JP2016164706A - Numerical value simulation method for fluid - Google Patents

Numerical value simulation method for fluid Download PDF

Info

Publication number
JP2016164706A
JP2016164706A JP2015044394A JP2015044394A JP2016164706A JP 2016164706 A JP2016164706 A JP 2016164706A JP 2015044394 A JP2015044394 A JP 2015044394A JP 2015044394 A JP2015044394 A JP 2015044394A JP 2016164706 A JP2016164706 A JP 2016164706A
Authority
JP
Japan
Prior art keywords
fluid
simulation method
numerical simulation
shielding plate
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015044394A
Other languages
Japanese (ja)
Other versions
JP6424113B2 (en
Inventor
孝次 中出
Koji Nakade
孝次 中出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2015044394A priority Critical patent/JP6424113B2/en
Publication of JP2016164706A publication Critical patent/JP2016164706A/en
Application granted granted Critical
Publication of JP6424113B2 publication Critical patent/JP6424113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a numerical value simulation method that reduces a calculation load on a computer without reproducing the detailed shape of a shield plate by a calculation grid in order to analyze what kind of impact the flow of fluid such as cross wind has on an object such as an automobile or a railway car by the shield plate, and can simply simulate the wind reduction effect by the shield plate.SOLUTION: A numerical value simulation method for simulating an impact of a shield plate on an object comprises: storage means for storing an initial condition including at least the inflow rate of fluid; analysis means for performing turbulent flow analysis of the flow of the fluid at the place where the shield plate is disposed; and output means for outputting the aspect of flow from the inflow position of the fluid analyzed by the analysis means. The analysis means performs analysis assuming that the shield plate is a virtual plate that has a given transmittance and is infinitely thin.SELECTED DRAWING: Figure 1

Description

本発明は、流体の数値シミュレーション方法に関し、特に、対象物への流体の影響を軽減する遮蔽板の効果を解析する流体の数値シミュレーション方法に関する。   The present invention relates to a fluid numerical simulation method, and more particularly to a fluid numerical simulation method for analyzing the effect of a shielding plate that reduces the influence of fluid on an object.

従来より、強風時の車両の走行安全性を実現するために、道路や線路上を走行する自動車や鉄道車両の横風に対する空力特性を把握することが必要であり、この空力特性は、一般的に車両周辺の構造物の影響を受けることが知られており、その詳細を調べるために車両周辺の構造物により変化を受ける横風の風速分布を把握することが行われている。   Conventionally, it has been necessary to grasp the aerodynamic characteristics against the crosswind of automobiles and railway vehicles traveling on roads and tracks in order to realize vehicle safety in strong winds. It is known to be affected by the structure around the vehicle, and in order to examine the details, it is known to grasp the wind speed distribution of the cross wind that is changed by the structure around the vehicle.

一般的に、横風に起因する主な現象は、自動車では横転,鉄道車両では脱線や転覆などが挙げられ,いずれも大事故を引き起こす恐れがあるため、これを防止するために防風柵などの遮蔽板が道路や線路近傍に設置されている。風荷重を低減するために、防風柵及び遮蔽板は、格子状にしたり空隙を開けたりして、単位面積あたりの空隙率を0以上にしている。   In general, the main phenomena caused by crosswinds include rollover in automobiles and derailment and rollover in railway cars, both of which can cause major accidents. To prevent this, shields such as windbreak fences are used. Boards are installed near roads and tracks. In order to reduce the wind load, the windbreak fence and the shielding plate are formed in a lattice shape or a gap is formed so that the porosity per unit area is 0 or more.

また、このような線路構造物や防風壁などの遮蔽板による風速分布を調べる方法は種々の方法が知られており、例えば、特許文献1に記載された防風壁の高さの設計方法は、飛散塵埃発生箇所周囲の3次元的局所風速と塵埃飛散計算とをコンピュータを用いた障害物を含む3次元物理領域内の流体解析装置を用いて一貫して行うという構成を備えている。   In addition, various methods are known for examining the wind speed distribution by the shielding plate such as the track structure or the windbreak wall. For example, the design method of the height of the windbreak wall described in Patent Document 1 is: A configuration is provided in which the three-dimensional local wind speed around the scattered dust generation location and the dust scattering calculation are consistently performed using a fluid analysis device in a three-dimensional physical region including an obstacle using a computer.

