JP2016161603A - Optical relay transmission system - Google Patents

Optical relay transmission system Download PDF

Info

Publication number
JP2016161603A
JP2016161603A JP2015037537A JP2015037537A JP2016161603A JP 2016161603 A JP2016161603 A JP 2016161603A JP 2015037537 A JP2015037537 A JP 2015037537A JP 2015037537 A JP2015037537 A JP 2015037537A JP 2016161603 A JP2016161603 A JP 2016161603A
Authority
JP
Japan
Prior art keywords
optical
phase
amplifier
transmission system
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015037537A
Other languages
Japanese (ja)
Other versions
JP6348433B2 (en
Inventor
弘和 竹ノ内
Hirokazu Takenouchi
弘和 竹ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015037537A priority Critical patent/JP6348433B2/en
Publication of JP2016161603A publication Critical patent/JP2016161603A/en
Application granted granted Critical
Publication of JP6348433B2 publication Critical patent/JP6348433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve an inexpensive optical relay transmission system with a simple configurations and low power consumption capable of performing low-noise relay amplification.SOLUTION: An optical relay transmission system 1000 employs EDFAs (Erbium-Doped Fiber Amplifier) 1021, 1022, and 1023 serving as a phase insensitive optical amplifier, and non-degenerate phase sensitive optical amplifiers 1031, 1032, and 1033 for an optical relay amplifier provided on multiple places of an optical fiber 1010. Additionally, using the EDFA 1021 as the optical relay amplifier at a first stage, the EDFAs 1021, 1022, and 1023 and the non-degenerate phase sensitive optical amplifiers 1031, 1032, and 1033 are alternately disposed as the optical relay amplifiers from the first stage to a final stage.SELECTED DRAWING: Figure 1

Description

本発明は、光伝送路である光ファイバの複数箇所に、光増幅器を備えた光中継伝送システムに関するものである。   The present invention relates to an optical repeater transmission system provided with optical amplifiers at a plurality of locations of an optical fiber that is an optical transmission line.

従来の光中継伝送システムでは、光ファイバを伝搬することにより減衰した光信号を再生するために、識別再生光中継器が用いられていた。この識別再生光中継器は、光信号を電気信号に変換し、ディジタル信号(電気信号)を識別した後に、光信号を再生するものである。
しかしながら、この識別再生光中継器では、光信号を電気信号に変換する電子部品の応答速度に制限があることや、伝送する光信号のスピードが速くなると、消費電力が大きくなること、などの問題があった。
In a conventional optical repeater transmission system, an identification reproduction optical repeater is used to regenerate an optical signal attenuated by propagating through an optical fiber. This discriminating / reproducing optical repeater converts an optical signal into an electric signal and discriminates a digital signal (electric signal), and then reproduces the optical signal.
However, with this identification and reproduction optical repeater, there are problems such as a limited response speed of electronic components that convert an optical signal into an electrical signal and an increase in power consumption as the speed of the transmitted optical signal increases. was there.

この問題を解決する光増幅手段として、エルビウムやプラセオジム等の希土類元素を添加した光ファイバに励起光を入射して光信号を増幅するファイバレーザ増幅器や、半導体レーザ増幅器がある。
このようなファイバレーザ増幅器や半導体レーザ増幅器は、光信号を光のままで増幅することができるため、識別再生光中継器で問題になっていた電気的な処理速度の制限が存在しない。加えて、機器構成も比較的単純である利点を有する。
As optical amplification means for solving this problem, there are fiber laser amplifiers and semiconductor laser amplifiers that amplify optical signals by making excitation light incident on optical fibers doped with rare earth elements such as erbium and praseodymium.
Such fiber laser amplifiers and semiconductor laser amplifiers can amplify an optical signal as it is, so that there is no limitation on the electrical processing speed that has been a problem in the identification reproduction optical repeater. In addition, the device configuration has the advantage of being relatively simple.

しかしながら、これらのレーザ増幅器は劣化した光信号波形を整形する機能は有していない。また、これらのレーザ増幅器においては、不可避的かつランダムに発生する自然放出光が信号成分とは全く無関係に混入されるので、光信号のS/Nが増幅前後で少なくとも3dB低下する。これらは、ディジタル信号伝送時における伝送符号誤り率の上昇につながり、伝送品質を低下させる要因になっている。   However, these laser amplifiers do not have a function of shaping a deteriorated optical signal waveform. Further, in these laser amplifiers, unavoidably and randomly generated spontaneous emission light is mixed regardless of the signal component, so that the S / N of the optical signal is reduced by at least 3 dB before and after amplification. These lead to an increase in transmission code error rate at the time of digital signal transmission, which is a factor of reducing transmission quality.

このような従来のレーザ増幅器の限界を打開する手段として、位相感応光増幅器(Phase Sensitive Amplifier:PSA)が検討されている。このPSAは、伝送ファイバの分散の影響による劣化した光信号波形や位相信号を整形する機能を有する。また、信号とは無関係の直交位相をもった自然放出光を抑圧でき、同相の自然放出光も最小限で済むために、増幅前後で光信号のS/Nを劣化させず同一に保つことが原理的に可能である。   As means for overcoming the limitations of the conventional laser amplifier, a phase sensitive amplifier (PSA) has been studied. This PSA has a function of shaping an optical signal waveform and a phase signal which are deteriorated due to the influence of dispersion of the transmission fiber. In addition, since spontaneous emission light having a quadrature phase irrelevant to the signal can be suppressed and in-phase spontaneous emission light can be minimized, S / N of the optical signal can be kept the same before and after amplification. It is possible in principle.

図4は、従来のPSAの基本的な構成を示す。図4に示されるように、PSA100は、光パラメトリック増幅を用いた位相感応光増幅部101と、励起光源102と、励起光位相制御部103と、第1の光分岐部104−1及び第2の光分岐部104−2とを備える。
図4に示されるように、PSA100に入力された光信号110は、光分岐部104−1で2分岐されて、一方は位相感応光増幅部101に入射し、他方は励起光源102に入射する。励起光源102から出射した励起光111は、励起光位相制御部103を介して位相が調整されて、位相感応光増幅部101に入射する。位相感応増幅部101は、入力した光信号110及び励起光111に基づいて出力光信号112を出力する。
FIG. 4 shows a basic configuration of a conventional PSA. As shown in FIG. 4, the PSA 100 includes a phase-sensitive optical amplification unit 101 using optical parametric amplification, a pumping light source 102, a pumping light phase control unit 103, a first optical branching unit 104-1, and a second optical branching unit 104-1. Optical branching unit 104-2.
As shown in FIG. 4, the optical signal 110 input to the PSA 100 is branched into two by the optical branching unit 104-1, one incident on the phase sensitive light amplification unit 101, and the other incident on the excitation light source 102. . The phase of the excitation light 111 emitted from the excitation light source 102 is adjusted via the excitation light phase control unit 103 and enters the phase sensitive light amplification unit 101. The phase sensitive amplification unit 101 outputs an output optical signal 112 based on the input optical signal 110 and pumping light 111.

位相感応光増幅部101は、入射した光信号110の位相と励起光111の位相とが一致すると光信号110を増幅し、両者の位相が90度ずれた直交位相関係になると、光信号110を減衰する特性を有している。この特性を利用して増幅利得が最大となるように励起光111と光信号110との間の位相を一致させると、光信号110と直交位相の自然放出光が発生せず、また同相の成分に関しても光信号110のもつ雑音以上に過剰な自然放出光を発生しないため、S/N比を劣化させずに光信号110の増幅が可能になる。   The phase-sensitive optical amplifying unit 101 amplifies the optical signal 110 when the phase of the incident optical signal 110 and the phase of the excitation light 111 coincide with each other. It has a characteristic to attenuate. If the phase between the pumping light 111 and the optical signal 110 is matched so that the amplification gain is maximized using this characteristic, the spontaneous emission light having the quadrature phase with the optical signal 110 is not generated, and the in-phase component is not generated. Also, since no spontaneous emission light exceeding the noise of the optical signal 110 is generated, the optical signal 110 can be amplified without degrading the S / N ratio.

このような光信号110と励起光111の位相同期を達成するために、励起光位相制御部103は、第1の光分岐部104−1で分岐された光信号110の位相と励起光111の位相が同期するように、励起光111の位相を制御する。加えて、励起光位相制御部103は第2の光分岐部104−2で分岐された出力光信号112の一部を狭帯域の光検出器で検波し、出力光信号112の増幅利得が最大となるように励起光111の位相を制御する。その結果、位相感応光増幅部101では、上記の原理に基づいてS/N比の劣化のない光増幅が実現される。   In order to achieve such phase synchronization between the optical signal 110 and the pumping light 111, the pumping light phase control unit 103 includes the phase of the optical signal 110 branched by the first optical branching unit 104-1 and the pumping light 111. The phase of the excitation light 111 is controlled so that the phases are synchronized. In addition, the pumping light phase control unit 103 detects a part of the output optical signal 112 branched by the second optical branching unit 104-2 with a narrow-band photodetector, and the amplification gain of the output optical signal 112 is maximized. The phase of the excitation light 111 is controlled so that As a result, the phase sensitive light amplifying unit 101 realizes optical amplification without degradation of the S / N ratio based on the above principle.

なお、励起光位相制御部103は、励起光源102の出力側で励起光111の位相を制御する構成の他に、励起光源102の位相を直接制御する構成としてもよい。また光信号110を発生する光源が位相感応光増幅部101の近くに配置されている場合は、光信号用光源の一部を分岐して励起光として用いることもできる。   The pumping light phase control unit 103 may be configured to directly control the phase of the pumping light source 102 in addition to the configuration of controlling the phase of the pumping light 111 on the output side of the pumping light source 102. When the light source that generates the optical signal 110 is disposed near the phase-sensitive light amplification unit 101, a part of the optical signal light source can be branched and used as excitation light.

特開2013−182140号公報JP 2013-182140 A 国際公開第2012/098911号International Publication No. 2012/098911

T. Umeki, O. Tadanaga, A. Takada and M. Asobe, "Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides," Optics Express, 2011年, Vol.19, No.7, p.6326-6332T. Umeki, O. Tadanaga, A. Takada and M. Asobe, "Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides," Optics Express, 2011, Vol. 19, No. 7, p.6326-6332 M. Asobe, T. Umeki, H. Takenouchi, and Y. Miyamoto, "In-line phase-sensitive amplifier for QPSK signal using multiple QPM LiNbO3 waveguide," In Proceedings of the OptoElectronics and Communications Conference, OECC, 2013年, PDP paper PD2-3M. Asobe, T. Umeki, H. Takenouchi, and Y. Miyamoto, "In-line phase-sensitive amplifier for QPSK signal using multiple QPM LiNbO3 waveguide," In Proceedings of the OptoElectronics and Communications Conference, OECC, 2013, PDP paper PD2-3 T. Umeki, O. Tadanaga, M.Asobe, Y. Miyamoto and H. Takenouchi., "First demonstration of high-order QAM signal amplification in PPLN-based phase sensitive amplifier," Optics Express, 2014年2月, Vol.22, No.3, p.2473-2482T. Umeki, O. Tadanaga, M. Asobe, Y. Miyamoto and H. Takenouchi., "First demonstration of high-order QAM signal amplification in PPLN-based phase sensitive amplifier," Optics Express, February 2014, Vol. 22, No.3, p.2473-2482 Takeshi Umeki, Masaki Asobe, and Hirokazu Takenouchi, "In-line phase sensitive amplifier based on PPLN waveguides," Optics Express, 2013年5月, Vol.21, No.10, p.12077-12084Takeshi Umeki, Masaki Asobe, and Hirokazu Takenouchi, "In-line phase sensitive amplifier based on PPLN waveguides," Optics Express, May 2013, Vol. 21, No. 10, p.12077-12084 R. Slavik et al., "All-optical phase and amplitude regenerator for next-generation telecommunications systems," Nature Photonics., vol. 4, pp. 690-695 (2010).R. Slavik et al., "All-optical phase and amplitude regenerator for next-generation telecommunications systems," Nature Photonics., Vol. 4, pp. 690-695 (2010).

しかしながら、上述した従来技術では以下に述べるような問題点がある。上述の光パラメトリック増幅を行う非線形光学媒質としては、周期分極反転LiNbO3(PPLN)導波路に代表される二次非線形光学材料を用いる方法と、石英ガラスファイバに代表される三次非線形光学材料を用いる方法がある。 However, the above-described prior art has the following problems. As the nonlinear optical medium for performing the above optical parametric amplification, a method using a second-order nonlinear optical material typified by a periodically poled LiNbO 3 (PPLN) waveguide and a third-order nonlinear optical material typified by a quartz glass fiber are used. There is a way.

図5は、非特許文献1等に開示されているPPLN導波路を用いた従来のPSAの構成を例示する。図5に示されるPSA200は、エルビウム添加ファイバレーザ増幅器(EDFA)201と、第1の二次非線形光学素子202及び第2の二次非線形光学素子204と、第1の光分岐部203−1及び第2の光分岐部203−2と、位相変調器205と、PZT(チタン酸ジルコン酸鉛)による光ファイバ伸長器206と、偏波保持ファイバ207と、光検出器208と、位相同期ループ(PLL)回路209とを備える。   FIG. 5 illustrates a configuration of a conventional PSA using a PPLN waveguide disclosed in Non-Patent Document 1 and the like. A PSA 200 shown in FIG. 5 includes an erbium-doped fiber laser amplifier (EDFA) 201, a first second-order nonlinear optical element 202, a second second-order nonlinear optical element 204, a first optical branching unit 203-1, and Second optical branching unit 203-2, phase modulator 205, optical fiber stretcher 206 made of PZT (lead zirconate titanate), polarization maintaining fiber 207, photodetector 208, phase locked loop ( PLL) circuit 209.

第1の二次非線形光学素子202は、第1の空間光学系211と、第1のPPLN導波路212と、第2の空間光学系213と、第1のダイクロイックミラー214とを備える。第2の二次非線形光学素子204は、第3の空間光学系215と、第2のPPLN導波路216と、第4の空間光学系217と、第2のダイクロイックミラー218と、第3のダイクロイックミラー219とを備える。   The first second-order nonlinear optical element 202 includes a first spatial optical system 211, a first PPLN waveguide 212, a second spatial optical system 213, and a first dichroic mirror 214. The second second-order nonlinear optical element 204 includes a third spatial optical system 215, a second PPLN waveguide 216, a fourth spatial optical system 217, a second dichroic mirror 218, and a third dichroic. And a mirror 219.

第1の空間光学系211は、第1の二次非線形素子202の入力ポートから入力された光を第1のPPLN導波路212に結合する。第2の空間光学系213は、第1のPPLN導波路212から出力された光を第1のダイクロイックミラー214を介して第1の二次非線形光学素子202の出力ポートに結合する。
第3の空間光学系215は、第2の二次非線形光学素子204の入力ポートから入力された光を第2のダイクロイックミラー218を介して第2のPPLN導波路216に結合する。第4の空間光学系217は、第2のPPLN導波路216から出力された光を第3のダイクロイックミラー219を介して第2の二次非線形光学素子204の出力ポートに結合する。
The first spatial optical system 211 couples light input from the input port of the first second-order nonlinear element 202 to the first PPLN waveguide 212. The second spatial optical system 213 couples the light output from the first PPLN waveguide 212 to the output port of the first second-order nonlinear optical element 202 via the first dichroic mirror 214.
The third spatial optical system 215 couples light input from the input port of the second second-order nonlinear optical element 204 to the second PPLN waveguide 216 via the second dichroic mirror 218. The fourth spatial optical system 217 couples the light output from the second PPLN waveguide 216 to the output port of the second second-order nonlinear optical element 204 via the third dichroic mirror 219.

図5に示される例では、PSA200に入射した光信号250は、第1の光分岐部203−1によって分岐されて、一方は第2の二次非線形光学素子204に入射し、他方は励起基本波光251として位相変調器205及び光ファイバ伸長器206を介して位相制御されてEDFA201に入射する。光通信に用いられる微弱なレーザ光から非線形光学効果を得るのに十分なパワーを得るためにEDFA201は、入射した励起基本波光251を増幅し、第1の二次非線形光学素子202に入射する。第1の二次非線形光学素子202では、入射した励起基本波光251から第2高調波(以下、「SH光」と称する)252が発生し、当該発生したSH光252は偏波保持ファイバ207を介して第2の二次非線形光学素子204に入射する。第2の二次非線形光学素子204では、入射した光信号250とSH光252とで縮退パラメトリック増幅を行うことで位相感応増幅を行い、出力光信号253を出力する。   In the example shown in FIG. 5, the optical signal 250 incident on the PSA 200 is branched by the first optical branching unit 203-1, one is incident on the second second-order nonlinear optical element 204, and the other is the excitation base. The phase of the wave light 251 is controlled via the phase modulator 205 and the optical fiber expander 206 and enters the EDFA 201. In order to obtain sufficient power to obtain a nonlinear optical effect from a weak laser beam used for optical communication, the EDFA 201 amplifies the incident excitation fundamental light 251 and enters the first secondary nonlinear optical element 202. In the first second-order nonlinear optical element 202, a second harmonic (hereinafter referred to as “SH light”) 252 is generated from the incident excitation fundamental light 251, and the generated SH light 252 passes through the polarization maintaining fiber 207. Through the second second-order nonlinear optical element 204. The second second-order nonlinear optical element 204 performs phase-sensitive amplification by performing degenerate parametric amplification with the incident optical signal 250 and the SH light 252 and outputs an output optical signal 253.

PSAにおいては、信号と位相の合った光のみを増幅するために、上述のように光信号と励起光の位相が一致、もしくはπラジアンだけずれている必要がある。すなわち二次の非線形光学効果を用いる場合は、SH光に相当する波長である励起光の位相φ2ωsと、光信号の位相φωsとが以下の(式1)の関係を満たすことが必要となる。ここで、nは整数とする。
Δφ=1/2(φ2ωs−φωs)=nπ (式1)
図6は、従来の二次非線形光学効果を利用したPSAにおける、入力光信号と励起光との間の位相差Δφと、利得(dB)との関係を示すグラフである。Δφが−π、0、またはπのときに、利得が最大となっていることがわかる。
In PSA, in order to amplify only light in phase with a signal, the phases of the optical signal and pumping light must match or be shifted by π radians as described above. That is, when the second-order nonlinear optical effect is used, it is necessary that the phase φ 2ωs of the excitation light, which has a wavelength corresponding to the SH light, and the phase φ ωs of the optical signal satisfy the following relationship (Equation 1). Become. Here, n is an integer.
Δφ = 1/2 (φ 2ωs -φ ωs) = nπ ( Equation 1)
FIG. 6 is a graph showing the relationship between the phase difference Δφ between the input optical signal and the pumping light and the gain (dB) in the conventional PSA using the second-order nonlinear optical effect. It can be seen that the gain is maximum when Δφ is −π, 0, or π.

図5に示した構成においては、光信号250と励起基本波光251とを位相同期させるために、位相変調器205を用いて微弱なパイロット信号により位相変調を励起基本波光251に施した後、出力光信号253の一部を分岐して光検出器208で検波する。このパイロット信号成分は、図6に示される位相差Δφが最小の位相同期が取れている状態で最小となるので、パイロット信号が最小、つまり増幅出力信号が最大となるようにPLL回路209を用いて、光ファイバ伸長器206にフィードバックを行う。励起基本波光251の位相を制御して、光信号250と励起基本波光251の位相同期を達成することができる。   In the configuration shown in FIG. 5, in order to phase-synchronize the optical signal 250 and the excitation fundamental wave light 251, the phase modulation unit 205 is used to perform phase modulation on the excitation fundamental wave light 251 using a weak pilot signal, and then output. A part of the optical signal 253 is branched and detected by the photodetector 208. Since this pilot signal component is minimized when the phase difference Δφ shown in FIG. 6 is minimized, the PLL circuit 209 is used so that the pilot signal is minimized, that is, the amplified output signal is maximized. Feedback to the optical fiber stretcher 206. The phase of the excitation fundamental light 251 can be controlled to achieve phase synchronization between the optical signal 250 and the excitation fundamental light 251.

上記のPPLN導波路を非線形媒質として用い、光信号250とSH光252を第2の二次非線形光学素子204に入射して縮退パラメトリック増幅を行う構成においては、一旦SH光252を発生してからパラメトリック増幅を行う際に、例えばダイクロイックミラー214及びダイクロイックミラー218の特性を用いて励起基本波光251の成分を取り除くことにより、SH光252と光信号250のみを第2の二次非線形光学素子204のようなパラメトリック増幅媒質に入射することができる。そのため、EDFA201の発生する自然放出光の混入による雑音が防げるので、低雑音な光増幅が可能になる。   In the configuration in which the PPLN waveguide is used as a nonlinear medium and the optical signal 250 and the SH light 252 are incident on the second second-order nonlinear optical element 204 and degenerate parametric amplification is performed, the SH light 252 is generated once. When performing parametric amplification, for example, the components of the excitation fundamental wave light 251 are removed by using the characteristics of the dichroic mirror 214 and the dichroic mirror 218, so that only the SH light 252 and the optical signal 250 are converted into the second secondary nonlinear optical element 204. It can enter into such a parametric amplification medium. Therefore, noise due to mixing of spontaneously emitted light generated by the EDFA 201 can be prevented, so that low-noise optical amplification is possible.

上述のようにPPLN導波路を非線形光学媒質として用い、SH光252を用いて非線形媒質を励起する構成とすることで、EDFA201が発生する雑音の影響を受けることなく低雑音な位相感応増幅を行うことができ、また直交位相成分を減衰させる特性を活かして、位相雑音を低減させることができる。   As described above, the PPLN waveguide is used as a nonlinear optical medium, and the nonlinear medium is excited using the SH light 252 to perform low-noise phase-sensitive amplification without being affected by noise generated by the EDFA 201. In addition, the phase noise can be reduced by utilizing the characteristic of attenuating the quadrature component.

図6に示すように、上述した従来の構成法では、直交する位相成分を減衰させる特性を有しているため、通常の強度変調信号や二値の位相変調を用いるIMDD、BPSKまたはDPSK等の変調信号の増幅に用いることができる。しかし、さらに多値の変調フォーマットであるQPSK(4値)や8PSKやQAM等の信号は増幅することができない。
一方、非特許文献2及び非特許文献3等に開示されているように非縮退のパラメトリック増幅に基づく構成を用いることで、QPSKやQAM等の多値の位相変調信号を位相感応増幅し、位相再生増幅が可能な構成をとりうることが知られている。
As shown in FIG. 6, the conventional configuration method described above has a characteristic of attenuating orthogonal phase components, so that an ordinary intensity modulation signal or a binary phase modulation such as IMDD, BPSK, or DPSK is used. It can be used to amplify the modulation signal. However, signals such as QPSK (four values), 8PSK, and QAM, which are multilevel modulation formats, cannot be amplified.
On the other hand, by using a configuration based on non-degenerate parametric amplification as disclosed in Non-Patent Document 2 and Non-Patent Document 3, etc., phase-sensitive amplification of multi-level phase modulation signals such as QPSK and QAM is performed. It is known that a configuration capable of regenerative amplification can be taken.

ここで、光増幅器を光中継増幅器として用いた光中継伝送システムについて考える。図7に一般的な位相不感応型のレーザ増幅器であるEDFAを用いた光中継伝送システムの構成例を示す。   Consider an optical repeater transmission system using an optical amplifier as an optical repeater amplifier. FIG. 7 shows a configuration example of an optical repeater transmission system using an EDFA which is a general phase insensitive laser amplifier.

図7に示す光中継伝送システム300は、光伝送路である光ファイバ310(311〜317)の複数箇所に、複数(本例では6個)の光中継増幅器であるEDFA320(321〜326)を備えて構成されている。
更に詳述すると、光送信器TXの出力端と初段のEDFA321の入力端とが光ファイバ311により接続され、初段のEDFA321の出力端と2段目のEDFA322の入力端が光ファイバ312により接続され、2段目のEDFA322の出力端と3段目のEDFA323の入力端が光ファイバ313により接続され、3段目のEDFA323の出力端と4段目のEDFA324の入力端が光ファイバ314により接続され、4段目のEDFA324の出力端と5段目のEDFA325の入力端が光ファイバ315により接続され、5段目のEDFA325の出力端と6段目のEDFA326の入力端が光ファイバ316により接続され、最終段のEDFA326の出力端と光受信器RXの入力端が光ファイバ317により接続されている。
ちなみに、「初段」とは光送信器TXに接続されている光中継増幅器(EDFA)を示すために用い、「最終段」とは光受信器RXに接続されている光中継増幅器(EDFA)を示すために用いる。
The optical repeater transmission system 300 shown in FIG. 7 includes a plurality (six in this example) of EDFAs 320 (321 to 326) as optical repeater amplifiers at a plurality of locations of optical fibers 310 (311 to 317) that are optical transmission lines. It is prepared for.
More specifically, the output end of the optical transmitter TX and the input end of the first stage EDFA 321 are connected by an optical fiber 311, and the output end of the first stage EDFA 321 and the input end of the second stage EDFA 322 are connected by an optical fiber 312. The output terminal of the second stage EDFA 322 and the input terminal of the third stage EDFA 323 are connected by an optical fiber 313, and the output terminal of the third stage EDFA 323 and the input terminal of the fourth stage EDFA 324 are connected by an optical fiber 314. The output terminal of the fourth stage EDFA 324 and the input terminal of the fifth stage EDFA 325 are connected by an optical fiber 315, and the output terminal of the fifth stage EDFA 325 and the input terminal of the sixth stage EDFA 326 are connected by an optical fiber 316. The output terminal of the final stage EDFA 326 and the input terminal of the optical receiver RX are connected by an optical fiber 317. That.
Incidentally, “first stage” is used to indicate an optical repeater amplifier (EDFA) connected to the optical transmitter TX, and “last stage” is an optical repeater amplifier (EDFA) connected to the optical receiver RX. Used to indicate.

この光中継伝送システム300は、光送信器TXから出力された光信号を光ファイバ310により伝送して光受信器RXに送ると共に、光ファイバ310の途中の複数箇所に備えたEDFA320(321〜326)により光信号を増幅している。
つまり、光送信器TXから送られた光信号は、光ファイバ310中の伝搬損失によって光強度が減衰するため、一定の距離ごとに光中継増幅器としてのEDFA320(321〜326)を配置し、減衰した光信号の振幅をEDFA320(321〜326)で回復させながら、光受信器RXまで伝送する。
The optical repeater transmission system 300 transmits an optical signal output from the optical transmitter TX through the optical fiber 310 and sends it to the optical receiver RX, and also includes EDFAs 320 (321 to 326) provided at a plurality of locations in the middle of the optical fiber 310. ) To amplify the optical signal.
That is, since the optical intensity of the optical signal transmitted from the optical transmitter TX is attenuated by the propagation loss in the optical fiber 310, the EDFAs 320 (321 to 326) as optical repeater amplifiers are arranged at fixed intervals and attenuated. The optical signal is transmitted to the optical receiver RX while being recovered by the EDFA 320 (321 to 326).

この中継増幅の際、前述の通り、レーザ増幅器においては、不可避的かつランダムに発生する自然放出光が信号成分とは全く無関係に混入されるので、増幅のたびに、光信号のS/N比が増幅の前後で少なくとも3dB低下するため、伝送符号誤り率が上昇し、伝送品質が低下する。例えば一度光信号を電気信号に変換する再生中継を行わず、光増幅器のみで6回の線形中継を行って伝送させると、光信号のS/N比は少なくとも3dB×6=18dB劣化してしまう。   In this relay amplification, as described above, in the laser amplifier, spontaneously emitted light inevitably and randomly generated is mixed regardless of the signal component, so that the S / N ratio of the optical signal is increased every time amplification is performed. Decreases at least 3 dB before and after amplification, so that the transmission code error rate increases and the transmission quality decreases. For example, if the regenerative repeater that converts the optical signal into the electric signal is not performed once, and the linear repeater is performed six times using only the optical amplifier, the S / N ratio of the optical signal deteriorates by at least 3 dB × 6 = 18 dB. .

図7の光中継増幅器(EDFA)を非縮退型位相感応増幅器に置き換えることで、原理的にはS/N比劣化のない光中継伝送が可能であるが、位相感応増幅器は励起光制御機構を設ける必要があることから増幅器の構成が複雑でEDFAに比べて高価になる。更に、パラメトリック増幅を実現するための励起光生成自身にEDFAが必要になることから光中継増幅器の低消費電力化が難しい。このようなことから、光増幅器を多数用いる光中継伝送システムの光中継増幅器を全て非縮退型位相感応増幅器で構成することは、価格や消費電力面で現実的では無い。   By replacing the optical repeater amplifier (EDFA) in FIG. 7 with a non-degenerate type phase sensitive amplifier, in principle, optical repeater transmission without degradation of the S / N ratio is possible. However, the phase sensitive amplifier has an excitation light control mechanism. Since it is necessary to provide the amplifier, the configuration of the amplifier is complicated and expensive compared to the EDFA. Furthermore, it is difficult to reduce the power consumption of the optical repeater amplifier because an EDFA is required for the pump light generation itself for realizing parametric amplification. For this reason, it is not practical in terms of price and power consumption to configure all of the optical repeater amplifiers of the optical repeater transmission system using many optical amplifiers as non-degenerate phase sensitive amplifiers.

本発明の目的は、上記のような従来技術の問題を鑑みて、低雑音での中継増幅が可能な、しかも構成が簡単で消費電力の低減ができる安価な、光中継伝送システムを提供することである。   An object of the present invention is to provide an inexpensive optical repeater transmission system that can perform relay amplification with low noise, has a simple configuration, and can reduce power consumption in view of the above-described problems of the prior art. It is.

上記課題を解決する本発明は、
光伝送路である光ファイバの複数箇所に光中継増幅器を備えた光中継伝送システムにおいて、
初段の前記光中継増幅器を位相不感応光増幅器とした状態で、初段から最終段までの前記光中継増幅器として、位相不感応光増幅器と位相感応光増幅器を交互に配置したことを特徴とする。
The present invention for solving the above problems
In an optical repeater transmission system equipped with optical repeater amplifiers at multiple locations of an optical fiber that is an optical transmission line,
In a state where the first stage optical repeater amplifier is a phase insensitive optical amplifier, the phase insensitive optical amplifier and the phase sensitive optical amplifier are alternately arranged as the optical repeater amplifier from the first stage to the last stage.

また本発明は、
前記位相不感応光増幅器と前記位相感応光増幅器を合わせた配置数は、偶数個であることを特徴とする。
The present invention also provides
The number of arrangements of the phase insensitive optical amplifier and the phase sensitive optical amplifier is an even number.

また本発明は、
初段の前記位相不感応光増幅器の前段に、更に別の位相感応光増幅器を備えること、
または、
最終段の前記位相感応光増幅器の後段に、更に別の位相不感応光増幅器を備えることを特徴とする。
The present invention also provides
Providing another phase sensitive optical amplifier in front of the phase insensitive optical amplifier in the first stage;
Or
Further, another phase insensitive optical amplifier is provided after the phase sensitive optical amplifier in the final stage.

また本発明は、
前記位相感応光増幅器は、非縮退型位相感応光増幅器であることを特徴とする。
The present invention also provides
The phase sensitive optical amplifier is a non-degenerate type phase sensitive optical amplifier.

また本発明は、
前記位相感応光増幅器または前記非縮退型位相感応光増幅器における光パラメトリック増幅媒体が、周期分極反転構造を有するLiNbO3、KNbO3、LiTaO3、LiNbxTa1-x3(0≦x≦1)又はKTiOPO4、或いはそれらにMg、Zn、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有している材料からなる光導波路を用いていることを特徴とする。
The present invention also provides
The optical parametric amplification medium in the phase sensitive optical amplifier or the non-degenerate phase sensitive optical amplifier is LiNbO 3 , KNbO 3 , LiTaO 3 , LiNb x Ta 1-x O 3 (0 ≦ x ≦ 1) having a periodically poled structure. ) Or KTiOPO 4 , or an optical waveguide made of a material containing at least one selected from the group consisting of Mg, Zn, Sc, and In as an additive.

また本発明は、
前記位相不感応光増幅器が、EDFA、ラマン増幅器または半導体光増幅器のいずれか一つであることを特徴とする。
The present invention also provides
The phase insensitive optical amplifier is one of an EDFA, a Raman amplifier, and a semiconductor optical amplifier.

本発明は、位相不感応光増幅器(レーザ増幅器)と位相感応増幅器を交互に配置して光中継伝送システムを構成することで、中継段数が増加しても、光信号のS/N比の原理的劣化をもたらすことなく、高品質で光信号を中継させることが可能になる。
また、光中継増幅器を全て位相感応増幅器とした光中継伝送システムに対して、伝送特性を同等としつつ、構造が簡単になり、消費電力を低減でき、価格は安価となる。
The present invention configures an optical repeater transmission system by alternately arranging phase insensitive optical amplifiers (laser amplifiers) and phase sensitive amplifiers, so that even if the number of repeater stages is increased, the principle of the S / N ratio of the optical signal is increased. It is possible to relay an optical signal with high quality without causing deterioration.
In addition, an optical repeater transmission system in which all of the optical repeater amplifiers are phase sensitive amplifiers has the same transmission characteristics, the structure is simplified, the power consumption can be reduced, and the price is low.

本発明の実施例1に係る光中継伝送システムを示す構成図である。1 is a configuration diagram illustrating an optical repeater transmission system according to a first embodiment of the present invention. 16QAM信号を非縮退型位相感応光増幅器で増幅した増幅前後のコンスタレーションの一例を示す特性図である。It is a characteristic view which shows an example of the constellation before and behind amplification which amplified 16QAM signal with the nondegenerate type phase sensitive optical amplifier. 図7の光中継システムのS/N比、図7の光中継システムにおいてEDFAを全て位相感応増幅器で置き換えた光中継伝送システムのS/N比、本実施例での光中継伝送システムにおける理想的なS/N比の推移を比較して示す特性図である。The S / N ratio of the optical repeater system in FIG. 7, the S / N ratio of the optical repeater transmission system in which all EDFAs are replaced with phase sensitive amplifiers in the optical repeater system of FIG. 7, and the ideal in the optical repeater transmission system in this embodiment It is a characteristic view which shows the change of a favorable S / N ratio. 従来の位相感応光増幅器を示す構成図である。It is a block diagram which shows the conventional phase sensitive optical amplifier. 従来の二次非線形光学効果を利用した位相感応光増幅器を示す構成図である。It is a block diagram which shows the phase sensitive optical amplifier using the conventional secondary nonlinear optical effect. 従来の二次非線形光学効果を利用した位相感応光増幅器における、入力光信号と励起光間との位相差Δφと利得との関係を示すグラフである。It is a graph which shows the relationship between phase difference (DELTA) (phi) between an input optical signal and pump light, and a gain in the phase sensitive optical amplifier using the conventional secondary nonlinear optical effect. EDFAを中継増幅器として用いた光中継伝送システムを示す構成図である。It is a block diagram showing an optical repeater transmission system using an EDFA as a repeater amplifier.

以下、図面を参照しながら本発明の各実施例について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
図1は本発明の実施例1に係る光中継伝送システム1000を示す。この光中継伝送システム1000では、光伝送路である光ファイバ1010の複数箇所に備える光中継増幅器として、位相不感応光増幅器であるEDFA1021,1022,1023と、非縮退のパラメトリック増幅に基づく構成を用いた位相感応光増幅器である非縮退型位相感応光増幅器1031,1032,1033を用いている。EDFA1021,1022,1023と非縮退型位相感応光増幅器1031,1032,1033を合わせた光中継増幅器の数は、偶数個(本例では6個)である。
しかも初段の光中継増幅器をEDFA1021として、初段から最終段までの光中継増幅器として、EDFA1021,1022,1023と非縮退型位相感応光増幅器1031,1032,1033を交互に配置している。このため、初段の光中継増幅器はEDFA1021になり、最終段の光中継増幅器は非縮退型位相感応光増幅器1033になる。
Example 1
FIG. 1 shows an optical repeater transmission system 1000 according to Embodiment 1 of the present invention. This optical repeater transmission system 1000 uses a configuration based on EDFAs 1021, 1022, and 1023 that are phase-insensitive optical amplifiers and non-degenerate parametric amplification as optical repeater amplifiers provided at a plurality of locations of an optical fiber 1010 that is an optical transmission line. Non-degenerate phase sensitive optical amplifiers 1031, 1032, and 1033, which are conventional phase sensitive optical amplifiers, are used. The number of optical repeater amplifiers including the EDFAs 1021, 1022, and 1023 and the non-degenerate phase-sensitive optical amplifiers 1031, 1032, and 1033 is an even number (six in this example).
In addition, the first-stage optical repeater amplifier is the EDFA 1021, and the EDFAs 1021, 1022, and 1023 and the non-degenerate phase-sensitive optical amplifiers 1031, 1032, and 1033 are alternately arranged as the first to last-stage optical repeater amplifiers. For this reason, the first-stage optical repeater amplifier is the EDFA 1021, and the last-stage optical repeater amplifier is the non-degenerate phase-sensitive optical amplifier 1033.

更に詳述すると、光送信器TXの出力端と初段のEDFA1021の入力端とが光ファイバ1011により接続され、初段のEDFA1021の出力端と2段目の非縮退型位相感応光増幅器1031の入力端が光ファイバ1012により接続され、2段目の非縮退型位相感応光増幅器1031の出力端と3段目のEDFA1022の入力端が光ファイバ1013により接続され、3段目のEDFA1022の出力端と4段目の非縮退型位相感応光増幅器1032の入力端が光ファイバ1014により接続され、4段目の非縮退型位相感応光増幅器1032の出力端と5段目のEDFA1023の入力端が光ファイバ1015により接続され、5段目のEDFA1023の出力端と6段目の非縮退型位相感応光増幅器1033の入力端が光ファイバ1016により接続され、最終段の非縮退型位相感応光増幅器1033の出力端と光受信器RXの入力端が光ファイバ1017により接続されている。
ちなみに、「初段」とは光送信器TXに接続されている光中継増幅器を示すために用い、「最終段」とは光受信器RXに接続されている光中継増幅器を示すために用いる。
More specifically, the output end of the optical transmitter TX and the input end of the first stage EDFA 1021 are connected by an optical fiber 1011, and the output end of the first stage EDFA 1021 and the input end of the second stage non-degenerate phase-sensitive optical amplifier 1031. Are connected by an optical fiber 1012, and the output terminal of the second-stage non-degenerate phase-sensitive optical amplifier 1031 and the input terminal of the third-stage EDFA 1022 are connected by an optical fiber 1013, and the output terminal of the third-stage EDFA 1022 is 4 The input end of the non-degenerate phase sensitive optical amplifier 1032 at the stage is connected by an optical fiber 1014, and the output end of the non-degenerate phase sensitive optical amplifier 1032 at the fourth stage and the input end of the fifth stage EDFA 1023 are the optical fiber 1015. The output terminal of the fifth stage EDFA 1023 and the input terminal of the sixth stage non-degenerate phase-sensitive optical amplifier 1033 are connected to each other. Are connected by bus 1016, non-degenerate type output terminal of the phase sensitive optical amplifier 1033 and the input end of the optical receiver RX of the last stage is connected by an optical fiber 1017.
Incidentally, “first stage” is used to indicate an optical repeater amplifier connected to the optical transmitter TX, and “final stage” is used to indicate an optical repeater amplifier connected to the optical receiver RX.

本実施例では、非縮退型位相感応光増幅器1031,1032,1033として、図5に示したPPLNをパラメトリック増幅媒質とした位相感応光増幅器を構成したが、LN以外の2次非線形媒質を用いても良く、また高非線形ファイバ等の3次非線形媒質を用いたパラメトリック増幅媒質として用いても良い。   In this embodiment, as the non-degenerate type phase sensitive optical amplifiers 1031, 1032, and 1033, the phase sensitive optical amplifier using the PPLN shown in FIG. 5 as a parametric amplification medium is configured, but a second-order nonlinear medium other than LN is used. Alternatively, it may be used as a parametric amplification medium using a third-order nonlinear medium such as a highly nonlinear fiber.

ここで、本実施例における非縮退型位相感応光増幅器で用いたPPLN導波路の作製方法を以下に例示する。まず、Znを添加したLiNbO3上に周期が約17μmの周期的な電極を形成した。次に、電界印加法により上記の電極パターンに応じた分極反転グレーティングをZn:LiNbO3中に形成した。次に、この周期分極反転構造を有するZn:LiNbO3基板をクラッドとなるLiTaO3上に直接接合を行い、500℃で熱処理を行うことにより両基板を強固に接合した。次に、コア層を研磨により5μm程度まで薄膜化し、ドライエッチングプロセスを用いてリッジ型の光導波路を形成した。この導波路はペルチェ素子により温調が可能であり、導波路の長さは、50mmとした。このようにして形成されたPPLN導波路を有する二次非線形光学素子は、1.5μm帯の偏波保持ファイバで光の入出力が可能なモジュールとした。 Here, a method for manufacturing a PPLN waveguide used in the non-degenerate phase-sensitive optical amplifier in this embodiment will be exemplified below. First, a periodic electrode having a period of about 17 μm was formed on LiNbO 3 to which Zn was added. Next, a polarization inversion grating corresponding to the above electrode pattern was formed in Zn: LiNbO 3 by an electric field application method. Next, the Zn: LiNbO 3 substrate having this periodic domain-inverted structure was directly bonded onto the LiTaO 3 serving as the cladding, and heat treatment was performed at 500 ° C. to firmly bond both substrates. Next, the core layer was thinned to about 5 μm by polishing, and a ridge type optical waveguide was formed using a dry etching process. This waveguide can be temperature-controlled by a Peltier element, and the length of the waveguide is 50 mm. The second-order nonlinear optical element having the PPLN waveguide formed as described above is a module capable of inputting / outputting light with a polarization maintaining fiber in a 1.5 μm band.

ここで、本実施例では、Znを添加したLiNbO3を用いたが、それ以外の非線形材料である、KNbO3、LiTaO3、LiNbxTa1-x3(0≦x≦1)若しくはKTiOPO4、又はそれらにMg、Zn、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有している材料を用いてもよい。 Here, LiNbO 3 doped with Zn was used in this example, but other nonlinear materials such as KNbO 3 , LiTaO 3 , LiNb x Ta 1-x O 3 (0 ≦ x ≦ 1) or KTiOPO are used. 4 or a material containing at least one selected from the group consisting of Mg, Zn, Sc, and In as an additive.

ところで、非縮退型位相感応光増幅による光増幅を行えば、特許文献1(特開2013-182140号公報)、もしくは特許文献2(国際公開第2012/098911号)に開示されているとおり、ランダムな位相を持つ(励起光と同相の成分と直交位相成分を同等に含んでいる)ASE光の利得は、位相相関のある光信号の利得の半分になるので、結果的に信号のS/N比を3dB改善できることが知られている。しかしながら、一度位相感応光増幅器で増幅されたASE光は、光信号と同様に、励起光と位相相関を持ってしまうため、非縮退型位相感応光増幅器を光中継増幅器として連続して接続させても、連続させた中継スパンの初段の光増幅器でしか、ASE光の利得と光信号の利得差によるS/N比の改善効果は期待できない。   By the way, if optical amplification is performed by non-degenerate phase-sensitive optical amplification, as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2013-182140) or Patent Document 2 (International Publication No. 2012/009911), random The gain of an ASE light having a correct phase (including an in-phase component and a quadrature phase component equivalent to the pump light) is half of the gain of an optical signal having a phase correlation, and as a result, the S / N of the signal It is known that the ratio can be improved by 3 dB. However, since the ASE light once amplified by the phase sensitive optical amplifier has a phase correlation with the pumping light like the optical signal, the non-degenerate type phase sensitive optical amplifier is continuously connected as an optical repeater amplifier. However, the improvement effect of the S / N ratio due to the difference between the gain of the ASE light and the gain of the optical signal can be expected only with the first-stage optical amplifier of the continuous relay span.

しかしながら、図1のように位相不感応光増幅器(EDFA)1021,1022,1023と非縮退型位相感応光増幅器1031,1032,1033を交互に配置することで、非縮退型位相感応光増幅器によって励起光と位相相関を持ってしまったASE光を、次段で位相不感応光増幅器によって増幅することで再びランダムな位相を持つASEになるため、次々段の非縮退型位相感応光増幅器で再びASE光の利得と光信号の利得差によるSN改善効果が期待できる。   However, as shown in FIG. 1, phase-insensitive optical amplifiers (EDFAs) 1021, 1022, and 1023 and non-degenerate type phase-sensitive optical amplifiers 1031, 1032, and 1033 are alternately arranged to be excited by the non-degenerate type phase-sensitive optical amplifier. Since the ASE light that has phase correlation with the light is amplified by the phase insensitive optical amplifier in the next stage to become an ASE having a random phase again, the ASE is again performed by the non-degenerate phase sensitive optical amplifier in the next stage. An SN improvement effect due to the difference between the optical gain and the optical signal gain can be expected.

図2に16QAM信号を非縮退型位相感応光増幅器によって増幅する前後のコンスタレーションを示す。すなわち、図2(a)は入力光信号のコンスタレーション、図2(b)は位相感応光増幅器での出力光のコンスタレーションを示す。図2からわかるように非縮退型位相感応光増幅器によって、光信号のS/N比が改善していることがわかる。   FIG. 2 shows a constellation before and after a 16QAM signal is amplified by a non-degenerate phase-sensitive optical amplifier. That is, FIG. 2A shows the constellation of the input optical signal, and FIG. 2B shows the constellation of the output light in the phase sensitive optical amplifier. As can be seen from FIG. 2, the S / N ratio of the optical signal is improved by the non-degenerate phase sensitive optical amplifier.

図3に、
(1) 図7の光中継伝送システムでの理想的なS/N比の推移、
(2) 図7の光中継伝送システムにおいてEDFAを全て非縮退型位相感応光増幅器で置き換えた光中継伝送システムでの理想的なS/N比の推移、
(3) 本実施例での光中継伝送システムでの理想的なS/N比の推移を比較する。
図3からわかるとおり、本発明の光増幅器配置を用いることで、EDFAで一度劣化したS/N比を非縮退型位相感応光増幅器で回復させながら伝送させることが可能となり、結果的に光受信器に到達した際の理想的なS/N比は、非縮退型位相感応光増幅器のみで構成した光中継伝送システムのS/N比と同じになる。
In FIG.
(1) Transition of ideal S / N ratio in the optical repeater transmission system of FIG.
(2) Transition of ideal S / N ratio in the optical repeater transmission system in which all EDFAs are replaced by non-degenerate phase sensitive optical amplifiers in the optical repeater transmission system of FIG.
(3) The transition of the ideal S / N ratio in the optical repeater transmission system in this embodiment is compared.
As can be seen from FIG. 3, by using the optical amplifier arrangement of the present invention, the S / N ratio once deteriorated by the EDFA can be transmitted while being recovered by the non-degenerate type phase-sensitive optical amplifier, resulting in optical reception. The ideal S / N ratio when reaching the optical device is the same as the S / N ratio of an optical repeater transmission system composed of only non-degenerate phase-sensitive optical amplifiers.

実際に、NF5dBの非縮退型位相不感応光増幅器を6台接続した光中継伝送システムと、NF5dBの3台の位相不感応光増幅器とNF2dBの3台の非縮退型位相感応光増幅器を交互に接続した光中継伝送システムの光受信器でのS/N比の差を比較した結果18dBであり、本発明の有効性を確認できた。   Actually, an optical repeater transmission system in which six NF5 dB non-degenerate phase-insensitive optical amplifiers are connected, three phase-insensitive optical amplifiers with NF5 dB, and three non-degenerate phase-sensitive optical amplifiers with NF2 dB are alternately used. As a result of comparing the difference in the S / N ratio at the optical receiver of the connected optical repeater transmission system, it was 18 dB, confirming the effectiveness of the present invention.

本実施例で示した通り、位相不感応光増幅器と非縮退型位相感応光増幅器を交互に配置することで、理想的にはS/N比を劣化させることなく、かつ光中継増幅器を全て非縮退型位相感応増幅器で構成した光中継伝送システムと比較して低価格で低消費電力で、多段の中継増幅を実現することができる。   As shown in the present embodiment, by alternately arranging the phase insensitive optical amplifier and the non-degenerate type phase sensitive optical amplifier, ideally, all of the optical repeater amplifiers are not degraded without degrading the S / N ratio. Compared with an optical repeater transmission system composed of degenerate phase sensitive amplifiers, multistage repeater amplification can be realized at low cost and low power consumption.

(他の実施例)
実施例1では、EDFA3台、非縮退型位相感応光増幅器3台で構成した光中継伝送システムを例にとったが、それぞれの設置台数は3台に限るものではない。つまり、EDFAの設置台数と非縮退型位相感応光増幅器の設置台数を同数にすると共に、EDFAを初段増幅器として交互に接続した系であれば、設置台数が3台に限らず、同様の効果が期待できる。
(Other examples)
In the first embodiment, an optical repeater transmission system including three EDFAs and three non-degenerate phase-sensitive optical amplifiers is taken as an example, but the number of installed units is not limited to three. In other words, if the number of installed EDFAs is the same as the number of installed non-degenerate phase-sensitive optical amplifiers, and the system is one in which EDFAs are alternately connected as a first stage amplifier, the number of installed EDFAs is not limited to three, and the same effect is obtained. I can expect.

また非縮退型位相感応光増幅器の数をEDFAの数よりも一台多くして、初段の増幅器を非縮退型位相感応光増幅器とした場合でも同様の効果が得られる。
逆に、EDFAの数が非縮退型位相感光応増幅器の数よりも一台多い場合は、初段の光増幅器をEDFAとして、交互に接続すると最終段の光増幅器がEDFAになるが、この場合、上記2つの形態よりも理想的なS/N比は3dBに劣化するが、中継段数Nが3段以上になるとEDFAのみの場合の光中継伝送システムでは光受信器におけるS/N比は(3N)dBとなるので、システム全体として3(N−1)dBの利得改善効果が期待できる。
The same effect can be obtained even when the number of non-degenerate phase-sensitive optical amplifiers is increased by one more than the number of EDFAs and the first-stage amplifier is a non-degenerate phase-sensitive optical amplifier.
Conversely, if the number of EDFAs is one more than the number of non-degenerate phase-sensitive amplifiers, the first stage optical amplifier is used as an EDFA, and the last stage optical amplifier becomes an EDFA when alternately connected. Although the ideal S / N ratio is degraded to 3 dB compared to the above two forms, when the number of relay stages N is 3 or more, the S / N ratio in the optical receiver is (3N ) dB, the overall system can be expected to have a gain improvement effect of 3 (N−1) dB.

上記実施例では非縮退型位相感応光増幅器を採用したが、通常の強度変調信号や二値の位相変調を用いるIMDD、BPSKまたはDPSK等の変調信号の伝送を行う場合には、位相感応光増幅器を採用してもよい。
また位相不感応光増幅器としては、EDFAのみならず、ラマン増幅器または半導体光増幅器を採用することもできる。
In the above embodiment, the non-degenerate type phase sensitive optical amplifier is adopted. However, when transmitting a normal intensity modulated signal or a modulated signal such as IMDD, BPSK or DPSK using binary phase modulation, the phase sensitive optical amplifier is used. May be adopted.
As the phase insensitive optical amplifier, not only an EDFA but also a Raman amplifier or a semiconductor optical amplifier can be adopted.

本発明は光中継伝送システムに利用することができる。   The present invention can be used in an optical repeater transmission system.

1000 光中継伝送システム
1010,1011〜1017 光ファイバ
1021,1022,1023 EDFA(位相不感応光増幅器)
1031,1032,1033 非縮退型位相感応光増幅器
1000 optical repeater transmission system 1010, 1011-1017 optical fiber 1021, 1022, 1023 EDFA (phase insensitive optical amplifier)
1031, 1032, 1033 Non-degenerate phase-sensitive optical amplifier

Claims (7)

光伝送路である光ファイバの複数箇所に光中継増幅器を備えた光中継伝送システムにおいて、
初段の前記光中継増幅器を位相不感応光増幅器とした状態で、初段から最終段までの前記光中継増幅器として、位相不感応光増幅器と位相感応光増幅器を交互に配置したことを特徴とする光中継伝送システム。
In an optical repeater transmission system equipped with optical repeater amplifiers at multiple locations of an optical fiber that is an optical transmission line,
A light characterized by alternately arranging a phase insensitive optical amplifier and a phase sensitive optical amplifier as the optical repeater amplifier from the first stage to the last stage in a state where the optical repeater amplifier in the first stage is a phase insensitive optical amplifier. Relay transmission system.
請求項1において、
前記位相不感応光増幅器と前記位相感応光増幅器を合わせた配置数は、偶数個であることを特徴とする光中継伝送システム。
In claim 1,
The optical repeater transmission system according to claim 1, wherein the number of arrangement of the phase insensitive optical amplifier and the phase sensitive optical amplifier is an even number.
請求項1において、
初段の前記位相不感応光増幅器の前段に、更に別の位相感応光増幅器を備えることを特徴とする光中継伝送システム。
In claim 1,
An optical repeater transmission system further comprising another phase sensitive optical amplifier before the phase insensitive optical amplifier in the first stage.
請求項1において、
最終段の前記位相感応光増幅器の後段に、更に別の位相不感応光増幅器を備えることを特徴とする光中継伝送システム。
In claim 1,
An optical repeater transmission system further comprising another phase insensitive optical amplifier after the phase sensitive optical amplifier in the final stage.
請求項1ないし請求項4のいずれか一項において、
前記位相感応光増幅器は、非縮退型位相感応光増幅器であることを特徴とする光中継伝送システム。
In any one of Claims 1 thru | or 4,
An optical repeater transmission system, wherein the phase sensitive optical amplifier is a non-degenerate phase sensitive optical amplifier.
請求項1ないし請求項5のいずれか一項において、
前記位相感応光増幅器または前記非縮退型位相感応光増幅器における光パラメトリック増幅媒体が、周期分極反転構造を有するLiNbO3、KNbO3、LiTaO3、LiNbxTa1-x3(0≦x≦1)又はKTiOPO4、或いはそれらにMg、Zn、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有している材料からなる光導波路を用いていることを特徴とする光中継伝送システム。
In any one of Claims 1 thru | or 5,
The optical parametric amplification medium in the phase sensitive optical amplifier or the non-degenerate phase sensitive optical amplifier is LiNbO 3 , KNbO 3 , LiTaO 3 , LiNb x Ta 1-x O 3 (0 ≦ x ≦ 1) having a periodically poled structure. ) Or KTiOPO 4 , or an optical waveguide made of a material containing at least one selected from the group consisting of Mg, Zn, Sc, and In as an additive. .
請求項1ないし請求項6のいずれか一項において、
前記位相不感応光増幅器が、EDFA、ラマン増幅器または半導体光増幅器のいずれか一つであることを特徴とする光中継伝送システム。
In any one of Claims 1 thru | or 6,
An optical repeater transmission system, wherein the phase insensitive optical amplifier is one of an EDFA, a Raman amplifier, and a semiconductor optical amplifier.
JP2015037537A 2015-02-27 2015-02-27 Optical repeater transmission system Active JP6348433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015037537A JP6348433B2 (en) 2015-02-27 2015-02-27 Optical repeater transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037537A JP6348433B2 (en) 2015-02-27 2015-02-27 Optical repeater transmission system

Publications (2)

Publication Number Publication Date
JP2016161603A true JP2016161603A (en) 2016-09-05
JP6348433B2 JP6348433B2 (en) 2018-06-27

Family

ID=56846790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037537A Active JP6348433B2 (en) 2015-02-27 2015-02-27 Optical repeater transmission system

Country Status (1)

Country Link
JP (1) JP6348433B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009436A1 (en) * 2020-07-10 2022-01-13 日本電信電話株式会社 Light source for multimodal nonlinear optical microscope
WO2022054242A1 (en) * 2020-09-11 2022-03-17 日本電気株式会社 Optical transmission system, and optical transmission method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265061A (en) * 1992-03-19 1993-10-15 Fujitsu Ltd Optical amplifier multistage repeating transmission line
JPH09222622A (en) * 1995-12-13 1997-08-26 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier and optical amplification relay transmission system
US20060193035A1 (en) * 2005-02-17 2006-08-31 Optovia Corporation Optical Amplification System For Variable Span Length WDM Optical Communication Systems
JP2013182140A (en) * 2012-03-02 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> Light amplification device, optical signal generator, and signal/noise ratio improvement device
JP2014183514A (en) * 2013-03-21 2014-09-29 Oki Electric Ind Co Ltd Optical node

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265061A (en) * 1992-03-19 1993-10-15 Fujitsu Ltd Optical amplifier multistage repeating transmission line
JPH09222622A (en) * 1995-12-13 1997-08-26 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier and optical amplification relay transmission system
US20060193035A1 (en) * 2005-02-17 2006-08-31 Optovia Corporation Optical Amplification System For Variable Span Length WDM Optical Communication Systems
JP2013182140A (en) * 2012-03-02 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> Light amplification device, optical signal generator, and signal/noise ratio improvement device
JP2014183514A (en) * 2013-03-21 2014-09-29 Oki Electric Ind Co Ltd Optical node

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009436A1 (en) * 2020-07-10 2022-01-13 日本電信電話株式会社 Light source for multimodal nonlinear optical microscope
JPWO2022009436A1 (en) * 2020-07-10 2022-01-13
JP7328598B2 (en) 2020-07-10 2023-08-17 日本電信電話株式会社 Light source for multimodal nonlinear optical microscopy
WO2022054242A1 (en) * 2020-09-11 2022-03-17 日本電気株式会社 Optical transmission system, and optical transmission method

Also Published As

Publication number Publication date
JP6348433B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP5883974B2 (en) Optical signal amplifier
JP6774382B2 (en) Optical amplifier and optical transmission system using it
US20210044358A1 (en) Optical Signal Transmitter
JP6110547B1 (en) Optical amplifier
JP6348447B2 (en) Optical amplifier and optical transmission system using the same
JP6110546B1 (en) Phase sensitive optical amplifier
JP6348433B2 (en) Optical repeater transmission system
JP2014089253A (en) Optical amplification apparatus
JP6126543B2 (en) Optical amplifier
JP7252498B2 (en) optical communication system
JP6114442B1 (en) Optical amplification device and optical transmission system
JP2018207362A (en) Optical transmitter and optical transmission system using the same
JP2014044256A (en) Optical amplifier
JP6220314B2 (en) Optical amplifier
JP6072593B2 (en) Optical amplifier
Umeki et al. First demonstration of in-line phase sensitive amplifier based on PPLN waveguide
JP2014081578A (en) Optical transmission device
Kakande et al. Phase sensitive amplifiers for regeneration of phase encoded optical signal formats
Okamura et al. Pump phase-locking to fiber-transmitted QPSK phase-conjugated twin waves for non-degenerate phase-sensitive amplifier repeaters
JP2019002975A (en) Light amplifier and transmission system using the same
JP7189469B2 (en) Excitation light generator
Zheng et al. Raman-assisted phase-sensitive amplification enabled optical add-drop filter
Umeki et al. Phase sensitive degenerate parametric amplification using highly efficient PPLN ridge waveguides
Umeki et al. Towards practical implementation of optical parametric amplifiers based on PPLN waveguides
Enbutsu et al. PPLN-Based Low-Noise In-Line Phase Sensitive Amplifier with Highly Sensitive Carrier-Recovery System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180531

R150 Certificate of patent or registration of utility model

Ref document number: 6348433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150