JP2016164972A - Adhesive tape for semiconductor wafer surface protection and method for producing the same - Google Patents
Adhesive tape for semiconductor wafer surface protection and method for producing the same Download PDFInfo
- Publication number
- JP2016164972A JP2016164972A JP2015257051A JP2015257051A JP2016164972A JP 2016164972 A JP2016164972 A JP 2016164972A JP 2015257051 A JP2015257051 A JP 2015257051A JP 2015257051 A JP2015257051 A JP 2015257051A JP 2016164972 A JP2016164972 A JP 2016164972A
- Authority
- JP
- Japan
- Prior art keywords
- thickness
- sensitive adhesive
- pressure
- semiconductor wafer
- wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Adhesive Tapes (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
本発明は、半導体ウエハ表面保護用粘着テープおよび半導体ウエハの加工方法に関する。さらに詳しくは、半導体ウエハを薄膜に研削等する際に使用される半導体ウエハの表面保護用粘着テープおよび半導体ウエハの加工方法に関する。 The present invention relates to an adhesive tape for protecting a semiconductor wafer surface and a method for processing a semiconductor wafer. More specifically, the present invention relates to an adhesive tape for protecting the surface of a semiconductor wafer used when grinding the semiconductor wafer into a thin film and a method for processing the semiconductor wafer.
半導体パッケージは、高純度シリコン単結晶等をスライスして半導体ウエハとした後、イオン注入、エッチング等により当該ウエハ表面に集積回路を形成して製造される。集積回路が形成された半導体ウエハの裏面を研削、研磨等することにより、半導体ウエハは所望の厚さに加工される。この際、半導体ウエハ表面に形成された集積回路を保護するために、半導体ウエハ表面保護用粘着テープ(以下、単に「表面保護テープ」ともいう。)が用いられる。
裏面研削された半導体ウエハは、裏面研削が終了した後にウエハカセットに収納され、ダイシング工程へ運搬され、半導体チップに加工される。
A semiconductor package is manufactured by slicing a high-purity silicon single crystal or the like into a semiconductor wafer, and then forming an integrated circuit on the wafer surface by ion implantation, etching, or the like. By grinding or polishing the back surface of the semiconductor wafer on which the integrated circuit is formed, the semiconductor wafer is processed into a desired thickness. At this time, in order to protect the integrated circuit formed on the surface of the semiconductor wafer, a semiconductor wafer surface protective adhesive tape (hereinafter also simply referred to as “surface protective tape”) is used.
The back-ground semiconductor wafer is accommodated in a wafer cassette after the back-side grinding is completed, transported to a dicing process, and processed into semiconductor chips.
従来は、裏面研削等により半導体ウエハの厚さを200〜400μm程度とすることが求められていた。しかし、近年の高密度実装技術の進歩に伴い、半導体チップを小型化する必要が生じ、それに伴い、半導体ウエハの薄膜化も進んでいる。半導体チップの種類によっては、半導体ウエハを100μm程度まで薄くすることが必要となっている。一方で、一度の加工によって製造できる半導体チップの数を多くするために、もとのウエハを大径化する傾向にある。これまでは直径が5インチや6インチのウエハが主流だったのに対し、近年では直径8〜12インチの半導体ウエハを半導体チップ化する加工が主流となっている。
半導体ウエハを薄膜化と同時に大径化する流れは、特に、NAND型やNOR型が存在するフラッシュメモリの分野や、揮発性メモリであるDRAMなどの分野で顕著である。例えば、直径12インチの半導体ウエハを150μm以下の厚さまで研削することも珍しくない。
Conventionally, the thickness of the semiconductor wafer has been required to be about 200 to 400 μm by back grinding or the like. However, with the recent progress of high-density mounting technology, it is necessary to reduce the size of the semiconductor chip, and accordingly, the semiconductor wafer is becoming thinner. Depending on the type of semiconductor chip, it is necessary to make the semiconductor wafer as thin as about 100 μm. On the other hand, the diameter of the original wafer tends to be increased in order to increase the number of semiconductor chips that can be manufactured by one processing. Until now, wafers with diameters of 5 inches and 6 inches have been mainstream, but in recent years, processing of semiconductor wafers with diameters of 8 to 12 inches into semiconductor chips has become mainstream.
The trend to increase the diameter of a semiconductor wafer simultaneously with the thinning of the semiconductor wafer is particularly remarkable in the field of flash memory in which NAND type and NOR type exist, and in the field of DRAM, which is a volatile memory. For example, it is not uncommon to grind a 12-inch diameter semiconductor wafer to a thickness of 150 μm or less.
これに加え、特に近年、スマートフォンの普及や携帯電話の性能向上および音楽プレーヤの小型化、かつ性能向上などに伴い、耐衝撃性などを考慮した電極付ウエハを用いたフリップチップ実装に用いるウエハについても薄膜化の要求が増えてきている。またバンプ付ウエハについてもウエハ部分を100μm以下の薄膜研削をする必要が出てきている。フリップチップ接続されるためのバンプは、転送速度向上のため高密度化されてきており、バンプの高さ(ウエハ表面からの突出高さ)が低くなってきており、それに伴ってバンプ間距離が短くなってきている。また近年ではDRAMにもフリップチップ接続が実施されてきているためウエハの薄膜化も加速している。 In addition to this, especially in recent years, with the spread of smartphones, mobile phone performance improvement, music player miniaturization, and performance improvement, wafers used for flip chip mounting using electrode wafers that take impact resistance into consideration However, the demand for thin film is increasing. In addition, with regard to the wafer with bumps, it has become necessary to perform thin film grinding of the wafer portion to 100 μm or less. Bumps for flip-chip connection have been densified to improve transfer speed, and the bump height (projection height from the wafer surface) has become lower, and the distance between the bumps has accordingly increased. It is getting shorter. In recent years, flip-chip connection has also been implemented in DRAMs, so that wafer thinning is also accelerated.
フリップチップ実装は、近年の電子機器の小型化、高密度化に対して半導体素子を最小の面積で実装できる方法として注目されてきた。このフリップチップ実装に使用される半導体素子の電極上にはバンプが形成されており、バンプと回路基板上の配線とを電気的に接合する。これらのバンプの組成としては、主に半田や金が使用されている。この半田バンプや金バンプは、蒸着やメッキで、チップの内部配線につながる露出したアルミ端子上などに形成する。 Flip chip mounting has been attracting attention as a method for mounting a semiconductor element with a minimum area in response to recent downsizing and higher density of electronic devices. Bumps are formed on the electrodes of the semiconductor element used for the flip chip mounting, and the bumps are electrically joined to the wiring on the circuit board. As the composition of these bumps, solder or gold is mainly used. The solder bump or gold bump is formed on an exposed aluminum terminal connected to the internal wiring of the chip by vapor deposition or plating.
しかし、バンプ付ウエハは、その表面に大きな凹凸を有しているため薄膜加工が難しく、通常の粘着テープを用いて裏面研削を行うとウエハ割れが発生してしまったり、ウエハの厚み精度の悪化をおこしたりする。そのため、バンプ付ウエハの研削には、特別に設計された表面保護テープを用いて加工がされている(例えば、特許文献1参照)。 However, wafers with bumps have large irregularities on the surface, making thin film processing difficult, and when back grinding is performed using normal adhesive tape, wafer cracking may occur or wafer thickness accuracy deteriorates. Or Therefore, the wafer with bumps is ground using a specially designed surface protection tape (see, for example, Patent Document 1).
しかしながら、これらのテープではバンプを十分に吸収して研削性を確保しているため剥離性との両立が非常に難しい。これまでのフリップチップ実装されてきたチップの仕上げ厚みは200μm厚以上とある程度の厚みがあり、剛性を保てたため何とか剥離できてきた。しかし、最近ウエハ仕上げ厚みが、よりいっそう薄膜となり、バンプ密度も高くなってきているためテープは、剥離が容易にできないといった問題を引き起こしてしまっている。また逆に、剥離性を確保すると密着が不十分となり、裏面研削時に研削水の浸入や糊残りを引き起こしてしまっている。 However, since these tapes sufficiently absorb bumps to ensure grindability, it is very difficult to achieve both releasability. The finished thickness of the chip that has been flip-chip mounted so far has a certain thickness of 200 μm or more, and has been able to be peeled off because of its rigidity. However, since the wafer finish thickness has become increasingly thinner and the bump density has increased recently, the tape has caused a problem that it cannot be easily peeled off. On the other hand, if the peelability is ensured, the adhesion becomes insufficient, causing intrusion of grinding water and residual glue during back grinding.
一方、ウエハレベルパッケージに使用されるバンプ付ウエハのバンプ高さは依然高いままであり、高さ250μm以上のバンプも搭載されている。ウエハレベルパッケージではチップをスタックする必要がないためメモリ系ウエハのように50μm以下といった極薄研削されることがないが、高いバンプがついているため厚膜研削でも非常に割れやすく、150μm厚以下の研削厚で容易にウエハ割れの問題が発生する。 On the other hand, the bump height of the wafer with bumps used in the wafer level package remains high, and bumps with a height of 250 μm or more are also mounted. Wafer level packages do not require stacking of chips, so they are not ground as thin as 50 μm or less like memory wafers. However, they have high bumps, so they are very easy to break even with thick film grinding and are 150 μm thick or less. The problem of wafer cracking easily occurs with the grinding thickness.
このようなウエハに対して専用の表面保護テープが提案されている(特許文献2,3参照)。 A surface protection tape dedicated to such a wafer has been proposed (see Patent Documents 2 and 3).
しかしながら、従来の放射線硬化型の粘着テープでは、放射線硬化させると、バンプな
どの半導体ウエハ表面の凹凸に粘着剤が噛み込み、アンカー効果が強くなり、剥離しにく
くなることがあり、この場合、バンプ部の破損や、剥離後に半導体ウエハの表面に粘着剤
が残るという問題が発生していた。この問題は半導体の信頼性向上を目的としたバンプの
高バンプ化やバンプ間距離の狭ピッチ化に伴いより顕著となる。
However, with conventional radiation-curable adhesive tapes, when radiation-cured, the adhesive bites into the bumps and other irregularities on the surface of the semiconductor wafer, and the anchor effect becomes stronger, making it difficult to peel off. There has been a problem that the adhesive is left on the surface of the semiconductor wafer after the part is broken or peeled off. This problem becomes more conspicuous as bumps increase in bumps and the pitch between bumps decreases for the purpose of improving the reliability of semiconductors.
また、粘着剤でバンプを完全に追従せずに加工する方法(特許文献3)は、剥離性は極めて良好な場合が多い。しかし、酸素介入による硬化阻害に起因する糊残りが発生し易く、更に研削時に割れが発生し、更にダスト侵入の問題が発生しやすいといった問題を依然として抱えている。 Moreover, the method of processing the bump without completely following the adhesive (Patent Document 3) often has extremely good peelability. However, there still remains a problem that adhesive residue due to the inhibition of curing due to oxygen intervention easily occurs, cracks occur during grinding, and a problem of dust intrusion easily occurs.
従って、本発明は、半導体ウエハ加工時には半導体ウエハに強固に密着するとともに、剥離時に、半導体ウエハの破損や糊残りすることなく剥離することができる半導体ウエハ表面保護用粘着テープおよびそれを用いた半導体ウエハの加工方法を提供することを課題とする。 Accordingly, the present invention provides an adhesive tape for protecting a semiconductor wafer surface and a semiconductor using the same, which can be firmly adhered to a semiconductor wafer during processing of the semiconductor wafer and can be removed without being damaged or having adhesive residue at the time of peeling. It is an object of the present invention to provide a wafer processing method.
上記課題に鑑み、本発明者らは鋭意検討を行った結果、ウエハ表面に所定温度で加熱貼合される、少なくとも、基材フィルム、所定温度で溶融する中間樹脂層、及び粘着剤層の3層から構成され半導体ウエハ用粘着テープ構造とし、該中間樹脂層の厚みをバンプの高さ以上とし、基材フィルムの融点及び引張弾性率並びに中間樹脂層の融点及び曲げ弾性率を、それぞれ、特定の範囲に定めることにより、上記の従来の問題点を解決できることを見い出した。すなわち、高いバンプが付いている場合やバンプ間距離の狭ピッチ化の場合でも半導体ウエハ加工時には半導体ウエハに強固に密着するとともに、剥離時に、薄膜半導体ウエハを半導体ウエハの破損や糊残りすることなく剥離することができる半導体ウエハ表面保護用粘着テープ提供できることを見出した。本発明はこの知見に基づきなされるに至ったものである。
すなわち、上記課題は以下の手段により達成された。
(1)ウエハ表面に20μm以上の凹凸を有するウエハに対して60℃以上の温度で加熱貼合される半導体ウエハ用粘着テープであって、
前記半導体ウエハ用粘着テープが、少なくとも、基材フィルム、中間樹脂層、表面の粘着剤層の3層から構成され、
前記基材フィルムが、ポリスチレン樹脂からなり、かつ融点が90℃を超え、曲げ弾性率1GPa〜10GPaであり、
前記中間樹脂層の厚みがバンプの高さ以上で、融点が50℃〜90℃の範囲であり、且つ曲げ弾性率が1MPa〜100MPaであることを特徴とする、
半導体ウエハ用粘着シート。
(2)前記中間樹脂層がエチレン−アクリル酸メチルコポリマー樹脂、エチレン−アクリル酸エチルコポリマー樹脂、エチレン−アクリル酸ブチルコポリマー樹脂のいずれかである(1)に記載の半導体ウエハ用粘着シート。
(3)前記基材フィルムの厚みが25μm〜75μmであることを特徴とする(1)または(2)に記載の半導体ウエハ用粘着シート。
(4)前記中間樹脂層の厚みが100μm〜400μmであることを特徴とする(1)〜(3)のいずれかに記載の半導体ウエハ用粘着シート。
本明細書において、ウエハ表面に20μm以上の凹凸があるとは、半導体ウエハにそのような凹部または凸部があることをいう。凹凸の高さとは、最高部からウエハ表面までの距離または最低部からウエハ表面までの距離を言う。例えば、ウエハ上に金属電極(バンプ)が形成されている場合において、最高部とはバンプの頂上部であり、そこからウエハ表面までの距離を凹凸高さという。あるいは、ウエハにスクライブライン(ダイシングライン)が形成されている場合において、最低部とはスクライブラインの最も深い場所であり、そこからウエハ表面までの距離を凹凸の高さという。
In view of the above problems, the present inventors have conducted intensive studies. As a result, at least a base film, an intermediate resin layer melted at a predetermined temperature, and a pressure-sensitive adhesive layer are bonded to the wafer surface by heating at a predetermined temperature. It is made of adhesive layers for semiconductor wafers, the thickness of the intermediate resin layer is equal to or higher than the bump height, and the melting point and tensile modulus of the base film and the melting point and bending modulus of the intermediate resin layer are specified respectively. It has been found that the above-mentioned conventional problems can be solved by setting the above range. That is, even when there are high bumps or when the pitch between bumps is narrowed, the semiconductor wafer is firmly attached to the semiconductor wafer during processing, and the thin film semiconductor wafer is not damaged or left unbonded during peeling. It has been found that an adhesive tape for protecting the surface of a semiconductor wafer that can be peeled can be provided. The present invention has been made based on this finding.
That is, the said subject was achieved by the following means.
(1) A semiconductor wafer pressure-sensitive adhesive tape that is bonded by heating at a temperature of 60 ° C. or higher to a wafer having irregularities of 20 μm or more on the wafer surface,
The semiconductor wafer pressure-sensitive adhesive tape comprises at least three layers of a base film, an intermediate resin layer, and a surface pressure-sensitive adhesive layer,
The base film is made of polystyrene resin, the melting point exceeds 90 ° C., and the flexural modulus is 1 GPa to 10 GPa,
The thickness of the intermediate resin layer is not less than the height of the bump, the melting point is in the range of 50 ° C. to 90 ° C., and the flexural modulus is 1 MPa to 100 MPa,
Adhesive sheet for semiconductor wafers.