このようなシミュレーション方法によれば、局所の風速予測を風洞実験で行うことなく、コンピュータを用いたシミュレーションによって解析することができるので、多くの手間とコストを削減することができる。   According to such a simulation method, since local wind speed prediction can be performed by simulation using a computer without performing wind tunnel experiments, a lot of labor and cost can be reduced.

特開2003−293325号公報JP 2003-293325 A

しかし、従来のシミュレーション方法では、遮蔽板が網状、格子状又は柵状といった空隙を有する形状である場合、空隙を有する遮蔽板周囲の非定常流れ場の数値シュミレーションとしては、遮蔽板の影響を乱流モデルに取り込んだラージエディシミュレーション(Large Eddy Simulation,LES)や、k−ε乱流モデルを用いた数値シミュレーションによる計算方法が行われていたが、この遮蔽板の詳細な形状を計算格子で解析することは、空隙の詳細を解析するために該空隙よりも細かい計算格子を作成して解析を行う必要があり、コンピュータの計算能力の向上を考慮しても、コンピュータに対する負荷が大きく、これを実現することは難しいという問題があった。   However, in the conventional simulation method, when the shielding plate has a shape having a gap such as a net, lattice, or fence, the influence of the shielding plate is disturbed as a numerical simulation of the unsteady flow field around the shielding plate having the gap. Large eddy simulation (LES) incorporated in the flow model and numerical simulation using the k-ε turbulence model were performed, but the detailed shape of this shielding plate was analyzed with a calculation grid In order to analyze the details of the gap, it is necessary to create a calculation grid finer than the gap and perform the analysis, and even if the calculation capability of the computer is taken into consideration, the load on the computer is large. There was a problem that it was difficult to realize.

そこで、本発明は上記問題に鑑みてなされたものであり、横風などの流体の流れが遮蔽板によって自動車や鉄道車両などの対象物にどのような影響を与えるかを解析するために、遮蔽板の詳細形状を計算格子で再現することなくコンピュータの計算負荷を低減させると共に、遮蔽板による減風効果を簡便に模擬できる数値シミュレーション方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and in order to analyze how the flow of a fluid such as a cross wind affects an object such as an automobile or a railway vehicle by the shielding plate, the shielding plate is used. It is an object of the present invention to provide a numerical simulation method capable of reducing the calculation load of a computer without reproducing the detailed shape of the above in a calculation grid and easily simulating the effect of wind reduction by a shielding plate.

本発明に係る数値シミュレーション方法は、対象物に対する遮蔽板の影響をシミュレーションする数値シミュレーション方法であって、少なくとも流体の流入流速を含む初期条件を記憶する記憶手段と、前記遮蔽板が配置される場の前記流体の流れを乱流解析する解析手段と、前記解析手段によって、解析された前記流体の流入位置からの流れの様子を出力する出力手段とを備え、前記解析手段は、前記遮蔽板を所与の透過率を有する無限に薄い仮想板として解析することを特徴とする。   A numerical simulation method according to the present invention is a numerical simulation method for simulating the influence of a shielding plate on an object, wherein storage means for storing initial conditions including at least a fluid inflow velocity, and the shielding plate are arranged. Analyzing means for analyzing turbulent flow of the fluid, and output means for outputting a flow state from the fluid inflow position analyzed by the analyzing means, wherein the analyzing means includes the shielding plate. It is characterized by analyzing as an infinitely thin virtual plate having a given transmittance.

また、本発明に係る数値シミュレーション方法において、前記所与の透過率は、前記遮蔽板の計算領域全体における空隙の面積割合であると好適である。   In the numerical simulation method according to the present invention, it is preferable that the given transmittance is an area ratio of a gap in the entire calculation region of the shielding plate.

また、本発明に係る数値シミュレーション方法において、前記解析手段は、直交格子法を用いて解析され、等間隔に配置した計算格子を用いると好適である。   In the numerical simulation method according to the present invention, it is preferable that the analysis means uses a calculation grid that is analyzed using an orthogonal grid method and arranged at equal intervals.

