166385A JP2015045864A JP2015045864A JP2016166385A JP 2016166385 A JP2016166385 A JP 2016166385A JP 2015045864 A JP2015045864 A JP 2015045864A JP 2015045864 A JP2015045864 A JP 2015045864A JP 2016166385 A JP2016166385 A JP 2016166385A
Authority
JP
Japan
Prior art keywords
less
stainless steel
phase
steel plate
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015045864A
Other languages
Japanese (ja)
Inventor
安達 和彦
Kazuhiko Adachi
和彦 安達
慎一 寺岡
Shinichi Teraoka
慎一 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015045864A priority Critical patent/JP2016166385A/en
Publication of JP2016166385A publication Critical patent/JP2016166385A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stainless steel for spring excellent in property of adhesion of coating to the stainless steel, used for an automobile related component, a home electric appliance, a casing for an OA device, a building material for use such as roof and external facing, and having inexpensive price and high strength.SOLUTION: The stainless steel sheet for a spring is provided that has a chemical component containing, by mass%, C:0.1 to 0.4%, Si:2.0% or less, Mn:0.1 to 6.0%, Cr:10.0 to 28.0%, N:0.17% or less and the balance Fe with inevitable impurities and that has structure which is a dual phase structure containing, by vol.%, ferrite phase of 30% or less and retained austenite phase of 20% or less and the balance martensite phase or is a martensite single phase and that has Si amount in a sheet surface of 2.0% or less.SELECTED DRAWING: None

Description

本発明は、塗装の密着性に優れ、自動車関連部品、家電製品、OA機器の筐体、屋根・外装用途の建材等に使用される安価かつ高強度を有するばね用ステンレス鋼に関する。   The present invention relates to a stainless steel for springs that is excellent in coating adhesion and has low strength and high strength, which is used for automobile-related parts, home appliances, OA equipment casings, roofing and exterior building materials, and the like.

自動車及びそれに適用される関連部品、家電製品及びそれに適用される関連部品、OA機器の筐体、屋根・外装用途等では、ステンレス鋼板を塗装原板に用いた塗装ステンレス鋼板が数多く使用される。これらの塗装は、ステンレス鋼板に異なる材料を塗装し、新たな特徴を付与するため、また、ステンレス鋼は耐食性に優れる材料であるが、耐食性のさらに向上させるため、あるいは、意匠性の付与という側面から実施される。   In automobiles and related parts applied to them, home appliances and related parts applied to them, OA equipment casings, roofs and exterior applications, etc., many coated stainless steel sheets using stainless steel sheets as the coating raw plates are used. These coatings apply different materials to stainless steel sheets to give new characteristics, and stainless steel is a material with excellent corrosion resistance. However, in order to further improve corrosion resistance, or to provide design properties It is carried out from.

特許文献1〜5には、自動車のエンジンに用いられるシリンダーヘッドガスケットでは、エンジンオイルや冷却水の密閉性の向上を目的として、薄いフッ素系ゴムやNBRゴム等の耐熱ゴム層が塗装されたゴム被覆ステンレス鋼板が開示されている。   In Patent Documents 1 to 5, a cylinder head gasket used in an automobile engine is a rubber coated with a heat-resistant rubber layer such as a thin fluorine rubber or NBR rubber for the purpose of improving the sealing performance of engine oil or cooling water. A coated stainless steel sheet is disclosed.

特許文献6には、家電製品およびそれに適用される関連部品、OA機器の筐体については、放熱性の改善を目的とした塗装が実施されたステンレス鋼板が開示されている。   Patent Document 6 discloses a stainless steel plate on which a coating for the purpose of improving heat dissipation is applied to a home appliance, a related component applied to the home appliance, and a housing of an OA device.

特許文献7には、意匠性向上を目的とする塗装が実施されたステンレス鋼板が特許文献7、開示されている。  Patent Document 7 discloses a stainless steel sheet that has been coated for the purpose of improving design properties.

特許文献8には、光学機器での高解像度のために光の吸収を向上される防眩効果を目的とした塗装が実施されたステンレス鋼板が開示されている。   Patent Document 8 discloses a stainless steel plate on which coating for the purpose of antiglare effect that improves light absorption for high resolution in an optical device is performed.

特許文献9〜11には、屋根・外装用途での耐食性のさらなる向上、意匠性の付与を目的として塗装が実施されたステンレス鋼板開示されている。   Patent Documents 9 to 11 disclose stainless steel sheets that have been coated for the purpose of further improving corrosion resistance and providing design properties in roof and exterior applications.

ステンレス鋼は、表面に不動態皮膜が存在し、優れた耐食性を有する。しかし、不動態皮膜があるために、そのままでは良好な塗装の密着性を得ることが困難である。このため、塗装前処理としてクロメート処理等の化成処理が施され、優れた塗装の密着性が確保されている。   Stainless steel has a passive film on its surface and has excellent corrosion resistance. However, since there is a passive film, it is difficult to obtain good paint adhesion as it is. For this reason, a chemical conversion treatment such as a chromate treatment is performed as a pre-coating treatment, and excellent coating adhesion is ensured.

最近では、六価クロムによる環境汚染にも配慮し、独自のクロムフリー化成処理が適用されるようになっている。これにともない、塗装の十分な密着性を確保するため、素材であるステンレス鋼板自体にも塗装前処理となるクロムフリー化成処理での皮膜(以下「塗装皮膜」という)の密着性が必要となる。   Recently, in consideration of environmental pollution caused by hexavalent chromium, a unique chromium-free chemical conversion treatment has been applied. Along with this, in order to ensure sufficient adhesion of the coating, the stainless steel plate itself, which is the material, also needs to have a coating of chromium-free chemical conversion treatment (hereinafter referred to as “paint coating”), which is a pre-painting treatment. .

特許文献12には、不動態皮膜を改質したステンレス鋼が開示されている。   Patent Document 12 discloses stainless steel with a modified passive film.

特許文献13〜15には、特に、塗装皮膜の密着性を劣化する一因と考えられるSiを含む不動態皮膜の組成等を限定したステンレス鋼が開示されている。   Patent Documents 13 to 15 disclose stainless steel in which the composition and the like of a passive film containing Si, which is considered to be a cause of deteriorating the adhesion of a paint film, are particularly limited.

特許文献4、6、及び12には、板表面形状の調整により、塗装皮膜の密着性を改良したステンレス鋼が開示されている。   Patent Documents 4, 6, and 12 disclose stainless steel in which the adhesion of the coating film is improved by adjusting the plate surface shape.

特許文献16には、板表面でのMgを含む非金属介在物を規定した鋼が開示されている。   Patent Document 16 discloses steel that defines nonmetallic inclusions containing Mg on the plate surface.

他方、自動車関連部品、家電製品、OA機器の筐体、屋根・外装用途では、軽量化を目的として素材であるステンレス鋼板の高強度化も必要不可避となってきている。   On the other hand, in the case of automobile-related parts, home appliances, OA equipment casings, roofs / exterior applications, it is necessary to increase the strength of the stainless steel plate as a material for the purpose of weight reduction.

特許文献17には、本発明者らにより、高価な合金元素であるNiを低減し、Crを主成分として安価、かつ、高強度が期待されるマルテンサイト相を主体とするステンレス鋼が開示されている。   Patent Document 17 discloses a stainless steel mainly composed of a martensite phase in which Ni, which is an expensive alloy element, is reduced, Cr is a main component and is expected to be inexpensive and have high strength. ing.