(2) The adhesive sheet for a semiconductor wafer according to (1), wherein the intermediate resin layer is any one of ethylene-methyl acrylate copolymer resin, ethylene-ethyl acrylate copolymer resin, and ethylene-butyl acrylate copolymer resin.
(3) The thickness of the said base film is 25 micrometers-75 micrometers, The adhesive sheet for semiconductor wafers as described in (1) or (2) characterized by the above-mentioned.
(4) The adhesive sheet for a semiconductor wafer according to any one of (1) to (3), wherein the thickness of the intermediate resin layer is 100 μm to 400 μm.
In the present specification, the fact that the wafer surface has irregularities of 20 μm or more means that the semiconductor wafer has such depressions or protrusions. The height of the unevenness means the distance from the highest part to the wafer surface or the distance from the lowest part to the wafer surface. For example, when metal electrodes (bumps) are formed on a wafer, the highest portion is the top of the bump, and the distance from the top to the wafer surface is referred to as the uneven height. Alternatively, when a scribe line (dicing line) is formed on the wafer, the lowest part is the deepest part of the scribe line, and the distance from the surface to the wafer surface is called the height of the unevenness.
本発明により、半導体ウエハ加工時には半導体ウエハに強固に密着することでシーページ等の発生が大幅に低減され、半導体ウエハの破損や糊残りすることなく剥離可能な半導体ウエハ表面保護用粘着テープおよび半導体ウエハの製造方法が提供できる。 According to the present invention, an adhesive tape for protecting a semiconductor wafer surface and a semiconductor that can be peeled off without causing breakage of the semiconductor wafer or residue of adhesive is greatly reduced by firmly adhering to the semiconductor wafer when processing the semiconductor wafer. A method for manufacturing a wafer can be provided.
以下に、本発明の好ましい実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
[半導体ウエハ表面保護用粘着テープ]
本発明の半導体ウエハ表面保護用粘着テープは、基材フィルムの少なくとも片面に、放射線硬化型粘着剤層が形成されている。
ここで放射線硬化型粘着剤層は、放射線〔例えば、紫外線のような光線(レーザー光線も含む)、電子線などの電離性放射線など〕の照射で硬化する粘着剤層をいう。照射する放射線は紫外線が好ましい。
[Semiconductor wafer surface protective adhesive tape]
In the pressure-sensitive adhesive tape for protecting a semiconductor wafer surface of the present invention, a radiation curable pressure-sensitive adhesive layer is formed on at least one surface of a base film.
Here, the radiation-curable pressure-sensitive adhesive layer refers to a pressure-sensitive adhesive layer that is cured by irradiation with radiation (for example, light such as ultraviolet rays (including laser light), ionizing radiation such as an electron beam). The radiation to be irradiated is preferably ultraviolet rays.
<基材フィルム>
本発明の半導体ウエハ表面保護用粘着テープに適用される基材フィルムの融点は90℃より高くする。融点を、90℃を超えるものとすることにより、テープ貼合の工程でチャックテーブルへの融着を防いで、凹凸ウエハへの十分な貼合ができる。また、DDFを貼合する場合も、チャックテーブルへの融着を防いでDDFの貼合が可能となる。本発明の半導体ウエハ表面保護テープは、中間樹脂層に熱をかけることで中間樹脂層の流動性が向上し、凹凸ウエハに対して十分な密着性を確保するため、十分高い温度である60℃〜90℃の加熱条件で使用される。従って、基材フィルムの融点が90℃以下では基材フィルムの背面が溶けてしまいチャックテーブルと融着してしまう可能性が高い。基材フィルムが例えばスチレンのように非結晶性の樹脂の場合は、融点が存在したいためビガット軟化点が指標となる。ビカット軟化点を超えると基材背面に流動性が出るため、チャックテーブルのポーラス部に入り込む危険性が高くなる。
また、本発明に適用される基材フィルムの曲げ弾性率は1GPa〜10GPaが好ましく、より好ましくは2GPa〜5GPaである。基材フィルムの曲げ弾性率をこの範囲の曲げ弾性率にすることにより、ウエハ自体の反りに対する矯正力を発揮することができるため、ポリイミド膜が厚いウエハや絶縁膜が複層に形成されているためウエハの反りが大きいバンプウエハにおいても反り量を小さくできる。曲げ弾性率が1GPa未満であるとウエハの反りの矯正力が無くなり、バンプウエハの搬送エラーが発生してしまう。一方、基材フィルムの曲げ弾性率が10GPaを超えると、テープ剥離の際に剥離の力がウエハに加わってしまい、ウエハ割れを引き起こしてしまう。
<Base film>
The melting point of the base film applied to the adhesive tape for protecting a semiconductor wafer surface of the present invention is higher than 90 ° C. By setting the melting point to be higher than 90 ° C., it is possible to prevent the fusion to the chuck table in the tape bonding process, and to bond sufficiently to the uneven wafer. Also, when DDF is bonded, DDF bonding can be performed while preventing fusion to the chuck table. The semiconductor wafer surface protective tape of the present invention has a sufficiently high temperature of 60 ° C. in order to improve the fluidity of the intermediate resin layer by applying heat to the intermediate resin layer and ensure sufficient adhesion to the uneven wafer. Used under heating conditions of ~ 90 ° C. Therefore, when the melting point of the base film is 90 ° C. or lower, the back surface of the base film is likely to melt and fuse with the chuck table. When the base film is a non-crystalline resin such as styrene, the bigat softening point is an index because a melting point is desired. When the Vicat softening point is exceeded, fluidity appears on the back surface of the base material, and the risk of entering the porous portion of the chuck table increases.
The flexural modulus of the base film applied to the present invention is preferably 1 GPa to 10 GPa, more preferably 2 GPa to 5 GPa. By setting the flexural modulus of the base film to a flexural modulus in this range, it is possible to exert a correction force against the warpage of the wafer itself, so that a thick polyimide film or an insulating film is formed in multiple layers. Therefore, the amount of warpage can be reduced even in a bump wafer where the warpage of the wafer is large. If the flexural modulus is less than 1 GPa, the wafer warp correction force is lost, and a bump wafer transport error occurs. On the other hand, if the flexural modulus of the base film exceeds 10 GPa, a peeling force is applied to the wafer when the tape is peeled, which causes a wafer crack.
基材フィルムは、樹脂フィルムからなるものが好ましく、基本的には上記の条件を満たす限り、この分野で通常用いられてきたプラスチック、ゴム等を用いることができる。例えば、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリブテン−1、ポリ−4−メチルペンテン−1、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸共重合体、アイオノマー等のα−オレフィンの単独重合体もしくは共重合体、またはこれらの混合物)、ポリエステル樹脂(ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリカーボネート樹脂、ポリウレタン樹脂、エンジニアリングプラスチック(ポリメチルメタクリレート等)、合成ゴム類(スチレン−エチレン−ブテンもしくはペンテン系共重合体)、熱可塑性エラストマー(ポリアミド−ポリオール共重合体等)、およびこれらの混合物が挙げられる。また、これらを複層にしたものを使用してもよい。
基材フィルムは、ポリエステル系樹脂またはポリスチレン系樹脂からなるものがより好ましく、ゴム成分を配合したポリスチレン系樹脂が更に好ましい。
このため、本発明では、基材フィルムが、ポリスチレン樹脂からななるものを使用する。
The base film is preferably made of a resin film. Basically, plastics, rubbers, and the like that are usually used in this field can be used as long as the above conditions are satisfied. For example, polyolefin resin (polyethylene, polypropylene, ethylene-propylene copolymer, polybutene-1, poly-4-methylpentene-1, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid Α-olefin homopolymers or copolymers such as methyl copolymers, ethylene-acrylic acid copolymers, ionomers, or mixtures thereof), polyester resins (polyethylene terephthalate, polyethylene naphthalate), polycarbonate resins, polyurethane resins Engineering plastics (polymethyl methacrylate, etc.), synthetic rubbers (styrene-ethylene-butene or pentene copolymers), thermoplastic elastomers (polyamide-polyol copolymers, etc.), and mixtures thereof Thing, and the like. Moreover, you may use what made these two or more layers.
The base film is more preferably a polyester resin or a polystyrene resin, and more preferably a polystyrene resin containing a rubber component.
For this reason, in this invention, a base film uses what consists of polystyrene resins.
基材フィルムの厚みは、ウエハの反りの矯正力とテープの剥離性のバランス、コストや製造適性などの面を考慮すると、25μm〜125μmが好ましく、50μm〜100μmが更に好ましい。50μm〜100μmの範囲ではバンプウエハを50μm以下の薄膜研削した場合においても搬送エラーが無く研削可能であり、テープ剥離も容易である。 The thickness of the base film is preferably 25 μm to 125 μm, more preferably 50 μm to 100 μm, in consideration of the balance between the warp correction force of the wafer and the peelability of the tape, cost, and manufacturing suitability. In the range of 50 μm to 100 μm, even when the bump wafer is ground to a thickness of 50 μm or less, it can be ground without any transport error, and the tape can be easily peeled off.
<中間樹脂層>
本発明の半導体ウエハ表面保護用粘着テープは、中間樹脂層を必須とする。テープを加熱貼合することにより中間樹脂層が溶融し、バンプに対して完全に追従する。さらに貼合後は冷却されるため、バンプを完全にホールドすることでダスト侵入等を防止することができる。本発明の中間樹脂層の融点は、好ましくは50℃〜90℃、より好ましくは60℃〜80℃の範囲である。表面保護テープを50℃以上で加熱貼合し、その際に中間樹脂層によってバンプを完全密着する必要があるため、この温度範囲で弾性率が急激に変化する必要がある。ウエハ研削時は通常の温度であり、この温度において樹脂が流動してしまうと研削の際の厚み精度が極端に悪化するため高弾性であることが好ましい。一方、貼合する際に凹凸に十分に追従させるためには低弾性である必要があることから、中間樹脂層には相反する性能が求められる。この相反する性能を実現するため、貼合される温度で極端に流動性の変化が起こる融点が含まれる必要がある。
中間樹脂層の融点が50℃未満である場合、基材フィルムとして成形することが困難であり、また厚み精度も悪化してしまう。一方、中間樹脂層の融点が90℃を超える場合、加熱貼合してもバンプに対して十分に追従しないため、ダスト侵入やウエハ割れ問題が発生してしまう。
<Intermediate resin layer>
The adhesive tape for protecting the surface of a semiconductor wafer of the present invention requires an intermediate resin layer. By heat bonding the tape, the intermediate resin layer melts and follows the bumps completely. Furthermore, since it cools after bonding, dust penetration | invasion etc. can be prevented by hold | maintaining a bump completely. The melting point of the intermediate resin layer of the present invention is preferably in the range of 50 ° C to 90 ° C, more preferably 60 ° C to 80 ° C. Since the surface protective tape is heated and bonded at 50 ° C. or higher and the bumps need to be completely adhered by the intermediate resin layer at that time, the elastic modulus needs to change rapidly in this temperature range. The wafer is ground at a normal temperature, and if the resin flows at this temperature, the thickness accuracy at the time of grinding is extremely deteriorated, so that it is preferably highly elastic. On the other hand, since it is necessary to have low elasticity in order to sufficiently follow the unevenness when bonding, the intermediate resin layer is required to have contradictory performance. In order to realize this contradictory performance, it is necessary to include a melting point at which the fluidity changes extremely at the bonding temperature.
When the melting point of the intermediate resin layer is less than 50 ° C., it is difficult to form the base film, and the thickness accuracy is also deteriorated. On the other hand, when the melting point of the intermediate resin layer exceeds 90 ° C., it does not sufficiently follow the bumps even if the heat bonding is performed, so that dust intrusion and wafer cracking problems occur.
更に本発明の半導体ウエハ表面保護用粘着テープの中間樹脂層の曲げ弾性率は1MPa〜100MPaである。この範囲とすることによりウエハ貼合時にかかる応力を緩和しつつ、研削後の厚み精度を保つことができる。応力緩和が行われることでテープ自体の反りを抑制できる。中間樹脂層の曲げ弾性率が1MPa未満であると、基材としての厚み精度を維持したままの製膜が困難となってしまう。また、研削後のウエハの厚み精度も悪化する。一方、中間樹脂層の曲げ弾性率が100MPaを超えてしまうと、溶融しても弾性率変化が不十分であり、完全にバンプに密着しない場合が発生する。 Furthermore, the bending elastic modulus of the intermediate resin layer of the adhesive tape for protecting a semiconductor wafer surface of the present invention is 1 MPa to 100 MPa. By setting it as this range, the thickness accuracy after grinding can be maintained while relaxing the stress applied during wafer bonding. The warping of the tape itself can be suppressed by performing stress relaxation. When the flexural modulus of the intermediate resin layer is less than 1 MPa, it becomes difficult to form a film while maintaining the thickness accuracy as the base material. In addition, the thickness accuracy of the wafer after grinding also deteriorates. On the other hand, if the bending elastic modulus of the intermediate resin layer exceeds 100 MPa, the elastic modulus change is insufficient even when melted, and the case where the intermediate resin layer does not completely adhere to the bumps occurs.
中間樹脂層は、樹脂層もしくは樹脂フィルムであってもよい。樹脂層もしくは樹脂フィルムは、単なる樹脂層もしくは樹脂フィルムであり、粘着を目的とするものでないため、非粘着性が好ましい。非粘着性とは常温においてべたつきが無い状態をいう。
このような樹脂層もしくは樹脂フィルムは、例えば、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸共重合体、アイオノマー等のα−オレフィンの単独重合体または共重合体あるいはこれらの混合物が挙げられる。これらの樹脂層もしくは樹脂フィルムを2層以上有してもよい。
The intermediate resin layer may be a resin layer or a resin film. The resin layer or resin film is simply a resin layer or resin film and is not intended for adhesion, and therefore non-adhesiveness is preferred. Non-adhesive means a state without stickiness at room temperature.
Such a resin layer or resin film may be, for example, an ethylene-vinyl acetate copolymer, an ethylene-ethyl acrylate copolymer, an ethylene-methyl acrylate copolymer, an ethylene-acrylic acid copolymer, an ionomer or the like. -Olefin homopolymers or copolymers or mixtures thereof. You may have two or more of these resin layers or resin films.
中間樹脂層に使用する樹脂層もしくは樹脂フィルムは、バンプウエハに対しての密着性の点から、エチレン−アクリル酸メチルコポリマー樹脂、エチレン−アクリル酸エチルコポリマー樹脂、エチレン−アクリル酸ブチルコポリマー樹脂が好ましく使用される。
エチレン−アクリル系コポリマー樹脂のコポリマー配合率は10質量%〜35質量%が好ましく、15質量%〜30質量%が更に好ましい。
製造適性の点から中間樹脂層は複層であることが好ましい。単層に比べてフィルム化が容易である。複層にした場合、基材フィルム側の層は低密度ポリエチレンであることが好ましく、押し出しにより複層の中間樹脂層の製膜の際に不良率を低下させることができ且つ安価に製造することができる。中間樹脂層が複層である場合の融点は、粘着剤層と接している層の融点を言う。
樹脂層もしくは樹脂フィルムの積層方法は、樹脂層もしくは樹脂フィルムの厚みの精度や、該樹脂層もしくは樹脂フィルムに欠陥に影響を及ぼさない範囲であれば、特に制限されるものではないが、例えば、共押出による製膜や接着剤による貼り合わせなどが挙げられる。
The resin layer or resin film used for the intermediate resin layer is preferably an ethylene-methyl acrylate copolymer resin, an ethylene-ethyl acrylate copolymer resin, or an ethylene-butyl acrylate copolymer resin from the viewpoint of adhesion to the bump wafer. Is done.
The copolymer content of the ethylene-acrylic copolymer resin is preferably 10% by mass to 35% by mass, and more preferably 15% by mass to 30% by mass.
From the viewpoint of production suitability, the intermediate resin layer is preferably a multilayer. It is easier to form a film than a single layer. In the case of multiple layers, the layer on the base film side is preferably low-density polyethylene, and the defect rate can be reduced when the intermediate resin layer of the multilayer is formed by extrusion, and the layer is manufactured at a low cost. Can do. The melting point when the intermediate resin layer is a multilayer is the melting point of the layer in contact with the pressure-sensitive adhesive layer.
The method of laminating the resin layer or the resin film is not particularly limited as long as the accuracy of the thickness of the resin layer or the resin film is within a range that does not affect the resin layer or the resin film, for example, Examples include film formation by coextrusion and bonding with an adhesive.
中間樹脂層の厚みはバンプの高さ以上が必要である。バンプの高さよりも低くなってしまうと、十分に密着しないためダスト侵入やウエハ割れが発生する。中間樹脂層の好ましい範囲はバンプの高さよりも10μm〜30μm厚い厚みである。30μm以上厚くなるとウエハの厚み精度が悪化する恐れがあり、また製造コストも増加する。また、バンプウエハのバンプ部分を製造する際、10μm程度の誤差が生じるため、平均バンプ高さに加えて10μmの厚みがあると余裕をもって完全追従することが可能となる。 The thickness of the intermediate resin layer needs to be greater than the bump height. If it is lower than the height of the bump, it will not adhere sufficiently, and dust intrusion and wafer cracking will occur. A preferable range of the intermediate resin layer is 10 μm to 30 μm thicker than the bump height. If the thickness is 30 μm or more, the thickness accuracy of the wafer may deteriorate, and the manufacturing cost also increases. Further, when manufacturing the bump portion of the bump wafer, an error of about 10 .mu.m is generated. Therefore, if there is a thickness of 10 .mu.m in addition to the average bump height, it is possible to fully follow with a margin.
<粘着剤層>
(粘着剤)
本発明の粘着テープにおいて粘着剤層に用いる粘着剤は、放射線照射(好ましくは紫外線)で硬化するものであれば特に制限はないが、放射線照射で重合反応することが可能な反応性の基を少なくとも1つ有するポリマー(以下、「放射線硬化性ポリマー」という。)を含むことが好ましい。
上記粘着剤は、放射線硬化性ポリマーを主成分とすることが好ましい。より具体的には、放射線硬化性ポリマーを50質量%以上含有することが好ましく、80質量%以上含有することがより好ましく、90質量%以上含有することがさらに好ましい。
<Adhesive layer>
(Adhesive)
The pressure-sensitive adhesive used for the pressure-sensitive adhesive layer in the pressure-sensitive adhesive tape of the present invention is not particularly limited as long as it is cured by irradiation with radiation (preferably ultraviolet rays), but a reactive group capable of undergoing a polymerization reaction by irradiation with radiation. It is preferable to include a polymer having at least one (hereinafter referred to as “radiation curable polymer”).
The pressure-sensitive adhesive preferably contains a radiation curable polymer as a main component. More specifically, the radiation curable polymer is preferably contained in an amount of 50% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
上記の放射線照射で重合反応することが可能な反応性の基としては、エチレン性不飽和基、すなわち、炭素−炭素二重結合を有する基が好ましく、例えば、ビニル基、アリル基、スチリル基、(メタ)アクリロイルオキシ基、(メタ)アクリルロイルアミノ基などが挙げられる。 The reactive group capable of undergoing a polymerization reaction upon irradiation with radiation is preferably an ethylenically unsaturated group, that is, a group having a carbon-carbon double bond, such as a vinyl group, an allyl group, a styryl group, (Meth) acryloyloxy group, (meth) acryloylamino group, etc. are mentioned.
上記放射線硬化性ポリマーに特に制限はないが、例えば、(メタ)アクリル共重合体、ポリエステル、エチレンもしくはスチレン共重合体、ポリウレタンが挙げられる。
本発明では、(メタ)アクリル共重合体が好ましい。
Although there is no restriction | limiting in particular in the said radiation-curable polymer, For example, a (meth) acryl copolymer, polyester, ethylene or a styrene copolymer, and a polyurethane are mentioned.
In the present invention, a (meth) acrylic copolymer is preferred.
上記放射線硬化性ポリマーの合成方法としては、例えば(a)エチレン性不飽和基を有するポリマーである場合、エチレン性不飽和基を有する化合物とポリマーとを反応させて、エチレン性不飽和基が導入されたポリマーを得る方法、(b)エチレン性不飽和基を有するオリゴマー〔例えば、架橋剤の一種であるウレタン(メタ)アクリルオリゴマー等〕を利用する方法、が簡便、かつ容易であり、好ましく、なかでも上記(a)の方法が好ましい。
上記(a)の方法では、エチレン性不飽和基を有する化合物として、当該エチレン性不飽和基と異なる反応性の基(反応性基αと称す)を有する構造の化合物を用い、エチレン性不飽和基が導入されるポリマーとしては、当該エチレン性不飽和基を有する化合物の反応性基αと反応する反応性基βを有する構造のポリマー(以下、「反応性基βを有するポリマー」という。)を用いて、反応性基αとβを反応させる。
As a method for synthesizing the radiation curable polymer, for example, (a) in the case of a polymer having an ethylenically unsaturated group, an ethylenically unsaturated group is introduced by reacting a compound having an ethylenically unsaturated group with the polymer. And (b) a method using an oligomer having an ethylenically unsaturated group (for example, a urethane (meth) acryl oligomer which is a kind of a crosslinking agent) is simple and easy. Of these, the method (a) is preferred.
In the method (a), a compound having a structure having a reactive group (referred to as a reactive group α) different from the ethylenically unsaturated group is used as the compound having an ethylenically unsaturated group, and the ethylenically unsaturated group is used. As the polymer into which the group is introduced, a polymer having a structure having a reactive group β that reacts with the reactive group α of the compound having an ethylenically unsaturated group (hereinafter referred to as “polymer having a reactive group β”). Is used to react the reactive groups α and β.
このような反応性基α、βは、例えば、一方が、求核攻撃する基、他方が、求核攻撃を受ける基もしくは付加反応を受ける基とすることが好ましい。このような反応性基としては、例えば水酸基、アミノ基、メルカプト基、カルボキシ基、エポキシ基、オキセタニル基、イソシアネート基、環状の酸無水物を形成している基、ハロゲン原子、アルコキシもしくはアリールオキシカルボニル基等が挙げられる。
ここで、反応性基αおよびβのいずれか一方が水酸基、アミノ基、メルカプト基、カルボキシ基である場合、他方の反応性基はエポキシ基、オキセタン基、イソシアネート基、環状の酸無水物を形成する基、ハロゲン原子、アルコキシもしくはアリールオキシカルボニル基とすることができる。
For such reactive groups α and β, for example, one is preferably a group that undergoes a nucleophilic attack, and the other is a group that undergoes a nucleophilic attack or a group that undergoes an addition reaction. Examples of such reactive groups include hydroxyl groups, amino groups, mercapto groups, carboxy groups, epoxy groups, oxetanyl groups, isocyanate groups, groups forming cyclic acid anhydrides, halogen atoms, alkoxy or aryloxycarbonyls. Groups and the like.
Here, when one of the reactive groups α and β is a hydroxyl group, an amino group, a mercapto group, or a carboxy group, the other reactive group forms an epoxy group, an oxetane group, an isocyanate group, or a cyclic acid anhydride. Group, halogen atom, alkoxy or aryloxycarbonyl group.
エチレン性不飽和基を有する化合物が有する反応性基αは、求核攻撃を受ける基又は付加反応を受ける基であること好ましく、例えば、エポキシ基、オキセタニル基、イソシアネート基、環状の酸無水物を形成する基、ハロゲン原子、アルコキシ又はアリールオキシカルボニル基が好ましく、エポキシ基、オキセタン基、イソシアネート基、又は環状の酸無水物を形成する基がより好ましく、エポキシ基、オキセタニル基、又はイソシアネート基がさらに好ましく、イソシアネート基がさらに好ましい。 The reactive group α of the compound having an ethylenically unsaturated group is preferably a group that undergoes a nucleophilic attack or a group that undergoes an addition reaction. For example, an epoxy group, an oxetanyl group, an isocyanate group, or a cyclic acid anhydride. A group that forms, a halogen atom, an alkoxy or aryloxycarbonyl group is preferable, an epoxy group, an oxetane group, an isocyanate group, or a group that forms a cyclic acid anhydride is more preferable, and an epoxy group, an oxetanyl group, or an isocyanate group further Preferred is an isocyanate group.
一方、エチレン性不飽和基が導入されるポリマーが有する反応性基βは、求核攻撃する基が好ましく、例えば、水酸基、アミノ基、メルカプト基、又はカルボキシ基が好ましく、水酸基、アミノ基、又はメルカプト基がより好ましく、水酸基、アミノ基、又はカルボキシ基がさらに好ましく、水酸基、又はカルボキシ基がさらに好ましく、なかでも水酸基が好ましい。 On the other hand, the reactive group β of the polymer into which the ethylenically unsaturated group is introduced is preferably a group that undergoes nucleophilic attack, for example, preferably a hydroxyl group, an amino group, a mercapto group, or a carboxy group, and a hydroxyl group, an amino group, or A mercapto group is more preferable, a hydroxyl group, an amino group, or a carboxy group is more preferable, a hydroxyl group or a carboxy group is further preferable, and a hydroxyl group is particularly preferable.
エチレン性不飽和基と反応性基αを有する化合物、又は、反応性基βを有するポリマーの合成に用いる反応性基βを有するモノマーとしては、以下の化合物が挙げられる。 Examples of the compound having an ethylenically unsaturated group and a reactive group α or the monomer having a reactive group β used for the synthesis of a polymer having a reactive group β include the following compounds.
−反応性基がカルボキシ基である化合物−
(メタ)アクリル酸、桂皮酸、イタコン酸、フマル酸等
-Compound whose reactive group is a carboxy group-
(Meth) acrylic acid, cinnamic acid, itaconic acid, fumaric acid, etc.
−反応性基が水酸基である化合物−
アルコール部に水酸基を有するヒドロキシアルキル(メタ)アクリレート〔例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、グリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート〕、アミン部に水酸基を有するアルキルアミンのN−(ヒドロキシアルキル)アルキル(メタ)アクリルアミド〔例えば、N−メチロール(メタ)アクリルアミド、N,N−ビスメチロール(メタ)アクリルアミド〕、アリルアルコール等
-Compound whose reactive group is a hydroxyl group-
Hydroxyalkyl (meth) acrylate having a hydroxyl group in the alcohol part [for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, trimethylolpropane mono (meth) acrylate, glycol mono (meth) acrylate, diethylene glycol Mono (meth) acrylate], N- (hydroxyalkyl) alkyl (meth) acrylamide of an alkylamine having a hydroxyl group in the amine portion [for example, N-methylol (meth) acrylamide, N, N-bismethylol (meth) acrylamide], Allyl alcohol, etc.
−反応性基がアミノ基である化合物−
アルコール部にアミノ基を有するアミノアルキル(メタ)アクリレート〔例えば、2−(アルキルアミノ)エチル(メタ)アクリレート、3−(アルキルアミノ)プロピル(メタ)アクリレート〕、(メタ)アクリルアミド等
-Compound whose reactive group is an amino group-
Aminoalkyl (meth) acrylate having an amino group in the alcohol part [for example, 2- (alkylamino) ethyl (meth) acrylate, 3- (alkylamino) propyl (meth) acrylate], (meth) acrylamide, etc.
−反応性基が環状の酸無水物である化合物−
無水マレイン酸、無水イタコン酸、無水フマル酸、無水フタル酸等
-Compound whose reactive group is a cyclic acid anhydride-
Maleic anhydride, itaconic anhydride, fumaric anhydride, phthalic anhydride, etc.
−反応性基がエポキシ基もしくはオキセタニル基である化合物−
グリシジル(メタ)アクリレート、アリルグリシジルエーテル、3−エチル−3−ヒドロキシメチルオキセタン等
-Compound whose reactive group is epoxy group or oxetanyl group-
Glycidyl (meth) acrylate, allyl glycidyl ether, 3-ethyl-3-hydroxymethyloxetane, etc.
−反応性基がイソシアネート基である化合物−
(メタ)アクリロイルオキシアルキルイソシアネート〔例えば、2−(メタ)アクリロイルオキシエチルイソシアネート、2−(メタ)アクリロイルオキシプロピルイソシアネート〕、多価イソシアネート化合物のイソシアネート基の一部を、水酸基もしくはカルボキシ基と、エチレン性不飽和基とを有する化合物でウレタン化したもの〔例えば、2〜10官能の(メタ)アクリルのウレタンアクリレートオリゴマー〕等
-Compound whose reactive group is an isocyanate group-
(Meth) acryloyloxyalkyl isocyanate [for example, 2- (meth) acryloyloxyethyl isocyanate, 2- (meth) acryloyloxypropyl isocyanate], a part of the isocyanate group of the polyvalent isocyanate compound, a hydroxyl group or a carboxy group, and ethylene Urethanized with a compound having an unsaturated group [for example, 2 to 10 functional (meth) acrylic urethane acrylate oligomer], etc.
なお、上記のウレタンアクリレートオリゴマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ペンタエリスリトール トリ(メタ)アクリレート等のアルコール部に水酸基を有するヒドロキシアルキル(メタ)アクリレートと、トルエンジイソシアナート、メチレンビスフェニルジイソシアナート、ヘキサメチレンジイソシアナート、ナフタレンジイソシアナート、メチレンビスシクロヘキシルイソシアネート、イソホロンジイソシアネート等のジイソシアネートや3官能以上のイソシアネートを反応させて得られる、イソシアネート基を少なくとも1つ有するオリゴマーが好ましい。また、ヒドロキシアルキル(メタ)アクリレートと多価イソシアネートに加えて、ポリオール化合物、ポリエーテルジオール化合物又はポリエステルジオール化合物を反応させて得られるオリゴマーでもよい。 In addition, as said urethane acrylate oligomer, hydroxyalkyl (meth) which has a hydroxyl group in alcohol parts, such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, for example Isocyanates obtained by reacting acrylates with diisocyanates such as toluene diisocyanate, methylene bisphenyl diisocyanate, hexamethylene diisocyanate, naphthalene diisocyanate, methylene biscyclohexyl isocyanate, isophorone diisocyanate or trifunctional or higher isocyanates. Oligomers having at least one group are preferred. Moreover, in addition to a hydroxyalkyl (meth) acrylate and a polyvalent isocyanate, an oligomer obtained by reacting a polyol compound, a polyether diol compound or a polyester diol compound may be used.
−反応性基がハロゲン原子である化合物−
2、4,6−トリクロロ−1,3,5−トリアジン、2、4−ジクロロ−6−メトキシ−1,3,5−トリアジン等のハロゲン化トリアジン等
-Compound whose reactive group is a halogen atom-
Halogenated triazines such as 2,4,6-trichloro-1,3,5-triazine, 2,4-dichloro-6-methoxy-1,3,5-triazine, etc.
上記のエチレン性不飽和基と反応性基αを有する化合物としては、上記の反応性基がイソシアネート基である化合物が好ましく、一方、反応性基βを有するポリマーの合成に用いるモノマーとしては上記の反応性基がカルボキシ基である化合物または反応性基が水酸基である化合物が好ましく、反応性基が水酸基である化合物がより好ましい。 The compound having the ethylenically unsaturated group and the reactive group α is preferably a compound in which the reactive group is an isocyanate group, while the monomer used for the synthesis of the polymer having the reactive group β is the above-described monomer. A compound in which the reactive group is a carboxy group or a compound in which the reactive group is a hydroxyl group is preferred, and a compound in which the reactive group is a hydroxyl group is more preferred.