また、本発明に係る数値シミュレーション方法において、前記解析手段は、差分計算の時間進行後の前記流体の速度がゼロとなるような仮想流体力を基礎式に加えると好適である。   Moreover, in the numerical simulation method according to the present invention, it is preferable that the analysis means add a virtual fluid force to the basic equation such that the velocity of the fluid after progress of the difference calculation is zero.

本発明に係る数値シミュレーション方法によれば、遮蔽板の詳細な形状を計算格子で再現することなく、所与の透過率を有する無限に薄い仮想板として解析するので、コンピュータの計算負荷を低減して解析を容易に行うことができると共に、遮蔽板による減風効果を簡便に模擬することができる数値シミュレーション方法を構築することができる。   According to the numerical simulation method of the present invention, the detailed shape of the shielding plate is analyzed as an infinitely thin virtual plate having a given transmittance without reproducing the detailed shape with a calculation grid, thereby reducing the computational load on the computer. Thus, it is possible to construct a numerical simulation method that can be easily analyzed and that can easily simulate the wind-reducing effect of the shielding plate.

本発明の実施形態に数値シミュレーション方法のフロー図。The flowchart of the numerical simulation method in the embodiment of the present invention. 本発明の実施形態に係る数値シミュレーション方法の解析結果(α=0.6)。The analysis result ((alpha) = 0.6) of the numerical simulation method which concerns on embodiment of this invention. 本発明の実施形態に係る数値シミュレーション方法の解析結果のうち、主流方向の平均速度分布(α=0.6、防風柵の幅方向中心断面)を示す図。The figure which shows the average speed distribution ((alpha) = 0.6, the width direction center cross section of a windbreak fence) of the mainstream direction among the analysis results of the numerical simulation method which concerns on embodiment of this invention. 本発明の実施形態に係る数値シミュレーション方法の解析結果のうち、主流方向の平均速度分布(防風柵モデル中心軸の主流方向分布)を示すグラフ。The graph which shows the average speed distribution (mainstream direction distribution of a windbreak fence model central axis) of a mainstream direction among the analysis results of the numerical simulation method which concerns on embodiment of this invention.

以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described with reference to the drawings. The following embodiments do not limit the invention according to each claim, and all combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. .

図1は、本発明の実施形態に数値シミュレーション方法のフロー図であり、図2は、本発明の実施形態に係る数値シミュレーション方法の解析結果(α=0.6)であり、図3は、本発明の実施形態に係る数値シミュレーション方法の解析結果のうち、主流方向の平均速度分布(α=0.6、防風柵の幅方向中心断面)を示す図であり、図4は、本発明の実施形態に係る数値シミュレーション方法の解析結果のうち、主流方向の平均速度分布(防風柵モデル中心軸の主流方向分布)を示すグラフである。   FIG. 1 is a flowchart of a numerical simulation method according to the embodiment of the present invention, FIG. 2 is an analysis result (α = 0.6) of the numerical simulation method according to the embodiment of the present invention, and FIG. Among the analysis results of the numerical simulation method according to the embodiment of the present invention, FIG. 4 is a diagram showing an average velocity distribution in the mainstream direction (α = 0.6, center section in the width direction of the windbreak fence). It is a graph which shows the average speed distribution (mainstream direction distribution of a windbreak fence model central axis) of the mainstream direction among the analysis results of the numerical simulation method which concerns on embodiment.

図1に示すように、本実施形態に係る数値シミュレーション方法は、少なくとも流体の流入流速を含む初期条件を記憶する記憶手段S101と、前記遮蔽板20が配置される場の前記流体の流れを乱流解析する解析手段S102と、前記解析手段S102によって、解析された前記流体の流入位置からの流れの様子を出力する出力手段S103とを備えている。   As shown in FIG. 1, the numerical simulation method according to the present embodiment disturbs the flow of the fluid in the field where the storage unit S101 that stores at least the initial condition including the fluid inflow velocity and the shielding plate 20 is disposed. Analyzing means S102 for analyzing the flow, and output means S103 for outputting the state of the flow from the inflow position of the fluid analyzed by the analyzing means S102.

解析手段S102では、まず、遮蔽板20の面積全体に対する遮蔽体の面積割合αを遮蔽板20に相当する領域全体に分布させて遮蔽板20を表現する。面積割合αは、流体が全て透過する場合はα=0,全て遮蔽される場合はα=1とし、遮蔽板に空隙が存在する場合にはα=0〜1の任意の数値に設定される。即ち、遮蔽板20は、所定割合(1−α)で流体が透過する無限に薄い仮想的な板又は膜であるとする計算モデルによって解析を行う。   In the analysis unit S102, first, the shielding plate 20 is expressed by distributing the area ratio α of the shielding body to the entire area of the shielding plate 20 over the entire region corresponding to the shielding plate 20. The area ratio α is set to α = 0 when all the fluid permeates, α = 1 when all the fluid is shielded, and α = 0 to 1 when there is a gap in the shielding plate. . In other words, the shielding plate 20 performs an analysis using a calculation model that assumes that the shielding plate 20 is an infinitely thin virtual plate or film that allows fluid to pass through at a predetermined rate (1-α).

そして、速度ゼロの境界条件として遮蔽体部分を流体計算に導入するのではなく、差分計算の時間進行後の速度がゼロとなるような仮想流体力を基礎式に加えることで、流体中の遮蔽体の効果を計算に導入する。この仮想流体力は遮蔽板が全て空隙(α=0)の場合はゼロであり、遮蔽板に空隙が存在する場合の仮想流体力は面積割合(1−α)に関する線形補間値とする。なお、解析手段S102での解析は、等間隔に配置した計算格子を用いた直交格子法を用いると好適である。   Then, instead of introducing the shield part into the fluid calculation as a boundary condition of zero velocity, the virtual fluid force is applied to the basic equation so that the velocity after the time progress of the difference calculation becomes zero. Introduce body effects into the calculation. This virtual fluid force is zero when all the shielding plates are gaps (α = 0), and the virtual fluid force when there is a gap in the shielding plate is a linear interpolation value with respect to the area ratio (1-α). The analysis in the analysis unit S102 is preferably performed using an orthogonal lattice method using calculation lattices arranged at equal intervals.

このように、本実施形態に係る数値シミュレーション方法によれば、遮蔽板20を無限に薄い仮想的な板であるとする計算モデルによって解析を行うので、遮蔽板20の詳細な形状を計算格子で計算するための計算格子を細かく設定する必要がなく、遮蔽板20の減風効果を簡便に模擬することができる。これにより流入する流体が対象物に与える影響を簡便に解析することが可能となる。   As described above, according to the numerical simulation method according to the present embodiment, the analysis is performed using the calculation model in which the shielding plate 20 is an infinitely thin virtual plate. There is no need to finely set a calculation grid for calculation, and the wind reduction effect of the shielding plate 20 can be easily simulated. As a result, it is possible to easily analyze the influence of the flowing fluid on the object.

次に、本実施形態に係る数値シミュレーション方法の計算方法について、遮蔽板20の数値計算モデルによる計算例を用いて説明を行う。計算領域は、主流方向が9m,高さ方向が3m,幅方向が5mとし、流入境界面から3m下流の床面に遮蔽板20を設置した。遮蔽板20は、高さが0.5m,幅0.8mに設定した。   Next, the calculation method of the numerical simulation method according to the present embodiment will be described using a calculation example based on a numerical calculation model of the shielding plate 20. The calculation area was 9 m in the main flow direction, 3 m in the height direction, and 5 m in the width direction, and the shielding plate 20 was installed on the floor surface 3 m downstream from the inflow boundary surface. The shielding plate 20 was set to a height of 0.5 m and a width of 0.8 m.

計算格子は、0.01mの等間隔格子とし、流入風速は10m/sとし、LES(サブグリッドスケールモデル:コヒーレント構造スマゴリンスキーモデル)による乱流解析を行った。なお、遮蔽板20の数値計算モデルのパラメータである面積割合αは、遮蔽板20の位置ではα=0〜1の任意の値を一様に分布させ、その他の領域を面積割合α=0として計算を行った。   The calculation grid was an equidistant grid of 0.01 m, the inflow wind speed was 10 m / s, and turbulent flow analysis by LES (subgrid scale model: coherent structure smagorinsky model) was performed. Note that the area ratio α, which is a parameter of the numerical calculation model of the shielding plate 20, is uniformly distributed at any position of α = 0 to 1 at the position of the shielding plate 20, and the area ratio α = 0 in other regions. Calculated.

図2は、面積割合α=0.6としたときの流れの解析結果であり、遮蔽板20を過ぎる流れを定性的に再現する渦構造が観察される。図3は、遮蔽板20の幅方向中心断面について時間平均の主流方向速度分布を示した解析結果であり、遮蔽板20を通過する流れは、逆流領域を含み風速が低減されていることが観察される。このように、遮蔽板20の減風効果を解析結果から確認することができるので、遮蔽板20の下流に位置する対象物に対する横風の影響をシミュレートすることができることが確認できた。   FIG. 2 shows a flow analysis result when the area ratio α = 0.6, and a vortex structure that qualitatively reproduces the flow past the shielding plate 20 is observed. FIG. 3 is an analysis result showing a time-average mainstream direction velocity distribution with respect to the central cross section of the shielding plate 20 in the width direction. It is observed that the flow passing through the shielding plate 20 includes a backflow region and the wind speed is reduced. Is done. Thus, since the wind reduction effect of the shielding plate 20 can be confirmed from the analysis result, it has been confirmed that the influence of the cross wind on the object located downstream of the shielding plate 20 can be simulated.

次に、図4に示すように、面積割合αをα=0.1〜0.8のいくつかの値について計算した結果をまとめて検討すると、面積割合αの増大とともに、風速の低減量が大きくなる様子が確認でき、また面積割合αが小さい場合は、遮蔽板20の下流側の長い距離にわたって風速低減効果が見られることが確認できる。   Next, as shown in FIG. 4, when the results of calculating the area ratio α for several values of α = 0.1 to 0.8 are considered together, as the area ratio α increases, the amount of reduction in wind speed increases. When the area ratio α is small, it can be confirmed that the wind speed reducing effect is seen over a long distance on the downstream side of the shielding plate 20.

このように、面積割合αの値を調整することによって、種々の遮蔽板20を通過する流体の流れを計算することができる。なお、面積割合αの物理的な意味は、一定の空間における固定の占める割合なので、実際の遮蔽板20では、その所与の透過率の値を参考に設定すると好適である。   As described above, by adjusting the value of the area ratio α, the flow of the fluid passing through the various shielding plates 20 can be calculated. In addition, since the physical meaning of the area ratio α is a fixed ratio in a certain space, it is preferable that the actual shielding plate 20 is set with reference to the given transmittance value.

本実施形態に係る数値シミュレーション方法では、まず風洞実験によって遮蔽板を通過する風速測定値を得ることで、その風速測定値を実現する面積割合αを数値シミュレーションによって決定することで、実際の遮蔽板への適用が可能となる。   In the numerical simulation method according to the present embodiment, first, an actual shielding plate is obtained by obtaining a wind speed measurement value that passes through the shielding plate by a wind tunnel experiment, and determining an area ratio α that realizes the wind speed measurement value by a numerical simulation. Application to is possible.

以上説明した本実施形態に係る数値シミュレーション方法は、遮蔽板の詳細な形状を計算格子で再現することなく、所与の透過率を有する無限に薄い仮想板として解析するので、コンピュータの計算負荷を低減して解析を容易に行うことができると共に、遮蔽板による減風効果を簡便に模擬することができる数値シミュレーション方法を構築することができる。   In the numerical simulation method according to the present embodiment described above, the detailed shape of the shielding plate is analyzed as an infinitely thin virtual plate having a given transmittance without reproducing the detailed shape of the shielding plate. It is possible to construct a numerical simulation method that can be easily analyzed by reducing the amount and that can easily simulate the wind-reducing effect of the shielding plate.

なお、本実施形態に係る数値シミュレーション方法は、これらのデータ処理をコンピュータで行うことができるようなプログラムを実行すると、データ処理の自動化を図ることができる。また、本実施形態における数値シミュレーション方法は、鉄道車両に与える横風の影響を解析する場合に用いる場合について説明を行ったが、例えば道路を走行する自動車に対する防風柵の影響を解析するために用いることも可能である。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれうることが、特許請求の範囲の記載から明らかである。   Note that the numerical simulation method according to the present embodiment can automate data processing by executing a program capable of performing these data processing by a computer. In addition, the numerical simulation method in the present embodiment has been described for the case where it is used to analyze the influence of crosswind on a railway vehicle. For example, the numerical simulation method is used to analyze the influence of a windbreak fence on a car traveling on a road Is also possible. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

20 遮蔽板, S101 記憶手段, S102 解析手段, S103 出力手段。   20 shielding plate, S101 storage means, S102 analysis means, S103 output means.

Claims (4)

対象物に対する遮蔽板の影響をシミュレーションする数値シミュレーション方法であって、
少なくとも流体の流入流速を含む初期条件を記憶する記憶手段と、
前記遮蔽板が配置される場の前記流体の流れを乱流解析する解析手段と、
前記解析手段によって、解析された前記流体の流入位置からの流れの様子を出力する出力手段とを備え、
前記解析手段は、前記遮蔽板を所与の透過率を有する無限に薄い仮想板として解析することを特徴とする数値シミュレーション方法。
A numerical simulation method for simulating the influence of a shielding plate on an object,
Storage means for storing initial conditions including at least a fluid inflow velocity;
Analyzing means for analyzing the turbulent flow of the fluid in a field where the shielding plate is disposed;
Output means for outputting the state of the flow from the inflow position of the fluid analyzed by the analysis means,
The numerical analysis method, wherein the analyzing means analyzes the shielding plate as an infinitely thin virtual plate having a given transmittance.
請求項1に記載の数値シミュレーション方法において、
前記所与の透過率は、前記遮蔽板の計算領域全体における流体に対する空隙の面積割合であることを特徴とする数値シミュレーション方法。
In the numerical simulation method according to claim 1,
The numerical simulation method according to claim 1, wherein the given transmittance is an area ratio of a void to a fluid in an entire calculation region of the shielding plate.
請求項1又は2に記載の数値シミュレーション方法において、
前記解析手段は、直交格子法を用いて解析され、等間隔に配置した計算格子を用いることを特徴とする数値シミュレーション方法。
In the numerical simulation method according to claim 1 or 2,
A numerical simulation method characterized in that the analysis means uses calculation grids which are analyzed using an orthogonal grid method and are arranged at equal intervals.
請求項1から3のいずれか1項に記載の数値シミュレーション方法において、
前記解析手段は、差分計算の時間進行後の前記流体の速度がゼロとなるような仮想流体力を基礎式に加えることを特徴とする数値シミュレーション方法。
In the numerical simulation method according to any one of claims 1 to 3,
The numerical simulation method, wherein the analysis means adds a virtual fluid force to the basic equation such that the velocity of the fluid after the time of difference calculation advances is zero.
JP2015044394A 2015-03-06 2015-03-06 Numerical simulation method of fluid Expired - Fee Related JP6424113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044394A JP6424113B2 (en) 2015-03-06 2015-03-06 Numerical simulation method of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044394A JP6424113B2 (en) 2015-03-06 2015-03-06 Numerical simulation method of fluid

Publications (2)

Publication Number Publication Date
JP2016164706A true JP2016164706A (en) 2016-09-08
JP6424113B2 JP6424113B2 (en) 2018-11-14

Family

ID=56876678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044394A Expired - Fee Related JP6424113B2 (en) 2015-03-06 2015-03-06 Numerical simulation method of fluid

Country Status (1)

Country Link
JP (1) JP6424113B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110795881A (en) * 2019-10-29 2020-02-14 安徽马钢表面技术股份有限公司 Method for obtaining uniform coating of crystallizer copper plate based on finite element simulation
CN115408961A (en) * 2022-09-26 2022-11-29 江苏新能源汽车研究院有限公司 Mixed-action transmission bearing lubrication cooling simulation analysis method
JP7390616B2 (en) 2020-01-08 2023-12-04 東芝エネルギーシステムズ株式会社 Wind turbine wake calculation device and wind turbine wake calculation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544103A (en) * 2006-07-14 2009-12-10 エクサ コーポレイション Cascade vortex simulation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544103A (en) * 2006-07-14 2009-12-10 エクサ コーポレイション Cascade vortex simulation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
北田 和将, 樽谷 優弥, 長谷川 剛, 松田 和浩, 松岡 茂登: "数値流体力学シミュレーションによるデータセンタ内の温度予測のためのサーバモデルの提案", 電子情報通信学会技術研究報告, vol. 第114巻/第477号, JPN6018008623, 2 March 2015 (2015-03-02), JP, pages 第385-390頁 *
米山 望, 高畠 大輔, 澤田 純男, 三浦 正博: "スリットをもつ遮蔽板を用いた円筒タンク用スロッシング防止ダンパーの開発", 応用力学論文集, vol. 第11巻, JPN6018008622, August 2008 (2008-08-01), JP, pages 第565-576頁 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110795881A (en) * 2019-10-29 2020-02-14 安徽马钢表面技术股份有限公司 Method for obtaining uniform coating of crystallizer copper plate based on finite element simulation
CN110795881B (en) * 2019-10-29 2023-02-28 安徽马钢表面技术股份有限公司 Method for obtaining uniform coating of crystallizer copper plate based on finite element simulation
JP7390616B2 (en) 2020-01-08 2023-12-04 東芝エネルギーシステムズ株式会社 Wind turbine wake calculation device and wind turbine wake calculation method
CN115408961A (en) * 2022-09-26 2022-11-29 江苏新能源汽车研究院有限公司 Mixed-action transmission bearing lubrication cooling simulation analysis method
CN115408961B (en) * 2022-09-26 2023-08-04 江苏新能源汽车研究院有限公司 Lubrication cooling simulation analysis method for bearing of hybrid transmission

Also Published As

Publication number Publication date
JP6424113B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
Wang et al. The effect of the ground condition on high-speed train slipstream
Niu et al. Numerical comparison of aerodynamic performance of stationary and moving trains with or without windbreak wall under crosswind
Wang et al. The effect of bogie fairings on the slipstream and wake flow of a high-speed train. An IDDES study
Schito Numerical and experimental investigation on vehicles in platoon
Rouméas et al. Analysis and control of the near-wake flow over a square-back geometry
Shen et al. An investigation on the effect of street morphology to ambient air quality using six real-world cases
Gromke et al. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations–evaluation of CFD data with experimental data
Liang et al. Numerical simulation of pressure transients caused by high-speed train passage through a railway station
Xiang et al. Mechanism and capability of ventilation openings for alleviating micro-pressure waves emitted from high-speed railway tunnels
Praveen et al. INFLUENCE OF TRAFFIC MIX ON PCU VALUE OF VEHICLES UNDER HETEROGENEOUS TRAFFIC CONDITIONS.
Wang et al. Impact of the bogies and cavities on the aerodynamic behaviour of a high-speed train. An IDDES study
Montella et al. Continuous speed profiles to investigate drivers' behavior on two-lane rural highways
Maghrour Zefreh et al. Theoretical comparison of the effects of different traffic conditions on urban road traffic noise
Salati et al. Aerodynamic study on a heavy truck passing by a bridge pylon under crosswinds using CFD
JP6424113B2 (en) Numerical simulation method of fluid
Gaylard et al. Evaluation of non-uniform upstream flow effects on vehicle aerodynamics
Mohammadikalakoo et al. Passive flow control on Ahmed body by rear linking tunnels
Hou et al. Dynamic modeling of traffic noise in both indoor and outdoor environments by using a ray tracing method
Yang et al. Influence of the turbulence conditions of crosswind on the aerodynamic responses of the train when running at tunnel-bridge-tunnel
Wang et al. The impact of rails on high-speed train slipstream and wake
Dong et al. The effect of reducing the underbody clearance on the aerodynamics of a high-speed train
Huo et al. Aerodynamic characteristics of double-connected train groups composed of different kinds of high-speed trains under crosswinds: A comparison study
Jakirlic et al. Scale-resolving simulation of an ‘on-road’overtaking maneuver involving model vehicles
Wang et al. The effect of bogie positions on the aerodynamic behavior of a high-speed train: an IDDES study
Lu et al. Research on the distribution of aerodynamic noises of high-speed trains

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R150 Certificate of patent or registration of utility model

Ref document number: 6424113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees