JP2016164538A - Hardened layer depth measurement device - Google Patents

Hardened layer depth measurement device Download PDF

Info

Publication number
JP2016164538A
JP2016164538A JP2015045309A JP2015045309A JP2016164538A JP 2016164538 A JP2016164538 A JP 2016164538A JP 2015045309 A JP2015045309 A JP 2015045309A JP 2015045309 A JP2015045309 A JP 2015045309A JP 2016164538 A JP2016164538 A JP 2016164538A
Authority
JP
Japan
Prior art keywords
dimension
hardened layer
detection
workpiece
layer depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015045309A
Other languages
Japanese (ja)
Other versions
JP6580350B2 (en
Inventor
健太 櫻井
Kenta Sakurai
健太 櫻井
佳孝 三阪
Yoshitaka Misaka
佳孝 三阪
川嵜 一博
Kazuhiro Kawasaki
一博 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2015045309A priority Critical patent/JP6580350B2/en
Publication of JP2016164538A publication Critical patent/JP2016164538A/en
Application granted granted Critical
Publication of JP6580350B2 publication Critical patent/JP6580350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hardened layer depth measurement device that offers improved measurement accuracy.SOLUTION: A detection coil 2 comprises a detection core portion 21 to be placed on a work W between legs 111 that form an excitation core portion 11, and a detection coil portion 22 wound around the detection coil portion 21. Where a dimension "a" is in a vertical direction to a surface of the work W, a dimension "b" is perpendicular to the vertical direction, and a dimension "c" is perpendicular to the dimensions "a" and "b", the detection core portion 21 is wound by the detection coil portion along a direction of the dimension "c", and the dimension "a" is smaller than the dimension "b".SELECTED DRAWING: Figure 1

Description

本発明は、ワークを焼入れして表面に形成された硬化層の深さを測定する硬化層深さ測定装置に関する。   The present invention relates to a hardened layer depth measuring device that measures the depth of a hardened layer formed on a surface by quenching a workpiece.

金属の強度を高めるために鋼材等のワークに対して高周波焼入れを施して硬化させることが知られている。ワークを焼入れすることにより、ワーク表面に硬化層が形成されることになる。
硬化層の深さに応じて機械的特性が変化するため、予め設定した処理条件で焼入れを行い、さらに、製造後の品質検査を行っている。従来、ワークに対し適正な焼入加工が施されたかを検査する方法として、任意に抽出したワークを切断して検査する方法があったが、この方法の場合、検査に時間を要する上に検査対象のワークは製品として使用できなくなる。
In order to increase the strength of the metal, it is known to harden the workpiece such as steel by induction hardening. By hardening the workpiece, a hardened layer is formed on the workpiece surface.
Since mechanical properties change according to the depth of the hardened layer, quenching is performed under preset processing conditions, and quality inspection after manufacturing is performed. Conventionally, as a method for inspecting whether or not the workpiece has been properly quenched, there has been a method for inspecting an arbitrarily extracted workpiece. In this method, inspection takes time and inspection is performed. The target workpiece cannot be used as a product.

ワークの表面に形成された硬化層の深さを測定する装置として、ワークを磁化する磁化器と、磁化器により発生させた誘導磁場を検出する検出コイルと、検出コイルの出力電圧値とワークと同等材料に関する既知の磁気特性情報とからワークの焼入深さを導出する焼入深さ特定手段と、を備えた従来例がある(特許文献1)。
特許文献1の従来例では、磁化器は、側面視がコ字状のヨークにおいてワークとは対向する部分に励磁用のコイルが巻回された構造であり、ヨークの脚元に検出コイルが設けられている。
As a device for measuring the depth of the hardened layer formed on the surface of the workpiece, a magnetizer that magnetizes the workpiece, a detection coil that detects an induced magnetic field generated by the magnetizer, an output voltage value of the detection coil, and the workpiece There is a conventional example provided with a quenching depth specifying means for deriving the quenching depth of a workpiece from known magnetic property information on an equivalent material (Patent Document 1).
In the conventional example of Patent Document 1, the magnetizer has a structure in which a coil for excitation is wound around a portion of the yoke that is U-shaped in a side view and faces a workpiece, and a detection coil is provided at the leg of the yoke. It has been.

国際公開第2012/057224号International Publication No. 2012/057224

特許文献1の従来例では、ヨークは、開口側がワークに対向する一対の脚部及び脚部を連結する基部を有する門形である。基部に設けられた励磁用のコイルに電流が流されると、磁束は、一方の脚部の内部、ワーク内部、他方の脚部の内部、基部の内部の順で流れることになり、この磁束に伴って、ワークの表面近傍では、空間磁束が生じる。
空間磁束を検出コイルで検出するに際して、検出コイルがヨークの一方の脚部の脚元に設けられているため、空間磁束だけでなくヨークの内部に生じる磁束までも検出することになり、測定精度が十分ではない。
そこで、測定精度の向上がより図れる硬化層深さ測定装置が望まれている。
In the conventional example of Patent Document 1, the yoke has a gate shape having a pair of legs whose opening side faces the workpiece and a base that connects the legs. When an electric current is passed through the excitation coil provided at the base, the magnetic flux flows in the order of one leg, the workpiece, the other leg, and the base. Along with this, a spatial magnetic flux is generated near the surface of the workpiece.
When detecting the spatial magnetic flux with the detection coil, since the detection coil is provided at the base of one leg of the yoke, not only the spatial magnetic flux but also the magnetic flux generated inside the yoke will be detected. Is not enough.
Therefore, a hardened layer depth measuring device that can further improve the measurement accuracy is desired.

本発明の目的は、測定精度を向上させることができる硬化層深さ測定装置を提供することにある。   The objective of this invention is providing the hardened layer depth measuring apparatus which can improve a measurement precision.

本発明者は、測定精度を向上させるために、検出コイルと励磁コイルとを分離し、検出コイルをワークに配置することを検討し、さらに進んで、検出コイルや励磁コイルの構成を検討するに至った。
ここで、硬化層深さが深くなるに従って、検出コイルで検出される検出電圧の値が大きくなる。検出精度をより向上させるには、有効硬化層深さと検出電圧とで示される検量線の傾きを大きくすることが重要である。検量線の傾きを大きくすることにより、硬化層深さが分離しやすいことになる。
検量線の傾きを大きくするため、本発明者は、種々のシミュレーションや実験を行った。まず、検出コイルの大きさのみを変えることを検討したが、硬化層深さを正確に測定できるものではなかった。そこで、検出コイルの検出用コア部の形状を検討した結果、検出用コア部の垂直方向の寸法aを寸法bより小さくすることで、好ましい結果を得ることができた。
In order to improve the measurement accuracy, the present inventor considered separating the detection coil and the excitation coil and arranging the detection coil on the workpiece, and further proceeded to examine the configuration of the detection coil and the excitation coil. It came.
Here, as the hardened layer depth increases, the value of the detection voltage detected by the detection coil increases. In order to further improve the detection accuracy, it is important to increase the slope of the calibration curve indicated by the effective hardened layer depth and the detection voltage. By increasing the slope of the calibration curve, the hardened layer depth can be easily separated.
In order to increase the slope of the calibration curve, the present inventor conducted various simulations and experiments. First, it was considered to change only the size of the detection coil, but it was not possible to accurately measure the hardened layer depth. Thus, as a result of examining the shape of the detection core portion of the detection coil, a preferable result could be obtained by making the vertical dimension a of the detection core portion smaller than the dimension b.

本発明の硬化層深さ測定装置は、ワークを焼入れして表面に形成された硬化層の深さを測定する装置であって、磁束を発生させて前記ワークを磁化する励磁コイルと、前記励磁コイルで発生させた磁束を検出する検出コイルとを備え、前記励磁コイルは、脚部の先端が前記ワークに対向する門形の励磁用コア部と、前記励磁用コア部に巻回された励磁用コイル部とを有し、前記検出コイルは、前記励磁用コア部に脚部の間に配置され前記ワークに配置される検出用コア部と、前記検出用コア部に巻回された検出用コイル部とを有し、前記検出用コア部は、前記ワークの表面に対して垂直方向の寸法をa、前記垂直方向とは直交する方向の寸法をbとし、前記寸法aと前記寸法bとにそれぞれ直交する寸法をcとすると、寸法cの方向に沿って前記検出用コイル部が巻回され、寸法aは寸法bより小さいことを特徴とする。   The hardened layer depth measuring device of the present invention is a device for measuring the depth of a hardened layer formed on the surface by quenching a work, and generates an magnetic flux to magnetize the work, and the excitation A detection coil that detects a magnetic flux generated by the coil, and the excitation coil includes a portal-shaped excitation core portion having a leg end facing the workpiece, and an excitation wound around the excitation core portion. A coil portion for detection, and the detection coil is disposed between the leg portions of the excitation core portion, the detection core portion disposed on the workpiece, and the detection coil wound around the detection core portion A coil portion, and the detection core portion has a dimension perpendicular to the surface of the workpiece as a, a dimension perpendicular to the perpendicular direction as b, and the dimension a and the dimension b. If the dimension orthogonal to each is c, along the direction of the dimension c Serial detection coil portion is wound, dimension a is characterized by less than the dimension b.

本発明では、励磁用コイル部に電流を流すと、門形の励磁用コア及びワークの内部に磁束が生じるとともに、この磁束に伴って空間磁束がワークの表面に生じる。この空間磁束を検出コイルで検出する。検出コイルで検出される電圧はワーク表面に形成された硬化層の深さに応じて異なるものであり、この検出電圧に基づいて硬化層の深さを測定する。
つまり、本発明では、寸法cに沿って検出用コイル部が巻回されている場合において、寸法aは寸法bより小さいので、空間磁束を検出コイルで検出しやすくなり、測定精度がより向上することになる。
In the present invention, when a current is passed through the exciting coil section, a magnetic flux is generated inside the portal-shaped exciting core and the workpiece, and a spatial magnetic flux is generated on the surface of the workpiece along with the magnetic flux. This spatial magnetic flux is detected by a detection coil. The voltage detected by the detection coil differs depending on the depth of the hardened layer formed on the workpiece surface, and the depth of the hardened layer is measured based on this detected voltage.
In other words, in the present invention, when the detection coil portion is wound along the dimension c, the dimension a is smaller than the dimension b, so that the spatial magnetic flux can be easily detected by the detection coil, and the measurement accuracy is further improved. It will be.

硬化層深さ測定装置では、前記検出用コア部は、直方体状に形成されていることが好ましい。
この構成では、検出用コア部を容易に製造することができる。
In the hardened layer depth measuring apparatus, the detection core part is preferably formed in a rectangular parallelepiped shape.
With this configuration, the detection core can be easily manufactured.

硬化層深さ測定装置では、前記寸法aは、1.2mm以下であることが好ましい。
本願の発明者は、寸法a、寸法b、寸法cのそれぞれの長さを変更して測定精度を検証した。その結果、寸法bや寸法cを変更しても、測定精度にはさほど影響がないが、寸法aを変更することにより、測定精度が大きく変更することを突き止めた。この場合、寸法aが小さくなるに従って、測定精度が向上することが実験で判明した。
寸法aが1.2mmを超えると、検出コイルが大きくなり、これに伴って、励磁コイルも大きくなる。
In the hardened layer depth measuring device, the dimension a is preferably 1.2 mm or less.
The inventor of the present application changed the lengths of the dimension a, the dimension b, and the dimension c, and verified the measurement accuracy. As a result, even if the dimension b and the dimension c were changed, the measurement accuracy was not greatly affected, but it was found that the measurement accuracy was greatly changed by changing the dimension a. In this case, it has been experimentally found that the measurement accuracy improves as the dimension a decreases.
When the dimension a exceeds 1.2 mm, the detection coil becomes large, and accordingly, the excitation coil also becomes large.

硬化層深さ測定装置では、前記検出用コア部は、無方向性の電磁鋼板から構成されることが好ましい。
この構成では、無方向性の電磁鋼板は、全ての方向に均一な磁気特性を有しているので、この点からも測定精度の向上を図ることができる。
In the hardened layer depth measuring apparatus, it is preferable that the detection core portion is composed of a non-oriented electrical steel sheet.
In this configuration, the non-oriented electrical steel sheet has uniform magnetic characteristics in all directions, so that the measurement accuracy can be improved also from this point.

本発明の一実施形態にかかる硬化層深さ測定装置の全体を示すもので、(A)は正面図、(B)は側面図。BRIEF DESCRIPTION OF THE DRAWINGS The whole hardened layer depth measuring apparatus concerning one Embodiment of this invention is shown, (A) is a front view, (B) is a side view. 検出コイルの拡大斜視図。The expansion perspective view of a detection coil. 硬化層深さ測定装置の磁束の流れを説明するための図であり、(A)はワークの表面に硬化層が形成されている場合の図、(B)はワークの表面に硬化層が形成されていない場合の図。It is a figure for demonstrating the flow of the magnetic flux of a hardened layer depth measuring apparatus, (A) is a figure in case the hardened layer is formed in the surface of a workpiece | work, (B) is a hardened layer formed in the surface of a workpiece | work. Figure if not. 硬化層深さ測定装置のシミュレーションモデルを示す斜視図。The perspective view which shows the simulation model of a hardened layer depth measuring apparatus. (A)(B)(C)は、それぞれシミュレーション結果として硬化層深さと変化率との関係を示すグラフ。(A) (B) (C) is a graph which shows the relationship between a hardening layer depth and a change rate, respectively as a simulation result. 実験で用いる硬化層深さ測定装置の概略図。Schematic of the hardened layer depth measuring apparatus used in experiment. 実験装置を示す概略図。Schematic which shows an experimental apparatus. (A)は第一実験により求められた有効硬化層深さと検出電圧との関係を示す検量線のグラフであり、(B)は第二実験により求められた有効硬化層深さと検出電圧との関係を示す検量線のグラフである。(A) is a graph of a calibration curve showing the relationship between the effective hardened layer depth determined by the first experiment and the detected voltage, and (B) is the effective hardened layer depth determined by the second experiment and the detected voltage. It is a graph of a calibration curve showing the relationship.

本発明の一実施形態を図面に基づいて説明する。
図1には、本実施形態にかかる硬化層深さ測定装置の概略が示されている。
図1(A)は硬化層深さ測定装置の正面を示し、(B)は硬化層深さ測定装置の側面を示す。
図1(A)(B)において、硬化層深さ測定装置は、ワークWを焼入れして表面に形成された硬化層Hの深さを測定する装置であって、磁束を発生させる励磁コイル1と、励磁コイル1で発生させた磁束を検出する検出コイル2と、励磁コイル1と検出コイル2とを一体に保持する保持部材3とを備えて構成されている。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an outline of a cured layer depth measuring apparatus according to this embodiment.
FIG. 1 (A) shows the front surface of the cured layer depth measuring device, and FIG. 1 (B) shows the side surface of the cured layer depth measuring device.
1A and 1B, a hardened layer depth measuring device is a device for measuring the depth of a hardened layer H formed on the surface by quenching a workpiece W, and an exciting coil 1 for generating magnetic flux. And a detection coil 2 that detects the magnetic flux generated by the excitation coil 1 and a holding member 3 that holds the excitation coil 1 and the detection coil 2 together.

励磁コイル1は、ワークWを磁化するものであり、正面視で門形の励磁用コア部11と、励磁用コア部11に設けられた励磁用コイル部12とを有する。
励磁用コア部11は、先端面がワークWに対向する一対の脚部111と、これらの脚部111の基端部同士を連結する基部110とを有するものであり、材料は平面コ字状のケイ素鋼板を複数積層したもの、又は同形状軟磁性体である。
励磁用コア部11の正面におけるワークWの表面に沿った長さはlであり、ワークWの表面に対する垂直方向の寸法はmであり、脚部111の幅寸法はnである。
励磁用コイル部12は、基部110に巻回されており、その端部は、図示しない電源装置に接続されている。
The exciting coil 1 magnetizes the workpiece W, and includes a portal-shaped exciting core portion 11 in front view and an exciting coil portion 12 provided in the exciting core portion 11.
The exciting core portion 11 has a pair of leg portions 111 whose front end faces the workpiece W, and a base portion 110 that connects the base end portions of the leg portions 111, and the material is a U-shaped plane. Or a soft magnetic body having the same shape.
The length along the surface of the workpiece W in front of the exciting core 11 is l, the dimension in the direction perpendicular to the surface of the workpiece W is m, and the width of the leg 111 is n.
The exciting coil unit 12 is wound around the base 110, and the end thereof is connected to a power supply device (not shown).

検出コイル2は、励磁用コア部11の脚部111の間に配置される直方体形状の検出用コア部21と、検出用コア部21に巻回された検出用コイル部22とを有する。
検出用コア部21は、平面長方形のケイ素鋼板を複数積層したもの、又は同形状軟磁性体である
図2には検出コイル2の拡大した図が示されている。
図2において、検出用コア部21は、ワークW(図1参照)の表面に対して垂直方向の寸法をa、垂直方向とは直交する方向の寸法をbとし、寸法aと寸法bとにそれぞれ直交する寸法をcとすると、寸法cの長さ方向に沿って検出用コイル部22が巻回されている。ここで、寸法a、寸法b、寸法cは、a<c、b<cの関係にある。
図1において、検出用コア部21は、一対の脚部111の中間位置において、その長さ方向が基部110の長さ方向に沿うようにワークWに配置されている。
検出用コア部21とワークWの表面との位置は、適宜設定されるものであるが、検出用コア部21はワークWの表面に当接していることが好ましい。
検出用コイル部22は、検出用コア部21の長さ方向に沿って巻回されており、その端部は、図示しない演算装置に接続されている。演算装置は、検出用コイル部22から出力される電圧(信号)に基づいて、ワークWの硬化層Hの深さを演算する。
The detection coil 2 includes a rectangular parallelepiped detection core portion 21 disposed between the leg portions 111 of the excitation core portion 11 and a detection coil portion 22 wound around the detection core portion 21.
The detection core portion 21 is a laminate of a plurality of planar rectangular silicon steel plates or a soft magnetic body having the same shape. FIG. 2 shows an enlarged view of the detection coil 2.
In FIG. 2, the detection core 21 has a dimension perpendicular to the surface of the workpiece W (see FIG. 1), a dimension perpendicular to the vertical direction, b, dimension a and dimension b. When each orthogonal dimension is c, the detection coil portion 22 is wound along the length direction of the dimension c. Here, the dimension a, the dimension b, and the dimension c are in a relationship of a <c, b <c.
In FIG. 1, the detection core portion 21 is arranged on the workpiece W so that the length direction thereof is along the length direction of the base portion 110 at an intermediate position between the pair of leg portions 111.
The positions of the detection core 21 and the surface of the workpiece W are set as appropriate, but the detection core 21 is preferably in contact with the surface of the workpiece W.
The detection coil unit 22 is wound along the length direction of the detection core unit 21, and its end is connected to an arithmetic device (not shown). The calculation device calculates the depth of the hardened layer H of the workpiece W based on the voltage (signal) output from the detection coil unit 22.

保持部材3は、その外周面の一部がワークWの断面形状に沿って形成されており、本実施形態では、断面半円状の筒状に形成されている。
保持部材3のうち半円の弦を構成する面から励磁用コイル部12の一部が露出している。保持部材3のうち円弧面上の所定の点の接線と同一面となるように検出コイル2が配置されている。
保持部材3は、エポキシ樹脂、その他の合成樹脂から形成されている。
なお、本実施形態では、保持部材3はワークWに対して位置決めする位置決め部3Aを有する。位置決め部3Aの形状は、ワークWとの形状との関係で適宜設定されるものであるが、例えば、励磁用コイル部12の軸方向に沿った突起としてもよい。
A part of the outer peripheral surface of the holding member 3 is formed along the cross-sectional shape of the workpiece W. In the present embodiment, the holding member 3 is formed in a cylindrical shape having a semicircular cross section.
A part of the exciting coil portion 12 is exposed from the surface of the holding member 3 that forms a semicircular string. The detection coil 2 is arranged so as to be flush with a tangent of a predetermined point on the arc surface of the holding member 3.
The holding member 3 is made of an epoxy resin or other synthetic resin.
In the present embodiment, the holding member 3 has a positioning portion 3A for positioning with respect to the workpiece W. The shape of the positioning portion 3 </ b> A is appropriately set in relation to the shape with the workpiece W, but may be a protrusion along the axial direction of the exciting coil portion 12, for example.

次に、本実施形態の測定原理を図3に基づいて説明する。図3は、硬化層深さ測定装置の磁束の流れを説明するための図である。なお、図3では、保持部材3の図示は省略されている。
図3(A)には、ワークWの表面に硬化層Hが形成されている場合が示されている。ワークWの硬化層Hは非硬化層に比べて透磁率が低い。硬化層Hが表面に形成されたワークWにおいて、励磁用コイル部12に通電すると、励磁用コア部11のコ字状の正面形状に沿って大きな磁束M1が発生し、この磁束M1とともに閉ループを構成する磁束M21が発生する。磁束M21は、透磁率の低い硬化層Hにのみ生じることになり、磁束M1より小さい。
Next, the measurement principle of this embodiment will be described with reference to FIG. FIG. 3 is a diagram for explaining the flow of magnetic flux of the hardened layer depth measuring apparatus. In addition, illustration of the holding member 3 is abbreviate | omitted in FIG.
FIG. 3A shows the case where the hardened layer H is formed on the surface of the workpiece W. The hardened layer H of the workpiece W has a lower magnetic permeability than the non-hardened layer. In the workpiece W having the hardened layer H formed on the surface, when the exciting coil portion 12 is energized, a large magnetic flux M1 is generated along the U-shaped front shape of the exciting core portion 11, and a closed loop is formed together with the magnetic flux M1. The magnetic flux M21 which comprises is generated. The magnetic flux M21 is generated only in the hardened layer H having a low magnetic permeability, and is smaller than the magnetic flux M1.

図3(B)には、ワークWの表面に硬化層が形成されていない場合が示されている。ワークWの表面を含めて全体の透磁率が均一である。ワークWにおいて、励磁用コイル部12に通電すると、励磁用コア部11のコ字状の正面形状に沿って大きな磁束M1が発生し、この磁束M1とともに閉ループを構成する磁束M22が発生する。ワークWは、透磁率が深さに関わらず均一であるため、磁束M22は、ワークWの表面に限らず生じることになる。そのため、磁束M22は磁束M1と同じ大きさとなる。
硬化層Hの有無にかかわらず、磁束M1に伴って空間磁束N1がワークWの表面に発生する。空間磁束N1を検出コイル2で検出することになるが、空間磁束N1は、硬化層Hが表面に形成されたワークWでは、大きく、硬化層Hが表面に形成されていないワークWでは小さい。つまり、硬化層Hの深さに比例して空間磁束N1の大きさが変化し、これを検出コイル2で検出することで、硬化層Hの深さが測定できることになる。
FIG. 3B shows a case where a hardened layer is not formed on the surface of the workpiece W. The entire magnetic permeability including the surface of the workpiece W is uniform. In the workpiece W, when the exciting coil portion 12 is energized, a large magnetic flux M1 is generated along the U-shaped front shape of the exciting core portion 11, and a magnetic flux M22 constituting a closed loop is generated together with the magnetic flux M1. Since the workpiece W has a uniform magnetic permeability regardless of the depth, the magnetic flux M22 is generated not only on the surface of the workpiece W. Therefore, the magnetic flux M22 is the same size as the magnetic flux M1.
Regardless of the presence or absence of the hardened layer H, a spatial magnetic flux N1 is generated on the surface of the workpiece W along with the magnetic flux M1. Although the spatial magnetic flux N1 is detected by the detection coil 2, the spatial magnetic flux N1 is large in the work W on which the hardened layer H is formed on the surface, and is small in the work W on which the hardened layer H is not formed on the surface. That is, the magnitude of the spatial magnetic flux N1 changes in proportion to the depth of the hardened layer H, and the depth of the hardened layer H can be measured by detecting this with the detection coil 2.

図4に基づいて、検出用コア部21の形状を特定することで、ワークWの硬化層Hの深さの測定精度を向上できることをシミュレーションにより説明する。
図4にはワークWに硬化層深さ測定装置が装着された状態が示されている。なお、図4の硬化層深さ測定装置は、励磁コイル1が半分のみ図示されている。
シミュレーションの条件
ワークW:硬化層Hの深さの違う溝を有するワークWを想定する。
硬化層深さは、2mmの浅め品モデルと、4mmの深め品モデルとを用意。
励磁コイル1:
励磁用コア部11:ケイ素鋼板
長さ30mm×高さ15mm
脚部の幅寸法:5mm
Based on FIG. 4, it will be described by simulation that the measurement accuracy of the depth of the hardened layer H of the workpiece W can be improved by specifying the shape of the detection core portion 21.
FIG. 4 shows a state in which the hardened layer depth measuring device is mounted on the workpiece W. In the hardened layer depth measuring apparatus shown in FIG. 4, only half of the exciting coil 1 is shown.
Conditions for simulation Work W: A work W having grooves with different depths of the hardened layer H is assumed.
The hardened layer depth is 2mm shallow model and 4mm deep model.
Excitation coil 1:
Excitation core 11: silicon steel plate
Length 30mm x Height 15mm
Leg width: 5mm

検出コイル2:
検出用コア部21:ケイ素鋼板(無方向性の電磁鋼板)
寸法変化条件:寸法aの影響を検討するためのパターン:表1参照
寸法bの影響を検討するためのパターン:表2参照
寸法cの影響を検討するためのパターン:表3参照
励磁条件:20Hz、0.5A
解析方法:3D周波数応答解析
電磁気特性:表4参照
Detection coil 2:
Detection core 21: Silicon steel plate (non-oriented electrical steel plate)
Dimensional change condition: Pattern for examining the effect of dimension a: See Table 1
Pattern for studying the effect of dimension b: see Table 2
Pattern for studying the effect of dimension c: see Table 3 Excitation conditions: 20 Hz, 0.5 A
Analysis method: 3D frequency response analysis Electromagnetic characteristics: See Table 4

Figure 2016164538
Figure 2016164538

Figure 2016164538
Figure 2016164538

Figure 2016164538
Figure 2016164538

Figure 2016164538
Figure 2016164538

以上の条件で行ったシミュレーションの結果が図5に示されている。
図5は、シミュレーション結果として硬化層深さと変化率との関係を示すグラフである。ここで、変化率とは、{(深め品の検出電圧−浅め品の検出電圧)/浅め品の検出電圧}×100[%]である。
図5(A)は寸法aの影響を示すものであり、図5(B)は寸法bの影響を示すものであり、図5(C)は寸法cの影響を示すものである。
図5(A)では、表1で示される条件下で行われたシミュレーション結果が示されている。寸法aが0.4mmの場合の変化率をP1で示し、0.8mmの場合の変化率をP2で示し、1.2mmの場合の変化率をP3で示す。
The result of the simulation performed under the above conditions is shown in FIG.
FIG. 5 is a graph showing the relationship between the cured layer depth and the rate of change as a simulation result. Here, the rate of change is {(detection voltage of deeper product−detection voltage of shallower product) / detection voltage of shallower product} × 100 [%].
5A shows the influence of the dimension a, FIG. 5B shows the influence of the dimension b, and FIG. 5C shows the influence of the dimension c.
FIG. 5A shows the result of simulation performed under the conditions shown in Table 1. The change rate when the dimension a is 0.4 mm is indicated by P1, the change rate when the dimension a is 0.8 mm is indicated by P2, and the change rate when the dimension a is 1.2 mm is indicated by P3.

図5(A)で示される通り、変化率P1のグラフの傾きが最も大きく、変化率P3のグラフの傾きが最も小さく、変化率P2のグラフの傾きは、これらの中間である。
一般的に、測定精度を向上させるには、検出電圧と硬化層深さとには、硬化層深さが大きくなるに従って直線状に検出電圧が大きくなる比例関係があることが好ましい。このように、検出電圧と硬化層深さとの関係に比例関係があると、検出電圧から硬化層深さの分離が可能となる。これに対して、硬化層深さが深くなっても、検出電圧が変わらない場合や、深くなると検出電圧が低下する場合では、検出電圧から硬化層深さを分離することができない。
As shown in FIG. 5A, the slope of the graph of the change rate P1 is the largest, the slope of the graph of the change rate P3 is the smallest, and the slope of the graph of the change rate P2 is between these.
In general, in order to improve measurement accuracy, it is preferable that the detection voltage and the cured layer depth have a proportional relationship in which the detected voltage increases linearly as the cured layer depth increases. Thus, when there is a proportional relationship between the detection voltage and the hardened layer depth, the hardened layer depth can be separated from the detected voltage. On the other hand, when the detection voltage does not change even when the hardened layer depth is deep, or when the detection voltage decreases when the hardened layer depth is deep, the hardened layer depth cannot be separated from the detection voltage.

以上のことから、寸法aが小さくなるに従って、測定精度が向上することがわかる。
これは、寸法aが小さくなると、空間に浮遊する磁束の検出用コア部21に入る量が減り、相対的にワークWから漏れる磁束の割合が増えるためと考えられるからである。
逆に、寸法aが1.2mmより大きいと、グラフの傾きが小さくなり、測定精度を十分に向上させることができないだけでなく、検出コイル2が大きくなって装置の小型化が十分に図れない。寸法aが0.4mmより小さい場合には、0.4mmの場合より測定精度が向上することが容易に想定できるが、寸法aが0.2mmより小さいと、検出用コア部21を製造することが困難となる。
From the above, it can be seen that the measurement accuracy improves as the dimension a decreases.
This is because when the dimension a is reduced, the amount of the magnetic flux floating in the space entering the detection core portion 21 is reduced, and the ratio of the magnetic flux leaking from the workpiece W is relatively increased.
On the contrary, if the dimension a is larger than 1.2 mm, the inclination of the graph becomes small, and not only the measurement accuracy cannot be sufficiently improved, but also the detection coil 2 becomes large and the apparatus cannot be sufficiently downsized. . When the dimension a is smaller than 0.4 mm, it can be easily assumed that the measurement accuracy is improved as compared with the case of 0.4 mm, but when the dimension a is smaller than 0.2 mm, the detection core portion 21 is manufactured. It becomes difficult.

図5(B)では、表2で示される条件下で行われたシミュレーション結果が示されている。寸法bが0.75mmの場合の変化率をQ1で示し、1.5mmの場合の変化率をQ2で示し、3.0mmの場合の変化率をQ3で示す。
図5(B)で示される通り、変化率Q1のグラフの傾きが小さく、変化率Q3のグラフの傾きが大きく、変化率Q2のグラフの傾きはこれらの間にあるが、これらの差は僅かである。
そのため、寸法bの影響度はやや低いものの、寸法bが大きくなるに従って、変化率は僅かに大きくなる。
これは、寸法bが短くなると、検出用コア部21の両端部でワークWとのギャップが縮まり、ワークWから漏れる磁束が検出用コア部21に入りやすくなり、硬化層深さの変化を検出しやすくなったと考えられるからである。
FIG. 5B shows the result of simulation performed under the conditions shown in Table 2. The change rate when the dimension b is 0.75 mm is indicated by Q1, the change rate when it is 1.5 mm is indicated by Q2, and the change rate when it is 3.0 mm is indicated by Q3.
As shown in FIG. 5B, the slope of the graph of the change rate Q1 is small, the slope of the graph of the change rate Q3 is large, and the slope of the graph of the change rate Q2 is between them, but the difference between these is slight. It is.
Therefore, although the degree of influence of the dimension b is somewhat low, the rate of change slightly increases as the dimension b increases.
This is because when the dimension b is shortened, the gap with the workpiece W is reduced at both ends of the detection core portion 21, and the magnetic flux leaking from the workpiece W is likely to enter the detection core portion 21 to detect a change in the hardened layer depth. It is because it seems that it became easy to do.

図5(C)では、表3で示される条件下で行われたシミュレーション結果が示されている。寸法cが5.5mmの場合の変化率をR1で示し、7.5mmの場合の変化率をR2で示し、9.5mmの場合の変化率をR3で示す。
図5(C)で示される通り、変化率R1、変化率R2、変化率R3は、ほぼ同一線上にある。
そのため、寸法cの影響度は殆ど無い。
これは、寸法cが変わっても、空間を浮遊する磁束とワークWから漏れる磁束の比率や、検出用コア部21とワークWとのギャップがほぼ変わらないと考えられるからである。
FIG. 5C shows the result of simulation performed under the conditions shown in Table 3. The rate of change when the dimension c is 5.5 mm is indicated by R1, the rate of change when the dimension is 7.5 mm is indicated by R2, and the rate of change when the dimension c is 9.5 mm is indicated by R3.
As shown in FIG. 5C, the change rate R1, the change rate R2, and the change rate R3 are substantially on the same line.
Therefore, there is almost no influence of the dimension c.
This is because even if the dimension c changes, the ratio of the magnetic flux floating in the space to the magnetic flux leaking from the work W and the gap between the detection core portion 21 and the work W are considered to be substantially unchanged.

本実施形態の硬化層深さ測定装置により、ワークWの硬化層Hの深さが測定できることを実験により説明する。
本実験では、硬化層Hの深さが相違する複数のワークWを用意し、これらについて硬化層深さ測定装置で検出電圧を測定した。
図6には実験で使用される硬化層深さ測定装置がワークWに装着された状態が示されている。
図6において、実験に使用するワークWは、溝加工ワークであり、その断面形状は略半円状内周面を有する。半円状内周面のうち円中心Oを通り弦と直交する直線WLの上に凹状のガイド溝WGを有する。本実験では、円中心Oとガイド溝WGとを結ぶ直線WLに対してそれぞれ所定角度α(45°)離れた2つの位置B,Cが測定位置となる。
An experiment will explain that the depth of the hardened layer H of the workpiece W can be measured by the hardened layer depth measuring device of the present embodiment.
In this experiment, a plurality of workpieces W having different depths of the hardened layer H were prepared, and the detected voltage was measured with a hardened layer depth measuring device.
FIG. 6 shows a state in which the hardened layer depth measuring device used in the experiment is mounted on the workpiece W.
In FIG. 6, the workpiece W used in the experiment is a groove machining workpiece, and the cross-sectional shape thereof has a substantially semicircular inner peripheral surface. A concave guide groove WG is provided on a straight line WL passing through the center O of the semicircular inner circumference and orthogonal to the chord. In this experiment, two positions B and C that are separated from each other by a predetermined angle α (45 °) with respect to the straight line WL connecting the circle center O and the guide groove WG are measurement positions.

[ワークW]
対象ワーク:溝加工ワーク
材質:炭素鋼
限界硬さ:446HV
ワーク水準:硬化層Hが浅め、通常、深めの合計3パターン。
有効硬化層深さ仕様:
硬化層Hが浅めのワークW:
B点での有効硬化層深さ3.15mm
C点での有効硬化層深さ2.71mm
硬化層Hが通常のワークW:
B点での有効硬化層深さ3.25mm
C点での有効硬化層深さ3.04mm
硬化層Hが深めのワークW:
B点での有効硬化層深さ3.77mm
C点での有効硬化層深さ3.74mm
ここで、有効硬化層深さとは、表面から限界硬さに対応した深さをいう。
[Work W]
Target work: Grooving work Material: Carbon steel Limit hardness: 446HV
Work level: Hardened layer H is shallow, usually 3 patterns in total.
Effective hardened layer depth specification:
Work W with a hardened layer H shallow:
Effective hardened layer depth at point B 3.15mm
Effective hardened layer depth at point C 2.71 mm
Hardened layer H is normal work W:
Effective hardened layer depth at point B 3.25 mm
Effective hardened layer depth at point C 3.04mm
Work W with deep hardened layer H:
Effective hardened layer depth at point B 3.77 mm
Effective hardened layer depth at point C 3.74mm
Here, the effective hardened layer depth refers to a depth corresponding to the limit hardness from the surface.

[硬化層深さ測定装置]
励磁用コア部11:
1枚のケイ素鋼板の形状:寸法l=30mm、寸法m=15mm、脚部幅寸法n=5mm、厚みt=0.2mm
ケイ素鋼板を25枚重ねて励磁用コア部11を構成(コア全体の厚みが5mm)。
励磁用コイル部12:φ0.45mmの線を165ターン
検出用コイル部22:φ0.07mmの線を100ターン
保持部材3:
材料:エポキシ樹脂
成型方法:実際のワークWを型とし、この型の中にエポキシ樹脂を注入する。エポキシ樹脂が硬化する前に、巻線後の励磁コイル1及び検出コイル2を埋め込む。その後、エポキシ樹脂を硬化させる。
[Hardened layer depth measuring device]
Excitation core section 11:
Shape of one silicon steel sheet: dimension l = 30 mm, dimension m = 15 mm, leg width dimension n = 5 mm, thickness t = 0.2 mm
25 silicon steel plates are stacked to form the exciting core 11 (the thickness of the entire core is 5 mm).
Excitation coil section 12: 165 turns of 0.45 mm line Detection coil section 22: 100 turns of 0.07 mm line Holding member 3:
Material: Epoxy resin Molding method: An actual work W is used as a mold, and an epoxy resin is injected into the mold. Before the epoxy resin is cured, the exciting coil 1 and the detection coil 2 after winding are embedded. Thereafter, the epoxy resin is cured.

本実験では、検出用コア部21の寸法を変えた第一実験と第二実験を行った。
検出用コア部21:
第一実験
1枚のケイ素鋼板の形状:寸法c=7.5mm、寸法b=1.5mm、厚みt=0.2mm
ケイ素鋼板を4枚重ねて検出用コア部21を構成(コア全体の厚み=寸法aが0.8mm)。
第二実験
1枚のケイ素鋼板の形状:寸法c=9.0mm、寸法b=3.0mm、厚みt=0.2mm
ケイ素鋼板を2枚重ねて検出用コア部21を構成(コア全体の厚み=寸法aが0.4mm)。
In this experiment, a first experiment and a second experiment were performed in which the dimensions of the detection core portion 21 were changed.
Detection core unit 21:
First experiment Shape of one silicon steel sheet: dimension c = 7.5 mm, dimension b = 1.5 mm, thickness t = 0.2 mm
Four silicon steel plates are stacked to constitute the detection core portion 21 (the thickness of the entire core = the dimension a is 0.8 mm).
Second experiment Shape of one silicon steel plate: dimension c = 9.0 mm, dimension b = 3.0 mm, thickness t = 0.2 mm
Two silicon steel plates are stacked to constitute the detection core portion 21 (the thickness of the entire core = the dimension a is 0.4 mm).

[実験装置]
図7には、実験装置の概略が示されている。なお、図7の硬化層深さ測定装置では保持部材3の図示が省略されている。
図7において、硬化層深さ測定装置の励磁コイル1には抵抗器4及びバイポーラ電源5が接続され、バイポーラ電源5には周波数発生装置6が接続されている。硬化層深さ測定装置の検出コイル2には信号増幅器7が接続されている。抵抗器4と信号増幅器7とにはオシロスコープ8が接続されている。
抵抗器4:金属被膜抵抗1/4W22Ωを22本並列接続して作製した1Ω抵抗器
バイポーラ電源5:株式会社高砂製作所製 4象限バイポーラ電源(BWS40-7.5)
周波数発生装置6:株式会社エヌエフ回路設計ブロック製 ファンクションジェネレータDF1906
信号増幅器7:株式会社エヌエフ回路設計ブロック製 アイソレーションアンプ5325
オシロスコープ8:Tektronix社製 オスロスコープTDS3054B
励磁条件:周波数20Hz 励磁電流0.5A
測定方法:位置Bと位置Cとの2箇所で、有効硬化層深さが3パターンのワーク水準で測定を行った。この測定は励磁条件に従って励磁し、検出コイル2から出力された検出電圧波形の実効値をオシロスコープ8で読む。
[Experimental device]
FIG. 7 shows an outline of the experimental apparatus. In addition, illustration of the holding member 3 is abbreviate | omitted in the hardened layer depth measuring apparatus of FIG.
In FIG. 7, a resistor 4 and a bipolar power source 5 are connected to the exciting coil 1 of the hardened layer depth measuring device, and a frequency generator 6 is connected to the bipolar power source 5. A signal amplifier 7 is connected to the detection coil 2 of the hardened layer depth measuring apparatus. An oscilloscope 8 is connected to the resistor 4 and the signal amplifier 7.
Resistor 4: 1Ω resistor made by connecting 22 metal film resistors 1 / 4W22Ω in parallel Bipolar power supply 5: Quadrant bipolar power supply (BWS40-7.5) manufactured by Takasago Manufacturing Co., Ltd.
Frequency generator 6: NF Circuit Design Block Co., Ltd. Function Generator DF1906
Signal amplifier 7: NF Circuit Design Block Co., Ltd. Isolation amplifier 5325
Oscilloscope 8: Tektronix Osloscope TDS3054B
Excitation condition: Frequency 20Hz Excitation current 0.5A
Measurement method: Measurement was performed at two positions, position B and position C, at a work level having an effective hardened layer depth of 3 patterns. In this measurement, excitation is performed according to the excitation conditions, and the effective value of the detection voltage waveform output from the detection coil 2 is read by the oscilloscope 8.

[実験結果]
図8(A)は、第一実験により求められた有効硬化層深さと検出電圧との関係を示す検量線のグラフである。
図8(A)には、位置Bと位置Cとで有効硬化層深さが3パターンで行った検出電圧の実験値S1と、これらの実験値S1を基に求めた検量線の近似直線SL1とが示されている。
近似直線SL1は、y=1.8572x+52.288の式1となる。
近似直線SL1に対する実験値S1の測定誤差のうち最大値SM1が0.22mmであり、最小値SN1が−0.19mmである。つまり、近似直線SL1に対する測定誤差は、−0.19mm〜0.22mmである。繰り返し測定ばらつきのうち最大値SO1(n=5)は、0.49mVである。
[Experimental result]
FIG. 8A is a graph of a calibration curve showing the relationship between the effective hardened layer depth determined by the first experiment and the detected voltage.
FIG. 8A shows an experimental value S1 of the detection voltage obtained in three patterns of the effective hardened layer depth at the positions B and C, and an approximate straight line SL1 of a calibration curve obtained based on these experimental values S1. Is shown.
The approximate straight line SL1 is expressed by Equation 1 with y = 1.8572x + 52.288.
Among the measurement errors of the experimental value S1 with respect to the approximate straight line SL1, the maximum value SM1 is 0.22 mm, and the minimum value SN1 is −0.19 mm. That is, the measurement error with respect to the approximate straight line SL1 is −0.19 mm to 0.22 mm. Among the repeated measurement variations, the maximum value SO1 (n = 5) is 0.49 mV.

図8(B)は、第二実験により求められた有効硬化層深さと検出電圧との関係を示す検量線のグラフである。
図8(B)には、位置Bと位置Cとで有効硬化層深さが3パターンで行った検出電圧の実験値S2と、これらの実験値S2を基に求めた検量線の近似直線SL2とが示されている。
近似直線SL2は、y=3.3928x+116.3の式2となる。
近似直線SL2に対する実験値S2の測定誤差のうち最大値SM2が0.09mmであり、最小値SN2が−0.08mmである。つまり、近似直線SL2に対する測定誤差は、−0.08mm〜0.09mmである。繰り返し測定ばらつきの最大値SO2(n=5)は、0.50mVである。
FIG. 8B is a graph of a calibration curve showing the relationship between the effective hardened layer depth obtained by the second experiment and the detected voltage.
FIG. 8B shows the experimental value S2 of the detection voltage obtained in three patterns of the effective hardened layer depth at the positions B and C, and the approximate straight line SL2 of the calibration curve obtained based on these experimental values S2. Is shown.
The approximate straight line SL2 is expressed by Equation 2 with y = 3.3928x + 116.3.
Among the measurement errors of the experimental value S2 with respect to the approximate straight line SL2, the maximum value SM2 is 0.09 mm, and the minimum value SN2 is −0.08 mm. That is, the measurement error with respect to the approximate straight line SL2 is −0.08 mm to 0.09 mm. The maximum value SO2 (n = 5) of the repeated measurement variation is 0.50 mV.

以上の第一実験と、第一実験に対して寸法aを小さくし、寸法bと寸法cとを大きくした第二実験を比較すると、近似直線SL1と近似直線SL2との傾きは、式1と式2との対比から、第二実験が大きいことがわかる。そして、硬化層深さの最大測定誤差(n=5)は、第一実験では、−0.19mm〜0.22mmであるのに対して、第二実験では、−0.08mm〜0.09mmであり、第一実験に比べて寸法aの値を小さくした第二実験が小さいことがかかった。また、繰り返し測定によるばらつきの最大値は、第一実験で0.49mVであり、第二実験で0.50mVであるため、ほぼ変わらない。   Comparing the above first experiment with the second experiment in which the dimension a is reduced and the dimension b and the dimension c are increased compared to the first experiment, the slope of the approximate straight line SL1 and the approximate straight line SL2 is From the comparison with Equation 2, it can be seen that the second experiment is large. The maximum measurement error (n = 5) of the hardened layer depth is -0.19 mm to 0.22 mm in the first experiment, while -0.08 mm to 0.09 mm in the second experiment. Therefore, the second experiment in which the value of the dimension a was smaller than that of the first experiment was small. In addition, the maximum value of variation due to repeated measurement is 0.49 mV in the first experiment and 0.50 mV in the second experiment, and thus does not change substantially.

従って、本実施形態では、次の効果を奏することができる。
(1)検出コイル2は、励磁用コア部11を構成する脚部111の間であってワークWに配置される検出用コア部21と、検出用コア部21に巻回された検出用コイル部22とを有するから、検出コイル2が励磁コイル1とは離れた位置に配置されることになり、励磁用コア部11に流れる磁束の影響が及ぶことが少ない。そのため、本実施形態では、従来に比べて、測定精度を高くできる。
Therefore, in this embodiment, the following effects can be achieved.
(1) The detection coil 2 includes a detection core portion 21 disposed between the legs 111 constituting the excitation core portion 11 and disposed on the workpiece W, and a detection coil wound around the detection core portion 21. Therefore, the detection coil 2 is arranged at a position away from the excitation coil 1, and the influence of the magnetic flux flowing in the excitation core unit 11 is less likely. Therefore, in this embodiment, the measurement accuracy can be increased as compared with the conventional case.

(2)検出用コア部21は、ワークWの表面に対して垂直方向の寸法をa、垂直方向とは直交する方向の寸法をbとし、寸法aと寸法bとにそれぞれ直交する寸法をcとすると、寸法cの方向に沿って検出用コイル部が巻回され、寸法aは寸法bより小さい構成としたから、空間磁束を検出コイル2で検出しやすくなり、測定精度がより向上することになる。 (2) The detection core 21 has a dimension perpendicular to the surface of the workpiece W as a, a dimension perpendicular to the perpendicular direction as b, and a dimension perpendicular to the dimensions a and b as c. Then, since the detection coil portion is wound along the direction of the dimension c and the dimension a is smaller than the dimension b, the spatial magnetic flux is easily detected by the detection coil 2, and the measurement accuracy is further improved. become.

(3)検出用コア部21は、板を複数枚積層させて直方体状に形成したから、検出用コア部21を容易に製造することができる。
(4)検出用コア部21は、全ての方向に均一な磁気特性を有する無方向性の電磁鋼板から構成されるので、この点からも測定精度の向上を図ることができる。
(3) Since the detection core portion 21 is formed in a rectangular parallelepiped shape by laminating a plurality of plates, the detection core portion 21 can be easily manufactured.
(4) Since the detection core portion 21 is composed of a non-directional electrical steel sheet having uniform magnetic characteristics in all directions, the measurement accuracy can be improved also in this respect.

(5)励磁コイル1と検出コイル2とが保持部材3により一体にされているから、保持部材3により、励磁コイル1と検出コイル2とが位置決めされることになり、ワークWへの励磁コイル1及び検出コイル2の設置作業が容易となる。しかも、励磁コイル1と検出コイル2とが位置決めされた状態で、測定できることから、測定精度が低下することを防止できる。 (5) Since the excitation coil 1 and the detection coil 2 are integrated by the holding member 3, the excitation coil 1 and the detection coil 2 are positioned by the holding member 3. Installation work of 1 and the detection coil 2 becomes easy. And since it can measure in the state in which the exciting coil 1 and the detection coil 2 were positioned, it can prevent that a measurement precision falls.

(6)保持部材3は、エポキシ樹脂、その他の合成樹脂から形成されているから、溶融された合成樹脂を容器に流し込むだけで、保持部材3の形成が容易に行える。形成された後の保持部材3は、励磁用コイル部12や検出用コイル部22が固定されているので、使用中に短絡することや、破断することがない。 (6) Since the holding member 3 is formed of an epoxy resin or other synthetic resin, the holding member 3 can be easily formed simply by pouring the molten synthetic resin into the container. The formed holding member 3 is not short-circuited or broken during use because the exciting coil portion 12 and the detection coil portion 22 are fixed.

(7)保持部材3は、ワークWに対して位置決めする位置決め部3Aを有するから、励磁コイル1と検出コイル2とがワークWに対して適正な位置を保ちながら移動することになり、より精度の高い測定を行うことができる。 (7) Since the holding member 3 has the positioning portion 3A for positioning with respect to the workpiece W, the excitation coil 1 and the detection coil 2 move while maintaining an appropriate position with respect to the workpiece W, and thus more accurate. High measurement can be performed.

なお、本発明は前述の各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、前記実施形態では、検出用コア部21を直方体状に形成したが、本発明では、寸法aは寸法bより小さい構成であれば、検出用コア部21の具体的な形状は限定されるものではない。例えば、検出用コア部21を断面楕円形状としてもよい。
The present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the embodiment, the detection core portion 21 is formed in a rectangular parallelepiped shape. However, in the present invention, the specific shape of the detection core portion 21 is limited as long as the dimension a is smaller than the dimension b. It is not a thing. For example, the detection core 21 may have an elliptical cross section.

本発明では、保持部材3自体を必ずしも設けることを要しない。仮に、保持部材3を設ける場合であっても、前記実施形態の構成に限定されない。例えば、さらに、保持部材3の形状は前記実施形態の形状に限定されるものではなく、直方体状、円筒状、三角柱状等であってもよい。   In the present invention, it is not always necessary to provide the holding member 3 itself. Even if it is a case where the holding member 3 is provided, it is not limited to the structure of the said embodiment. For example, the shape of the holding member 3 is not limited to the shape of the above embodiment, and may be a rectangular parallelepiped shape, a cylindrical shape, a triangular prism shape, or the like.

1…励磁コイル、11…励磁用コア部、110…基部、111…脚部、12…励磁用コイル部、2…検出コイル、21…検出用コア部、22…検出用コイル部、3…保持部材、3A…位置決め部、a…寸法、b…寸法、c…寸法、H…硬化層、W…ワーク   DESCRIPTION OF SYMBOLS 1 ... Excitation coil, 11 ... Excitation core part, 110 ... Base part, 111 ... Leg part, 12 ... Excitation coil part, 2 ... Detection coil, 21 ... Detection core part, 22 ... Detection coil part, 3 ... Holding Member, 3A ... positioning part, a ... dimension, b ... dimension, c ... dimension, H ... hardened layer, W ... workpiece

Claims (4)

ワークを焼入れして表面に形成された硬化層の深さを測定する装置であって、
磁束を発生させて前記ワークを磁化する励磁コイルと、前記励磁コイルで発生させた磁束を検出する検出コイルとを備え、前記励磁コイルは、脚部の先端が前記ワークに対向する門形の励磁用コア部と、前記励磁用コア部に巻回された励磁用コイル部とを有し、
前記検出コイルは、前記励磁用コア部に脚部の間に配置され前記ワークに配置される検出用コア部と、前記検出用コア部に巻回された検出用コイル部とを有し、
前記検出用コア部は、前記ワークの表面に対して垂直方向の寸法をa、前記垂直方向とは直交する方向の寸法をbとし、前記寸法aと前記寸法bとにそれぞれ直交する寸法をcとすると、寸法cの方向に沿って前記検出用コイル部が巻回され、
寸法aは寸法bより小さい
ことを特徴とする硬化層深さ測定装置。
An apparatus for quenching a workpiece and measuring the depth of a hardened layer formed on the surface,
An excitation coil that magnetizes the workpiece by generating magnetic flux and a detection coil that detects the magnetic flux generated by the excitation coil, and the excitation coil is a portal-shaped excitation whose leg tip faces the workpiece A core portion for excitation, and an exciting coil portion wound around the exciting core portion,
The detection coil has a detection core portion disposed between the legs of the excitation core portion and disposed on the workpiece, and a detection coil portion wound around the detection core portion,
The detection core portion has a dimension perpendicular to the surface of the workpiece, a, a dimension perpendicular to the vertical direction, b, and a dimension perpendicular to the dimension a and the dimension b, respectively. Then, the detection coil portion is wound along the direction of the dimension c,
The dimension a is smaller than the dimension b. The hardened layer depth measuring apparatus characterized by the above-mentioned.
請求項1に記載された硬化層深さ測定装置において、
前記検出用コア部は、直方体状に形成されている
ことを特徴とする硬化層深さ測定装置。
In the hardened layer depth measuring apparatus according to claim 1,
The detection core portion is formed in a rectangular parallelepiped shape.
請求項2に記載された硬化層深さ測定装置において、
前記寸法aは、1.2mm以下である
ことを特徴とする硬化層深さ測定装置。
In the hardened layer depth measuring apparatus according to claim 2,
The said dimension a is 1.2 mm or less. The hardened layer depth measuring apparatus characterized by the above-mentioned.
請求項2又は請求項3に記載された硬化層深さ測定装置において、
前記検出用コア部は、無方向性の電磁鋼板から構成される
ことを特徴とする硬化層深さ測定装置。
In the hardened layer depth measuring apparatus according to claim 2 or 3,
The detection core part is made of a non-oriented electrical steel sheet. A hardened layer depth measuring apparatus.
JP2015045309A 2015-03-06 2015-03-06 Hardened layer depth measuring device Active JP6580350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045309A JP6580350B2 (en) 2015-03-06 2015-03-06 Hardened layer depth measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045309A JP6580350B2 (en) 2015-03-06 2015-03-06 Hardened layer depth measuring device

Publications (2)

Publication Number Publication Date
JP2016164538A true JP2016164538A (en) 2016-09-08
JP6580350B2 JP6580350B2 (en) 2019-09-25

Family

ID=56876218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045309A Active JP6580350B2 (en) 2015-03-06 2015-03-06 Hardened layer depth measuring device

Country Status (1)

Country Link
JP (1) JP6580350B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161631A (en) * 1981-03-31 1982-10-05 Toshiba Corp Detecting device for surface stress
JP2005257701A (en) * 2000-01-20 2005-09-22 Jfe Steel Kk Method and apparatus for measuring material characteristics of magnetic substance material
US20150008908A1 (en) * 2012-02-08 2015-01-08 Maps Technology Limited Apparatus and method for measuring properties of a ferromagnetic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161631A (en) * 1981-03-31 1982-10-05 Toshiba Corp Detecting device for surface stress
JP2005257701A (en) * 2000-01-20 2005-09-22 Jfe Steel Kk Method and apparatus for measuring material characteristics of magnetic substance material
US20150008908A1 (en) * 2012-02-08 2015-01-08 Maps Technology Limited Apparatus and method for measuring properties of a ferromagnetic material

Also Published As

Publication number Publication date
JP6580350B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
CN107850571B (en) Defect measuring method, defect measuring apparatus, and inspection probe
EP2940464B1 (en) Apparatus and method for detecting inner defects of steel plate
CN107850570B (en) Defect measuring method, defect measuring device, and inspection probe
US20120007596A1 (en) Eddy current flaw detection probe
CN109668506B (en) Magnetic metal material thickness detection method based on eddy current steady-state characteristic
KR20170120167A (en) Rope damage diagnosis test equipment and rope damage diagnosis test method
KR20120052394A (en) Method for inspecting an austenitic stainless steel weld
JP6675676B2 (en) Hardened layer depth measuring device
Yilai et al. Research on internal and external defect identification of drill pipe based on weak magnetic inspection
JP6580350B2 (en) Hardened layer depth measuring device
Hsiao et al. Development of a permanent magnet as magnetizer for linear magnetic pattern manufacturing
Vasilenko et al. The topography of the field and flux inside and above the surfaces of ferromagnetic plates during their contact and contactless magnetization
JP2005031014A (en) Magnetic sensor
JP6662575B2 (en) Hardened layer depth measuring device and hardened layer depth measuring method
Zurek Fem simulation of effect of non-uniform air gap on apparent permeability of cut cores
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
JP2019101029A (en) Method and device for measuring thickness of non-magnetizable layers on magnetizable base material
JP2018004483A (en) Magnetic characteristics measuring method, and magnetic characteristics measuring device
JP2011196980A (en) Barkhausen noise inspection device
JP2010237186A (en) Eddy current flaw detection probe
JP2010243175A (en) Barkhausen noise inspecting device
RU138369U1 (en) ACCESSORIES DESIGN FOR MEASURING MAGNETIC INDUCTION OF PERMANENT MAGNETS AT WORKING TEMPERATURE
JP2005315734A (en) Method and instrument for measuring displacement of ferromagnetic body
Gorkunov et al. Study of arrangement efficiency of hall sensors of an attachable magnetic instrument used for recording the coercive force of a local area of an article
Jesenik et al. Finding a crack in a material and determining of depth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190828

R150 Certificate of patent or registration of utility model

Ref document number: 6580350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250