前記(b)の方法は、上記ウレタン(メタ)アクリレートオリゴマーを使用するもので(該オリゴマーは後述するように架橋剤の一種でもある)、(メタ)アクリル共重合体とウレタン(メタ)アクリレートオリゴマーとを共存させて放射線硬化性の粘着剤層を構成することができる。(メタ)アクリル共重合体としては、(メタ)アクリル酸と(メタ)アクリル酸エステルとを重合させて得られるものであることが好ましい。(メタ)アクリル共重合体を構成する(メタ)アクリル酸エステル成分の好ましい形態は、後述する反応性基βを有するポリマーにおける共重合成分として説明したものと同一である。 The method (b) uses the urethane (meth) acrylate oligomer (the oligomer is also a kind of crosslinking agent as described later), and a (meth) acrylic copolymer and a urethane (meth) acrylate oligomer. And a radiation curable pressure-sensitive adhesive layer can be formed. The (meth) acrylic copolymer is preferably obtained by polymerizing (meth) acrylic acid and (meth) acrylic acid ester. The preferable form of the (meth) acrylic acid ester component constituting the (meth) acrylic copolymer is the same as that described as the copolymerizing component in the polymer having the reactive group β described later.
上記反応性基βを有するポリマーを構成する全モノマー成分に占める、上記反応性基βを有するモノマー成分の割合は、5〜50モル%が好ましく、20〜40モル%がより好ましい。 The ratio of the monomer component having the reactive group β to the total monomer component constituting the polymer having the reactive group β is preferably 5 to 50 mol%, and more preferably 20 to 40 mol%.
また、エチレン性不飽和基と反応性基αとを有する化合物と、反応性基βを有するポリマーとを反応させて、反応性基βを有するポリマーにエチレン性不飽和基を導入するに際しては、反応性基αを有する化合物を、反応性基βを有するポリマー100質量部に対して、5〜40質量部反応させることが好ましく、10〜30質量部反応させることがより好ましく、10〜20質量部反応させることがさらに好ましい。架橋反応は粘着剤を常法により、適宜の温度で粘着剤を加熱することにより生起できる。
上記の反応性基αとβの反応後において、未反応の反応性基βを残すことにより、後述する架橋剤等で樹脂特性を調節することができる。
In addition, when a compound having an ethylenically unsaturated group and a reactive group α is reacted with a polymer having a reactive group β to introduce an ethylenically unsaturated group into the polymer having a reactive group β, The compound having the reactive group α is preferably reacted in an amount of 5 to 40 parts by mass, more preferably 10 to 30 parts by mass, and more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the polymer having the reactive group β. More preferably, partial reaction is performed. The crosslinking reaction can occur by heating the pressure-sensitive adhesive at an appropriate temperature by a conventional method.
By leaving the unreacted reactive group β after the reaction of the reactive groups α and β, the resin characteristics can be adjusted with a crosslinking agent or the like described later.
上記の反応性基βを有するポリマーは、その構成成分として前記の反応性基βを有するモノマー成分とともに、共重合成分として、(メタ)アクリル酸エステル成分を有することが好ましい。
当該(メタ)アクリル酸エステルとしては、1種又は2種以上の(メタ)アクリ酸アルキルが好ましい。当該(メタ)アクリル酸エステルのアルコール部は前記反応性基βを有さない。好ましくは、上記(メタ)アクリル酸エステルのアルコール部は無置換である。
このような(メタ)アクリル酸エステルとしては、アルコール部の炭素数は1〜12が好ましい。アルコール部の炭素数は、1〜10がより好ましく、4〜10がさらに好ましく、なかでもアルコール部が分岐アルキルのものが好ましく、2−エチルヘキシル(メタ)アクリレートが特に好ましい。
The polymer having the reactive group β preferably has a (meth) acrylic acid ester component as a copolymer component together with the monomer component having the reactive group β as a constituent component.
As the (meth) acrylic acid ester, one or more alkyl (meth) acrylates are preferable. The alcohol part of the (meth) acrylic acid ester does not have the reactive group β. Preferably, the alcohol part of the (meth) acrylic acid ester is unsubstituted.
As such (meth) acrylic acid ester, the alcohol part preferably has 1 to 12 carbon atoms. 1-10 are more preferable, as for carbon number of an alcohol part, 4-10 are further more preferable, The thing whose alcohol part is a branched alkyl is preferable, and 2-ethylhexyl (meth) acrylate is especially preferable.
上記粘着剤層に用いる放射線硬化性ポリマーの質量平均分子量は、50000〜2000000が好ましく、また、該ポリマーと他のポリマーを併用する場合、併用するポリマーの質量平均分子量も上記範囲内であることが好ましい。
上記粘着剤層に用いるポリマーの質量平均分子量が2000000を超えてしまうと重合が難しく分散度が高くなってしまい、低分子量のポリマーを含有することになるため凝集力が低くなるおそれがある。一方、分子量が50000より小さいとポリマー自体の凝集力が低くなってしまうため、糊残りの発生原因となりやすい。本発明の粘着テープにおいて、粘着剤層に用いるポリマーの質量平均分子量は200000〜800000であることがより好ましい。
質量平均分子量は、テトラヒドロフランに溶解して得た1%溶液を、ゲルパーミエーションクロマトグラフィー(ウオータース社製、商品名:150−C ALC/GPC)により測定した値をポリスチレン換算の質量平均分子量として算出したものである。
The mass average molecular weight of the radiation curable polymer used in the pressure-sensitive adhesive layer is preferably 50,000 to 2,000,000, and when the polymer and another polymer are used in combination, the mass average molecular weight of the polymer used in combination may be within the above range. preferable.
If the mass average molecular weight of the polymer used for the pressure-sensitive adhesive layer exceeds 2,000,000, the polymerization becomes difficult and the degree of dispersion becomes high, and a low molecular weight polymer is contained, so that the cohesive force may be lowered. On the other hand, if the molecular weight is less than 50000, the cohesive force of the polymer itself is lowered, and this is likely to cause glue residue. In the pressure-sensitive adhesive tape of the present invention, the polymer used in the pressure-sensitive adhesive layer preferably has a mass average molecular weight of 200,000 to 800,000.
The mass average molecular weight is a value obtained by dissolving a 1% solution obtained by dissolving in tetrahydrofuran by gel permeation chromatography (trade name: 150-C ALC / GPC manufactured by Waters Co., Ltd.) as a mass average molecular weight in terms of polystyrene. It is calculated.
(光重合開始剤)
放射線硬化型粘着剤層には、必要に応じて光重合開始剤を含むことができる。光重合開始剤には基材を透過する放射線により反応するものであれば、特に制限はなく、従来知られているものを用いることができる。例えば、ベンゾフェノン、4,4’−ジメチルアミノベンゾフェノン、4,4’−ジエチルアミノベンゾフェノン、4,4’−ジクロロベンゾフェノン等のベンゾフェノン類、アセトフェノン、ジエトキシアセトフェノン等のアセトフェノン類、2−エチルアントラキノン、t−ブチルアントラキノン等のアントラキノン類、2−クロロチオキサントン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジル、2,4,5−トリアリ−ルイミダゾール二量体(ロフィン二量体)、アクリジン系化合物、アシルフォスフィンオキサイド類、等を挙げることができ、これらは単独で又は2種以上を組み合わせて用いることができる。
光重合開始剤の添加量は、エチレン性不飽和基を有する樹脂100質量部に対して0.1〜10質量部とすることが好ましく、0.5〜5質量部とすることがより好ましく、0.5部〜3質量部とすることがより好ましい。光重合開始剤の添加量が多いと放射線硬化が多地点で、かつ、急激に発生するため、硬化収縮が大きくなってしまうため、従来の放射線硬化型の表面保護用粘着テープに比べ光重合開始剤の量を少なくすることも硬化収縮の抑制の点から有用である。
(Photopolymerization initiator)
The radiation curable pressure-sensitive adhesive layer can contain a photopolymerization initiator as necessary. As long as it reacts with the radiation which permeate | transmits a base material as a photoinitiator, there will be no restriction | limiting in particular, A conventionally well-known thing can be used. For example, benzophenones such as benzophenone, 4,4′-dimethylaminobenzophenone, 4,4′-diethylaminobenzophenone and 4,4′-dichlorobenzophenone, acetophenones such as acetophenone and diethoxyacetophenone, 2-ethylanthraquinone, t- Anthraquinones such as butylanthraquinone, 2-chlorothioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzyl, 2,4,5-triallylimidazole dimer (rophine dimer), acridine compound, acylphosphine oxide These may be used alone or in combination of two or more.
The addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the resin having an ethylenically unsaturated group. More preferably, it is 0.5 to 3 parts by mass. When the amount of photopolymerization initiator added is large, radiation curing occurs at multiple points and suddenly occurs, resulting in increased curing shrinkage. Therefore, photopolymerization starts compared to conventional radiation-curing surface protection adhesive tapes. Reducing the amount of the agent is also useful from the viewpoint of suppressing curing shrinkage.
(その他の添加物)
放射線硬化型粘着剤層には必要に応じて粘着付与剤、粘着調整剤、界面活性剤等、あるいはその他の改質剤等を配合することができる。また、無機化合物フィラーを適宜加えてもよい。
その他の添加物としては例えば、濡れ防止もしくはスリップ性高上のための添加剤として、シリコーンアクリレート(例えば、シリコーンジアクリレート、シリコーンヘキサアクリレート)、放射線硬化促進剤が挙げられる。また、当該添加剤として耐水剤としてのアミノアクリレートを含んでもよい。また、当該添加剤として可塑剤を含んでもよい。また、ポリマーの重合の際に用いられる界面活性剤を含んでいても良い。
(Other additives)
If necessary, the radiation curable pressure-sensitive adhesive layer may contain a tackifier, a tackifier, a surfactant, or other modifiers. Moreover, you may add an inorganic compound filler suitably.
Examples of other additives include silicone acrylates (for example, silicone diacrylate, silicone hexaacrylate) and radiation curing accelerators as additives for preventing wetting or improving slip properties. Moreover, you may contain the aminoacrylate as a water-resistant agent as the said additive. Further, a plasticizer may be included as the additive. Moreover, the surfactant used in the case of superposition | polymerization of a polymer may be included.
(架橋剤)
本発明では、粘着剤層に架橋剤を含有することが好ましい。架橋剤の架橋性基である反応性基は、反応性基βを有するポリマーの反応性基βと反応する架橋剤が好ましい。
例えば、反応性基βを有する樹脂の反応性基βが、カルボキシ基や水酸基の場合、架橋剤の架橋性基である反応性基は環状の酸無水物、イソシアネート基、エポキシ基、ハロゲン原子であることが好ましく、イソシアネート基またはエポキシ基であることがより好ましい。
(Crosslinking agent)
In this invention, it is preferable to contain a crosslinking agent in an adhesive layer. The reactive group that is the crosslinkable group of the crosslinker is preferably a crosslinker that reacts with the reactive group β of the polymer having the reactive group β.
For example, when the reactive group β of the resin having the reactive group β is a carboxy group or a hydroxyl group, the reactive group that is a crosslinking group of the crosslinking agent is a cyclic acid anhydride, an isocyanate group, an epoxy group, or a halogen atom. It is preferable that it is an isocyanate group or an epoxy group.
このような架橋剤を使用することで、その配合量により、反応性基βを有するポリマーの反応性基βの残存量を調節でき、表面自由エネルギーを所望の範囲に制御することができる。
また、架橋剤を使用することで、粘着剤層の凝集力を制御することもできる。
By using such a crosslinking agent, the residual amount of the reactive group β of the polymer having the reactive group β can be adjusted depending on the blending amount, and the surface free energy can be controlled within a desired range.
Moreover, the cohesive force of an adhesive layer can also be controlled by using a crosslinking agent.
上記粘着剤層に好ましく用いられる架橋剤としては、多価イソシアネート化合物、多価エポキシ化合物、多価アジリジン化合物、キレート化合物等を挙げることができる。多価イソシアネート化合物としては、具体的にはトルイレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートおよびこれらのアダクトタイプ等を挙げることができる。 Examples of the crosslinking agent preferably used for the pressure-sensitive adhesive layer include a polyvalent isocyanate compound, a polyvalent epoxy compound, a polyvalent aziridine compound, and a chelate compound. Specific examples of the polyvalent isocyanate compound include toluylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and adduct types thereof.
多価エポキシ化合物としては、エチレングリコールジグリシジルエーテル、テレフタル酸ジグリシジルエステルアクリレート等を挙げることができる。多価アジリジン化合物は、トリス−2,4,6−(1−アジリジニル)−1,3,5−トリアジン、トリス〔1−(2−メチル)−アジリジニル〕ホスフィンオキシド、ヘキサ〔1−(2−メチル)−アジリジニル〕トリホスファトリアジン等を挙げることができる。またキレート化合物としては、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等を挙げることができる。 Examples of the polyvalent epoxy compound include ethylene glycol diglycidyl ether and terephthalic acid diglycidyl ester acrylate. Polyvalent aziridine compounds include tris-2,4,6- (1-aziridinyl) -1,3,5-triazine, tris [1- (2-methyl) -aziridinyl] phosphine oxide, hexa [1- (2- Methyl) -aziridinyl] triphosphatriazine and the like. Examples of the chelate compound include ethyl acetoacetate aluminum diisopropylate and aluminum tris (ethyl acetoacetate).
また、本発明で用いられる粘着剤に、分子内にエチレン性不飽和基を少なくとも2個以上有する架橋剤、好ましくはオリゴマーもしくはポリマーの架橋剤を用いて、架橋剤自体を放射線硬化性樹脂として用いてもよい。 In addition, the pressure-sensitive adhesive used in the present invention uses a crosslinking agent having at least two ethylenically unsaturated groups in the molecule, preferably an oligomer or polymer crosslinking agent, and the crosslinking agent itself is used as a radiation curable resin. May be.
分子内にエチレン性不飽和基を少なくとも2個以上有する低分子化合物として、例えば、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、1,4−ブチレングリコールジアクリレート、1,6ヘキサンジオールジアクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート等を挙げることができる。 Examples of low molecular weight compounds having at least two ethylenically unsaturated groups in the molecule include trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipentaerythritol monohydroxypentaacrylate. , Dipentaerythritol hexaacrylate, 1,4-butylene glycol diacrylate, 1,6 hexanediol diacrylate, polyethylene glycol diacrylate, oligoester acrylate, and the like.
この他にも、ウレタンアクリレートオリゴマーも用いることができ、具体的にはポリエステル型またはポリエーテル型などのポリオール化合物と、多価イソシアネート化合物〔例えば、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、1,3−キシリレンジイソシアネート、1,4−キシリレンジイソシアネート、ジフェニルメタン4,4−ジイソシアネートなど)を反応させて得られる末端イソシアネートウレタンプレポリマーに、ヒドロキシ基を有する(メタ)アクリレート(例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート〕を反応させて得られるものが広く適用可能である。 In addition to these, urethane acrylate oligomers can also be used. Specifically, a polyol compound such as a polyester type or a polyether type and a polyvalent isocyanate compound [for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, etc. (Meth) acrylate having a hydroxy group (for example, a terminal isocyanate urethane prepolymer obtained by reacting diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, diphenylmethane 4,4-diisocyanate, etc.) , 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polyethylene glycol (meth) acrylate] can be widely applied.
架橋剤の含有量は、粘着剤層を構成するポリマー100質量部に対して、0.1〜5.0質量部が好ましく、0.5〜4.0質量部がより好ましい。 The content of the crosslinking agent is preferably 0.1 to 5.0 parts by mass, and more preferably 0.5 to 4.0 parts by mass with respect to 100 parts by mass of the polymer constituting the pressure-sensitive adhesive layer.
(貯蔵弾性率)
本発明の粘着剤もしくは粘着剤層の貯蔵弾性率は、特に制限はないが、糊残りや凹凸形状に対する追従性を考慮すると、放射線照射前の貯蔵弾性率が30000〜75000Paであることが好ましく、35000〜60000Paであることがより好ましい。放射線照射による硬化後(紫外線量で示すと、積算照射量500mJ/cm2となるように粘着剤層全体を照射して硬化させた後)の粘着剤の貯蔵弾性率は100000Pa以上が好ましい。
(Storage modulus)
The storage elastic modulus of the pressure-sensitive adhesive or pressure-sensitive adhesive layer of the present invention is not particularly limited, but considering the followability to the adhesive residue and the uneven shape, the storage elastic modulus before irradiation is preferably 30000 to 75000 Pa. More preferably, it is 35000-60,000 Pa. The storage elastic modulus of the pressure-sensitive adhesive after curing by radiation irradiation (after being cured by irradiating the entire pressure-sensitive adhesive layer so that the cumulative irradiation amount is 500 mJ / cm 2 in terms of ultraviolet ray) is preferably 100,000 Pa or more.
本発明の粘着テープにおいて、粘着剤層は前述のとおり、組成の異なる2種以上の粘着剤が積層された複層構造であってもよい。粘着剤層が複層構造である場合には、少なくとも粘着剤層の表面を構成する層の構成を、上述の粘着剤層の構成(すなわち単層構造の粘着剤層の構成として説明してきた態様)とする。また、複層構造の粘着剤層のすべてが、上述の粘着剤層の構成(すなわち単層構造の粘着剤層の構成として説明してきた態様)であることが好ましい。 In the pressure-sensitive adhesive tape of the present invention, the pressure-sensitive adhesive layer may have a multilayer structure in which two or more pressure-sensitive adhesives having different compositions are laminated as described above. In the case where the pressure-sensitive adhesive layer has a multilayer structure, the configuration of the layer constituting at least the surface of the pressure-sensitive adhesive layer has been described as the configuration of the above-mentioned pressure-sensitive adhesive layer (that is, the configuration of the pressure-sensitive adhesive layer having a single-layer structure) ). Moreover, it is preferable that all the adhesive layers of a multilayer structure are the structures of the above-mentioned adhesive layer (namely, the aspect demonstrated as a structure of the adhesive layer of a single layer structure).
(粘着剤層の厚み)
粘着剤層の厚みは、特に限定されるものではないが、10〜100μmが好ましく、20〜40μmがより好ましい。
中間樹脂層上に粘着剤層を形成するためには、上記のように、基材フィルムの少なくとも片面に、少なくとも1種類の粘着剤を常法により塗布することができる。
(Adhesive layer thickness)
Although the thickness of an adhesive layer is not specifically limited, 10-100 micrometers is preferable and 20-40 micrometers is more preferable.
In order to form the pressure-sensitive adhesive layer on the intermediate resin layer, as described above, at least one type of pressure-sensitive adhesive can be applied to at least one surface of the base film by a conventional method.
<剥離ライナー>
本発明の粘着テープは、粘着剤層上に剥離ライナーを有してもよい。剥離ライナーとしては、シリコーン離型処理したポリエチレンテレフタレートフィルムなどが用いられる。また必要に応じて、シリコーン離型処理をしないポリプロピレンフィルムなども用いられる。
<Release liner>
The pressure-sensitive adhesive tape of the present invention may have a release liner on the pressure-sensitive adhesive layer. As the release liner, a polyethylene terephthalate film subjected to silicone release treatment or the like is used. If necessary, a polypropylene film that is not subjected to silicone release treatment may be used.
[粘着テープを使用した半導体ウエハ加工工程]
本発明の粘着テープの使用方法は上記の裏面研削後ダイシングする方法に限定されない。例えば以下のダイシングダイボンディング工程にも好適に用いることができる。
具体的には、まず、半導体ウエハの回路パターン面(表面)に、放射線硬化型粘着剤層が貼合面となるように、本発明の半導体ウエハ表面保護用粘着テープを貼合する。次に、半導体ウエハの回路パターンのない面側を半導体ウエハの厚さが所定の厚さ、例えば10〜200μmになるまで研削する。その後、この半導体ウエハ表面保護用粘着テープの貼合された面を下側にして加熱吸着台に載せ、その状態で、半導体ウエハの回路パターンのない研削した面側に、ダイシング・ダイボンディングフィルムを貼合してもよい。その後、半導体ウエハ表面保護用粘着テープの基材フィルムの背面に、ヒートシールタイプ(熱融着タイプ)もしくは粘着タイプの剥離テープを接着して半導体ウエハから半導体ウエハ表面保護用粘着テープを剥離する。
[Semiconductor wafer processing process using adhesive tape]
The usage method of the adhesive tape of this invention is not limited to the method of dicing after said back surface grinding. For example, it can be suitably used in the following dicing die bonding process.
Specifically, first, the adhesive tape for protecting a semiconductor wafer surface of the present invention is bonded to the circuit pattern surface (front surface) of the semiconductor wafer so that the radiation curable pressure-sensitive adhesive layer becomes the bonding surface. Next, the surface side of the semiconductor wafer having no circuit pattern is ground until the thickness of the semiconductor wafer reaches a predetermined thickness, for example, 10 to 200 μm. After that, the surface of the semiconductor wafer surface protecting adhesive tape is placed on the heating adsorption table with the surface facing down, and in that state, a dicing die bonding film is applied to the ground surface without the circuit pattern of the semiconductor wafer. You may paste. Thereafter, a heat seal type (thermal fusion type) or adhesive type release tape is adhered to the back surface of the base film of the semiconductor wafer surface protective adhesive tape to peel the semiconductor wafer surface protective adhesive tape from the semiconductor wafer.
[粘着テープの使用形態]
<バンプ(電極)の高さ>
本発明の適用可能なバンプ高さについては特に指定するものではないが、20μm〜250μm高さのバンプに用いられる。
<薄膜半導体ウエハ表面のバンプの配設密度(高密度)>
本発明の粘着テープの適用可能なバンプの配置密度は特に限定されるものではないが、バンプの高さの倍以上のピッチ(バンプの高さ方向の頂点から、次に配置されたバンプの高さ方向の頂点までの距離)のものに対して適用できる。また、全面に均一にバンプが配置されたウエハにも用いられる。
<薄膜半導体ウエハの厚み>
本発明の粘着テープを用いる加工方法により裏面研削された薄膜半導体ウエハの厚みは20〜500μmであることが好ましく、50〜200μmであることがより好ましい。
本発明の粘着テープを用いた加工方法を用いることで、薄膜半導体ウエハを高い歩留まりで得ることができる。この半導体ウエハの加工方法は、電極付ウエハを50μm以下の薄膜研削の製造方法として好適である。
[Usage form of adhesive tape]
<Bump (electrode) height>
The bump height applicable to the present invention is not particularly specified, but is used for bumps having a height of 20 μm to 250 μm.
<Bump density on the surface of the thin film semiconductor wafer (high density)>
The arrangement density of the applicable bumps of the pressure-sensitive adhesive tape of the present invention is not particularly limited, but a pitch more than twice the height of the bumps (from the apex in the height direction of the bumps to the height of the next arranged bumps). Applicable to the distance to the apex in the vertical direction). It is also used for a wafer in which bumps are uniformly arranged on the entire surface.
<Thickness of thin film semiconductor wafer>
The thickness of the thin-film semiconductor wafer ground by the processing method using the pressure-sensitive adhesive tape of the present invention is preferably 20 to 500 μm, more preferably 50 to 200 μm.
By using the processing method using the adhesive tape of the present invention, a thin film semiconductor wafer can be obtained with a high yield. This semiconductor wafer processing method is suitable as a manufacturing method for thin-film grinding of a wafer with electrodes of 50 μm or less.
以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
参考例1
低密度ポリエチエレン(LDPE)樹脂(東ソー社製、ペトロセン231F)とエチレン−メチルアクリレート共重合体(EMA)樹脂(アルケマ社製、28MA07)を押し出し機にて押し出し成形を行い、総厚250μm厚の中間樹脂層を作成した。LDPE層の厚みは30μm、EMA層の厚みは220μmであった。
基材フィルムである厚み50μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム社製、G2C)に接着剤(厚み10μm)を塗工し、前記フィルムをラミネートすることで総厚310μmの積層体Aを得た。
メタクリル酸メチルを15mol%、メタクリル酸を2.0mol%、2−エチルヘキシルアクリレートを57mol%、2−ヒドロキシエチルアクリレートを26mol%配合し、溶液中で重合することによりアクリル共重合体ポリマーを得た。このポリマー100質量部に対して2−メタクリロイルオキシエチルイソシアネートを20質量部(昭和電工株式会社製、カレンズMOI)溶液中で混合しヒドロキシ基にエチレン性不飽和基を導入することでエチレン性不飽和基を含有する分子量70万のアクリル共重合体ポリマー溶液(ポリマーB溶液)を得た。
このポリマーB溶液100質量部に、架橋剤としてコロネートL(日本ポリウレタン工業株式会社製)を2.0質量部、光重合開始剤としてイルガキュア184(BASF社製)を5.0質量部配合し、粘着剤組成物を得た。
得られた粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Aに貼り合せ、厚さ340μmの粘着テープを得た。
Reference example 1
Low-density polyethylene (LDPE) resin (Tosoh Corp., Petrocene 231F) and ethylene-methyl acrylate copolymer (EMA) resin (Arkema Corp., 28MA07) are extruded using an extruder, and the total thickness is 250 μm. An intermediate resin layer was created. The thickness of the LDPE layer was 30 μm, and the thickness of the EMA layer was 220 μm.
An adhesive (thickness 10 μm) was applied to a 50 μm thick polyethylene terephthalate film (G2C, manufactured by Teijin DuPont Films, Inc.), which is a base film, and the film was laminated to obtain a laminate A having a total thickness of 310 μm.
15 mol% of methyl methacrylate, 2.0 mol% of methacrylic acid, 57 mol% of 2-ethylhexyl acrylate, and 26 mol% of 2-hydroxyethyl acrylate were blended and polymerized in solution to obtain an acrylic copolymer polymer. 2-Methacryloyloxyethyl isocyanate is mixed in 100 parts by mass of this polymer in 20 parts by mass (Showa Denko Co., Ltd., Karenz MOI) solution and ethylenically unsaturated group is introduced into the hydroxy group. An acrylic copolymer polymer solution (polymer B solution) containing a group and having a molecular weight of 700,000 was obtained.
To 100 parts by mass of this polymer B solution, 2.0 parts by mass of coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd.) as a crosslinking agent and 5.0 parts by mass of Irgacure 184 (manufactured by BASF) as a photopolymerization initiator are blended, A pressure-sensitive adhesive composition was obtained.
The obtained pressure-sensitive adhesive composition was coated on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all of the solvent. The liner was heat-dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate A having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
実施例1
ポリスチレン(PS)樹脂(日本ポリスチレン社製、G9305)とエチレン−メチルアクリレート共重合体(EMA)樹脂(アルケマ社製、28MA07)を押し出し機にて押し出し成形を行い、総厚310μm厚の積層体Bを作成した。PS層の厚みは60μm、EMA層の厚みは250μmであった。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Bに貼り合せ、厚さ340μmの粘着テープを得た。
Example 1
Polystyrene (PS) resin (Nippon Polystyrene Co., Ltd., G9305) and ethylene-methyl acrylate copolymer (EMA) resin (Arkema Co., Ltd., 28MA07) are extruded using an extruder and laminated B having a total thickness of 310 μm. It was created. The thickness of the PS layer was 60 μm, and the thickness of the EMA layer was 250 μm.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate B having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
参考例2
低密度ポリエチエレン(LDPE)樹脂(東ソー社製、ペトロセン231F)とエチレン−ブチルアクリレート共重合体(EBA)樹脂(アルケマ社製、30BA02)を押し出し機にて押し出し成形を行い、総厚250μm厚の中間樹脂層を作成した。LDPE層の厚みは30μm、EBA層の厚みは220μmであった。
基材フィルムである厚み50μmのポリエチレンナフタレートフィルム(帝人デュポンフィルム社製、テオネックスQ51)に接着剤(厚み10μm)を塗工し、前記フィルムをラミネートすることで総厚310μmの積層体Cを得た。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Cに貼り合せ、厚さ340μmの粘着テープを得た。
Reference example 2
Low density polyethylene (LDPE) resin (Tosoh, Petrocene 231F) and ethylene-butyl acrylate copolymer (EBA) resin (Arkema, 30BA02) are extruded using an extruder, and the total thickness is 250 μm. An intermediate resin layer was created. The thickness of the LDPE layer was 30 μm, and the thickness of the EBA layer was 220 μm.
An adhesive (thickness 10 μm) is applied to a 50 μm-thick polyethylene naphthalate film (Teonex Q51, manufactured by Teijin DuPont Films Ltd.), which is a base film, and a laminate C having a total thickness of 310 μm is obtained by laminating the film. It was.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate C having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
実施例2
ポリスチレン(PS)樹脂(日本ポリスチレン社製、G9305)とエチレン−ブチルアクリレート共重合体(EBA)樹脂(アルケマ社製、35BA40)を押し出し機にて押し出し成形を行い、総厚310μm厚の積層体Dを作成した。PS層の厚みは60μm、EBA層の厚みは250μmであった。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Dに貼り合せ、厚さ340μmの粘着テープを得た。
Example 2
Polystyrene (PS) resin (Nippon Polystyrene Co., Ltd., G9305) and ethylene-butyl acrylate copolymer (EBA) resin (Arkema Co., 35BA40) are extruded using an extruder, and the laminate D has a total thickness of 310 μm. It was created. The thickness of the PS layer was 60 μm, and the thickness of the EBA layer was 250 μm.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate D having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
参考例3
低密度ポリエチエレン(LDPE)樹脂(東ソー社製、ペトロセン231F)とエチレン−メチルアクリレート共重合体(EMA)樹脂(日本ポリエチレン社製、EB140F)を押し出し機にて押し出し成形を行い、総厚250μm厚の中間樹脂層を作成した。LDPE層の厚みは30μm、EMA層の厚みは220μmであった。
基材フィルムである厚み50μmのポリエチレテレフタレートフィルム(東レ社製、ルミラーS10)に接着剤(厚み10μm)を塗工し、前記フィルムをラミネートすることで総厚310μmの積層体Eを得た。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Eに貼り合せ、厚さ340μmの粘着テープを得た。
Reference example 3
Low density polyethylene (LDPE) resin (Tosoh, Petrocene 231F) and ethylene-methyl acrylate copolymer (EMA) resin (Nippon Polyethylene, EB140F) are extruded using an extruder, and the total thickness is 250 μm. An intermediate resin layer was prepared. The thickness of the LDPE layer was 30 μm, and the thickness of the EMA layer was 220 μm.
An adhesive (thickness 10 μm) was applied to a polyethylene terephthalate film (Lumirror S10, manufactured by Toray Industries, Inc.) having a thickness of 50 μm, which is a base film, and a laminate E having a total thickness of 310 μm was obtained by laminating the film.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate E having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
実施例3
ポリスチレン(PS)樹脂(日本ポリスチレン社製、G9401)とエチレン−酢酸ビニル共重合体(EVA)樹脂(三井・ヂュポンケミカル社製、V5773W)を押し出し機にて押し出し成形を行い、総厚310μm厚の積層体Fを作成した。PS層の厚みは60μm、EVA層の厚みは250μmであった。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Fに貼り合せ、厚さ340μmの粘着テープを得た。
Example 3
Polystyrene (PS) resin (manufactured by Nippon Polystyrene Co., Ltd., G9401) and ethylene-vinyl acetate copolymer (EVA) resin (Mitsui / DuPont Chemical Co., Ltd., V5773W) were extruded using an extruder, and the total thickness was 310 μm. A laminate F was prepared. The thickness of the PS layer was 60 μm, and the thickness of the EVA layer was 250 μm.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate F having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
参考例4
低密度ポリエチエレン(LDPE)樹脂(東ソー社製、ペトロセン231F)とエチレン−ブチルアクリレート共重合体(EBA)樹脂(アルケマ社製、30BA02)を押し出し機にて押し出し成形を行い、総厚250μm厚の中間樹脂層を作成した。LDPE層の厚みは30μm、EBA層の厚みは220μmであった。
基材フィルムである厚み50μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム社製、G2C)に接着剤(厚み10μm)を塗工し、前記フィルムをラミネートすることで総厚310μmの積層体Gを得た。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Gに貼り合せ、厚さ340μmの粘着テープを得た。
Reference example 4
Low density polyethylene (LDPE) resin (Tosoh, Petrocene 231F) and ethylene-butyl acrylate copolymer (EBA) resin (Arkema, 30BA02) are extruded using an extruder, and the total thickness is 250 μm. An intermediate resin layer was created. The thickness of the LDPE layer was 30 μm, and the thickness of the EBA layer was 220 μm.
An adhesive (thickness 10 μm) was applied to a 50 μm thick polyethylene terephthalate film (G2C, manufactured by Teijin DuPont Films Ltd.), which is a base film, and the film was laminated to obtain a laminate G having a total thickness of 310 μm.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate G having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
比較例1
ポリスチレン(PS)樹脂(東洋スチレン社製、G100C)とエチレン−メチルアクリレート共重合体(EMA)樹脂(日本ポリエチレン社製、EB140F)を押し出し機にて押し出し成形を行い、総厚310μm厚の積層体Hを作成した。PS層の厚みは60μm、EMA層の厚みは250μmであった。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Hに貼り合せ、厚さ340μmの粘着テープを得た。
Comparative Example 1
Polystyrene (PS) resin (Toyo Styrene Co., Ltd., G100C) and ethylene-methyl acrylate copolymer (EMA) resin (Nippon Polyethylene Co., Ltd., EB140F) are extruded using an extruder and laminated with a total thickness of 310 μm. H was created. The thickness of the PS layer was 60 μm, and the thickness of the EMA layer was 250 μm.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate H having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
比較例2
エチレン−酢酸ビニル共重合体(EVA)樹脂(東ソー社製、ウルトラセン515)を押し出し機にて押し出し成形を行い、総厚250μm厚の中間樹脂層を作成した。
基材フィルムである厚み50μmのポリエチレンテレフタレートフィルム(東レ社製、ルミラーS10)に接着剤(厚み10μm)を塗工し、前記フィルムをラミネートすることで総厚310μmの積層体Iを得た。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Iに貼り合せ、厚さ340μmの粘着テープを得た。
Comparative Example 2
An ethylene-vinyl acetate copolymer (EVA) resin (manufactured by Tosoh Corporation, Ultrasen 515) was extruded using an extruder to form an intermediate resin layer having a total thickness of 250 μm.
An adhesive (thickness 10 μm) was applied to a polyethylene terephthalate film (Lumirror S10, manufactured by Toray Industries, Inc.) having a thickness of 50 μm, which is a base film, and a laminate I having a total thickness of 310 μm was obtained by laminating the film.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate I having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
比較例3
低密度ポリエチエレン(LDPE)樹脂(東ソー社製、ペトロセン231F)を押し出し機にて押し出し成形を行い、総厚250μm厚の中間樹脂層を作成した。
基材フィルムである厚み50μmのポリエチレンテレフタレートフィルム(東レ社製、ルミラーS10)に接着剤(厚み10μm)を塗工し、前記フィルムをラミネートすることで総厚310μmの積層体Jを得た。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Jに貼り合せ、厚さ340μmの粘着テープを得た。
Comparative Example 3
A low density polyethylene (LDPE) resin (manufactured by Tosoh Corporation, Petrocene 231F) was extruded using an extruder to form an intermediate resin layer having a total thickness of 250 μm.
An adhesive (thickness 10 μm) was applied to a 50 μm thick polyethylene terephthalate film (Lumirror S10, manufactured by Toray Industries, Inc.) as a base film, and the film was laminated to obtain a laminate J having a total thickness of 310 μm.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate J having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
比較例4
高密度ポリエチエレン(HDPE)樹脂(東ソー社製、ニポロンハード2500)とエチレン−酢酸ビニル共重合体(EVA)樹脂(東ソー社製、ウルトラセン541)を押し出し機にて押し出し成形を行い、総厚310μm厚の積層体Kを作成した。HDPE層の厚みは60μm、EVA層の厚みは250μmであった。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Kに貼り合せ、厚さ340μmの粘着テープを得た。
Comparative Example 4
High-density polyethylene (HDPE) resin (Nihonlon 2500, manufactured by Tosoh Corporation) and ethylene-vinyl acetate copolymer (EVA) resin (Ultrasen 541, manufactured by Tosoh Corporation) are extruded using an extruder, and the total thickness is 310 μm. A thick laminate K was created. The thickness of the HDPE layer was 60 μm, and the thickness of the EVA layer was 250 μm.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate K having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
比較例5
エチレン−酢酸ビニル共重合体(EVA)樹脂(東ソー社製、ウルトラセン630)とエチレン−酢酸ビニル共重合体(EVA)樹脂(東ソー社製、ウルトラセン627)を押し出し機にて押し出し成形を行い、総厚310μm厚の積層体Lを作成した。ウルトラセン630から成るEVA層の厚みは60μm、ウルトラセン627から成るEVA層の厚みは250μmであった。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Lに貼り合せ、厚さ340μmの粘着テープを得た。
Comparative Example 5
Extrusion molding of ethylene-vinyl acetate copolymer (EVA) resin (manufactured by Tosoh Corporation, Ultrasen 630) and ethylene-vinyl acetate copolymer (EVA) resin (manufactured by Tosoh Corporation, Ultrasen 627) with an extruder. A laminate L having a total thickness of 310 μm was prepared. The thickness of the EVA layer composed of Ultrasen 630 was 60 μm, and the thickness of the EVA layer composed of Ultrasen 627 was 250 μm.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate L having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
比較例6
高密度ポリエチエレン(HDPE)樹脂(東ソー社製、ニポロンハード2500)と低密度ポリエチエレン(LDPE)樹脂(東ソー社製、ペトロセン231F)を押し出し機にて押し出し成形を行い、総厚310μm厚の積層体Mを作成した。HDPE層の厚みは60μm、LDPE層の厚みは250μmであった。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Mに貼り合せ、厚さ340μmの粘着テープを得た。
Comparative Example 6
A high-density polyethylene (HDPE) resin (Tosoh Corp., Nipolon Hard 2500) and a low-density polyethylene (LDPE) resin (Tosoh Corp., Petrocene 231F) are extruded using an extruder, and a laminate with a total thickness of 310 μm M was created. The thickness of the HDPE layer was 60 μm, and the thickness of the LDPE layer was 250 μm.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate M having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
比較例7
低密度ポリエチエレン(LDPE)樹脂(東ソー社製、ペトロセン231F)とエチレン−メチルアクリレート共重合体(EMA)樹脂(アルケマ社製、28MA07)を押し出し機にて押し出し成形を行い、総厚310μm厚の積層体Nを作成した。LDPE層の厚みは60μm、EMA層の厚みは250μmであった。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Nに貼り合せ、厚さ340μmの粘着テープを得た。
Comparative Example 7
Low-density polyethylene (LDPE) resin (Tosoh Corp., Petrocene 231F) and ethylene-methyl acrylate copolymer (EMA) resin (Arkema Corp., 28MA07) are extruded using an extruder, and the total thickness is 310 μm. A laminate N was prepared. The thickness of the LDPE layer was 60 μm, and the thickness of the EMA layer was 250 μm.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate N having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
比較例8
高密度ポリエチエレン(HDPE)樹脂(東ソー社製、ニポロンハード2500)とエチレン−酢酸ビニル共重合体(EVA)樹脂(東ソー社製、ウルトラセン541)を押し出し機にて押し出し成形を行い、総厚310μm厚の積層体Oを作成した。HDPE層の厚みは60μm、LDPE層の厚みは250μmであった。
溶剤系アクリル系ポリマー(綜研化学社製、SKダイン1442)を100質量部に対して、アダクト系イソシアネート系架橋剤コロネートL(商品名、日本ポリウレタン社製)を0.5質量部及びエポキシ系架橋剤TETRAD−X(商品名、三菱ガス化学社製)を3.0質量部配合し、酢酸エチルで濃度を調整し粘着剤組成物を得た。
得られた粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Oに貼り合せ、厚さ340μmの粘着テープを得た。
Comparative Example 8
High-density polyethylene (HDPE) resin (Nihonlon 2500, manufactured by Tosoh Corporation) and ethylene-vinyl acetate copolymer (EVA) resin (Ultrasen 541, manufactured by Tosoh Corporation) are extruded using an extruder, and the total thickness is 310 μm. A thick laminate O was created. The thickness of the HDPE layer was 60 μm, and the thickness of the LDPE layer was 250 μm.
100 parts by mass of solvent-based acrylic polymer (manufactured by Soken Chemical Co., Ltd., SK Dyne 1442), 0.5 part by mass of adduct isocyanate-based crosslinking agent Coronate L (trade name, manufactured by Nippon Polyurethane) and epoxy-based crosslinking 3.0 parts by mass of the agent TETRAD-X (trade name, manufactured by Mitsubishi Gas Chemical Company) was blended, and the concentration was adjusted with ethyl acetate to obtain an adhesive composition.
The obtained pressure-sensitive adhesive composition was coated on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all of the solvent. The liner was heat-dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate O having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
比較例9
基材フィルムである厚み50μmのポリエチレンテレフタレートフィルム(東レ社製、ルミラーS10)に押し出し機にてエチレン−酢酸ビニル共重合体(EVA)樹脂(東ソー社製、ウルトラセン760)を厚みが約260μmとなるように押し出し、積層体Pを得た。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗り工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Pに貼り合せ、厚さ340μmの粘着テープを得た。
Comparative Example 9
An ethylene-vinyl acetate copolymer (EVA) resin (manufactured by Tosoh Corp., Ultrasen 760) is extruded to a substrate film of 50 μm thick polyethylene terephthalate film (Lumirror S10, manufactured by Toray Industries, Inc.) with a thickness of about 260 μm. It extruded so that the laminated body P might be obtained.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate P having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
比較例10
低密度ポリエチエレン(LDPE)樹脂(東ソー社製、ペトロセン231F)とエチレン−酢酸ビニル共重合体(EVA)樹脂(東ソー社製、ウルトラセン541)を押し出し機にて押し出し成形を行い、総厚250μm厚の中間樹脂層を作成した。LDPE層の厚みは30μm、EBA層の厚みは220μmであった。
基材フィルムである厚み50μmのポリエチレンテレフタレートフィルム(東レ社製、ルミラーS10)に接着剤(厚み10μm)を塗工し、前記フィルムをラミネートすることで総厚310μmの積層体Qを得た。
参考例1で作成した粘着剤組成物を乾燥後の粘着剤の厚みが30μmになるように、透明な剥離ライナー上に塗工し、含有溶剤をほぼすべて除去するため粘着剤組成物が塗工された剥離ライナーを乾燥炉にて120℃、2分間加熱乾燥を行った。乾燥後の厚さ30μm厚の粘着剤層が形成された剥離ライナーを厚さ310μmの積層体Qに貼り合せ、厚さ340μmの粘着テープを得た。
Comparative Example 10
Low-density polyethylene (LDPE) resin (Tosoh, Petrocene 231F) and ethylene-vinyl acetate copolymer (EVA) resin (Tosoh, Ultrasen 541) are extruded using an extruder, and the total thickness is 250 μm. A thick intermediate resin layer was prepared. The thickness of the LDPE layer was 30 μm, and the thickness of the EBA layer was 220 μm.
An adhesive (10 μm thickness) was applied to a 50 μm thick polyethylene terephthalate film (Lumirror S10, manufactured by Toray Industries, Inc.) as a base film, and the film was laminated to obtain a laminate Q having a total thickness of 310 μm.
The pressure-sensitive adhesive composition prepared in Reference Example 1 was applied on a transparent release liner so that the thickness of the pressure-sensitive adhesive after drying was 30 μm, and the pressure-sensitive adhesive composition was applied to remove almost all the contained solvent. The release liner thus obtained was heated and dried at 120 ° C. for 2 minutes in a drying furnace. The release liner on which the pressure-sensitive adhesive layer having a thickness of 30 μm after drying was formed was bonded to the laminate Q having a thickness of 310 μm to obtain a pressure-sensitive adhesive tape having a thickness of 340 μm.
上記の実施例、参考例および比較例で作製した粘着テープについて、以下の試験を行い、その性能を評価した。評価結果を下記表1および2に記載した。 About the adhesive tape produced by said Example, reference example, and a comparative example, the following tests were done and the performance was evaluated. The evaluation results are shown in Tables 1 and 2 below.
<測定・分析>
<試験例1> 密着性試験
(1)50μmバンプに対する密着性
高さ50μm、バンプピッチ100μmのCuピラーバンプを有する直径8インチのバンプ付シリコンウエハの表面に、日東精機社製DR8500III(商品名)を用いて、テーブル温度80℃及びローラー温度60℃、貼合圧0.35MPa、貼合速度低速(9mm/sec)の条件で、上記実施例、参考例および比較例で作製したテープを25枚のウエハに貼合した。この貼合条件で、融点80℃以下の中間樹脂層を構成層とするテープの中間樹脂層は溶融した(以下の試験例2の場合も同様であった)。その時の密着性を目視にて確認を行い、粘着テープとウエハとの間へのエアー混入の有無を調べた。
(2)200μmバンプに対する密着性
高さ200μm、バンプピッチ400μmのソルダーバンプを有する直径8インチのバンプ付シリコンウエハの表面に、日東精機社製DR8500III(商品名)を用いて、テーブル温度80℃及びローラー温度60℃、貼合圧0.35MPa、貼合速度低速(9mm/sec)の条件で、上記実施例、参考例および比較例で作製したテープを25枚のウエハに貼合した。その時の密着性を目視にて確認を行い、粘着テープとウエハとの間へのエアー混入の有無を調べた。
<Measurement and analysis>
<Test Example 1> Adhesion test (1) Adhesion to 50 μm bumps DR8500III (trade name) manufactured by Nitto Seiki Co., Ltd. on the surface of a silicon wafer with bumps having a diameter of 8 inches and Cu pillar bumps having a height of 50 μm and a bump pitch of 100 μm. Using 25 tapes prepared in the above examples, reference examples and comparative examples under conditions of a table temperature of 80 ° C. and a roller temperature of 60 ° C., a bonding pressure of 0.35 MPa, and a bonding speed of low (9 mm / sec). Bonded to the wafer. Under this bonding condition, the intermediate resin layer of the tape having an intermediate resin layer having a melting point of 80 ° C. or lower as a constituent layer was melted (the same was true in Test Example 2 below). The adhesion at that time was confirmed visually, and the presence or absence of air mixing between the adhesive tape and the wafer was examined.
(2) Adhesion to 200 μm bumps Using a DR8500III (trade name) manufactured by Nitto Seiki Co., Ltd. on the surface of a silicon wafer with 8 inches in diameter having solder bumps with a height of 200 μm and a bump pitch of 400 μm, a table temperature of 80 ° C. and Under the conditions of a roller temperature of 60 ° C., a bonding pressure of 0.35 MPa, and a low bonding speed (9 mm / sec), the tapes produced in the above examples, reference examples, and comparative examples were bonded to 25 wafers. The adhesion at that time was confirmed visually, and the presence or absence of air mixing between the adhesive tape and the wafer was examined.
(密着性の評価基準)
○:貼合後48時間を超えてもエアー混入無し
×:貼合後48時間以内にエアーの混入有り
(Adhesion evaluation criteria)
○: No air mixing even after 48 hours after bonding ×: Air mixing within 48 hours after bonding
<試験例2> 研削実験
(1)ダスト侵入
密着性評価で使用した各バンプウエハを貼合後48時間放置した後に、インライン機構を持つグラインダー〔株式会社ディスコ製DFG8760(商品名)〕を使用してそれぞれ25枚のバンプウエハについて裏面研削を行った。その後、研削後のウエハについてウエハとテープ間にシリコンダストの侵入の有無の確認を行った。尚、50μmバンプについてはシリコンの最終研削厚みが50μmまで裏面研削を行い、200μmバンプについてはシリコンの最終研削厚みが200μmまで裏面研削を行った。
○:何れのバンプウエハについてもダスト侵入が見られなかったもの
×:どちらかのバンプウエハにダスト侵入が見られたもの
(2)反り評価
ダスト侵入の評価で用いた25枚の50μm高のバンプウエハについて反り量(ウエハを平板の上に置いたときの、平板表面から反ったウエハの最も高い点の下面までの高さ)を測定した。
○:反り量の平均値が5mm未満であったもの
△:反り量の平均値が5mm以上、10mm未満であったもの
×:反り量の平均値が10mm以上であったもの
(3)剥離性評価
ダスト侵入の評価で用いた25枚のバンプウエハについて、剥離装置〔株式会社ディスコ製RAD2700(商品名)〕を用いてテープ剥離の評価を行った。
○:テープ剥離エラーが発生しなかったもの
×:テープ剥離エラーが発生したもの
<Test Example 2> Grinding experiment (1) Dust penetration After each bump wafer used in adhesion evaluation was left for 48 hours after bonding, a grinder having an inline mechanism [DFG8760 (trade name) manufactured by DISCO Corporation] was used. Back grinding was performed on each of 25 bump wafers. Thereafter, the ground wafer was checked for silicon dust intrusion between the wafer and the tape. For the 50 μm bumps, back grinding was performed to a final grinding thickness of silicon of 50 μm, and for the 200 μm bumps, back grinding was performed to a final grinding thickness of silicon of 200 μm.
○: Dust intrusion was not observed in any bump wafer ×: Dust intrusion was observed in either bump wafer (2) Warp evaluation Warp of 25 50 μm high bump wafers used in evaluation of dust intrusion The quantity (height from the flat plate surface to the lower surface of the highest point of the warped wafer when the wafer was placed on the flat plate) was measured.
○: The average value of the warp amount was less than 5 mm. Δ: The average value of the warp amount was 5 mm or more and less than 10 mm. ×: The average value of the warp amount was 10 mm or more. (3) Peelability Evaluation About 25 bump wafers used in the evaluation of dust penetration, tape peeling was evaluated using a peeling device [RAD2700 (trade name) manufactured by DISCO Corporation].
○: Tape peeling error did not occur ×: Tape peeling error occurred
<試験例3> 厚み精度試験
25枚のミラーウエハに実施例、参考例および比較例で作成したテープの貼合を行った。貼合条件は試験例2で貼合した条件と同一である。その後、インライン機構を持つグラインダー〔株式会社ディスコ製DFG8760(商品名)〕を使用してそれぞれ25枚のミラーウエハについて最終厚みが100μmになるまで裏面研削及びドライポリッシュを行った。その後、ウエハ面の厚み精度TTV(最大厚み―最少厚み)を、SemDex(厚み精度測定装置、ISIS社製)を用いて測定した。測定間隔はX方向:0.1mm、Y方向:10mmにてウエハ全面(200mm×200mmの範囲)を測定するものとする。
○:TTVが6μm未満であったもの
×:TTVが6μm以上であったもの
<Test Example 3> Thickness Accuracy Test Tapes prepared in Examples, Reference Examples, and Comparative Examples were bonded to 25 mirror wafers. The bonding conditions are the same as the conditions bonded in Test Example 2. Thereafter, using a grinder having an inline mechanism [DFG8760 (trade name) manufactured by DISCO Corporation], back grinding and dry polishing were performed on each of the 25 mirror wafers until the final thickness reached 100 μm. Thereafter, the thickness accuracy TTV (maximum thickness-minimum thickness) of the wafer surface was measured using SemiDex (thickness accuracy measurement device, manufactured by ISIS). The entire surface of the wafer (range of 200 mm × 200 mm) is measured at a measurement interval of X direction: 0.1 mm and Y direction: 10 mm.
○: TTV was less than 6 μm ×: TTV was 6 μm or more
<試験例4> 耐熱性試験
ミラーウエハに実施例、参考例および比較例で作成したテープの貼合を行った。貼合条件は試験例2で貼合した条件と同一である。その後、90℃に加熱したホットプレート上にテープ面を下向きにして3分間放置した後、テープ表面を目視にて観察を行った。
○:テープ表面(基材フィルム背面)が溶けなかったもの
×:テープ表面が溶けてしまったもの
<Test Example 4> Heat resistance test Tapes prepared in Examples, Reference Examples and Comparative Examples were bonded to mirror wafers. The bonding conditions are the same as the conditions bonded in Test Example 2. Thereafter, the tape surface was left facing for 3 minutes on a hot plate heated to 90 ° C., and then the tape surface was visually observed.
○: The tape surface (back of the base film) was not melted ×: The tape surface was melted
<試験例5> 各種物性について
基材フィルムの融点及びビカット軟化点については、JIS K 7206に基づいて測定を行った。また曲げ弾性率については、JIS K 6924−2に基づいて測定を行った。
<Test Example 5> Various physical properties The melting point and Vicat softening point of the base film were measured based on JIS K 7206. Moreover, about the bending elastic modulus, it measured based on JISK6924-2.
比較例1及び5の粘着テープは、耐熱性が不足しているため耐熱性評価で基材の溶融が発生した。このため、実際のDAF貼合のプロセスにてチャックテーブル融着の問題が発生する可能性が高い。比較例2〜6及び比較例8〜10の粘着テープについては、加熱貼合を行ってもバンプウエハに密着しない結果となった。そのため、バンプ付パターンウエハを研削する際には裏面にディンプル(凹凸の跡)が発生し、またウエハ割れを引き起こす可能性が高い。比較例4〜8は反りの抑制が十分ではなく、ウエハのハンドリングエラーが発生する可能性が高い。また、カセット収納の際に反りによりエッジ部がカセットに触れ、エッジクラックを発生させる可能性もある。比較例9はPETフィルム上にEVA樹脂を押し出しにて積層したが、EVA樹脂の厚み精度に問題があり、フィルム成形自体に問題が発生した。従い、フィルムの厚み精度が極端に悪く、それに伴って研削後のウエハの厚み精度(TTV)も極端に劣る結果であった。
一方、実施例に記載された粘着テープはバンプウエハに対する密着性、バンプウエハからの剥離性、反り防止、耐熱性、ダスト侵入防止、厚み精度に優れる結果となった。
Since the adhesive tapes of Comparative Examples 1 and 5 lacked heat resistance, melting of the substrate occurred in the heat resistance evaluation. For this reason, there is a high possibility that the problem of chuck table fusion occurs in the actual DAF bonding process. About the adhesive tape of Comparative Examples 2-6 and Comparative Examples 8-10, even if it heat-bonded, it became a result which does not contact | adhere to a bump wafer. Therefore, when grinding a bumped pattern wafer, dimples (uneven marks) are generated on the back surface, and there is a high possibility that the wafer will be cracked. In Comparative Examples 4 to 8, the warpage is not sufficiently suppressed, and there is a high possibility that a wafer handling error will occur. Further, there is a possibility that the edge portion touches the cassette due to warping when the cassette is stored, and an edge crack is generated. In Comparative Example 9, the EVA resin was laminated on the PET film by extrusion, but there was a problem in the thickness accuracy of the EVA resin, and a problem occurred in the film molding itself. Accordingly, the film thickness accuracy was extremely poor, and accordingly, the wafer thickness accuracy (TTV) after grinding was extremely poor.
On the other hand, the adhesive tape described in the examples resulted in excellent adhesion to the bump wafer, peelability from the bump wafer, warpage prevention, heat resistance, dust penetration prevention, and thickness accuracy.
本発明は、半導体ウエハ表面保護用粘着テープおよびその製造方法ならびに半導体ウエハの加工方法に関する。さらに詳しくは、半導体ウエハを薄膜に研削等する際に使用される半導体ウエハの表面保護用粘着テープおよびその製造方法ならびに半導体ウエハの加工方法に関する。 The present invention relates to a semiconductor wafer surface protecting pressure-sensitive adhesive tape, a method for producing the same, and a method for processing a semiconductor wafer. More specifically, the present invention relates to an adhesive tape for protecting the surface of a semiconductor wafer used when grinding the semiconductor wafer into a thin film, a manufacturing method thereof, and a processing method of the semiconductor wafer.
従って、本発明は、半導体ウエハ加工時には半導体ウエハに強固に密着するとともに、剥離時に、半導体ウエハの破損や糊残りすることなく剥離することができる半導体ウエハ表面保護用粘着テープおよびその製造方法ならびにそれを用いた半導体ウエハの加工方法を提供することを課題とする。 Therefore, the present invention provides an adhesive tape for protecting the surface of a semiconductor wafer, a method for producing the same, and a method for producing the same, which can be firmly adhered to a semiconductor wafer during processing of the semiconductor wafer, and can be removed without damaging the semiconductor wafer or leaving adhesive residue at the time of peeling. It is an object of the present invention to provide a method for processing a semiconductor wafer using the above.
上記課題に鑑み、本発明者らは鋭意検討を行った結果、ウエハ表面に所定温度で加熱貼合される、少なくとも、基材フィルム、所定温度で溶融する中間樹脂層、及び粘着剤層の3層から構成され半導体ウエハ用粘着テープ構造とし、該中間樹脂層の厚みをバンプの高さ以上とし、基材フィルムの融点及び引張弾性率並びに中間樹脂層の融点及び曲げ弾性率を、それぞれ、特定の範囲に定めることにより、上記の従来の問題点を解決できることを見い出した。すなわち、高いバンプが付いている場合やバンプ間距離の狭ピッチ化の場合でも半導体ウエハ加工時には半導体ウエハに強固に密着するとともに、剥離時に、薄膜半導体ウエハを半導体ウエハの破損や糊残りすることなく剥離することができる半導体ウエハ表面保護用粘着テープ提供できることを見出した。本発明はこの知見に基づきなされるに至ったものである。
すなわち、上記課題は以下の手段により達成された。
(1)ウエハ表面に20μm以上の凹凸を有するウエハに対して60℃以上の温度で加熱貼合される半導体ウエハ用粘着テープであって、
前記半導体ウエハ用粘着テープが、少なくとも、基材フィルム、中間樹脂層、表面の粘着剤層の3層から構成され、
前記基材フィルムが、ポリスチレン樹脂からなり、かつビガット軟化点が90℃を超え、曲げ弾性率1GPa〜10GPaであり、
前記中間樹脂層の厚みがバンプの高さ以上で、融点が50℃〜90℃の範囲であり、曲げ弾性率が1MPa〜100MPaであって、かつ
前記粘着剤層の粘着剤が溶剤系の粘着剤であることを特徴とする、
半導体ウエハ用粘着テープ。
(2)前記中間樹脂層がエチレン−アクリル酸メチルコポリマー樹脂、エチレン−アクリル酸ブチルコポリマー樹脂、エチレン−酢酸ビニルコポリマー樹脂のいずれかであることを特徴とする(1)に記載の半導体ウエハ用粘着テープ。
(3)ウエハ表面に20μm以上の凹凸を有するウエハに対して60℃以上の温度で加熱貼合される半導体ウエハ用粘着テープであって、
前記半導体ウエハ用粘着テープが、少なくとも、基材フィルム、中間樹脂層、表面の粘着剤層の3層から構成され、
前記基材フィルムが、ポリスチレン樹脂からなり、かつビガット軟化点が90℃を超え、曲げ弾性率1GPa〜10GPaであり、
前記中間樹脂層の厚みがバンプの高さ以上で、融点が50℃〜90℃の範囲であり、曲げ弾性率が1MPa〜100MPaであって、該中間樹脂層がエチレン−アクリル酸メチルコポリマー樹脂またはエチレン−アクリル酸ブチルコポリマー樹脂のいずれかであることを特徴とする、
半導体ウエハ用粘着テープ。
(4)前記基材フィルムの厚みが25μm〜75μmであることを特徴とする(1)〜(3)のいずれか1項に記載の半導体ウエハ用粘着テープ。
(5)前記中間樹脂層の厚みが100μm〜400μmであることを特徴とする(1)〜(4)のいずれか1項に記載の半導体ウエハ用粘着テープ。
(6)前記(1)〜(5)のいずれか1項に記載の半導体ウエハ用粘着テープの製造方法であって、
溶剤系の粘着剤を使用して粘着剤層を形成することを特徴とする半導体ウエハ用粘着テープの製造方法。
本明細書において、ウエハ表面に20μm以上の凹凸があるとは、半導体ウエハにそのような凹部または凸部があることをいう。凹凸の高さとは、最高部からウエハ表面までの距離または最低部からウエハ表面までの距離を言う。例えば、ウエハ上に金属電極(バンプ)が形成されている場合において、最高部とはバンプの頂上部であり、そこからウエハ表面までの距離を凹凸高さという。あるいは、ウエハにスクライブライン(ダイシングライン)が形成されている場合において、最低部とはスクライブラインの最も深い場所であり、そこからウエハ表面までの距離を凹凸の高さという。
In view of the above problems, the present inventors have conducted intensive studies. As a result, at least a base film, an intermediate resin layer melted at a predetermined temperature, and a pressure-sensitive adhesive layer are bonded to the wafer surface by heating at a predetermined temperature. It is made of adhesive layers for semiconductor wafers, the thickness of the intermediate resin layer is equal to or higher than the bump height, and the melting point and tensile modulus of the base film and the melting point and bending modulus of the intermediate resin layer are specified respectively. It has been found that the above-mentioned conventional problems can be solved by setting the above range. That is, even when there are high bumps or when the pitch between bumps is narrowed, the semiconductor wafer is firmly attached to the semiconductor wafer during processing, and the thin film semiconductor wafer is not damaged or left unbonded during peeling. It has been found that an adhesive tape for protecting the surface of a semiconductor wafer that can be peeled can be provided. The present invention has been made based on this finding.
That is, the said subject was achieved by the following means.
(1) A semiconductor wafer pressure-sensitive adhesive tape that is bonded by heating at a temperature of 60 ° C. or higher to a wafer having irregularities of 20 μm or more on the wafer surface,
The semiconductor wafer pressure-sensitive adhesive tape comprises at least three layers of a base film, an intermediate resin layer, and a surface pressure-sensitive adhesive layer,
The base film is made of polystyrene resin, the bigat softening point exceeds 90 ° C., and the flexural modulus is 1 GPa to 10 GPa,
The thickness of the intermediate resin layer is not less than the height of the bump, the melting point is in the range of 50 ° C. to 90 ° C., the flexural modulus is 1 MPa to 100 MPa , and
The pressure-sensitive adhesive of the pressure-sensitive adhesive layer is a solvent-based pressure-sensitive adhesive ,
Adhesive tape for semiconductor wafers.
(2) the intermediate resin layer is an ethylene - methyl acrylate copolymer resins, et styrene - butyl acrylate copolymer resins, ethylene - for a semiconductor wafer according to, characterized in that either vinyl acetate copolymer resin (1) Adhesive tape .
(3) A semiconductor wafer pressure-sensitive adhesive tape that is heat bonded to a wafer having an unevenness of 20 μm or more on the wafer surface at a temperature of 60 ° C. or higher,
The semiconductor wafer pressure-sensitive adhesive tape comprises at least three layers of a base film, an intermediate resin layer, and a surface pressure-sensitive adhesive layer,
The base film is made of polystyrene resin, the bigat softening point exceeds 90 ° C., and the flexural modulus is 1 GPa to 10 GPa,
The thickness of the intermediate resin layer is not less than the height of the bump, the melting point is in the range of 50 ° C. to 90 ° C., the flexural modulus is 1 MPa to 100 MPa, and the intermediate resin layer is an ethylene-methyl acrylate copolymer resin or It is any of ethylene-butyl acrylate copolymer resin,
Adhesive tape for semiconductor wafers.
(4) The adhesive tape for a semiconductor wafer according to any one of (1) to (3), wherein the thickness of the base film is 25 μm to 75 μm.
( 5 ) The adhesive tape for a semiconductor wafer according to any one of (1) to ( 4 ), wherein the thickness of the intermediate resin layer is from 100 μm to 400 μm.
(6) The method for producing a pressure-sensitive adhesive tape for a semiconductor wafer according to any one of (1) to (5),
A method for producing a pressure-sensitive adhesive tape for a semiconductor wafer, wherein a pressure-sensitive adhesive layer is formed using a solvent-based pressure-sensitive adhesive.
In the present specification, the fact that the wafer surface has irregularities of 20 μm or more means that the semiconductor wafer has such depressions or protrusions. The height of the unevenness means the distance from the highest part to the wafer surface or the distance from the lowest part to the wafer surface. For example, when metal electrodes (bumps) are formed on a wafer, the highest portion is the top of the bump, and the distance from the top to the wafer surface is referred to as the uneven height. Alternatively, when a scribe line (dicing line) is formed on the wafer, the lowest part is the deepest part of the scribe line, and the distance from the surface to the wafer surface is called the height of the unevenness.
本発明により、半導体ウエハ加工時には半導体ウエハに強固に密着することでシーページ等の発生が大幅に低減され、半導体ウエハの破損や糊残りすることなく剥離可能な半導体ウエハ表面保護用粘着テープおよびその製造方法ならびに半導体ウエハの製造方法が提供できる。 According to the present invention, a semiconductor wafer surface protecting pressure-sensitive adhesive tape that can be peeled off without causing breakage of the semiconductor wafer or residue of adhesive, and the like can be greatly reduced by firmly adhering to the semiconductor wafer when processing the semiconductor wafer. A manufacturing method and a manufacturing method of a semiconductor wafer can be provided.
<基材フィルム>
本発明の半導体ウエハ表面保護用粘着テープに適用される基材フィルムの融点は90℃より高くする。融点を、90℃を超えるものとすることにより、テープ貼合の工程でチャックテーブルへの融着を防いで、凹凸ウエハへの十分な貼合ができる。また、DDFを貼合する場合も、チャックテーブルへの融着を防いでDDFの貼合が可能となる。本発明の半導体ウエハ表面保護テープは、中間樹脂層に熱をかけることで中間樹脂層の流動性が向上し、凹凸ウエハに対して十分な密着性を確保するため、十分高い温度である60℃〜90℃の加熱条件で使用される。従って、基材フィルムの融点が90℃以下では基材フィルムの背面が溶けてしまいチャックテーブルと融着してしまう可能性が高い。基材フィルムが例えばスチレンのように非結晶性の樹脂の場合は、融点が存在しないためビガット軟化点が指標となる。ビカット軟化点を超えると基材背面に流動性が出るため、チャックテーブルのポーラス部に入り込む危険性が高くなる。
また、本発明に適用される基材フィルムの曲げ弾性率は1GPa〜10GPaが好ましく、より好ましくは2GPa〜5GPaである。基材フィルムの曲げ弾性率をこの範囲の曲げ弾性率にすることにより、ウエハ自体の反りに対する矯正力を発揮することができるため、ポリイミド膜が厚いウエハや絶縁膜が複層に形成されているためウエハの反りが大きいバンプウエハにおいても反り量を小さくできる。曲げ弾性率が1GPa未満であるとウエハの反りの矯正力が無くなり、バンプウエハの搬送エラーが発生してしまう。一方、基材フィルムの曲げ弾性率が10GPaを超えると、テープ剥離の際に剥離の力がウエハに加わってしまい、ウエハ割れを引き起こしてしまう。
<Base film>
The melting point of the base film applied to the adhesive tape for protecting a semiconductor wafer surface of the present invention is higher than 90 ° C. By setting the melting point to be higher than 90 ° C., it is possible to prevent the fusion to the chuck table in the tape bonding process, and to bond sufficiently to the uneven wafer. Also, when DDF is bonded, DDF bonding can be performed while preventing fusion to the chuck table. The semiconductor wafer surface protective tape of the present invention has a sufficiently high temperature of 60 ° C. in order to improve the fluidity of the intermediate resin layer by applying heat to the intermediate resin layer and ensure sufficient adhesion to the uneven wafer. Used under heating conditions of ~ 90 ° C. Therefore, when the melting point of the base film is 90 ° C. or lower, the back surface of the base film is likely to melt and fuse with the chuck table. For the base film, for example, non-crystalline resins as styrene, fried Bigatto a softening point such exists melting point is indicative. When the Vicat softening point is exceeded, fluidity appears on the back surface of the base material, and the risk of entering the porous portion of the chuck table increases.
The flexural modulus of the base film applied to the present invention is preferably 1 GPa to 10 GPa, more preferably 2 GPa to 5 GPa. By setting the flexural modulus of the base film to a flexural modulus in this range, it is possible to exert a correction force against the warpage of the wafer itself, so that a thick polyimide film or an insulating film is formed in multiple layers. Therefore, the amount of warpage can be reduced even in a bump wafer where the warpage of the wafer is large. If the flexural modulus is less than 1 GPa, the wafer warp correction force is lost, and a bump wafer transport error occurs. On the other hand, if the flexural modulus of the base film exceeds 10 GPa, a peeling force is applied to the wafer when the tape is peeled, which causes a wafer crack.
Claims (4)
前記半導体ウエハ用粘着テープが、少なくとも、基材フィルム、中間樹脂層、表面の粘着剤層の3層から構成され、
前記基材フィルムが、ポリスチレン樹脂からなり、かつ融点が90℃を超え、曲げ弾性率1GPa〜10GPaであり、
前記中間樹脂層の厚みがバンプの高さ以上で、融点が50℃〜90℃の範囲であり、且つ曲げ弾性率が1MPa〜100MPaであることを特徴とする、
半導体ウエハ用粘着シート。 A pressure-sensitive adhesive tape for a semiconductor wafer that is heat bonded to a wafer having an unevenness of 20 μm or more on the wafer surface at a temperature of 60 ° C. or higher,
The semiconductor wafer pressure-sensitive adhesive tape comprises at least three layers of a base film, an intermediate resin layer, and a surface pressure-sensitive adhesive layer,
The base film is made of polystyrene resin, the melting point exceeds 90 ° C., and the flexural modulus is 1 GPa to 10 GPa,
The thickness of the intermediate resin layer is not less than the height of the bump, the melting point is in the range of 50 ° C. to 90 ° C., and the flexural modulus is 1 MPa to 100 MPa,
Adhesive sheet for semiconductor wafers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015257051A JP6053909B2 (en) | 2015-12-28 | 2015-12-28 | Adhesive tape for protecting semiconductor wafer surface and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015257051A JP6053909B2 (en) | 2015-12-28 | 2015-12-28 | Adhesive tape for protecting semiconductor wafer surface and manufacturing method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015045311A Division JP6109220B2 (en) | 2015-03-06 | 2015-03-06 | Adhesive tape for semiconductor wafer surface protection |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016164972A true JP2016164972A (en) | 2016-09-08 |
JP6053909B2 JP6053909B2 (en) | 2016-12-27 |
Family
ID=56876807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015257051A Active JP6053909B2 (en) | 2015-12-28 | 2015-12-28 | Adhesive tape for protecting semiconductor wafer surface and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6053909B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109075055A (en) * | 2017-03-31 | 2018-12-21 | 古河电气工业株式会社 | The processing method that adhesive tape and semiconductor wafer are used in semiconductor wafer surface protection |
JP2019054123A (en) * | 2017-09-15 | 2019-04-04 | 協立化学産業株式会社 | Chip surface processing method and gel composition |
WO2019171504A1 (en) * | 2018-03-07 | 2019-09-12 | 日立化成株式会社 | Temporary protective film for electronic components |
CN110272696A (en) * | 2018-03-14 | 2019-09-24 | 麦克赛尔控股株式会社 | Grinding back surface adhesive tape |
WO2019187478A1 (en) * | 2018-03-28 | 2019-10-03 | 古河電気工業株式会社 | Semiconductor chip production method and surface protection tape |
JP2020049622A (en) * | 2018-09-28 | 2020-04-02 | 富士紡ホールディングス株式会社 | Holding pad and method for conveying or storing the same |
JP2020088231A (en) * | 2018-11-28 | 2020-06-04 | グンゼ株式会社 | Substrate film for back grind tape |
CN111868190A (en) * | 2018-03-20 | 2020-10-30 | 琳得科株式会社 | Adhesive tape and method for manufacturing semiconductor device |
CN112802734A (en) * | 2020-12-30 | 2021-05-14 | 长春长光圆辰微电子技术有限公司 | Method for depositing single-side film of silicon wafer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000061785A (en) * | 1998-08-24 | 2000-02-29 | Nitto Denko Corp | Semiconductor wafer with protective sheet attached thereto and grinding method of semiconductor wafer |
JP2007221054A (en) * | 2006-02-20 | 2007-08-30 | Nitto Denko Corp | Protective sheet for working semiconductor and working method of semiconductor wafer using it |
JP2009224375A (en) * | 2008-03-13 | 2009-10-01 | Unitika Ltd | Film for semiconductor production processes |
JP2010258426A (en) * | 2009-04-02 | 2010-11-11 | Nitto Denko Corp | Method of applying pressure-sensitive adhesive sheet for semiconductor wafer protection and pressure-sensitive adhesive sheet for semiconductor wafer protection for use in the application method |
-
2015
- 2015-12-28 JP JP2015257051A patent/JP6053909B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000061785A (en) * | 1998-08-24 | 2000-02-29 | Nitto Denko Corp | Semiconductor wafer with protective sheet attached thereto and grinding method of semiconductor wafer |
JP2007221054A (en) * | 2006-02-20 | 2007-08-30 | Nitto Denko Corp | Protective sheet for working semiconductor and working method of semiconductor wafer using it |
JP2009224375A (en) * | 2008-03-13 | 2009-10-01 | Unitika Ltd | Film for semiconductor production processes |
JP2010258426A (en) * | 2009-04-02 | 2010-11-11 | Nitto Denko Corp | Method of applying pressure-sensitive adhesive sheet for semiconductor wafer protection and pressure-sensitive adhesive sheet for semiconductor wafer protection for use in the application method |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109075055B (en) * | 2017-03-31 | 2023-08-15 | 古河电气工业株式会社 | Adhesive tape for protecting surface of semiconductor wafer and method for processing semiconductor wafer |
CN109075055A (en) * | 2017-03-31 | 2018-12-21 | 古河电气工业株式会社 | The processing method that adhesive tape and semiconductor wafer are used in semiconductor wafer surface protection |
JP2019054123A (en) * | 2017-09-15 | 2019-04-04 | 協立化学産業株式会社 | Chip surface processing method and gel composition |
WO2019171504A1 (en) * | 2018-03-07 | 2019-09-12 | 日立化成株式会社 | Temporary protective film for electronic components |
CN110272696A (en) * | 2018-03-14 | 2019-09-24 | 麦克赛尔控股株式会社 | Grinding back surface adhesive tape |
CN110272696B (en) * | 2018-03-14 | 2022-12-23 | 麦克赛尔株式会社 | Adhesive tape for back grinding |
CN111868190A (en) * | 2018-03-20 | 2020-10-30 | 琳得科株式会社 | Adhesive tape and method for manufacturing semiconductor device |
JP2019176021A (en) * | 2018-03-28 | 2019-10-10 | 古河電気工業株式会社 | Manufacturing method of semiconductor chip, surface protective tape |
KR20190117677A (en) * | 2018-03-28 | 2019-10-16 | 후루카와 덴키 고교 가부시키가이샤 | Method for manufacturing semiconductor chip, surface protection tape |
CN110546739B (en) * | 2018-03-28 | 2023-11-24 | 古河电气工业株式会社 | Method for manufacturing semiconductor chip and surface protection tape |
CN110546739A (en) * | 2018-03-28 | 2019-12-06 | 古河电气工业株式会社 | Method for manufacturing semiconductor chip, surface protection tape |
WO2019187478A1 (en) * | 2018-03-28 | 2019-10-03 | 古河電気工業株式会社 | Semiconductor chip production method and surface protection tape |
US11171032B2 (en) | 2018-03-28 | 2021-11-09 | Furukawa Electric Co., Ltd. | Semiconductor chip production method and surface protection tape |
EP3780068A4 (en) * | 2018-03-28 | 2021-12-22 | Furukawa Electric Co., Ltd. | Semiconductor chip production method and surface protection tape |
JP7042667B2 (en) | 2018-03-28 | 2022-03-28 | 古河電気工業株式会社 | Manufacturing method of semiconductor chip |
KR102391661B1 (en) * | 2018-03-28 | 2022-04-27 | 후루카와 덴키 고교 가부시키가이샤 | Semiconductor chip manufacturing method, surface protection tape |
JP7193287B2 (en) | 2018-09-28 | 2022-12-20 | 富士紡ホールディングス株式会社 | Holding pad and its transportation or storage method |
JP2020049622A (en) * | 2018-09-28 | 2020-04-02 | 富士紡ホールディングス株式会社 | Holding pad and method for conveying or storing the same |
JP2020088231A (en) * | 2018-11-28 | 2020-06-04 | グンゼ株式会社 | Substrate film for back grind tape |
JP7408278B2 (en) | 2018-11-28 | 2024-01-05 | グンゼ株式会社 | Base film for back grind tape |
CN112802734A (en) * | 2020-12-30 | 2021-05-14 | 长春长光圆辰微电子技术有限公司 | Method for depositing single-side film of silicon wafer |
Also Published As
Publication number | Publication date |
---|---|
JP6053909B2 (en) | 2016-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6053909B2 (en) | Adhesive tape for protecting semiconductor wafer surface and manufacturing method thereof | |
JP5718515B1 (en) | Adhesive tape for protecting semiconductor wafer surface and method for processing semiconductor wafer | |
JP6109220B2 (en) | Adhesive tape for semiconductor wafer surface protection | |
JP7079200B2 (en) | Adhesive tape for protecting the surface of semiconductor wafers and processing methods for semiconductor wafers | |
JP4851613B2 (en) | Adhesive tape for semiconductor wafer surface protection | |
US8119236B2 (en) | Dicing die-bonding film | |
JP5322609B2 (en) | Film roll for semiconductor device manufacturing | |
US20100028687A1 (en) | Dicing die-bonding film | |
JP5705447B2 (en) | Adhesive tape for surface protection | |
JP6034522B1 (en) | Adhesive tape for semiconductor wafer processing and method for processing semiconductor wafer | |
JP6200611B1 (en) | Semiconductor wafer processing adhesive tape, semiconductor wafer processing adhesive tape manufacturing method, and semiconductor wafer processing method | |
TW201932558A (en) | Adhesive film and adhesive film with a dicing tape capable of suppressing generation of cracks caused by thermal stress in a formed adhesive layer | |
JP5697061B1 (en) | Adhesive tape for semiconductor wafer processing and method for processing semiconductor wafer | |
CN113396057A (en) | Protective film forming sheet and method for manufacturing substrate device | |
JP6980680B2 (en) | Adhesive sheet for stealth dicing | |
CN115141571A (en) | Support sheet, composite sheet for forming resin film, kit, and method for manufacturing chip with resin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161129 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6053909 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |