JP2016163517A - Control method of permanent magnet motor and controller of permanent magnet motor - Google Patents

Control method of permanent magnet motor and controller of permanent magnet motor Download PDF

Info

Publication number
JP2016163517A
JP2016163517A JP2015043505A JP2015043505A JP2016163517A JP 2016163517 A JP2016163517 A JP 2016163517A JP 2015043505 A JP2015043505 A JP 2015043505A JP 2015043505 A JP2015043505 A JP 2015043505A JP 2016163517 A JP2016163517 A JP 2016163517A
Authority
JP
Japan
Prior art keywords
period
permanent magnet
motor
energization
magnet motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015043505A
Other languages
Japanese (ja)
Inventor
敬大 遠井
Takahiro Toi
敬大 遠井
稔 粟津
Minoru Awazu
稔 粟津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015043505A priority Critical patent/JP2016163517A/en
Publication of JP2016163517A publication Critical patent/JP2016163517A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiency control the drive of permanent magnet motor.SOLUTION: A rectification part 11 and a smoothing capacitor 13 rectify an AC voltage supplied from a single-phase AC power source 12 to generate a rectified voltage having a ripple; an inverter circuit 14 supplies the rectified voltage to a wiring 6 for period of time of a half cycle of an electrical angle period of a motor 7. A control circuit 16 stops from supplying the rectified voltage to the wiring 6 for a period of time when the rectified voltage detected via the voltage sensor 17 is smaller than a threshold level V.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、永久磁石モータの制御方法及び装置に関する。   Embodiments described herein relate generally to a method and apparatus for controlling a permanent magnet motor.

一般的なブラシレスDCモータの制御方法は、負荷(回転数や負荷トルク)に応じて巻線に電圧をかける通電期間を設ける際に、巻線に発生する誘起電圧のゼロ交差点に先行して位相を進める進み期間を設けている。通電期間と進み期間とは、一定に制御したり整流電圧や回転数に応じて変化させるように制御する(例えば、特許文献1参照)。   In a general brushless DC motor control method, when an energization period in which a voltage is applied to a winding according to a load (rotation speed or load torque) is provided, a phase precedes a zero crossing point of an induced voltage generated in the winding. There is an advance period to advance. The energization period and the advance period are controlled to be constant or to be changed according to the rectified voltage and the rotation speed (for example, refer to Patent Document 1).

特許第5546496号公報Japanese Patent No. 5546496

家電機器は、商用交流電源の電圧を整流した直流電圧を使用するが、コストの点から平滑コンデンサに容量が小さいものを選択する場合が多く、また、平滑コンデンサを設けないものもある。このような場合、整流した電圧にはリップルが含まれている。特許文献1に開示されているモータの制御方法では、整流電圧のレベル低い期間にも通電を行っているが、電圧の低い期間は巻線に通電してもモータのトルクが出難いことから、モータ効率の低下やトルクリップルの増大を引き起こす。   Home appliances use a DC voltage obtained by rectifying the voltage of a commercial AC power supply. However, in many cases, a smoothing capacitor having a small capacity is selected from the viewpoint of cost, and there is also a case where a smoothing capacitor is not provided. In such a case, the rectified voltage includes a ripple. In the motor control method disclosed in Patent Document 1, energization is performed even during a period when the level of the rectified voltage is low, but it is difficult to generate torque of the motor even when the winding is energized during the low voltage period. Reduces motor efficiency and increases torque ripple.

そこで、より効率的に駆動制御を行うことが可能な永久磁石モータの制御方法及び永久磁石モータの制御装置を提供する。   Therefore, a permanent magnet motor control method and a permanent magnet motor control device capable of performing drive control more efficiently are provided.

請求項1記載の手段によれば、交流電圧を整流してリップルを有する状態にした整流電圧を、永久磁石モータの電気角周期の半サイクルに亘る期間中に前記モータの巻線に通電する際に、整流電圧が閾値以下となる期間は巻線への通電を停止する。   According to the first aspect of the present invention, when the rectified voltage obtained by rectifying the AC voltage to have a ripple state is applied to the winding of the motor during a period of a half cycle of the electrical angular cycle of the permanent magnet motor. In addition, the current supply to the winding is stopped during the period when the rectified voltage is equal to or lower than the threshold value.

一実施形態であり、モータ駆動システムの構成を示す図The figure which is one Embodiment and shows the structure of a motor drive system 単相ブラシレス永久磁石モータを軸方向から見た断面図Cross section of single-phase brushless permanent magnet motor viewed from the axial direction モータへの通電パターンの一例を示す図The figure which shows an example of the electricity supply pattern to a motor 本実施形態における通電期間と従来手法における通電期間とを示す図The figure which shows the electricity supply period in this embodiment, and the electricity supply period in a conventional method モータ運転時の(a)巻線電流波形と(b)トルク波形とを示す図The figure which shows (a) winding current waveform and (b) torque waveform at the time of motor operation モータ運転時の通電期間が(a)長い場合と(b)短い場合との巻線電流波形を示す図The figure which shows the winding current waveform when the energization period at the time of motor operation is (a) long and (b) short 制御回路による制御内容を示すフローチャートFlow chart showing contents of control by control circuit 従来手法と本実施形態とによる通電パターン及びトルク波形を示す図The figure which shows the electricity supply pattern and torque waveform by a conventional method and this embodiment.

以下、一実施形態について図面を参照しながら説明する。図2は、単相ブラシレス永久磁石モータ(以下、モータと称す)を軸方向から見た断面図である。回転子1は、軸2と軸2の外周辺に配置された永久磁石3とで構成され、固定子4は、外形が八角形状の鉄心5と鉄心5に巻装された巻線6とで構成される。回転子1には、鉄心を含んでいても良い。そして、回転子1と固定子4とでモータ7が構成されている。また、回転子1の位置を検出するため、位置センサ8(位置検出手段)が配置されている。   Hereinafter, an embodiment will be described with reference to the drawings. FIG. 2 is a cross-sectional view of a single-phase brushless permanent magnet motor (hereinafter referred to as a motor) viewed from the axial direction. The rotor 1 is composed of a shaft 2 and a permanent magnet 3 disposed on the outer periphery of the shaft 2, and the stator 4 is composed of an octagonal iron core 5 and a winding 6 wound around the iron core 5. Composed. The rotor 1 may include an iron core. The rotor 1 and the stator 4 constitute a motor 7. In addition, a position sensor 8 (position detecting means) is arranged to detect the position of the rotor 1.

図1は、モータ駆動システムの構成を示しており、ダイオードブリッジからなる整流部11(整流手段)は、単相交流電源12より供給される交流電圧を整流する。整流部11の直流出力端子間には、平滑コンデンサ13(整流手段)及びフルブリッジインバータ回路(以下、インバータ回路と称す)14が並列に接続されている。インバータ回路14(通電手段)は、4つのスイッチング素子SW1〜SW4をフルブリッジ(Hブリッジ)接続して構成されており、各スイッチング素子SW1〜SW4には、それぞれフリーホイールダイオードD1〜D4が並列に接続されている。そして、インバータ回路14の出力端子は、モータ7の巻線6(図2では図示せず)に接続されている。スイッチング素子SW1〜SW4には、例えばIGBT(Insulated Gate Bipolar Transistor)やMOSFET,バイポーラトランジスタ等を使用する。   FIG. 1 shows a configuration of a motor drive system, and a rectification unit 11 (rectification means) composed of a diode bridge rectifies an AC voltage supplied from a single-phase AC power supply 12. A smoothing capacitor 13 (rectifying means) and a full bridge inverter circuit (hereinafter referred to as an inverter circuit) 14 are connected in parallel between the DC output terminals of the rectifying unit 11. The inverter circuit 14 (energizing means) is configured by connecting four switching elements SW1 to SW4 in a full bridge (H bridge), and free wheel diodes D1 to D4 are connected in parallel to the switching elements SW1 to SW4, respectively. It is connected. The output terminal of the inverter circuit 14 is connected to the winding 6 (not shown in FIG. 2) of the motor 7. For the switching elements SW1 to SW4, for example, an IGBT (Insulated Gate Bipolar Transistor), a MOSFET, a bipolar transistor, or the like is used.

位置センサ8が出力する位置信号は、位置検出部15(位置検出手段)を介して制御回路16(通電制御手段)に入力されている。電圧センサ17(電圧検出手段)は、平滑コンデンサ13の端子電圧である整流電圧を検出し、その出力信号は、電圧検出部18(電圧検出手段)を介して制御回路16に入力されている。制御回路16はマイクロコンピュータで構成され、入力される回転子位置及び整流電圧の値に応じた通電パターン(通電期間、進み期間など)によりインバータ回路14の各スイッチング素子SW1〜SW4を制御して、モータ7を駆動する。ここで、平滑コンデンサ13の容量が小さい場合(又は平滑コンデンサ13を配置しない場合)、整流電圧には比較的大きなレベルのリップルが発生するが、家電製品のようにコスト重視の設計には多く見られる。   The position signal output from the position sensor 8 is input to the control circuit 16 (energization control means) via the position detection unit 15 (position detection means). The voltage sensor 17 (voltage detection means) detects the rectified voltage, which is the terminal voltage of the smoothing capacitor 13, and the output signal is input to the control circuit 16 via the voltage detection unit 18 (voltage detection means). The control circuit 16 is composed of a microcomputer, and controls each switching element SW1 to SW4 of the inverter circuit 14 by an energization pattern (energization period, advance period, etc.) according to the input rotor position and rectified voltage value, The motor 7 is driven. Here, when the capacity of the smoothing capacitor 13 is small (or when the smoothing capacitor 13 is not disposed), a relatively large level of ripple is generated in the rectified voltage. It is done.

図3は、モータ7の通電パターンの一例である。制御回路16は、負荷(回転速度、負荷トルク)に応じて通電期間及び進み期間を制御し、巻線6に通電する。この例では、位置センサ信号の立上りエッジに係る期間でスイッチング素子SW1及びSW4を同時にオンし、立下がりエッジに係る期間でスイッチング素子SW2及びSW3を同時にオンしている。通電期間は120°(電気角)であり、進み期間は50°(電気角)である。   FIG. 3 is an example of an energization pattern of the motor 7. The control circuit 16 controls the energization period and the advance period according to the load (rotation speed, load torque), and energizes the winding 6. In this example, the switching elements SW1 and SW4 are simultaneously turned on during the period related to the rising edge of the position sensor signal, and the switching elements SW2 and SW3 are simultaneously turned on during the period related to the falling edge. The energization period is 120 ° (electrical angle), and the advance period is 50 ° (electrical angle).

また、制御回路16は、整流電圧にリップルがある場合に、整流電圧の瞬時値に合わせて通電期間と進み期間とを調整する。特に、モータ7が高速で回転している場合は、交流電圧の1周期内に、モータ7の電気角周期が多数存在するので、各電気角周期毎に細かく制御を実施することもある。例えば、交流電源周波数50Hzで回転数75000rpmの場合、電気角周期は交流電源の1周期内に25周期存在し、各電気角周期内で細かく制御を実施することもある。   Further, when the rectified voltage has a ripple, the control circuit 16 adjusts the energization period and the advance period in accordance with the instantaneous value of the rectified voltage. In particular, when the motor 7 is rotating at a high speed, since there are many electrical angle cycles of the motor 7 within one cycle of the AC voltage, fine control may be performed for each electrical angle cycle. For example, when the AC power supply frequency is 50 Hz and the rotational speed is 75000 rpm, there are 25 electrical angle cycles within one cycle of the AC power supply, and fine control may be performed within each electrical angle cycle.

図4は、本実施形態における通電期間と従来手法における通電期間とを示している。従来手法では、(a)に示すリップルにより変動する整流電圧のレベルに関わらず、(b)通電期間を一定に制御している。この場合、整流電圧の低い期間では、通電期間を設けてもモータにトルクが発生し難いため、効率低下やトルクリプル増大を引き起こす。   FIG. 4 shows the energization period in the present embodiment and the energization period in the conventional method. In the conventional method, regardless of the level of the rectified voltage that varies due to the ripple shown in (a), (b) the energization period is controlled to be constant. In this case, in the period where the rectified voltage is low, torque is hardly generated in the motor even if the energization period is provided, which causes a reduction in efficiency and an increase in torque ripple.

そこで、本実施形態では、整流電圧のレベル低い期間では通電を行わず(通電期間を0°とする)、(c)整流電圧のレベルが高い期間に従来よりも長い通電期間を設けるようにして、高効率、低トルクリップルでのモータ駆動を実現する。そのため、整流電圧のレベルが閾値を超える期間だけ通電を行う(尚、図4では図示の都合上、本実施形態と従来手法との通電期間の長さが同じイメージとなっている)。閾値は、所望の出力(回転数と負荷トルク)になるように無通電期間と通電期間の大きさを調整し、入力電流又は入力電力が最小となるように定める。通電期間と進み期間は、一定又は整流電圧に応じて制御しても良い。   Therefore, in this embodiment, energization is not performed during a period when the level of the rectified voltage is low (the energization period is set to 0 °), and (c) a longer energization period is provided during a period when the level of the rectified voltage is high. Realize motor drive with high efficiency and low torque ripple. Therefore, energization is performed only during a period in which the level of the rectified voltage exceeds the threshold (in FIG. 4, for the convenience of illustration, the length of the energization period in this embodiment and the conventional method is the same image). The threshold value is determined so that the input current or the input power is minimized by adjusting the size of the non-energization period and the energization period so as to obtain a desired output (rotation speed and load torque). The energization period and the advance period may be controlled according to a constant or rectified voltage.

以下、上述の制御原理について図5及び図6を参照して説明する。図5は、モータ運転時の(a)巻線電流波形と(b)トルク波形である。電流波形は、電気角半周期内で以下の3つの期間に分けられる。それぞれの期間は、(1)通電期間、(2)巻線のインダクタンスによる還流期間、(3)磁石磁束の変化による電流期間である(図中では丸数字で示す)。(1)及び(2)の期間では正のトルクが発生するよう電流が流れるが、(3)の期間では負のトルクを発生させる電流が流れるため、モータの駆動効率を低下させる。   Hereinafter, the above-described control principle will be described with reference to FIGS. FIG. 5 shows (a) winding current waveform and (b) torque waveform during motor operation. The current waveform is divided into the following three periods within an electrical angle half cycle. Each period is (1) an energization period, (2) a return period due to the inductance of the winding, and (3) a current period due to a change in magnet magnetic flux (indicated by circled numbers in the figure). In the periods (1) and (2), a current flows so as to generate a positive torque, but in a period (3), a current that generates a negative torque flows, so that the driving efficiency of the motor is reduced.

図6は、モータ運転時の巻線電流波形の通電期間の長短による比較である。(b)の通電期間が長い場合は(a)の短い場合に比較して、(3)の磁石磁束の変化による電流期間が短く、モータに負のトルクを発生させ難い。そのため、通電期間が長い方が効率良くトルクを発生させることが判る。   FIG. 6 is a comparison according to the length of the energization period of the winding current waveform during motor operation. When the energization period of (b) is long, the current period due to the change of the magnet magnetic flux of (3) is short compared with the case of short (a), and it is difficult to generate negative torque in the motor. Therefore, it can be seen that the longer the energization period, the more efficiently the torque is generated.

次に、本実施形態の作用について図7及び図8を参照して説明する。図7は、制御回路16による制御内容を示すフローチャートである。制御回路16は、電圧検出部18を介して整流電圧Vを検出し(S1)、続いて位置検出部15を介して回転子位置及びモータ7の回転数Nを検出する(S2)。そして、回転数Nを閾値Nthと比較し(S3)、(N≦Nth)であれば(NO)回転数Nに応じた通電パターンを生成し(S8)、生成した通電パターンの電圧をモータ7の巻線6に印加する(S6)。この場合、ステップS8における通電パターンは、図4(b)に示す従来手法と同様のパターンとなる。 Next, the effect | action of this embodiment is demonstrated with reference to FIG.7 and FIG.8. FIG. 7 is a flowchart showing the contents of control by the control circuit 16. The control circuit 16 detects the rectified voltage V via the voltage detector 18 (S1), and subsequently detects the rotor position and the rotational speed N of the motor 7 via the position detector 15 (S2). Then, the rotational speed N is compared with a threshold N th (S3), the if (N ≦ N th) (NO ) to produce the energization pattern corresponding to the rotational speed N (S8), the voltage of the generated power pattern The voltage is applied to the winding 6 of the motor 7 (S6). In this case, the energization pattern in step S8 is the same pattern as the conventional method shown in FIG.

一方、ステップS3において(N>Nth)であれば(YES)、整流電圧Vと閾値Vthと比較する(S4)。ここで(V≦Vth)であれば(NO)、巻線6に通電を行わず無通電期間とする(S7)。また、(V>Vth)であれば(YES)回転数Nに応じた通電パターンを生成するが(S5)、この場合、(V≦Vth)であれば無通電期間を設けることを考慮して、通電期間をステップS8の場合よりも長く設定する。それから、ステップS6に移行する。尚、モータ回転数の閾値Nth,整流電圧の閾値Vthは、所望の負荷点において、入力電流又は入力電力が最小となるように定める。 On the other hand, if (N> N th ) in step S3 (YES), the rectified voltage V is compared with the threshold value V th (S4). Here, if (V ≦ V th ) (NO), the winding 6 is not energized and the non-energized period is set (S7). If (V> V th ) (YES), an energization pattern corresponding to the rotational speed N is generated (S5). In this case, if (V ≦ V th ), a non-energization period is considered. Thus, the energization period is set longer than in the case of step S8. Then, the process proceeds to step S6. The motor rotation speed threshold N th and the rectified voltage threshold V th are determined so that the input current or the input power is minimized at a desired load point.

図8(b),(d)は、従来手法と本実施形態とによるトルク波形である。本実施形態では無通電期間を設けているが、平均トルクT’が従来手法における平均トルクTに等しくなるように、整流電圧Vの高い期間において従来手法よりも長い通電期間を設けている((e)参照)。本実施形態では、トルクの発生し易い整流電圧の高い期間で通電しているため、モータ7の駆動効率向上が見込める。   FIGS. 8B and 8D are torque waveforms according to the conventional method and the present embodiment. In this embodiment, a non-energization period is provided, but an energization period longer than that in the conventional technique is provided in a period during which the rectified voltage V is high so that the average torque T ′ is equal to the average torque T in the conventional technique (( e)). In the present embodiment, energization is performed during a period of high rectified voltage where torque is likely to be generated, so that the driving efficiency of the motor 7 can be improved.

以上のように本実施形態によれば、整流部11及び平滑コンデンサ13により、単相交流電源12より供給される交流電圧を整流してリップルを有する整流電圧を生成し、インバータ回路14は、その整流電圧を、モータ7の電気角周期の半サイクルに亘る期間中に巻線6に通電する。そして、制御回路16は、電圧センサ17を介して検出した整流電圧が閾値Vth以下となる期間に巻線6への通電を停止する。これにより、モータ7の出力トルクが低下する期間への通電を行わず、モータ7の駆動効率を向上させることができる。また、トルクリップルの増大も抑制できる。 As described above, according to the present embodiment, the rectifier 11 and the smoothing capacitor 13 rectify the AC voltage supplied from the single-phase AC power supply 12 to generate a rectified voltage having ripples. The rectified voltage is energized to the winding 6 during a period over a half cycle of the electrical angular period of the motor 7. The control circuit 16 stops energization of the winding 6 during a period when the rectified voltage detected via the voltage sensor 17 is equal to or lower than the threshold value Vth . Thereby, it is possible to improve the driving efficiency of the motor 7 without energizing the period during which the output torque of the motor 7 decreases. Further, an increase in torque ripple can be suppressed.

この場合、制御回路16は、モータ7の回転数が閾値Nthを超えることを条件として前記巻線6への通電を停止するので、モータ7の回転数が高くトルクが出にくい領域において、有効な効果が得られる。加えて、制御回路16は、モータ7の回転数が閾値Nthを超えると巻線6への通電期間をより長くするので、モータ7に効率良くトルクを発生させることができる。 In this case, the control circuit 16, the rotational speed of the motor 7 stops energization of the winding 6 on a condition that exceeds the threshold N th, the speed is hardly out high torque range of the motor 7, the effective Effects can be obtained. In addition, the control circuit 16, the rotational speed of the motor 7 is longer conduction period of the winding 6 exceeds the threshold value N th, it can be generated efficiently torque to the motor 7.

(その他の実施形態)
平滑コンデンサ13は、必要に応じて設ければ良い。
ステップS3及びS8を削除して実施しても良い。
必ずしも、整流電圧Vの高い期間での通電期間を従来手法よりも長くする必要はない。
通電期間や進み期間の具体的数値は、個別の設計に応じて適宜変更すれば良い。
多相モータに適用しても良い。
(Other embodiments)
The smoothing capacitor 13 may be provided as necessary.
Steps S3 and S8 may be deleted for implementation.
It is not always necessary to make the energization period in the period where the rectified voltage V is high longer than in the conventional method.
Specific numerical values of the energization period and the advance period may be appropriately changed according to the individual design.
You may apply to a polyphase motor.

本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図面中、6は巻線、7は単相ブラシレス永久磁石モータ、11は整流部(整流手段)、13は平滑コンデンサ(整流手段)、14はインバータ回路(通電手段)、16は制御回路(通電制御手段)、17は電圧センサ(電圧検出手段)、18は電圧検出部(電圧検出手段)を示す。   In the drawing, 6 is a winding, 7 is a single-phase brushless permanent magnet motor, 11 is a rectifier (rectifier), 13 is a smoothing capacitor (rectifier), 14 is an inverter circuit (energizer), and 16 is a control circuit (energizer). Control means), 17 is a voltage sensor (voltage detection means), and 18 is a voltage detection section (voltage detection means).

Claims (6)

交流電圧を整流してリップルを有する状態にした整流電圧を、永久磁石モータの電気角周期の半サイクルに亘る期間中に前記モータの巻線に通電する際に、前記整流電圧が閾値以下となる期間は前記巻線への通電を停止する永久磁石モータの制御方法。   When the rectified voltage obtained by rectifying the AC voltage to have a ripple state is applied to the winding of the motor during a period of a half cycle of the electrical angular period of the permanent magnet motor, the rectified voltage becomes a threshold value or less. A method for controlling a permanent magnet motor that stops energization of the winding during the period. 前記モータの回転数が閾値を超えると、前記巻線への通電を停止する請求項1記載の永久磁石モータの制御方法。   The method for controlling a permanent magnet motor according to claim 1, wherein energization of the winding is stopped when the rotation speed of the motor exceeds a threshold value. 前記モータの回転数が閾値を超えると、前記巻線への通電期間をより長くするように調整する請求項1又は2記載の永久磁石モータの制御方法。   3. The method of controlling a permanent magnet motor according to claim 1, wherein when the number of rotations of the motor exceeds a threshold value, the energization period to the winding is adjusted to be longer. 交流電圧を整流してリップルを有する状態にした整流電圧を生成する整流手段と、
前記整流電圧を、永久磁石モータの電気角周期の半サイクルに亘る期間中に前記モータの巻線に通電する通電手段と、
前記整流電圧を検出する電圧検出手段と、
前記整流電圧が閾値以下となる期間に、前記巻線への通電を停止する通電制御手段とを備える永久磁石モータの制御装置。
Rectifying means for generating a rectified voltage that has a ripple by rectifying an AC voltage;
Energizing means for energizing the windings of the motor during a period over the half cycle of the electrical angular period of the permanent magnet motor;
Voltage detecting means for detecting the rectified voltage;
A control device for a permanent magnet motor, comprising energization control means for stopping energization of the winding during a period when the rectified voltage is equal to or less than a threshold value.
前記通電制御手段は、前記モータの回転数が閾値を超えると、前記巻線への通電を停止する請求項4記載の永久磁石モータの制御装置。   The control device for a permanent magnet motor according to claim 4, wherein the energization control unit stops energization to the winding when the rotation speed of the motor exceeds a threshold value. 前記通電制御手段は、前記モータの回転数が閾値を超えると、前記巻線への通電期間をより長くするように調整する請求項4又は5記載の永久磁石モータの制御装置。   The control device for a permanent magnet motor according to claim 4 or 5, wherein the energization control means adjusts the energization period to the winding to be longer when the rotation speed of the motor exceeds a threshold value.
JP2015043505A 2015-03-05 2015-03-05 Control method of permanent magnet motor and controller of permanent magnet motor Pending JP2016163517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015043505A JP2016163517A (en) 2015-03-05 2015-03-05 Control method of permanent magnet motor and controller of permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015043505A JP2016163517A (en) 2015-03-05 2015-03-05 Control method of permanent magnet motor and controller of permanent magnet motor

Publications (1)

Publication Number Publication Date
JP2016163517A true JP2016163517A (en) 2016-09-05

Family

ID=56847536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015043505A Pending JP2016163517A (en) 2015-03-05 2015-03-05 Control method of permanent magnet motor and controller of permanent magnet motor

Country Status (1)

Country Link
JP (1) JP2016163517A (en)

Similar Documents

Publication Publication Date Title
US10250175B2 (en) Field winding synchronous machine drive system
US10411620B2 (en) Power tool
JP4853232B2 (en) Rotating electrical machine equipment
JP4802958B2 (en) Rotating electrical machine equipment
JP2008228477A (en) Motor controller
JP6462821B2 (en) Motor drive device
EP3651348B1 (en) Motor drive apparatus
JP4517438B2 (en) Self-priming pump
US8427090B2 (en) Magnetic-drive-pulsation motor
JP6301270B2 (en) Motor drive device
JP2016163517A (en) Control method of permanent magnet motor and controller of permanent magnet motor
US7271565B2 (en) Apparatus for controlling speed of fan motor of air-conditioner
JP2017063532A (en) Motor controller
JP6590457B2 (en) Vehicle drive control device and vehicle drive control method
KR20160097645A (en) Brushless direct current motor type inverter driving circuit
KR102015867B1 (en) Motor drive apparatus
US20160056746A1 (en) Apparatus for driving srm and controlling method thereof
JP2008206220A (en) Motor controller
JP2016086639A (en) Electric tool
KR20160092605A (en) method of driving BLDC motor for starting current reduction
AU2015201770B2 (en) Self exciting alternator circuit
JP2018042393A (en) Motor drive controller
KR20090083608A (en) Control system of a motor
CN110620459A (en) Driving circuit for operating BLDC motor
JP2018196298A (en) Ventilation fan device