しかし、塗装皮膜の密着性の改善に関して、素材であるステンレス鋼の組織等の違いを考慮した検討は十分になされていない。具体的には、今後の適用拡大が期待される、製品の小型・軽量化に対応する高強度を有し、高価なNiを極力使用することなくCrを主要な合金元素とすることで安価であり、実質的に焼入れ熱処理での仕上げとなるマルテンサイト系ステンレス鋼を対象として、塗装皮膜密着性の改善を検討した検討はなされていない。   However, regarding the improvement of the adhesion of the paint film, a study considering the difference in the structure of stainless steel as a material has not been sufficiently performed. Specifically, it is expected to expand in the future, has high strength corresponding to the reduction in size and weight of the product, it is inexpensive by using Cr as the main alloy element without using expensive Ni as much as possible There has been no study on improvement of paint film adhesion for martensitic stainless steel which is substantially finished by quenching heat treatment.

特開2002−106718号公報JP 2002-106718 A 特開2002−226978号公報JP 2002-226978 A 特開2003−342745号公報JP 2003-342745 A 特開2005−42130号公報JP 2005-42130 A 特開2006−283182号公報JP 2006-283182 A 特開2007−144661号公報JP 2007-144661 A 特開2006−103269号公報JP 2006-103269 A 特開2011−179097号公報JP 2011-179097 A 特開2001−342548号公報JP 2001-342548 A 特開2004−122409号公報JP 2004-122409 A 特開2009−214383号公報JP 2009-214383 A 特開2009−256785号公報JP 2009-256785 A 特開2006−274303号公報JP 2006-274303 A 特開平8−225897号公報JP-A-8-225897 特開平9−31665号公報JP-A-9-31665 特開2001−295073号公報JP 2001-295073 A 国際公開第2013/080699号International Publication No. 2013/080699

本発明は、材料に新たな特性を付与するための塗装皮膜の密着性に優れ、自動車関連部品、家電製品、OA機器の筐体、屋根・外装用途の建材等の小型・軽量化に対応する高強度を有し、高価なNiを極力使用することなく、Crを主要な合金元素とする安価なマルテンサイト相を主体とするばね用ステンレス鋼の安定供給を課題とする。   The present invention is excellent in adhesion of a paint film for imparting new characteristics to a material, and is compatible with miniaturization and weight reduction of automobile-related parts, home appliances, OA equipment casings, building materials for roofs and exterior applications, and the like. An object is to stably supply stainless steel for springs mainly composed of an inexpensive martensite phase containing Cr as a main alloy element without using expensive Ni as much as possible.

本発明者らは、塗装皮膜の密着性の改善のため、その原因と考える不動態皮膜および形状の影響とともに、ステンレス鋼の組織、特に今後適用拡大が期待されるマルテンサイト系ステンレス鋼に関する影響を検討し、それらの複合的な効果を明らかにした。   In order to improve the adhesion of the coating film, the present inventors have an influence on the structure of the stainless steel, particularly on the martensitic stainless steel, which is expected to expand in the future, as well as the influence of the passive film and the shape considered to be the cause. We examined and clarified their combined effects.

具体的には、安価かつ高強度を期待できるCrを主合金成分とするマルテンサイト相を主体とするステンレス鋼を素材として研究開発を鋭意継続し、成分調整した小型鋳塊での試作試験、実機試作試験を経て、板表面でのSi量およびマルテンサイト相を主体とする組織を限定することで、塗装皮膜の密着性を改善できることを明らかにした。   Specifically, we continue to intensively research and develop stainless steel mainly composed of martensite phase with Cr as the main alloy component, which can be expected to be inexpensive and have high strength, and prototype tests and actual equipment with small ingots with adjusted components Through trial tests, it was clarified that the adhesion of the paint film can be improved by limiting the Si content on the plate surface and the structure mainly composed of the martensite phase.

本発明は、上記の知見に基づくものであり、その要旨は以下のとおりである。   The present invention is based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.1〜0.4%、Si:2.0%以下、Mn:0.1〜6.0%、Cr:10.0〜28.0%、及び、N:0.17%以下を含み、残部がFe及び不純物である化学組成を有し、組織が、体積%で30%以下のフェライト相及び20%以下の残留オーステナイト相を含み、残部がマルテンサイト相からなる複相組織、又は、マルテンサイト単相であり、板表面でのSi量が2.0%以下であることを特徴とするばね用ステンレス鋼板。   (1) In mass%, C: 0.1 to 0.4%, Si: 2.0% or less, Mn: 0.1 to 6.0%, Cr: 10.0 to 28.0%, and N: containing 0.17% or less, the balance being a chemical composition of Fe and impurities, the structure containing 30% or less by volume ferrite phase and 20% or less residual austenite phase, and the balance being martensite A stainless steel plate for springs having a multiphase structure composed of phases or a single phase of martensite and having an Si content of 2.0% or less on the plate surface.

(2)前記鋼板の表面粗さRzが1.0μm以上3.0μmであることを特徴とする前記(1)のばね用ステンレス鋼板。   (2) The stainless steel plate for springs according to (1), wherein the steel plate has a surface roughness Rz of 1.0 μm or more and 3.0 μm.

(3)前記化学組成が、さらに、質量%で、Ni:2%以下、Cu:2%以下、Nb:0.5%以下、V:0.5%以下、及び、Ti:0.5%以下の少なくとも1種又は2種以上を含むことを特徴とする前記(1)又は(2)のばね用ステンレス鋼板。   (3) The chemical composition further includes, in mass%, Ni: 2% or less, Cu: 2% or less, Nb: 0.5% or less, V: 0.5% or less, and Ti: 0.5% The stainless steel plate for springs according to (1) or (2) above, comprising at least one or more of the following.

(4)質量%で、C:0.1〜0.4%、Si:2.0%以下、Mn:0.1〜6.0%、Cr:10.0〜28.0%、及び、N:0.17%以下を含み、残部がFe及び不純物である化学組成を有するスラブを製品板厚へ圧延して鋼板とし、上記鋼板を露点が−40℃以下の非酸化性ガス雰囲気中で750〜1100℃の温度に10秒以上保持し、上記鋼板を600℃まで1℃/s以上の速度で冷却し、上記鋼板に表面処理を施すことを特徴とするばね用ステンレス鋼板の製造方法。   (4) In mass%, C: 0.1 to 0.4%, Si: 2.0% or less, Mn: 0.1 to 6.0%, Cr: 10.0 to 28.0%, and N: A slab containing 0.17% or less and having a chemical composition with the balance being Fe and impurities is rolled into a product plate thickness to form a steel plate, and the steel plate is in a non-oxidizing gas atmosphere having a dew point of -40 ° C. or less. A method for producing a stainless steel plate for springs, characterized by holding the steel plate at a temperature of 750 to 1100 ° C for 10 seconds or more, cooling the steel plate to 600 ° C at a rate of 1 ° C / s or more, and subjecting the steel plate to surface treatment.

(5)前記の表面処理が、2%以上20%以下の硫酸と2%以上20%以下の硝酸の混合水溶液への浸漬であることを特徴とする特徴とする前記(4)のばね用ステンレス鋼板の製造方法。   (5) The stainless steel for springs according to (4), wherein the surface treatment is immersion in a mixed aqueous solution of 2% or more and 20% or less sulfuric acid and 2% or more and 20% or less nitric acid. A method of manufacturing a steel sheet.

(6)前記化学組成が、さらに、質量%で、Ni:2%以下、Cu:2%以下、Nb:0.5%以下、V:0.5%以下、及び、Ti:0.5%以下の少なくとも1種又は2種以上を含むことを特徴とする前記(4)又は(5)のばね用ステンレス鋼板の製造方法。   (6) The chemical composition further includes, in mass%, Ni: 2% or less, Cu: 2% or less, Nb: 0.5% or less, V: 0.5% or less, and Ti: 0.5% The method for producing a stainless steel plate for springs according to (4) or (5) above, comprising at least one or more of the following.

本発明によれば、塗装皮膜の密着性に優れ、高強度を有する自動車関連部品、家電製品、OA機器の筐体、屋根・外装用途の建材等に適用される安価なばね用ステンレス鋼を安定供給することが出来る。   According to the present invention, stable stainless steel for springs that is applied to automobile-related parts, home appliances, OA equipment casings, roofing / exterior building materials, etc. that have excellent coating film adhesion and high strength. Can be supplied.

まず、材料の組成について説明する。   First, the composition of the material will be described.

“C:0.1%以上、0.4%以下”
Cは、安価であり、最も強力かつ有効な侵入型固溶強化元素である。また、強力なオーステナイト安定化元素でもある。このため、本発明に不可欠の添加元素であり、0.1%以上を添加する。好ましくは、0.12%以上である。しかし、過剰に含有した場合、焼入れ熱処理にて主合金元素であるCrや、後述する高温のオーステナイト域での粒成長抑制を目的に添加するNb、V、Tiとの粗大な炭化物を形成するとともに、多量のフェライト相が形成され、塗装皮膜の密着性が劣化し、高強度も得られなくなる。また、粗大な炭化物の析出が抑制された場合でも、多量のオーステナイト相が室温まで残留し、微細な析出物が均一分散したマルテンサイト相に比べて塗装皮膜の密着性が劣化する。このため、0.4%以下とする。好ましくは0.38%以下、より好ましくは0.36%以下である。
“C: 0.1% or more, 0.4% or less”
C is an inexpensive, most powerful and effective interstitial solid solution strengthening element. It is also a powerful austenite stabilizing element. For this reason, it is an additive element indispensable for the present invention, and 0.1% or more is added. Preferably, it is 0.12% or more. However, when it is contained excessively, it forms coarse carbides with Cr, which is the main alloy element, and Nb, V, Ti added for the purpose of suppressing grain growth in the high-temperature austenite region described later in the quenching heat treatment. A large amount of ferrite phase is formed, the adhesion of the coating film is deteriorated, and high strength cannot be obtained. Further, even when the precipitation of coarse carbides is suppressed, a large amount of austenite phase remains up to room temperature, and the adhesion of the coating film is deteriorated as compared with the martensite phase in which fine precipitates are uniformly dispersed. For this reason, it is 0.4% or less. Preferably it is 0.38% or less, More preferably, it is 0.36% or less.

“Si:2.0%以下”
Siは、溶製時の脱酸剤として一般的に使用される。また、固溶強化合金元素としての側面もある。しかし、前述のように熱処理にともなう表面皮膜中への濃化により塗装皮膜の密着性を劣化する。このため、2.0%以下とする。さらに、好ましくは1.0%以下である。
“Si: 2.0% or less”
Si is generally used as a deoxidizer during melting. There is also a side as a solid solution strengthening alloy element. However, as described above, the adhesion of the coating film deteriorates due to the concentration in the surface film accompanying the heat treatment. For this reason, it is made 2.0% or less. Furthermore, it is preferably 1.0% or less.

“Mn:0.1%以上、6.0%”
Mnは、比較的安価であり、有効なオーステナイト安定化合金元素である。CやNという固溶強化元素の固溶量の増加も期待される。焼入れ熱処理において、高温でのオーステナイト域をより低温まで拡大させ、析出するCやNによる化合物を微細化し、優れた塗装皮膜の密着性が得られるのである。また、冷却速度による強度の変動も抑制される。このため、0.1%以上を添加する。好ましくは、0.2%以上である。しかし、過度の添加は、粗大な化合物を形成し、塗装皮膜の密着性が劣化するとともに、板の製造性が著しく劣化する場合がある。このため、6.0%以下とする。好ましくは、5.6%以下である。
“Mn: 0.1% or more, 6.0%”
Mn is a relatively inexpensive and effective austenite stabilizing alloy element. An increase in the amount of solid solution strengthening elements such as C and N is also expected. In the quenching heat treatment, the austenite region at a high temperature is expanded to a lower temperature, the precipitated compounds due to C and N are refined, and excellent coating film adhesion can be obtained. Moreover, the fluctuation | variation of the intensity | strength by a cooling rate is also suppressed. For this reason, 0.1% or more is added. Preferably, it is 0.2% or more. However, excessive addition forms a coarse compound, which deteriorates the adhesion of the coating film and may significantly deteriorate the manufacturability of the plate. For this reason, it is made 6.0% or less. Preferably, it is 5.6% or less.

“Cr:10.0%以上、28.0%以下”
Crは、ステンレス鋼の基本元素であり、有効かつ必要な耐食性を得るために、10.0%以上添加する。ただし、フェライト安定化元素であり、過度の添加で高温のオーステナイト相が不安定になる。さらに、C、Nと粗大な化合物を形成する可能性が高くなる。このため、28.0%以下とした。さらに、好ましくは、10.2%以上、26.0%以下である。
“Cr: 10.0% or more, 28.0% or less”
Cr is a basic element of stainless steel, and in order to obtain effective and necessary corrosion resistance, 10.0% or more is added. However, it is a ferrite stabilizing element, and excessive addition makes the high temperature austenite phase unstable. Furthermore, the possibility of forming a coarse compound with C and N increases. For this reason, it was made 28.0% or less. Furthermore, it is preferably 10.2% or more and 26.0% or less.

“N:0.17%以下”
Nは、Cと同様に最も強力かつ有効な侵入型固溶強化元素である。また、強力なオーステナイト安定化元素でもある。しかし、過剰に含有した場合、焼入れ熱処理にて主合金元素のCrや後述する高温のオーステナイト域での粒成長抑制を目的に添加するNb、V、Tiと粗大な窒化物を形成するとともに、多量のフェライト相が形成され、塗装皮膜の密着性が劣化し、高強度も得られなくなる。また、板の製造性が著しく劣化する場合がある。このため、0.17%以下とする。好ましくは、0.15%以下である。
“N: 0.17% or less”
N, like C, is the most powerful and effective interstitial solid solution strengthening element. It is also a powerful austenite stabilizing element. However, if it is contained in excess, it forms coarse nitrides with Nb, V, Ti, which are added for the purpose of suppressing grain growth in the high temperature austenite region, which will be described later, in the main alloying element Cr by quenching heat treatment. The ferrite phase is formed, the adhesion of the coating film is deteriorated, and high strength cannot be obtained. In addition, the manufacturability of the plate may be significantly deteriorated. For this reason, it is 0.17% or less. Preferably, it is 0.15% or less.

以下の元素は、必要に応じて含有させることができる任意の添加元素である。   The following elements are arbitrary additive elements that can be contained as required.

“Ni:2%以下、Cu:2%以下、Nb:0.5%以下、V:0.5%以下、Ti:0.5%以下の少なくとも1種又は2種以上”
Ni、Cuは、オーステナイト安定化元素であり、Mnの効果を補うために添加する。このため、それらの1種又は2種ともに2.0%以下で含有させてもよい。好ましくは、各々の含有量は1.8%以下である。なお、オーステナイト安定化元素としての効果を得るため、0.1%以上であることが望ましい。
“Ni: 2% or less, Cu: 2% or less, Nb: 0.5% or less, V: 0.5% or less, Ti: 0.5% or less”
Ni and Cu are austenite stabilizing elements and are added to supplement the effect of Mn. For this reason, you may make it contain in 2.0% or less of those 1 type or 2 types. Preferably, the content of each is 1.8% or less. In addition, in order to acquire the effect as an austenite stabilization element, it is desirable that it is 0.1% or more.

Nb、V、Tiは、焼入れ熱処理においてC、Nと化合物を形成し、それらのピン止効果により粒成長を抑制する。これにともない、板表面での凹凸が微細かつ均一となり、より優れた塗装皮膜の密着性が得られる。このため、それらの1種又は2種以上を0.5%以下で含有させてもよい。好ましくは、各々の含有量は0.4%以下である。なお、それらの効果を得るため、0.01%以上であることが望ましい。   Nb, V, and Ti form a compound with C and N in the quenching heat treatment, and suppress grain growth by their pinning effect. Accordingly, the unevenness on the surface of the plate becomes fine and uniform, and better adhesion of the coating film is obtained. For this reason, you may contain those 1 type, or 2 or more types at 0.5% or less. Preferably, the content of each is 0.4% or less. In addition, in order to acquire those effects, it is desirable that it is 0.01% or more.

上記以外の残部はFe及び不純物である。不純物とは、原材料に含まれる、あるいは製造の過程で混入する成分であり、意図的に鋼に含有させたものではない成分のことをいう。具体的には、P、S、O、Al、Ca、Sb、Sn、W、Co、As、Mg、Pb、Bi、B、H、及びREMがあげられ、含有量は0.1%未満である。   The balance other than the above is Fe and impurities. Impurities are components that are contained in raw materials or mixed in during the manufacturing process and are not intentionally contained in steel. Specific examples include P, S, O, Al, Ca, Sb, Sn, W, Co, As, Mg, Pb, Bi, B, H, and REM, and the content is less than 0.1%. is there.

次に、板表面付近での組成分布について述べる。   Next, the composition distribution near the plate surface will be described.

“板表面でのSi量:2.0%以下”
ステンレス鋼は、表面に不動態皮膜が存在し、優れた耐食性を有する。しかし、それ故に、そのままでは良好な塗装皮膜の密着性を得ることが困難となる場合がある。塗装皮膜の密着性を劣化する原因は、Siの濃化である。このため、板表面でのSi量を添加量上限である2.0%以下とする。好ましくは、素材での添加量以下である。ステンレス鋼の表面皮膜は十分に薄く、板表面でのSi量とは、板表面より0.03μmまでの厚さ方向での分布の平均値とする。
“Si content on plate surface: 2.0% or less”
Stainless steel has a passive film on its surface and has excellent corrosion resistance. However, it may be difficult to obtain good paint film adhesion as it is. The cause of deterioration in the adhesion of the paint film is Si concentration. For this reason, the amount of Si on the plate surface is set to 2.0% or less, which is the upper limit of the addition amount. Preferably, it is less than or equal to the amount added in the material. The surface film of stainless steel is sufficiently thin, and the Si amount on the plate surface is the average value of the distribution in the thickness direction from the plate surface to 0.03 μm.

実質的に焼き入れ熱処理で仕上げとなるマルテンサイト系ステンレス鋼の表面皮膜は、一般的に高温保持中に形成され、熱処理条件の調整により同熱処理後に達成されればよい。同熱処理は、一般的には非酸化性ガス、例えば、窒素と水素の混合ガス雰囲気中で行われ、雰囲気中の酸素、水分を低減すること、加熱温度の調整でSiの濃化の抑制が期待される。雰囲気中の水分は露点により管理される。   The surface film of martensitic stainless steel, which is substantially finished by quenching heat treatment, is generally formed during holding at a high temperature and may be achieved after the heat treatment by adjusting the heat treatment conditions. The heat treatment is generally performed in a non-oxidizing gas, for example, a mixed gas atmosphere of nitrogen and hydrogen, and oxygen concentration and moisture in the atmosphere are reduced, and the concentration of Si is suppressed by adjusting the heating temperature. Be expected. The moisture in the atmosphere is controlled by the dew point.

板表面でのSi量が2.0%以下とならない場合、酸洗、例えば、SiOを溶解する数%程度のフッ酸を含む水溶液、数%の硫酸と硝酸の混合水溶液等の中での電解処理等の化学的表面処理、スパッタリング等の物理的表面処理にて達成される。さらに、Siの表面皮膜への濃化によりその直下にSiの低減した層がある場合、表面処理によるSiの低減も可能である。 When the amount of Si on the plate surface does not become 2.0% or less, pickling, for example, in an aqueous solution containing about several percent hydrofluoric acid that dissolves SiO 2 , in a mixed aqueous solution of several percent sulfuric acid and nitric acid, etc. It is achieved by chemical surface treatment such as electrolytic treatment or physical surface treatment such as sputtering. Furthermore, when there is a Si-reduced layer directly under the concentration of Si on the surface film, Si can be reduced by surface treatment.

さらに、素材の組織について述べる。   Furthermore, the organization of the material is described.

“体積%で30%以下のフェライト相と20%以下の残留オーステナイト相を含み、残部がマルテンサイト相からなる複相組織、又はマルテンサイト単相”
本発明のステンレス鋼は、焼入れ熱処理に際して、高温でのオーステナイト相から室温ではマルテンサイト相に変態する。この際、CおよびNという侵入型固溶強化元素をより多く固溶させることで、目標とする高強度が得られる。他方、同変態での体積の変化、化合物の析出により板表面に適度な凹凸を形成することで、別に表面形状(粗さ)を調整することなく優れた塗装皮膜の密着性が得られる。すなわち、マルテンサイト相を主体とし、単相とすることが最も望ましい。さらに、冷却中、不可避的に析出する炭化物、窒化物およびそれらの複合化合物を微細に析出させることで、優れた塗装皮膜の密着性が得られる。これらの炭化物、窒化物が粗大になると、密着性は劣化する。
“A multiphase structure containing a ferrite phase of 30% or less by volume and a residual austenite phase of 20% or less, with the balance being a martensite phase, or a single martensite phase”
The stainless steel of the present invention transforms from an austenite phase at a high temperature to a martensite phase at room temperature during quenching heat treatment. At this time, the target high strength can be obtained by dissolving more interstitial solid solution strengthening elements such as C and N. On the other hand, by forming appropriate irregularities on the surface of the plate by the volume change and precipitation of the compound in the same transformation, excellent adhesion of the coating film can be obtained without adjusting the surface shape (roughness). That is, it is most desirable to use a martensite phase as a main component and a single phase. Furthermore, excellent adhesion of the coating film can be obtained by finely depositing carbides, nitrides and their composite compounds that inevitably precipitate during cooling. When these carbides and nitrides become coarse, the adhesion deteriorates.

複相組織の場合、マルテンサイト相以外の組織は、体積%で30%以下のフェライト相と20%以下の残留オーステナイト相とする。フェライト相が体積%で30%を超えると、板表面にマルテンサイト変態による凹凸が形成されず、また、粗大なC,Nの化合物が析出する可能性も高くなり、塗装皮膜の密着性が劣化するためである。また、マルテンサイト相が少なくなるので、必要な強度を得られない場合もある。フェライト相は、好ましくは、体積%で25%以下である。残留オーステナイト相が体積%で20%を超えると、板表面にマルテンサイト変態による凹凸が形成されず、微細なC,Nの化合物が析出することも無いため、塗装皮膜の密着性が劣化するためである。好ましくは、体積%で15%以下である。   In the case of a multiphase structure, the structure other than the martensite phase is a ferrite phase of 30% or less by volume% and a residual austenite phase of 20% or less. If the ferrite phase exceeds 30% by volume, irregularities due to martensite transformation are not formed on the plate surface, and there is a high possibility that coarse C and N compounds will precipitate, resulting in poor adhesion of the coating film. It is to do. In addition, since the martensite phase is reduced, the required strength may not be obtained. The ferrite phase is preferably 25% or less by volume. If the residual austenite phase exceeds 20% by volume, unevenness due to martensite transformation is not formed on the plate surface, and fine C and N compounds do not precipitate, so the adhesion of the coating film deteriorates. It is. Preferably, it is 15% or less by volume%.

上記のように組織を調整することにより、必要な塗装皮膜の密着性、強度が達成される。具体的には、塗装皮膜の密着性が、各製品環境で所定時間の使用後、塗装の剥離強度で15MPa以上となる。好ましくは、17MPa以上である。なお、クロムフリー化成処理による下地処理後、さらにゴムをコーティングする場合、剥離強度はゴムに依存する。NBRゴムでは25MPa以上とすることは難しいと考えられる。材料の強度は、焼鈍材では得ることが難しいと考えられる、ビッカース硬度で300HV以上である。好ましくは、320HV以上である。   By adjusting the structure as described above, necessary adhesion and strength of the coating film are achieved. Specifically, the adhesion of the coating film becomes 15 MPa or more in coating peel strength after use for a predetermined time in each product environment. Preferably, it is 17 MPa or more. In addition, when the rubber is further coated after the base treatment by the chromium-free chemical conversion treatment, the peel strength depends on the rubber. With NBR rubber, it is considered difficult to make it 25 MPa or more. The strength of the material is 300 HV or higher in terms of Vickers hardness, which is considered difficult to obtain with an annealed material. Preferably, it is 320HV or more.

上記の組織調整により達成される板表面での凹凸は、表面粗さRzで1.0μm以上が望ましい。さらに好ましくは、1.1μm以上である。これにより、焼入れ熱処理でのマルテンサイト変態によりSiの濃化皮膜を分断するとともに、形状的効果により塗装皮膜の密着性を向上すると考えられる。ただし、表面粗さが過大な場合、破壊の起点となり、加工性や疲労特性が劣化する。このため、表面粗さRzは3.0μm以下が望ましい。さらに好ましくは、2.0μm以下である。また、炭素、窒素を含む化合物の球相当の最大直径は10μm以下が望ましい。好ましくは、8μm以下である。これらは、後述する製造方法により、焼入れ熱処理温度による組織、その後の冷却速度による析出物といった複合的調整により、新たに工程を加えることなく調整することができる。   As for the unevenness | corrugation in the board surface achieved by said structure | tissue adjustment, 1.0 micrometer or more is desirable by surface roughness Rz. More preferably, it is 1.1 μm or more. Thereby, it is considered that the concentrated film of Si is divided by the martensitic transformation in the quenching heat treatment, and the adhesion of the coating film is improved by the shape effect. However, when the surface roughness is excessive, it becomes a starting point of fracture, and workability and fatigue characteristics deteriorate. For this reason, the surface roughness Rz is desirably 3.0 μm or less. More preferably, it is 2.0 μm or less. In addition, the maximum diameter corresponding to a sphere of a compound containing carbon and nitrogen is desirably 10 μm or less. Preferably, it is 8 μm or less. These can be adjusted without adding a new process by a composite adjustment such as a structure depending on the quenching heat treatment temperature and a precipitate due to a subsequent cooling rate, by a manufacturing method described later.

最後に、製造方法、具体的には最終熱処理の条件と表面処理に関して述べる。   Finally, the manufacturing method, specifically the final heat treatment conditions and surface treatment will be described.

“露点が−40℃以下の非酸化性ガス雰囲気中”
塗装皮膜の密着性は、前述のように、最終熱処理で形成されるSiの濃化した皮膜により劣化する。Siの濃化した表面皮膜の形成は、露点の上昇に伴う水分の増加により助長される。このため、最終熱処理の条件を、非酸化性ガス雰囲気中、かつ、露点を−40℃以下とした。好ましくは、−50℃以下である。酸化性雰囲気では、Siを含む表面皮膜が強固かつ厚く形成されるため、その後の表面処理での除去が難しくなる。
“In a non-oxidizing gas atmosphere with a dew point of −40 ° C. or lower”
As described above, the adhesion of the paint film is deteriorated by the film enriched with Si formed by the final heat treatment. Formation of a Si-enriched surface film is facilitated by an increase in moisture accompanying an increase in dew point. For this reason, the conditions for the final heat treatment were a non-oxidizing gas atmosphere and a dew point of −40 ° C. or lower. Preferably, it is -50 degrees C or less. In an oxidizing atmosphere, since the surface film containing Si is formed to be strong and thick, it is difficult to remove it by subsequent surface treatment.

“750〜1100℃の温度に10秒以上保持”
最終熱処理は、鋼板を所定の組織に調整し、優れた塗装皮膜の密着性とともに、ばね用ステンレス鋼に必要な強度を得るために実施する。熱処理の温度が750℃未満では、炭素、窒素を含む粗大な化合物の析出をともない軟質なフェライト相を主体とする組織が形成されるので、750℃以上とする。好ましくは、ばね用途に必要となる焼鈍材では得ることが難しい強度を得ることができる800℃以上である。1100℃を超えた場合、多量のδフェライト相が発生、室温まで残存し、所定の組織が得られないので、1100℃以下とする。好ましくは、1050℃以下である。保持時間を10秒以上としたのは、材料の均一な温度の保持に必要となる最低限の時間だからである。好ましくは、30秒以上である。この工程で、板表面にSiの濃化した皮膜が均一に形成される。
“Hold at 750-1100 ° C for more than 10 seconds”
The final heat treatment is carried out in order to adjust the steel sheet to a predetermined structure and to obtain the strength required for the stainless steel for springs together with excellent adhesion of the coating film. When the temperature of the heat treatment is less than 750 ° C., a structure mainly composed of a soft ferrite phase is formed with the precipitation of a coarse compound containing carbon and nitrogen. Preferably, the temperature is 800 ° C. or higher at which it is possible to obtain a strength that is difficult to obtain with an annealing material required for a spring application. When the temperature exceeds 1100 ° C., a large amount of δ ferrite phase is generated and remains up to room temperature, and a predetermined structure cannot be obtained. Preferably, it is 1050 degrees C or less. The holding time is set to 10 seconds or more because it is the minimum time necessary for maintaining a uniform temperature of the material. Preferably, it is 30 seconds or more. In this step, a Si-enriched film is uniformly formed on the plate surface.

“600℃まで1℃/s以上の速度で冷却”
冷却速度は、上記の加熱中のオーステナイト相をマルテンサイト相に変態させ、粗大な化合物の析出を防止するため、600℃までを1℃/s以上の速度で冷却とする。好ましくは、冷却速度は、3℃/s以上である。600℃までの冷却速度が1℃/s以上であれば、600℃未満での冷却速度は、特に限定されない。冷却工程で、板表面に望ましくはRZ1.0μm〜3.0μmの凹凸が形成されることにより、板表面に形成されたSiの濃化した皮膜が分断される。
“Cooling to 600 ° C at a rate of 1 ° C / s or more”
As for the cooling rate, in order to transform the austenite phase during heating into a martensite phase and prevent precipitation of coarse compounds, cooling up to 600 ° C. is performed at a rate of 1 ° C./s or more. Preferably, the cooling rate is 3 ° C./s or more. If the cooling rate to 600 ° C. is 1 ° C./s or more, the cooling rate below 600 ° C. is not particularly limited. In the cooling step, unevenness of RZ 1.0 μm to 3.0 μm is desirably formed on the plate surface, so that the Si concentrated film formed on the plate surface is divided.

“表面処理”
表面処理は、マルテンサイト変態により分断されたSiの濃化した表面皮膜を迅速かつ効率的に除去するために、熱処理に続けて実施する。表面処理はSiの濃化した皮膜の除去を目的とし、SiOの溶解するフッ酸を含む水溶液、硫酸と硝酸の混合水溶液中での電解処理等の化学的処理、スパッタリング等の物理的処理で達成される。好ましくは、酸を含む水溶液中への化学的表面処理である。それにより、迅速・効率的なSiの濃化した皮膜の除去と同時に、材料の部位による特性の変動が抑制され、安定した強度を得られる。より好ましくは、特定化学物質等に規定され環境負荷が大きいと考えられるフッ酸等を使用しない、2%以上、20%以下の硫酸と2%以上、20%以下の硝酸の混合水溶液の使用である。更に言えば、それらの効果的かつ安定して活用するため、電解処理の活用が望ましい。ただし、本発明においては、マルテンサイト変態時に板表面に適度な凹凸が形成されているので、新たに表面形状等を調整することなく、優れた塗装皮膜の密着性を得ることもできる。
"surface treatment"
The surface treatment is carried out following the heat treatment in order to quickly and efficiently remove the Si-enriched surface film divided by the martensitic transformation. The surface treatment is intended to remove the Si-concentrated film, and is a chemical treatment such as electrolytic treatment in an aqueous solution containing hydrofluoric acid in which SiO 2 dissolves, a mixed aqueous solution of sulfuric acid and nitric acid, or a physical treatment such as sputtering. Achieved. A chemical surface treatment in an aqueous solution containing an acid is preferred. Thereby, at the same time as the removal of the Si-enriched film quickly and efficiently, the fluctuation of the characteristics due to the site of the material is suppressed, and a stable strength can be obtained. More preferably, by using a mixed aqueous solution of 2% or more and 20% or less sulfuric acid and 2% or more and 20% or less nitric acid, which does not use hydrofluoric acid or the like which is prescribed as a specific chemical substance and is considered to have a large environmental load. is there. Furthermore, in order to utilize them effectively and stably, it is desirable to use electrolytic treatment. However, in the present invention, since moderate irregularities are formed on the surface of the plate at the time of martensitic transformation, it is possible to obtain excellent coating film adhesion without newly adjusting the surface shape and the like.

供試鋼の組成を表1に示す。下線は本発明の範囲外であることを示す。素材の供試鋼は実験室レベルの小型鋳塊ないし実機鋳塊とし、熱間圧延により板厚3mm前後に減厚し、固溶化熱処理後、冷間圧延により板厚1mmへ減厚し、中間熱処理(焼鈍)を施し、脱スケールの後、冷間圧延により板厚0.3mmへ減厚し、最終熱処理(焼入れ)を実施した。次いで、一部の材料について、表面形状を大きく変えることの無い範囲で、5%の硝酸と5%硫酸の混合水溶液中にて電解処理を施した後、板表面でのSi量、組織、硬さ、剥離強度を調査した。   Table 1 shows the composition of the test steel. The underline indicates that it is outside the scope of the present invention. The material test steel is a small ingot or a real machine ingot at the laboratory level. The thickness is reduced to about 3mm by hot rolling, and after solution heat treatment, the thickness is reduced to 1mm by cold rolling. After heat treatment (annealing), descaling, the thickness was reduced to 0.3 mm by cold rolling, and final heat treatment (quenching) was performed. Next, after subjecting some materials to electrolytic treatment in a mixed aqueous solution of 5% nitric acid and 5% sulfuric acid within a range that does not greatly change the surface shape, the Si amount, structure, Now, the peel strength was investigated.

Figure 2016166385
Figure 2016166385

熱間圧延は、1200〜900℃の範囲で複数回の通板により実施し、板厚を約3mmとした。固溶化熱処理は、1050℃に加熱で3分間保持、室温まで冷却後、750℃加熱で3分間保持、放冷し、ショットブラスト、酸洗により脱スケールした。続いて、冷間圧延を施し、板厚を1mmとした。その後、大気中にて750℃×3分保持後に放冷する中間熱処理(焼鈍)を施し、固溶化熱処理後と同様に脱スケールした。さらに、板厚0.3mmまで冷間圧延を施し、最終熱処理(焼入れ)は、25%窒素と75%水素からなる混合ガス、露点が−30〜−50℃の非酸化雰囲気中で、1150〜700℃×30秒保持後に5℃/sで冷却した。   The hot rolling was performed by passing a plurality of times in the range of 1200 to 900 ° C., and the plate thickness was about 3 mm. The solution heat treatment was heated to 1050 ° C. for 3 minutes, cooled to room temperature, then heated to 750 ° C. for 3 minutes, allowed to cool, and descaled by shot blasting and pickling. Subsequently, cold rolling was performed to make the plate thickness 1 mm. Thereafter, an intermediate heat treatment (annealing) for cooling after holding at 750 ° C. for 3 minutes in the atmosphere was performed, and descaling was performed in the same manner as after the solution heat treatment. Furthermore, the steel sheet is cold-rolled to a thickness of 0.3 mm, and the final heat treatment (quenching) is a mixed gas composed of 25% nitrogen and 75% hydrogen in a non-oxidizing atmosphere having a dew point of −30 to −50 ° C. After holding at 700 ° C. for 30 seconds, it was cooled at 5 ° C./s.

板表面でのSi量は、GDS表面分析機を用いて、表面から3μmまでのスパッタリングにより板厚方向での分布を測定し、0.03μmまでの平均値を算出した。組織は、圧延方向平行断面を切断し、埋込、研磨、エッチング後の金属組織を光学顕微鏡、SEMを用いて観察した。また、板表面を、フェライト・メーター、X線回折装置を用いて測定し、観察の結果とあわせて各相の割合を算出した。これらにより、マルテンサイト相、フェライト相、オーステナイト相の割合を決定した。   For the amount of Si on the plate surface, a distribution in the plate thickness direction was measured by sputtering from the surface to 3 μm using a GDS surface analyzer, and an average value up to 0.03 μm was calculated. The structure was cut in a cross-section parallel to the rolling direction, and the metal structure after embedding, polishing, and etching was observed using an optical microscope and SEM. The plate surface was measured using a ferrite meter and an X-ray diffractometer, and the ratio of each phase was calculated together with the observation results. From these, the proportions of martensite phase, ferrite phase, and austenite phase were determined.

硬さは、マイクロビッカース硬度計を用いて、板表面にて荷重100gで測定した。剥離強度は、シリンダーヘッドガスケットを想定し、クロムフリー化成処理の下地処理、その上に厚さ25μmのNBRゴムをコーティングし、市販される自動車エンジン用LLC(ロングライフクーラント)水溶液中にて200℃×200hr保持で浸漬した後、ゴムの剥離強度を測定した。   The hardness was measured at a load of 100 g on the plate surface using a micro Vickers hardness meter. Peel strength is assumed to be a cylinder head gasket, chrome-free chemical conversion base treatment, NBR rubber with a thickness of 25 μm is coated on it, and 200 ° C in a commercially available LLC (long life coolant) aqueous solution for automobile engines. After dipping for 200 hours holding, the peel strength of the rubber was measured.

供試材の表面Si量、組織、硬さ及び剥離強度を表2に示す。本発明例No.A1〜K2は、表面Si量、組織ともに本発明の規定を満足し、目標とする表面硬さである300HV0.1以上、目標とする剥離強度である15MP以上を達成する。特に、高温焼入れを実施したA3、B5は、表面処理無しでも、表面Si量、組織ともに本発明の規定を満足し、目標性能を達成した。すなわち、本発明に規定する化学成分の鋼において、規定の表面Si量、組織を満足することで、塗装皮膜の密着性に優れ、高強度の安価なばね用ステンレス鋼が製造される。   Table 2 shows the surface Si amount, structure, hardness, and peel strength of the test material. Invention Example No. A1 to K2 satisfy the provisions of the present invention in terms of both the surface Si amount and the structure, and achieve a target surface hardness of 300 HV 0.1 or higher and a target peel strength of 15 MP or higher. In particular, A3 and B5 subjected to high-temperature quenching satisfied the provisions of the present invention in terms of surface Si amount and structure even without surface treatment, and achieved the target performance. That is, in the steel having the chemical composition defined in the present invention, by satisfying the prescribed surface Si amount and structure, the stainless steel for springs having excellent coating film adhesion and high strength at low cost is manufactured.

他方、本発明の化学成分を満足する鋼を用いたB6、7は、B6は最終熱処理温度が低く、B7は最終熱処理温度が高いため、所定の組織を満足せず、表面処理を施し、表面Si量の規定値を満足した場合でも、剥離強度が目標未達となった。B8は冷却速度が遅く、同様に剥離強度が目標未達となった。なお、B8には直径10.6μmの化合物の析出を確認した。   On the other hand, B6, 7 using steel that satisfies the chemical composition of the present invention has a surface treatment that does not satisfy the predetermined structure because B6 has a low final heat treatment temperature and B7 has a high final heat treatment temperature. Even when the specified amount of Si was satisfied, the peel strength was not achieved. In B8, the cooling rate was slow, and similarly, the peel strength did not reach the target. In B8, precipitation of a compound having a diameter of 10.6 μm was confirmed.

さらに、本発明の化学成分を満足するB9、C3でも、最終熱処理後の表面処理を実施せず、表面Si量が規定量を超えた場合、剥離強度が目標に未達成となった。これらより、不適切な組織、板表面でのSiの濃化は、塗装皮膜密着性を劣化させることが確認された。   Further, even with B9 and C3 satisfying the chemical components of the present invention, the surface treatment after the final heat treatment was not performed, and when the surface Si amount exceeded the specified amount, the peel strength was not achieved as a target. From these, it was confirmed that an inappropriate structure and Si concentration on the surface of the plate deteriorate the adhesion of the paint film.

同様に、本発明の化学成分の規定外であるM1では、表面処理を実施した場合でも、規定した表面Si量を満足せず、剥離強度が低い値にとどまる。L1、N1、O1、P1は、規定した組織を満足せず、剥離強度が低い値にとどまる。これらからも、適切な組織と表面Si量を規定することで、目標とした高い剥離強度、硬さを達成し、塗装皮膜の密着性に優れ、高強度の安価なばね用ステンレス鋼を製造できることが確認された。   Similarly, in M1, which is outside the definition of the chemical component of the present invention, even when the surface treatment is performed, the specified surface Si amount is not satisfied and the peel strength remains low. L1, N1, O1, and P1 do not satisfy the specified structure, and the peel strength remains low. From these, by specifying an appropriate structure and surface Si amount, it is possible to achieve the targeted high peel strength and hardness, and to produce high-strength and inexpensive stainless steel for springs with excellent paint film adhesion. Was confirmed.

Figure 2016166385
Figure 2016166385

以上、本発明により、塗装皮膜の密着性に優れ、高強度を有する自動車関連部品、家電製品、OA機器の筐体、屋根・外装用途の建材等に適用される安価なばね用ステンレス鋼を安定供給することができる。   As described above, the present invention stabilizes inexpensive stainless steel for springs that is applied to automobile-related parts, home appliances, OA equipment casings, roofing / exterior building materials, etc. that have excellent paint film adhesion and high strength. Can be supplied.

Claims (6)

質量%で、
C :0.1〜0.4%、
Si:2.0%以下、
Mn:0.1〜6.0%、
Cr:10.0〜28.0%、及び、
N :0.17%以下を含み、
残部がFe及び不純物である化学組成を有し、
組織が、体積%で30%以下のフェライト相及び20%以下の残留オーステナイト相を含み、残部がマルテンサイト相からなる複相組織、又は、マルテンサイト単相であり、
板表面でのSi量が2.0%以下である
ことを特徴とするばね用ステンレス鋼板。
% By mass
C: 0.1 to 0.4%
Si: 2.0% or less,
Mn: 0.1 to 6.0%,
Cr: 10.0-28.0%, and
N: including 0.17% or less,
Having the chemical composition with the balance being Fe and impurities,
The structure includes a ferrite phase of 30% or less by volume and a residual austenite phase of 20% or less, and the remaining phase is a multiphase structure consisting of a martensite phase or a martensite single phase,
A stainless steel plate for springs, wherein the Si amount on the plate surface is 2.0% or less.
前記鋼板の表面粗さRzが1.0μm以上3.0μmであることを特徴とする請求項1に記載のばね用ステンレス鋼板。   The stainless steel plate for springs according to claim 1, wherein the steel plate has a surface roughness Rz of 1.0 µm or more and 3.0 µm. 前記化学組成が、さらに、質量%で、
Ni:2%以下、
Cu:2%以下、
Nb:0.5%以下、
V :0.5%以下、及び、
Ti:0.5%以下
の少なくとも1種又は2種以上を含むことを特徴とする請求項1又は2に記載のばね用ステンレス鋼板。
The chemical composition is further mass%,
Ni: 2% or less,
Cu: 2% or less,
Nb: 0.5% or less,
V: 0.5% or less, and
The stainless steel plate for springs according to claim 1 or 2, comprising at least one or more of Ti: 0.5% or less.
質量%で、
C :0.1〜0.4%、
Si:2.0%以下、
Mn:0.1〜6.0%、
Cr:10.0〜28.0%、及び、
N :0.17%以下を含み、
残部がFe及び不純物である化学組成を有するスラブを製品板厚へ圧延して鋼板とし、
上記鋼板を露点が−40℃以下の非酸化性ガス雰囲気中で750〜1100℃の温度に10秒以上保持し、
上記鋼板を600℃まで1℃/s以上の速度で冷却し、
上記鋼板に表面処理を施すことを特徴とするばね用ステンレス鋼板の製造方法。
% By mass
C: 0.1 to 0.4%
Si: 2.0% or less,
Mn: 0.1 to 6.0%,
Cr: 10.0-28.0%, and
N: including 0.17% or less,
A slab having a chemical composition with the balance being Fe and impurities is rolled into a product plate thickness to obtain a steel plate,
Holding the steel sheet at a temperature of 750 to 1100 ° C. for 10 seconds or more in a non-oxidizing gas atmosphere having a dew point of −40 ° C. or less,
The steel sheet is cooled to 600 ° C. at a rate of 1 ° C./s or more,
A method for producing a stainless steel plate for springs, wherein the steel plate is subjected to a surface treatment.
前記の表面処理が、2%以上20%以下の硫酸と2%以上20%以下の硝酸の混合水溶液への浸漬であることを特徴とする請求項4に記載のばね用ステンレス鋼板の製造方法。   5. The method for producing a stainless steel plate for a spring according to claim 4, wherein the surface treatment is immersion in a mixed aqueous solution of 2% to 20% sulfuric acid and 2% to 20% nitric acid. 前記化学組成が、さらに、質量%で、
Ni:2%以下、
Cu:2%以下、
Nb:0.5%以下、
V :0.5%以下、及び、
Ti:0.5%以下
の少なくとも1種又は2種以上を含むことを特徴とする請求項4又は5に記載のばね用ステンレス鋼板の製造方法。
The chemical composition is further mass%,
Ni: 2% or less,
Cu: 2% or less,
Nb: 0.5% or less,
V: 0.5% or less, and
The method for producing a stainless steel plate for a spring according to claim 4 or 5, comprising at least one or more of Ti: 0.5% or less.
JP2015045864A 2015-03-09 2015-03-09 Stainless steel for surface modified spring and production method therefor Withdrawn JP2016166385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045864A JP2016166385A (en) 2015-03-09 2015-03-09 Stainless steel for surface modified spring and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045864A JP2016166385A (en) 2015-03-09 2015-03-09 Stainless steel for surface modified spring and production method therefor

Publications (1)

Publication Number Publication Date
JP2016166385A true JP2016166385A (en) 2016-09-15

Family

ID=56897468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045864A Withdrawn JP2016166385A (en) 2015-03-09 2015-03-09 Stainless steel for surface modified spring and production method therefor

Country Status (1)

Country Link
JP (1) JP2016166385A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095822B1 (en) * 2016-03-23 2017-03-15 日新製鋼株式会社 Martensitic stainless steel sheet and metal gasket manufacturing method
JP6123950B1 (en) * 2016-05-27 2017-05-10 新日鐵住金株式会社 Stainless steel plate for spring and manufacturing method thereof
CN107675099A (en) * 2017-08-23 2018-02-09 宁波市鄞州亚大汽车管件有限公司 Bent-tube boiler muffler
CN108396232A (en) * 2018-06-07 2018-08-14 成都先进金属材料产业技术研究院有限公司 Middle carbon martensitic stainless steel and preparation method thereof
CN109487172A (en) * 2019-01-14 2019-03-19 东北大学 One kind having excellent thermoplastic two phase stainless steel and preparation method thereof
JP2020056078A (en) * 2018-10-03 2020-04-09 日鉄ステンレス株式会社 Martensitic stainless steel material, manufacturing method therefor, and slide member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095822B1 (en) * 2016-03-23 2017-03-15 日新製鋼株式会社 Martensitic stainless steel sheet and metal gasket manufacturing method
JP2017171990A (en) * 2016-03-23 2017-09-28 日新製鋼株式会社 Martensitic stainless steel sheet and metal gasket manufacturing method
JP6123950B1 (en) * 2016-05-27 2017-05-10 新日鐵住金株式会社 Stainless steel plate for spring and manufacturing method thereof
CN107675099A (en) * 2017-08-23 2018-02-09 宁波市鄞州亚大汽车管件有限公司 Bent-tube boiler muffler
CN108396232A (en) * 2018-06-07 2018-08-14 成都先进金属材料产业技术研究院有限公司 Middle carbon martensitic stainless steel and preparation method thereof
JP2020056078A (en) * 2018-10-03 2020-04-09 日鉄ステンレス株式会社 Martensitic stainless steel material, manufacturing method therefor, and slide member
JP7134052B2 (en) 2018-10-03 2022-09-09 日鉄ステンレス株式会社 MARTENSITE STAINLESS STEEL MATERIAL AND MANUFACTURING METHOD THEREOF AND SLIDING MEMBER
CN109487172A (en) * 2019-01-14 2019-03-19 东北大学 One kind having excellent thermoplastic two phase stainless steel and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101949628B1 (en) High-strength steel sheet and method for manufacturing same
KR101949627B1 (en) High-strength steel sheet and method for manufacturing same
JP2016166385A (en) Stainless steel for surface modified spring and production method therefor
WO2019181950A1 (en) High-strength cold-rolled steel sheet and manufacturing method therefor
JP6458833B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
CN106661699B (en) High strength hot dip galvanized steel sheet and its manufacturing method
RU2749413C2 (en) High-strength steel products and their manufacturing methods
RU2695680C2 (en) Method of producing a coated steel sheet having high strength, ductility and deformability
CN106133173A (en) The high strength cold rolled steel plate of uniform in material excellence and manufacture method thereof
JP2011168878A (en) High-strength hot-dip galvanized steel sheet with excellent fatigue property and hole expansibility and method for producing the same
RU2530212C2 (en) High-strength cold-rolled steel sheet and steel sheet with coating that features excellent thermal hardenability and mouldability and method of their production
JP2016524038A (en) High-strength steel showing good durability, and manufacturing method by quenching and distribution treatment with zinc bath
JP5483916B2 (en) High-strength galvannealed steel sheet with excellent bendability
JPWO2013129295A1 (en) Si-containing high-strength cold-rolled steel sheet, method for producing the same, and automobile member
JP6123950B1 (en) Stainless steel plate for spring and manufacturing method thereof
JP5434984B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability with a tensile strength of 440 MPa or more and its production method
JP5338873B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability with a tensile strength of 440 MPa or more and its production method
JP2005538248A (en) Ultra high mechanical strength steel material and method for producing the sheet coated with zinc or zinc alloy
WO2014156140A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
TWI649432B (en) Very high strength hot rolled steel and manufacturing method
JP2014240510A (en) Galvanized steel sheet and production method thereof
JP2014043628A (en) Galvanized steel sheet, and manufacturing method
JP2020164955A (en) Ferritic stainless steel sheet for coating and painted steel sheet

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20161215