JP2016160928A - Tidal power generation panel and mooring rope - Google Patents

Tidal power generation panel and mooring rope Download PDF

Info

Publication number
JP2016160928A
JP2016160928A JP2015056889A JP2015056889A JP2016160928A JP 2016160928 A JP2016160928 A JP 2016160928A JP 2015056889 A JP2015056889 A JP 2015056889A JP 2015056889 A JP2015056889 A JP 2015056889A JP 2016160928 A JP2016160928 A JP 2016160928A
Authority
JP
Japan
Prior art keywords
power generation
mooring
tidal
generation panel
foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015056889A
Other languages
Japanese (ja)
Other versions
JP6103449B2 (en
Inventor
悠一 桐生
Yuichi Kiryu
悠一 桐生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015056889A priority Critical patent/JP6103449B2/en
Publication of JP2016160928A publication Critical patent/JP2016160928A/en
Application granted granted Critical
Publication of JP6103449B2 publication Critical patent/JP6103449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve some problems found in the prior art tidal power generation that a guidance for the most-preferable design attained in view of the optimal unit machine capacity has not been established and additionally a preferable installation method when several power generation units are utilized has not been proposed.SOLUTION: A tidal power generation panel of this invention increases a drag coefficient by congesting many hydraulic power generation units with low output of several tens kW class and loading them like a flat-plate manner, makes a pressure difference across a partial bank in tidal flow and can make a power generation output per unit tidal current area under the pressure difference to twice or larger than that of a hydraulic power turbine generator with several thousand kW class in a usual open tidal flow. In addition, this tidal current power generation panel itself can be connected with the mooring cable from the sea bottom foundation and this can be applied as a tidal power generation type foundation composing element of which an application range is wide such as a mooring type tidal power generating ship or a mooring type tide power generating ship or a mooring type marine supporting tidal power generation facility of which legs are fixed to a sea bottom.SELECTED DRAWING: Figure 1

Description

本発明は、黒潮などの潮流の持つ流体の運動エネルギーを水力タービン等により回転エネルギーとなし、発電機により電気エネルギーへと変換する潮流発電施設に関する。The present invention relates to a tidal current power generation facility that converts kinetic energy of a fluid of a tidal current such as the Kuroshio into rotational energy by a hydro turbine or the like and converts it into electric energy by a generator.

潮流発電と風力発電には、流体の運動エネルギーを電気エネルギーへ変換することで共通点がある。風力発電は陸地や水深の浅い海上での利用は、製品のライフサイクルに当てはめると既に成長後期の段階にあり、長大な円筒支柱の上に巨大な風車を持つ発電ナセルを旋回可能に搭載する方式が世界標準に収斂しつつある。Tidal current power generation and wind power generation have a common point by converting fluid kinetic energy into electrical energy. Wind power generation is used in land and in shallow water, and it is already in the late stage of growth when applied to the product life cycle, and a power generation nacelle with a huge windmill on a long cylindrical column is installed so as to be able to swivel. Is converging on global standards.

潮流発電は風力発電に次ぐ自然エネルギーとして注目を集めているテーマである。例えば黒潮は平均的に海面から水深200m付近までの厚さで、幅100kmに及ぶ強流帯を有する表層流であり、その流れの方向は長期間安定で、流れの速度は日間変動も季節変動も比較的少ないことが知られている。晴れた日の日中しか発電できない太陽光発電や、気まぐれな風力発電とは異なり総合発電効率(総合設備利用率)が100%に近く、信頼性が高い安定したエネルギー源となり、日本国が必要とするエネルギーの相当部分を担うことができると指摘されている。Tidal current power generation is a theme that attracts attention as a natural energy after wind power generation. For example, the Kuroshio Current is a surface current that has a strong current zone that extends from the sea surface to a depth of about 200 m and has a width of 100 km, the direction of the flow is stable for a long period of time, and the flow speed varies daily and seasonally. Is also known to be relatively few. Unlike solar power generation that can generate electricity only on sunny days and whimsical wind power generation, the total power generation efficiency (total facility utilization rate) is close to 100%, making it a highly reliable and stable energy source that Japan needs It is pointed out that it can bear a considerable part of energy.

だが、地上で設置作業や点検・補修作業が行える他の自然エネルギー発電方式に比べ、海中でそれらの作業を行わねばならぬ潮流発電は、作業の困難さから実用化の試みが敬遠されてきた。このため、製品のライフサイクルに当てはめると、まだ導入前期の段階に止まっており、幾つかの方式がやっと実証試験に入りつつある段階である。将来、どのような方式が世界標準になるかはまだ見えていない。However, compared to other renewable energy power generation methods that can be installed, inspected and repaired on the ground, tidal current power generation that must be carried out in the sea has been refrained from trying to put it to practical use because of the difficulty of the work. . For this reason, when applied to the product life cycle, it is still in the early stage of introduction, and several methods are finally entering the verification test. It has not yet been seen what system will become the global standard in the future.

特許第5656155号公報 多胴船型潮流発電施設Japanese Patent No. 5656155 Multi-hull type tidal current power generation facility 特許第5622013号公報 集合型潮流発電施設Japanese Patent No. 5622013 Collective tidal power generation facility

共同研究「海流発電の研究」報告書 海洋科学技術センター 東京電力株式会社 1981年9月Report on Joint Research “Research on Ocean Current Power Generation” Marine Science and Technology Center Tokyo Electric Power Company September 1981 再生可能エネルギー技術白書 第2版 第6章 海洋エネルギー 新エネルギー・産業技術総合開発機構 2013年12月Renewable Energy White Paper Second Edition Chapter 6 Ocean Energy New Energy and Industrial Technology Development Organization December 2013

現在公表されている潮流発電の実証機の主流は、単機出力が巨大化する方向に向かっている。これに対して、「特許文献1」及び「特許文献2」は同じエネルギーを生む対象潮流断面積に対して、単機出力が小さい発電ユニットを多数台集合的に利用する方が、単機出力が大きい発電ユニットを少数台利用するよりも所要資材量が少なくなるというL2乗3乗法則を活用すべきであることを強調した。具体的には実証試験機の単機出力の多くが1000kW級であるのに対して、現在の先進国にて利用可能な輸送機械産業等の既存技術及び既存設備により量産可能な数十kW級の単機出力が小さい発電ユニットを多数台格子状に密集して装荷する設計思想に将来性があると主張した。The mainstream of tidal current power generation demonstrations that are currently being announced is heading toward a larger single-machine output. On the other hand, “Patent Document 1” and “Patent Document 2” have a larger single-machine output when a large number of power generation units having a small single-machine output are collectively used for the target tidal cross-sectional area that produces the same energy. He stressed that the L-square cube law should be used, which requires less material than using a small number of power generation units. Specifically, while many of the single tester's output is 1000kW class, it is of several tens of kW class that can be mass-produced by existing technology and existing equipment such as the transportation machinery industry that can be used in the current developed countries. He argued that there was a future in the design philosophy of densely loading a large number of power generation units with a small unit output in a grid.

また、「特許文献1」では設置作業と点検・補修作業の全てが、「特許文献2」では補修作業が大気中で行えるように構成されており、潮流発電が敬遠されていた大きな理由である海中での作業が殆ど不必要となり、実用化へのハードルを一段と低くしている。In addition, “Patent Document 1” is configured so that all installation work and inspection / repair work can be performed in the air in “Patent Document 2”, which is a major reason why tidal power generation is avoided. Work under the sea is almost unnecessary, and the hurdle to practical use is further lowered.

「特許文献1」及び「特許文献2」は潮流発電の建設・運営での技術的困難性の殆どを解決している。しかしながら、発電パネルの設置方法については、可能性のごく一部を提示するに止まっており、技術体系として不完全である。例えば、「特許文献1」は発電パネルと多胴船の船体を固定させ、海底基礎に発する係留索を船体の係留点に係留する方法のみを示している。
「特許文献1」及び「特許文献2」にはなかった実用化可能な幾何学的構成をできるだけ多く開示して充実した潮流発電の技術体系を構築すること、これが本発明の課題である。
Patent Document 1” and “Patent Document 2” solve most of the technical difficulties in the construction and operation of tidal current power generation. However, regarding the method of installing the power generation panel, only a part of the possibilities are presented, and the technical system is incomplete. For example, “Patent Document 1” shows only a method of fixing a power generation panel and a hull of a multihull ship and mooring a mooring line originating from a submarine foundation at a mooring point of the hull.
It is an object of the present invention to construct as many tidal current power generation technical systems as possible by disclosing as many geometric structures that can be put into practical use that were not found in "Patent Document 1" and "Patent Document 2".

「特許文献1」では浮体の下にできるだけ多くの発電パネルを懸垂・固定する大出力発電プラントを目標としたために、多胴船の最左翼と最右翼にある2本の船体に係留索の係留点を設ける幾何学的構成を示した。双胴船に回転自在に1基の発電パネルを懸垂・固定する場合に限定すれば、異なった幾何学的構成が可能となる。発電時に抗力が加わる発電パネルの左右に各1個所の係留点を設ける方式である。この係留点を発電抗力の作用点を通る水平線上の枠構造体に設けるのが課題を解決するための第一の手段である。In “Patent Document 1”, mooring lines are moored to the two hulls on the left and right wings of a multihull ship in order to target a high-output power plant that suspends and fixes as many power generation panels as possible under the floating body. The geometric configuration for providing points is shown. If it is limited to the case where one power generation panel is suspended and fixed to the catamaran so as to be rotatable, different geometric configurations are possible. In this method, one mooring point is provided on each of the left and right sides of the power generation panel to which drag is applied during power generation. Providing this mooring point in a frame structure on a horizontal line passing through the point of action of the power generation drag is the first means for solving the problem.

前述計2個所の係留点から各1本、計2本の係留索が発するが、それらを前述係留点の幅の2倍乃至20倍の範囲の等距離で係留中継点に集め、前述係留中継点に海底係留基礎から延伸した基礎側係留索を接続する。ここには潮流発電パネルの幅を底辺とし、それより長い斜辺を持つ二等辺三角形が形成されており、その頂点を係留中継点と呼び、海底係留基礎から係留中継点までを担う係留索を基礎側係留索と呼んでいる。この幾何学的構成は凧と凧糸との関係と相似であり、この構成をとることにより凧は風に対して安定的に対向姿勢を維持することができる。底辺に対する斜辺の長さの倍数は、凧の経験値では約3〜7倍が良いとされているが、その前後でも姿勢安定化作用を期待することができる。Two mooring lines, one each from the above two mooring points, are collected at the mooring relay point at an equal distance in the range of 2 to 20 times the width of the mooring point. Connect the base side mooring line extended from the seabed mooring foundation to the point. Here, an isosceles triangle with the width of the tidal power generation panel as the bottom and a longer oblique side is formed. The apex is called the mooring relay point, which is based on the mooring line that carries from the submarine mooring foundation to the mooring relay point. This is called a side mooring line. This geometrical configuration is similar to the relationship between the kite and the kite string, and by using this configuration, the kite can maintain a stable posture against the wind. The multiple of the length of the hypotenuse with respect to the base is considered to be about 3 to 7 times according to the empirical value of the eyelid, but the posture stabilizing action can be expected before and after that.

前述第一の手段には、複数のバリエーションがあり得る。前述第一の手段は、潮流発電パネルを凧に擬すと、2本の凧糸で飛んでいる凧のように見えるが、実際にはパネルを懸垂・固定している船体がパネルを垂直に保つための力を作用させており、3本以上の凧糸で姿勢制御している凧と同じ効果がある。そのため、潮流発電パネルは姿勢安定化には左右の2本の係留索以上の係留索を必要としない。There can be a plurality of variations in the first means. The above-mentioned first means that when a tidal power generation panel is imitated as a kite, it looks like a kite flying with two kites, but in reality the hull that suspends and fixes the panel vertically The force for maintaining is applied, and has the same effect as a kite whose posture is controlled by three or more kites. Therefore, tidal power generation panels do not require more than two mooring lines on the left and right for posture stabilization.

しかしながら、潮流発電パネルは潮流との相互作用でカルマン渦を始めとする各種の乱流を発生させ、その反作用として船体にヨーイング力が加わる。海面からの位置関係で、発電抗力の作用点より下の位置に係留点を設けると、潮流発電パネルは係留点に対して船首を持ち上げ、船尾を沈めるような回転力を発生する。この回転力を打ち消すように船体の前部に係留点を設け、係留中継点との間に第三、更には第四の補助係留索を設けると、船体をヨーイングさせる力を抑制する作用が働く。この幾何学的構成が課題を解決する第二の手段である。However, the tidal current power generation panel generates various turbulences including Karman vortex by interaction with the tidal current, and yawing force is applied to the hull as a reaction. If a mooring point is provided at a position below the action point of power generation drag due to the positional relationship from the sea surface, the tidal current power generation panel generates a rotational force that lifts the bow to the mooring point and sinks the stern. If a mooring point is provided at the front of the hull so as to counteract this rotational force, and the third and fourth auxiliary mooring lines are provided between the mooring relay points, the action of suppressing the yawing force of the hull will work. . This geometric configuration is the second means for solving the problem.

船体の長手方向のほぼ中央に浮力中心がある。黒潮の強流帯は海面からほぼ200m下までの厚さであるから、潮流発電パネルの上下長さも200m程度になる場合が多いと思われる。この潮流発電パネルを船体長さの中央部に懸垂・固定するには、船体の長さは400mを超えるものとなる。これは少々長すぎると思う。船体の長さを縮めて船首に近い位置から懸垂・固定できれば好都合である。そのような位置に懸垂点を設けると、浮力中心より前方に懸垂・固定点があるために潮流発電パネルに発電抗力が加わると、抗力により生じる係留索の張力の垂直成分が懸垂・固定点に加わるために船体は前のめりの姿勢になる。一方、係留点を抗力中心より下方に下げると、係留点を軸として船尾を下げるような回転力が働く。この二つの力を平衡させるような位置に係留点を設けると、発電負荷をかけても船体は水平に保たれる。この幾何学的構成が課題を解決する第三の手段である。There is a buoyancy center in the approximate center of the hull. The Kuroshio strong current zone is about 200m below the sea level, so the vertical length of the tidal current power generation panel is often about 200m. In order to suspend and fix the tidal power generation panel at the center of the hull length, the hull length exceeds 400 m. I think this is a bit too long. It would be advantageous if the length of the hull could be shortened and suspended and fixed from a position close to the bow. If a suspension point is provided at such a position, there is a suspension / fixation point ahead of the center of buoyancy. In order to join, the hull is in a forward-facing position. On the other hand, when the mooring point is lowered below the center of drag, a rotational force that lowers the stern about the mooring point acts. If a mooring point is provided at a position that balances these two forces, the hull is kept horizontal even when a power generation load is applied. This geometric configuration is the third means to solve the problem.

潮流発電パネルに装荷される発電ユニットは、正面から流入する潮流に対応するよう設計されているが、水力タービンのブレード形状を工夫すれば逆方向から流入する水流に対しても同等の発電効率で対応できる。潮流発電パネルに前後対称に海底係留基礎と係留索を設けることは幾何学的に可能である。そのような係留型潮流発電船は時間帯によって1日に4回海流の方向が反転する潮汐流に対しても作動可能である。この幾何学的構成が課題を解決する第四の手段である。The power generation unit loaded on the tidal power generation panel is designed to respond to the tidal current flowing in from the front. Yes. It is geometrically possible to provide a tidal power generation panel with a bottom mooring foundation and mooring lines symmetrically. Such a mooring type tidal power generation vessel can also operate against a tidal current whose direction of ocean current is reversed four times a day depending on the time of day. This geometric configuration is the fourth means for solving the problem.

「特許文献1」は係留型潮流発電船、「特許文献2」は海中支持型潮流発電施設であったが、潮流発電パネルは両者に共通する要素である。このため、本発明の請求項1は係留型と海中支持型の両方式をカバーするように記述・構成した。但し、「特許文献2」に記述された海中支持型潮流発電施設の主柱構造体はそれ自体で直立し、発電抗力やそれを上回る抗力にも対抗できるだけの機械的強度があるが、半永久的巨大構造体であるために初期費用が極めて高価になることが避けられない。橋梁のタイプでいえば、資材を豊富に使用して剛構造にした桁橋に相当する。Patent Document 1” is a moored tidal power generation ship and “Patent Document 2” is an underwater-supported tidal power generation facility, but a tidal power generation panel is an element common to both. For this reason, claim 1 of the present invention is described and configured to cover both the mooring type and the underwater support type. However, the main pillar structure of the subsea-supported tidal current power generation facility described in “Patent Document 2” stands upright on its own, and has a mechanical strength that can resist the power generation drag and the drag exceeding it, but is semi-permanent. Since it is a huge structure, it is inevitable that the initial cost becomes extremely high. Speaking of the type of bridge, it corresponds to a girder bridge made of abundant materials and made rigid.

潮流発電パネルに海底まで届く脚部を加え、海上に突き出る支柱で海上施設を支持し、抗力の大部分を海底係留基礎と係留索に負担させ、脚部海底基礎は自重と係留索の張力の垂直成分を主に負担する幾何学的構成であれば、資材使用量も極めて少なく、初期費用も前節に挙げた海中支持型の数分の一程度で済むと思われる。この構造の潮流発電パネルは長期使用により大規模補修や改造が必要になった場合は、脚部と脚部海底基礎との連結を解放し、係留索を海底係留基礎から外すことにより浮上させ、作業船により陸上のドックまで曳航して必要な作業をドックで容易に行うことができる。橋梁のタイプでいえば、柔構造である斜張橋に相当する。この幾何学的構成が課題を解決する第五の手段である。Legs that reach the sea floor are added to the tidal current power generation panel, the offshore facilities support the offshore facilities, and most of the drag is borne by the submarine mooring foundation and mooring line. If it is a geometrical structure that mainly bears the vertical component, the amount of materials used is very small, and the initial cost is probably only a fraction of that of the subsea support type mentioned in the previous section. If a tidal current power generation panel with this structure needs to be repaired or remodeled on a large scale due to long-term use, the connection between the leg and the bottom of the bottom seabed will be released, and the mooring line will be lifted off the bottom of the bottom, The work can be towed to the dock on land by the work ship, and the necessary work can be easily performed at the dock. Speaking of the type of bridge, it corresponds to a cable-stayed bridge with a flexible structure. This geometric configuration is a fifth means for solving the problem.

最後に、前述発電ユニットが発電することにより発生する発電抗力は、潮流発電パネルが潮流の中に存在することで発生する抗力を超えることはできないという物理的限界がある。潮流発電パネルの抗力は、潮流に向かい合う「面積」と「抗力係数」と「流速の2乗」の三つの変数の積である。平板の抗力係数は約1.1であるが、平板の縁を前方に迫り出して向かってくる潮流を平板の縁から逃がさなくするような形状にすると、その抗力係数は約1.3と若干大きくなる。このような幾何学的形状により抗力の上昇を図ると、同じ潮流面積から得られる出力が抗力に比例して大きくなる。その結果、同じ潮流面積から得られる出力が、オープンな潮流の中に設置されているタービン発電機を1とすると、潮流発電パネル構造の発電ユニットでは2倍強の値が得られる。このことは、潮流発電パネル方式の大きな特長である。このような幾何学的構成が課題を解決する第六の手段である。Finally, there is a physical limit that the power generation drag generated by the power generation unit described above cannot exceed the drag generated when the tidal power generation panel exists in the tidal current. The drag of a tidal power generation panel is the product of three variables: “area”, “drag coefficient”, and “square of flow velocity”. The drag coefficient of the flat plate is about 1.1. However, if the shape is such that the tide that pushes the edge of the flat plate forward and does not escape from the edge of the flat plate, the drag coefficient is slightly about 1.3. growing. When the drag is increased by such a geometric shape, the output obtained from the same tidal current area increases in proportion to the drag. As a result, if the output obtained from the same tidal area is 1, the value of a power generator unit having a tidal power generation panel structure is more than twice as large as that of a turbine generator installed in an open tidal current. This is a major feature of the tidal current power generation panel method. Such a geometric configuration is the sixth means for solving the problem.

嘗て生物進化の世界で、カンブリア紀の爆発と呼ばれる事象があった。潮流発電も今その時期にある。本発明に開示された潮流発電パネルに関する幾何学的構成は6種、「特許文献1」と「特許文献2」の幾何学的構成を合わせると9種ほどになる。その中には機能的に重複しているものもあるが、最終的にどのような幾何学的構成(ボデイプラン)が生き残るかは、今後の技術的検証と実証試験から得られる知見が決めることになろう。In the world of biological evolution, there was an event called the Cambrian explosion. Tidal power generation is also at that time. There are 6 types of geometric configurations related to the tidal current power generation panel disclosed in the present invention, and there are about 9 types of geometric configurations of “Patent Document 1” and “Patent Document 2”. Some of them are functionally duplicated, but what kind of geometric configuration (body plan) will ultimately survive will be determined by future technical verification and knowledge gained from demonstration tests. Would.

本発明は潮流発電においては少数の大型タービン発電機を配置するのではなく、多数の小型タービン発電機を潮流発電パネルに集積した状態で配置する方式が性能面で優れ、経済合理性があり、水素化社会実現の一翼を担えることを示し、そのような発電パネルを装備した係留型潮流発電船に関して4件、係留型海中支持潮流発電施設に関して1件、潮流発電パネル本体に関して1件の幾何学的構成を開示した。潮流発電パネル方式を採用して潮流発電を実用化するに当たって、これらの中から与件に好適なプランを選ぶことにより開発の自由度が増し、正しい方向性を持った実用化がより早く実現できる効果がある。The present invention does not arrange a small number of large turbine generators in tidal power generation, but a system in which a large number of small turbine generators are integrated in a tidal power generation panel is excellent in terms of performance and has economic rationality, Shows that it can play a part in the realization of a hydrogenated society, with 4 geometry for moored tidal power ships equipped with such power generation panels, 1 geometry for moored underwater tidal power generation facilities, and 1 geometry for tidal current power generation panel bodies. The general structure was disclosed. In putting tidal power generation into practical use by adopting tidal power generation panel method, by selecting a plan suitable for a given condition from these, the degree of freedom of development increases, and practical application with the right direction can be realized sooner. effective.

係留型潮流発電船の正面図である。(実施例1)It is a front view of a mooring type tidal power generation ship. Example 1 係留型潮流発電船の側面図である。(実施例1)It is a side view of a mooring type tidal current power generation ship. Example 1 3本以上の係留索を持つ係留型潮流発電船の側面図である。(実施例2)It is a side view of a mooring type tidal power generation ship having three or more mooring lines. (Example 2) 浮力中心より前方に発電パネルを懸垂する係留型潮流発電船の側面図である。(実施例3)It is a side view of the mooring type tidal current power generation ship which suspends a power generation panel ahead from the buoyancy center. (Example 3) 潮汐流用係留型潮流発電船の側面図である。(実施例4)It is a side view of a tidal current mooring type tidal power generation ship. Example 4 係留索を用いる海中支持潮流発電施設の正面図である。(実施例5)It is a front view of an underwater tidal current power generation facility using a mooring line. (Example 5) 係留索を用いる海中支持潮流発電施設と自立式海中支持潮流発電施設の側面図である。(実施例5)It is a side view of an underwater support tidal power generation facility using a mooring line and a self-supporting underwater support tidal power generation facility. (Example 5) 高抗力化突出部を備える潮流発電パネルの部分水平面断面図である。(実施例6)It is a partial horizontal plane sectional view of a tidal current power generation panel provided with a high drag-proofing projection. (Example 6)

図1は本発明になる双胴船型潮流発電船を船首側から見た正面図、図2はその側面図である。「特許文献1」の多胴船型潮流発電施設の図面とほぼ同じ内容だが、「特許文献1」では2本の係留索の係留点が船体の側方に設けられているが、図1では係留点7は潮流発電パネル8の枠構造体の発電抗力の作用中心を通る水平線上に設けられている。両図では2本の船側係留索6が集まって係留中継点5に至り、基礎側係留索4に接続し、海底2の岩盤に埋設された海底基礎3がこの係留型潮流発電船からの巨大な張力を受け止めている状況を示した。この幾何学的構成が「特許請求範囲」の「請求項1」に相当する。FIG. 1 is a front view of a catamaran tidal power generation ship according to the present invention as seen from the bow side, and FIG. 2 is a side view thereof. The contents of the multihull type tidal power generation facility in “Patent Document 1” are almost the same as the drawings, but in “Patent Document 1” mooring points of two mooring lines are provided on the side of the hull, but in FIG. The point 7 is provided on a horizontal line passing through the center of action of the power generation drag of the frame structure of the tidal power generation panel 8. In both figures, the two mooring lines 6 on the ship side gather to the mooring relay point 5 and connect to the mooring line 4 on the foundation side, and the submarine foundation 3 buried in the bedrock of the seabed 2 is a huge The situation of receiving a strong tension was shown. This geometrical configuration corresponds to “Claim 1” of “Claims”.

なお、潮流発電パネル8は運転モードでは双胴船の船体10のデッキに相当する上部構造体11から回転軸構造体12により懸垂・固定されている。図2には運転モードにおける潮流発電パネル8と、上部構造体11に設けられた回転軸構造体12が時計回りに90度回転することにより船内(双胴船の2本の船体間と上部構造体で囲まれた海上の空間)に格納された潮流発電パネル9を同時に図示している。格納モードでは潮流発電パネルに関する発電ユニットの交換等のメンテナンス作業の全てを作業が困難な海中ではなく、作業が安全かつ容易な海上で行うことができる。これが本発明になる係留型潮流発電船の大きなメリットである。In the operation mode, the tidal current power generation panel 8 is suspended and fixed by the rotating shaft structure 12 from the upper structure 11 corresponding to the deck of the hull 10 of the catamaran. FIG. 2 shows that the tidal current power generation panel 8 in the operation mode and the rotating shaft structure 12 provided in the upper structure 11 are rotated 90 degrees clockwise so that the inside of the ship (between the two hulls of the catamaran and the upper structure). The tidal current power generation panel 9 stored in the ocean space surrounded by the body is shown at the same time. In the storage mode, all maintenance work such as replacement of the power generation unit related to the tidal current power generation panel can be performed in the sea where the work is safe and easy, not in the sea where the work is difficult. This is a great merit of the moored tidal power generation ship according to the present invention.

図1の潮流発電パネルが秒速2mの潮流に正対しているとしよう。この幾何学的構成は潮流を部分的に堰き止める部分堰を設けて強制的に圧力差(水頭)を作り出す。前述第六の手段に挙げたように、この潮流発電パネルの抗力係数が1.3であるとき、1m2当たり277kg重の抗力を生じ、それは約27cmの水頭に相当する。この水頭が発電ユニットでコンバージョン・ダイバージョンノズル効果(パネル面積に対してタービン駆動面積が小さいため、水流を絞る作用が発生する)により加速された水流となって潮流発電パネルの潮流対向面積1m2当たり約5kWの電気出力を発生し、前述抗力と平衡する抗力を生ずる。この流速では、一般の水力タービンの1m2当たりの出力は約2kWであるから、それと比較して、潮流発電パネル方式の面積当たり出力は2倍強とかなり大きい。Suppose that the tidal power generation panel in Fig. 1 is facing the tidal current of 2 m / s. This geometrical configuration creates a partial weir that partially dams the tidal current and forcibly creates a pressure difference (water head). As mentioned in the sixth means, when the drag coefficient of this tidal power generation panel is 1.3, a drag force of 277 kg is produced per 1 m 2, which corresponds to a head of about 27 cm. This water head is a power generation unit, and the conversion diversion nozzle effect (the turbine drive area is small relative to the panel area, which causes the water flow to be throttled) causes the water flow to be accelerated per tidal current facing area of the tidal power generation panel An electric output of about 5 kW is generated, and a drag that balances the aforementioned drag is generated. At this flow rate, the power output per square meter of a general hydro turbine is about 2 kW, so that the power output per unit area of the tidal power generation panel system is considerably larger than twice.

潮流発電パネルの規模をイメージするために、縦200m、横150mで潮流対向面積30,000m2の係留型潮流発電船を例にとって説明しよう。この潮流発電パネルは秒速2mの潮流の場合、約15万kWの出力と潮流発電パネルの総抗力約9,000トン重を発生させる。船体の抗力も含めて12,000トン重であったとしよう。係留索の海面に対する角度を30度とするとき、係留索の張力は13,856トン重、潮流発電パネルが船体を下方に引き込む力は6,928トン重となる。船舶として無負荷状態で浮上している状態に対し、発電状態に入るとこれだけの荷重が船体に加わり、船体の喫水がそれだけ深くなる。船体の浮力が2万トン重以上あれば、この程度の荷重で不安定になることがないので、このスキームは成立する。この発電量は黒部川第四発電所の総出力33万kWの半ばに迫る数値である。水力発電所として考えたとき、このスキームは経済的に成立する可能性が高い。To imagine the scale of a tidal power generation panel, let's take an example of a moored tidal power generation ship with a length of 200m, a width of 150m, and a tidal current facing area of 30,000m2. This tidal power generation panel generates an output of about 150,000 kW and a total drag of the tidal power generation panel of about 9,000 tons when the tidal current is 2 m / s. Let's say that it was 12,000 tons, including the hull drag. When the angle of the mooring line with respect to the sea level is 30 degrees, the tension of the mooring line is 13,856 tons and the force that the tidal power generation panel pulls the hull downward is 6,928 tons. When a power generation state is entered with respect to a state where the ship is floating in an unloaded state, such a load is applied to the hull, and the draft of the hull becomes deeper. If the buoyancy of the hull is 20,000 tons or more, this scheme will hold because it will not become unstable with this level of load. This power generation amount is close to the middle of 330,000 kW of total output of the Kurobe River No. 4 power plant. When considered as a hydropower plant, this scheme is likely to be economically viable.

この試算例には発電ユニットのサイズと台数が現れなかった。それは1m2を単位面積として試算したためであり、台数はこの試算では必要なかった。表には出なかったが、実用面からは発電ユニット1台は潮流発電パネルが受け止める潮流のおよそ15m2分を分担すると想定している。潮流発電パネルの集合保持体のなすダクト状の受入空間に挿入・装荷される発電ユニットの外形をなすダクト構造体の潮流に対する断面積は12〜10m2となるであろう。その場合の所要台数は2,000台である。台数は多いが、対処しきれない数ではない。発電ユニットがこの程度のサイズであれば、輸送機械産業等の既存技術及び既存設備により量産が可能であり、かつ、自動マテハン装置(自動着脱装置)で取り扱いが可能な重量に収まると考える。
例えば総出力として15万kWを目標とする場合、1,000kW機を150台個別生産方式で製造するのと、75kW機を2,000台大量生産方式で量産するのとを比較すると、小出力多数台化したためのL2乗3乗則による寸法Lに比例して資材総所要量が増える効果(相似設計であれば後者は前者の42%になる)と、潮流発電パネル方式による単位面積当たり一般タービン発電機より2倍強高出力化する効果も加わって、後者の方が圧倒的に経済的である。
In this trial calculation example, the size and number of power generation units did not appear. This is because 1 m2 was used as a unit area, and the number of units was not necessary in this calculation. Although not shown in the table, from a practical standpoint, it is assumed that one power generation unit will share approximately 15m2 of the tidal current received by the tidal power generation panel. The cross-sectional area of the duct structure forming the outer shape of the power generation unit inserted and loaded in the duct-shaped receiving space formed by the assembly holding body of the tidal current power generation panel will be 12 to 10 m2. In that case, the required number is 2,000. The number is large, but not enough. If the power generation unit is of this size, it can be mass-produced by existing technology and existing equipment such as the transport machinery industry, and can be handled by an automatic material handling device (automatic attachment / detachment device).
For example, if the target is 150,000 kW for total output, comparing the production of 150 kW machines with the individual production system and mass production of 2,000 75 kW machines with the mass production system, The effect of increasing the total amount of materials in proportion to the dimension L according to the L-square cube law due to the large number of units (the latter is 42% of the former if it is a similar design), and the general per unit area by the tidal power generation panel method The latter is overwhelmingly economical, with the effect of increasing the output by a factor of 2 over that of a turbine generator.

なお、以上の説明には潮流発電パネルの主要構成要素である発電ユニットの構造、潮流発電パネルへの装荷等の詳細に関して触れていないが、この発明が補完する立場にある「特許文献1」にある発電ユニットと同一設計思想である。重複を避けるために省略した。The above description does not touch on the details of the structure of the power generation unit, which is the main component of the tidal current power generation panel, and the loading on the tidal current power generation panel. It has the same design concept as a power generation unit. Omitted to avoid duplication.

図3は3本以上の係留索を持つ係留型潮流発電船の側面図である。ヨーイングにより船体が正面からずれ始めると、係留中継点5に発する第三、第四の補助係留索22の張力が係留中継点5と船首との距離を常に最小にしようとするために、水平面内の姿勢を正規位置に戻そうとする強い復元力が働く。
補助係留索22と補助係留点23の構成は、潮流発電パネル8の発電抗力が加わる抗力中心21を軸として時計回りの回転力を発生させる。この回転力とバランスさせる反時計回りの回転力を生じさせるために、船側係留索6の係留点7は、前述抗力中心21より若干下方に下げて設けなくてはならない。この幾何学的構成は「特許請求の範囲」の「請求項3」に相当する。
FIG. 3 is a side view of a moored tidal power generation ship having three or more mooring lines. When the hull starts to deviate from the front due to yawing, the tension of the third and fourth auxiliary mooring lines 22 emitted from the mooring relay point 5 always tries to minimize the distance between the mooring relay point 5 and the bow. A strong restoring force works to return the posture of the camera to the normal position.
The configuration of the auxiliary mooring line 22 and the auxiliary mooring point 23 generates a clockwise rotational force about the drag center 21 to which the power generation drag of the tidal current power generation panel 8 is applied. In order to generate a counterclockwise rotational force balanced with the rotational force, the mooring point 7 of the ship side mooring line 6 must be provided slightly below the drag center 21. This geometrical configuration corresponds to “Claim 3” of “Claims”.

図4は浮力中心24より前方に発電パネル8を懸垂する係留型潮流発電船の側面図である。縦寸法が200mであるような潮流発電パネルを浮力中心に懸垂・固定する船体は、大略その2倍の400m級もの長さが必要となる。これを短くしようとするのが前述「課題を解決する第三の手段」である。一つの数値例を示そう。海面に対する船側係留索6の傾斜角が30度の場合、潮流発電パネル8の長さを1として浮力中心24より潮流発電パネルの懸垂・固定位置である回転軸構造体12をほぼ0.43前方に移し、潮流発電パネルの抗力中心21より係留点7をほぼ0.25下方に位置させたときに生じる抗力による反時計回りの回転力と、浮力により生じる時計回りの回転力が平衡して「第三の手段」が成立する。この場合は船体の全長は300m以下に短縮でき、船体の全長に対して潮流発電パネルの縦寸法を近付けることができる。図4はその状態を図示した。FIG. 4 is a side view of a moored tidal power generation ship that suspends the power generation panel 8 in front of the buoyancy center 24. A hull that suspends and fixes a tidal current power generation panel having a vertical dimension of 200 m around the center of buoyancy is approximately twice as long as a 400 m class length. The above-mentioned “third means for solving the problem” is to shorten this. Let me give you a numerical example. When the inclination angle of the ship-side mooring line 6 with respect to the sea surface is 30 degrees, the tidal power generation panel 8 is set to a length of 1 and the rotating shaft structure 12 that is the suspension / fixation position of the tidal power generation panel is approximately 0.43 forward from the buoyancy center 24. The counterclockwise rotational force caused by the drag generated when the mooring point 7 is positioned approximately 0.25 below the drag center 21 of the tidal current power generation panel and the clockwise rotational force generated by the buoyancy are balanced. The “third measure” is established. In this case, the total length of the hull can be shortened to 300 m or less, and the vertical dimension of the tidal current power generation panel can be brought closer to the total length of the hull. FIG. 4 illustrates this state.

前述の特定解に限らず、一般に回転軸構造体12の懸垂・固定位置を浮力中心24から船首までの任意の位置に選んで、前述二つの回転力が平衡する位置を計算により求めて、その位置に係留点7を設けることができる。この幾何学的構成では、船体と潮流発電パネルの懸垂・固定部に非常に大きな回転力が加わるため、相当な機械的強度が要求される。船体の短縮による利益と、機械的強度増強による負担を総合的に判断する必要がある。この幾何学的構成は「特許請求の範囲」の「請求項4」に相当する。Not only the above-mentioned specific solution but generally the suspension / fixation position of the rotating shaft structure 12 is selected at any position from the buoyancy center 24 to the bow, and the position where the above-mentioned two rotational forces are balanced is obtained by calculation. A mooring point 7 can be provided at the position. In this geometric configuration, a very large rotational force is applied to the hull and the tidal power generation panel suspension / fixation part, so that a considerable mechanical strength is required. It is necessary to comprehensively judge the benefits of shortening the hull and the burden of increasing mechanical strength. This geometrical configuration corresponds to “Claim 4” of “Claims”.

図5は潮汐流用係留型潮流発電船の側面図である。潮流発電パネル8を対称面として、その後方に対称的に船尾側海底基礎31、船尾側基礎側係留索32、船尾側係留中継点33、船尾側船側係留索34及び船尾側係留点35を設けている。
潮汐流は1日に満ち潮と引き潮が交互に2回発生し、流れの方向が4回逆転する。図5の幾何学的構成であれば、潮汐流に対応して稼働できる。潮汐流に適用できる双方向流水力タービンの技術は確立している。潮汐流の流速がピーク前後である速潮期と、流れが停止状態になる停潮期があり、停潮期の前後は発電できない。だが、速潮期には一般の潮流より流速が早い海域が多数存在し、総合設備稼働率の低さを流速の速さで補うことができる。この幾何学的構成は「特許請求の範囲」の「請求項5」に相当する。
FIG. 5 is a side view of a tidal current moored tidal power generation ship. A stern side submarine foundation 31, a stern side foundation mooring line 32, a stern side mooring relay point 33, a stern side mooring line 34, and a stern side mooring point 35 are provided symmetrically with the tidal power generation panel 8 as a symmetrical plane. ing.
As for the tidal current, a full tide and a low tide occur twice a day, and the direction of the flow is reversed four times. The geometric configuration of FIG. 5 can operate in response to tidal currents. The technology of bidirectional flow hydro turbine that can be applied to tidal flow has been established. There are a tidal period when the flow velocity of the tidal current is around the peak and a tide period where the flow is stopped, and power cannot be generated before and after the tidal period. However, in the fast tide period, there are many sea areas where the flow velocity is faster than that of general tides, and it is possible to compensate for the low rate of overall facility operation with the speed of the flow velocity. This geometrical configuration corresponds to “Claim 5” of “Claims”.

図6は係留索を用いる係留型海中支持潮流発電施設の正面図、図7の右側の図は同じく側面図である。図7の左側の図は自立式海中支持潮流発電施設の側面図である。図7の二つの方式の発電施設は本質的に同一の潮流発電パネルを用いるが、それを潮流に抗して海中に支持する方式に違いがある。これら二つの図面を対比して示したのは、両方式の特徴と経済性を比較評価するためである。これらの図は海面から海底までの距離が400m、潮流の強流帯が海面から200mまであり、それ以下の水深では急速に流速が低下している状況をイメージして描いた。FIG. 6 is a front view of a mooring-type underwater tidal current power generation facility using a mooring line, and the right side of FIG. 7 is a side view. The left side of FIG. 7 is a side view of a self-supporting underwater support tidal power generation facility. The two types of power generation facilities in FIG. 7 use essentially the same tidal power generation panel, but there is a difference in the method of supporting it in the sea against the tidal current. The comparison between these two drawings is for comparative evaluation of the characteristics and economics of both types. These figures depict the situation where the distance from the sea surface to the sea floor is 400 m, the tidal current zone is from the sea surface to 200 m, and the flow velocity decreases rapidly at depths below that.

図6について説明する。この係留型海中支持潮流発電施設は前方海底基礎41、図6では6本見える前方係留索42と6個見える前方係留点43、潮流発電パネル44、各2本ある脚部45と支柱47、2個ある脚部海底基礎46、支柱の上の上部構造体48からなる。潮流発電パネル44が発電ユニットから電磁誘導により非接触で受け取った電力は上部構造体48に送られる。上部構造体48には電力プラント、水素生成プラント、発電ユニット保管庫、自動着脱装置、管制室等が設置される。FIG. 6 will be described. This mooring-type underwater tidal power generation facility has a forward submarine foundation 41, six front mooring lines 42 visible in FIG. 6, six front mooring points 43 visible, tidal current power generation panel 44, two legs 45 and columns 47, 2, respectively. It consists of a single leg submarine foundation 46 and an upper structure 48 on the pillar. The power received by the tidal current power generation panel 44 from the power generation unit by electromagnetic induction in a contactless manner is sent to the upper structure 48. In the upper structure 48, a power plant, a hydrogen generation plant, a power generation unit storage, an automatic attachment / detachment device, a control room, and the like are installed.

なお、この幾何学的構成は上流側から来る潮流の抗力を係留索の張力で受け止めているが、万一、ツナミ等により下流側からの強い流れが襲った場合は上流側に向かって倒れる危険性がある。安全性強化のために図7の右図に見られるように、後方海底基礎49、後方係留索50,後方係留点51が設けられている。この係留方式は全体としてトラス構造をなしており、脚部を含む潮流発電パネルの機械的強度を高く保っている。In addition, this geometrical structure receives the drag force of the tidal current coming from the upstream side with the tension of the mooring line, but in the unlikely event that a strong flow from the downstream side is hit by a tsunami etc., there is a risk of falling toward the upstream side There is sex. As shown in the right view of FIG. 7, a rear seabed foundation 49, a rear mooring line 50, and a rear mooring point 51 are provided for safety enhancement. This mooring system has a truss structure as a whole, and keeps the mechanical strength of the tidal power generation panel including the legs high.

ここで図7の左図と右図の機械的強度を確保するための方式の違いについて、評価してみよう。「特許文献2」では主柱構造体の詳細について触れていないが、潮流に向かう縦方向及び横方向に充分な機械的強度を有する剛構造の自立式の構造体であろうと思われる。前出の数値例に倣えば、縦200m、横150mで潮流対向面積30,000m2の潮流発電パネルは秒速2mの潮流の場合、約15万kWの出力と潮流発電パネルと主柱構造体の総抗力1万トン重超えを発生させる。これを支持する主柱構造体は一般の高層ビルを遙かに超える高さの構築物であり、常時潮流方向に数万トン重級の荷重が加えられる。
図7の左図の自立式海中支持潮流発電施設の主柱構造体の側面は航空機の尾翼のような形状を有するが、これは潮流方向の巨大な発電抗力等を受け止めるに相応しい剛性を有する幾何学的構造である。このような構築物を海底に設置するのに要する総費用は巨額になろう。前出「実施例1」で小出力多数台使用による三種の効果により総費用の大幅な低減を可能にすると説明したが、潮流発電パネルの費用を低減しても、それを海中で支持する主柱構造体の費用が巨額になれば、このスキームは経済性を失う。
Here, let us evaluate the difference in the method for ensuring the mechanical strength between the left diagram and the right diagram in FIG. Although “Patent Document 2” does not touch on details of the main column structure, it seems to be a rigid self-supporting structure having sufficient mechanical strength in the vertical and horizontal directions toward the tidal current. Following the numerical example above, a tidal power generation panel with a length of 200 m, a width of 150 m and a tidal current facing area of 30,000 m2 is about 150,000 kW, and the total power of the tidal power generation panel and main column structure is 2 m / s. Generates a drag exceeding 10,000 tons. The main pillar structure that supports this is a structure that is much higher than ordinary high-rise buildings, and loads of several tens of thousands of tons are always applied in the tidal direction.
The side of the main column structure of the self-supporting underwater tidal power generation facility shown in the left figure of FIG. 7 has a shape similar to that of an aircraft tail. This is a geometry that has rigidity suitable for receiving a huge power generation drag in the tidal direction. It is a scientific structure. The total cost of installing such a structure on the sea floor will be enormous. In the previous “Example 1”, it was explained that the total cost can be drastically reduced by using three kinds of effects by using a large number of small output units. If the cost of the column structure is huge, this scheme loses economic efficiency.

係留型海中支持潮流発電施設の構想はそのような反省から得られた。同一出力において、潮流発電パネルと支柱・上部構造体、脚部が一体になった構造体の資材所要量と総費用は係留型潮流発電船と同等程度と考えられる。図7の右図では海底基礎が4個所となり、所要数が多いのは懸念材料だが、海底基礎の建設を自動化できる技術が実用化されれば、費用の問題はかなり解消される。
係留型海中支持潮流発電施設の幾何学的構成は「特許請求の範囲」の「請求項6」に相当する。
The concept of the moored underwater support tidal power plant was obtained from such reflection. At the same output, the material requirements and total cost of the tidal power generation panel, strut / upper structure, and leg structure are considered to be equivalent to those of a moored tidal power generation ship. In the right figure of Fig. 7, there are four submarine foundations, and it is a concern that the required number is large, but if technology that can automate the construction of submarine foundations is put into practical use, the problem of cost will be solved considerably.
The geometric configuration of the moored underwater support tidal power generation facility corresponds to “Claim 6” of “Claims”.

図8は高抗力化突出部を備える潮流発電パネルの部分水平面断面図である。潮流61は上方から下方に向かって流れ込む。潮流発電パネルの枠構造体62は潮流発電パネル全体の機械的強度部材であり、ここから上流に向かって高抗力化突出部63が設けられている。枠構造体62に集合保持体64が支持されている。係留型潮流発電船の場合は、集合保持体64のダクト状の受入空間に図8では下流側(格納モードでは上になる)から発電ユニット65が挿入・装荷される。集合保持体64の山状の部分は、上流から発電ユニットに入る水流を整える整流翼である。
潮流受け止め面積を1とすると、全発電ユニットの水力タービンの作動面積の和は1よりは小さく、例えば0.8〜0.6になる。この幾何学的構成はコンバージョン・ダイバージョンノズルを形成しており、ノズル効果で水流の流速は加速される。発電ユニットの出力は流速の3乗で増加するが、出力(仕事量)は流速(距離)と発電抗力(力)の積であり、発電抗力は物理的に潮流発電パネルの抗力を超えることができないため、ノズル効果による出力の増強には限界がある。潮流発電パネルの形状は基本的には平板であり、抗力係数は約1.1である。この平板の縁辺部に高抗力化突出部63を設けると、抗力係数は若干増加する。抗力は潮流発電パネルの前後に水頭を発生させ、水頭が大きいほど発電ユニットの最大出力が大きくなり、潮流に対向する同一面積当たりの出力を増加させる。
FIG. 8 is a partial horizontal cross-sectional view of a tidal current power generation panel provided with a high-resistance projecting portion. The tidal current 61 flows downward from above. The tidal power generation panel frame structure 62 is a mechanical strength member of the entire tidal current power generation panel, and is provided with a high resistance projecting portion 63 from here to the upstream. A collective holding body 64 is supported by the frame structure 62. In the case of a moored tidal current power generation ship, the power generation unit 65 is inserted and loaded into the duct-shaped receiving space of the collective holding body 64 from the downstream side (up in the storage mode) in FIG. The mountain-shaped portion of the collective holding body 64 is a rectifying blade that adjusts the water flow entering the power generation unit from upstream.
Assuming that the tidal current receiving area is 1, the sum of the hydraulic turbine operating areas of all the power generation units is smaller than 1, for example, 0.8 to 0.6. This geometric configuration forms a conversion diversion nozzle, which accelerates the water flow velocity by the nozzle effect. The output of the power generation unit increases with the cube of the flow velocity, but the output (work amount) is the product of the flow velocity (distance) and the power generation drag (force), and the power generation drag may physically exceed the drag of the tidal power generation panel. Since this is not possible, there is a limit to the increase in output due to the nozzle effect. The shape of the tidal current power generation panel is basically a flat plate, and the drag coefficient is about 1.1. When the high resistance protrusion 63 is provided on the edge of the flat plate, the drag coefficient slightly increases. Drag generates a water head before and after the tidal power generation panel, and the larger the water head, the larger the maximum output of the power generation unit, and the greater the output per area facing the tidal current.

これは潮流中に巨大な部分堰(一種のダム)を設置して前後に圧力差を発生させて水力タービンを駆動する方式である。オープンな潮流の中に水力タービンを置く方式の単位面積当たり出力を1とするとき、潮流発電パネル方式では2倍強の出力を取り出すことができると「課題を解決するための手段」の「第六の手段」で説明した。
このことは、現在進行中のオープン潮流を対象とする多くの潮流発電の実証機と比較して、潮流発電パネル方式は同一の目標出力に対して必要とする潮流断面積が小さくて済み、格段に小型高出力化できることを意味する。この幾何学的構成は「特許請求の範囲」の「請求項8」に相当する。
This is a method of driving a hydro turbine by installing a huge partial weir (a kind of dam) in the tidal current and generating a pressure difference before and after. When the output per unit area of the method of placing a hydro turbine in an open tidal current is 1, the tidal power generation panel method can extract more than twice as much output, as described in “Means for Solving Problems” Explained in "Six Means".
This means that the tidal power generation panel system requires a smaller tidal cross-sectional area for the same target output, compared to many tidal power generation demonstrators that are currently working on open tidal currents. This means that it can be made smaller and more powerful. This geometrical configuration corresponds to “Claim 8” of “Claims”.

本発明の実施例1には数値例として30,000m2の潮流発電パネルを挙げており、秒速2mの潮流にて出力約15万kWと試算結果を示した。某社の資料によれば、ロータ径100mの風力発電機の定格出力は3,000kWである。定格出力で比較すると、この風力発電機50基が前述数値例の係留型潮流発電船1隻に相当する。
風力発電機の構成要素は強固な基礎、支柱、回転自在な発電機ナセル、風力タービンであり、見事に単純である。対する係留型潮流発電船は海底基礎と係留索に係留された約2万トンの双胴船に潮流発電パネルを懸垂・固定し、船上のスペースには電力プラント、水素生成プラント、管制施設等が置かれた複雑なプラント複合体である。工業常識に照らせば、同じ定格出力に対して風力発電の方が潮流発電より投資金額が安価であろうと判断されよう。
だが、風は速度や向きが常時大きく変動するが、潮流の流速と方向の変動は風力に較べれば極めて少ない。実際に1年間運転して得られる総発電力量を、定格出力で同じ期間運転して得られる総発電力量で除した総合発電効率(総合設備利用率)で比較すると、陸上風力発電は20%代、洋上風力発電で30%代と評価されているのに対して、潮流発電は90%代を期待できる。年間総発電力量で発電単価を比較すれば、潮流発電パネルを用いた係留型潮流発電船及び係留型海中支持潮流発電施設の経済性とメンテナビリティの高さは極めて魅力的である。
In Example 1 of the present invention, a tidal power generation panel of 30,000 m 2 is given as a numerical example, and an estimated output of about 150,000 kW was shown at a tidal current of 2 m per second. According to a certain company's document, the rated output of a wind power generator with a rotor diameter of 100 m is 3,000 kW. When compared with the rated output, the 50 wind power generators correspond to one moored tidal current power generation ship in the numerical example described above.
The components of a wind generator are a solid foundation, struts, a rotatable generator nacelle, and a wind turbine, which are superbly simple. On the other hand, the mooring-type tidal power generation ship has a tidal power generation panel suspended and fixed to a catamaran of about 20,000 tons moored to the submarine foundation and mooring line, and there is a power plant, hydrogen generation plant, control facility, etc. in the space on the ship. It is a complex plant complex placed. In light of industrial common sense, it would be judged that wind power generation would be cheaper than tidal power generation for the same rated output.
However, the speed and direction of wind always fluctuate greatly, but fluctuations in the flow velocity and direction of the tidal current are extremely small compared to wind power. Compared to the total power generation efficiency (total facility utilization rate) obtained by dividing the total power generated by actual operation for one year by the total power generated by operating for the same period at the rated output, onshore wind power generation is 20% On the other hand, offshore wind power generation is rated as 30%, while tidal power generation can be expected to be 90%. Comparing the unit price of power generation with the total annual power generation, the economics and maintainability of mooring-type tidal power generation boats and tethered underwater tidal power generation facilities using tidal power generation panels are extremely attractive.

1 海面
2 海底
3 海底基礎
4 基礎側係留索
5 係留中継点
6 船側係留索
7 係留点
8 (運転モードの)潮流発電パネル
9 格納モードの潮流発電パネル
10 船体
11 上部構造体
12 回転軸構造体
21 抗力中心
22 補助係留索
23 補助係留点
24 浮力中心
31 船尾側海底基礎
32 船尾側基礎側係留索
33 船尾側係留中継点
34 船尾側船側係留索
35 船尾側係留点
41 前方海底基礎
42 前方係留索
43 前方係留点
44 潮流発電パネル
45 脚部
46 脚部海底基礎
47 支柱
48 上部構造体
49 後方海底基礎
50 後方係留索
51 後方係留点
52 主柱構造体
61 水流
62 枠構造体
63 高抗力化突出部
64 集合保持体
65 発電ユニット
DESCRIPTION OF SYMBOLS 1 Sea surface 2 Seabed 3 Submarine foundation 4 Foundation side mooring line 5 Mooring relay point 6 Ship side mooring line 7 Mooring point 8 Tidal power generation panel 9 (in operation mode) Tidal power generation panel 10 in storage mode Hull 11 Upper structure 12 Rotating shaft structure 21 Drag Center 22 Auxiliary Mooring Line 23 Auxiliary Mooring Point 24 Buoyancy Center 31 Stern Side Submarine Foundation 32 Stern Side Foundation Mooring Line 33 Stern Side Mooring Relay Point 34 Stern Side Mooring Line 35 Stern Side Mooring Point 41 Front Submarine Foundation 42 Forward Mooring Cable 43 Front mooring point 44 Tidal power generation panel 45 Leg 46 Leg submarine foundation 47 Post 48 Upper structure 49 Rear seabed 50 Rear mooring cable 51 Rear mooring point 52 Main column structure 61 Water flow 62 Frame structure 63 High resistance Protruding portion 64 assembly holding body 65 power generation unit

Claims (8)

強固な枠構造体と、前述枠構造体に支持された平板状の集合保持体とで構成し、前述集合保持体は数十乃至数万台のダクト状の発電ユニットを受け入れ保持できるように構成し、前述発電ユニットは自動着脱装置により前述集合保持体に挿入する動作で前述集合保持体との機械的結合と電気的結合を成立させ、その逆の動作となる前述発電ユニットが前述自動着脱装置により前述集合保持体から引き出される動作で前述機械的結合と前述電気的結合が解除されるように構成し、前述枠構造体は海底係留基礎に発する係留索を接続する複数の係留点を設けて潮流に対して同じ位置に止まるように構成し、第一の場合はその上方端を大きな浮力を有する双胴船等の船体に懸垂・固定して発電により潮流から受ける抗力は係留索が受け止め、船体は斜めに張られた係留索が発する垂直方向の下方引き込み力に抗して枠構造体を垂直な姿勢に保つ浮力を受け持ち、必要あれば船体への固定を解除して枠構造体を直角に回転させて水平状態に保って海上でメンテナンスを行う係留型潮流発電船となり、第二の場合は下方端である脚部を脚部海底基礎に固定して発電により潮流から受ける抗力を前述係留索と前述脚部海底基礎とに分担して枠構造体を垂直な姿勢に保つようにした海中支持型潮流発電施設となり、何れの場合も前述電気的結合により前述潮流発電ユニットより受け取った電力を前述双胴船等の船上や前述海中支持型潮流発電施設の枠構造体の海面より上に設けた上部構造体に送り、そこで水素等のエネルギー媒体の製造や直接電力としての送電を行うようにしてなる潮流発電施設に用いる潮流発電パネル。  Consists of a strong frame structure and a flat aggregate holder supported by the frame structure, and the aggregate holder is configured to receive and hold several tens to tens of thousands of duct-shaped power generation units. The power generation unit is mechanically and electrically coupled with the assembly holder by the operation of being inserted into the assembly holder by the automatic attachment / detachment device, and the power generation unit having the opposite operation is the automatic attachment / detachment device. The mechanical coupling and the electrical coupling are released by the action of being pulled out from the assembly holding body by the above, and the frame structure is provided with a plurality of mooring points for connecting mooring lines originating from the seabed mooring foundation. The mooring line receives the drag received from the tidal current by power generation by suspending and fixing the upper end to a hull such as a catamaran with large buoyancy. Hull Responsible for the buoyancy that keeps the frame structure in a vertical position against the vertical downward pulling force generated by the mooring lines that are stretched for the purpose, and if necessary, release the anchor to the hull and rotate the frame structure at a right angle The mooring type tidal current power generation ship that is maintained in a horizontal state and is maintained at sea, and in the second case, the leg that is the lower end is fixed to the bottom seabed foundation and the drag received from the tidal current by power generation is the same as that of the mooring line. The submarine support tidal power generation facility is configured to maintain the frame structure in a vertical posture by sharing with the above-mentioned leg submarine foundation. In each case, the electric power received from the tidal power generation unit by the above-described electrical coupling is used. It is sent to the upper structure provided on the shipboard such as a shipboard or above the sea surface of the frame structure of the underwater support type tidal power generation facility, where the production of an energy medium such as hydrogen or direct power transmission is performed. Tidal power generation facility Tidal power generation panel used. 双胴船の浮力中心で二つの船体の間に船体に対して回転自在な潮流発電パネルを垂直に懸垂・固定する係留型潮流発電船において、前述潮流発電パネルの発電抗力中心を通る水平線上の前述枠構造体の左右に各1個所の前述係留点を設け、前述2個所の係留点から発する2本の船側係留索を前述係留点の間隔の2倍乃至20倍の範囲の等距離で係留中継点に集め、前述係留中継点に海底係留基礎から延伸した基礎側係留索を接続してなる請求項1に記載の潮流発電パネル。  In a mooring type tidal power generation vessel that vertically suspends and fixes a tidal power generation panel that is rotatable with respect to the hull between two hulls at the center of the buoyancy of a catamaran, on the horizontal line passing through the power generation drag center of the tidal power generation panel. The aforementioned mooring points are provided on the left and right sides of the frame structure, and the two mooring lines from the two mooring points are moored at an equal distance in the range of 2 to 20 times the distance between the mooring points. The tidal current power generation panel according to claim 1, wherein a foundation-side mooring line that is collected at a relay point and extended from a seabed mooring foundation is connected to the mooring relay point. 双胴船の浮力中心で二つの船体の間に船体に対して回転自在な潮流発電パネルを垂直に懸垂・固定する係留型潮流発電船において、前述潮流発電パネルの発電抗力中心より若干下方を通る水平線上の前述枠構造体の左右に各1個所の前述係留点を設け、前述2個所の係留点に発する2本の船側係留索を前述係留点の間隔の2倍乃至20倍の範囲の等距離で係留中継点に集め、前述係留中継点に1本または2本の補助係留索を設けて船体前部に設けた係留点に係留することによって前述発電抗力中心と船側係留索が上下方向に離れているために発生する回転力を補助係留索の張力によって打ち消し、前述係留中継点に海底係留基礎から延伸した基礎側係留索を接続してなる請求項1に記載の潮流発電パネル。  A mooring type tidal power generation ship that vertically suspends and fixes a tidal power generation panel that is rotatable with respect to the hull between two hulls at the center of the buoyancy of a catamaran, and passes slightly below the center of power generation drag of the tidal power generation panel. One mooring point is provided at each of the left and right sides of the frame structure on the horizontal line, and two ship side mooring lines originating from the two mooring points are in the range of 2 to 20 times the interval between the mooring points. By gathering at a mooring relay point at a distance and installing one or two auxiliary mooring lines at the mooring relay point and mooring at a mooring point provided at the front of the hull, the power generation drag center and the ship side mooring line can be moved vertically. The tidal current power generation panel according to claim 1, wherein the tidal power generation panel is formed by canceling the rotational force generated due to the separation by the tension of the auxiliary mooring line and connecting the foundation side mooring line extending from the seabed mooring foundation to the mooring relay point. 双胴船の浮力中心より潮流の上流の位置で二つの船体の間に船体に対して回転自在な潮流発電パネルを垂直に懸垂・固定する係留型潮流発電船において、前述潮流発電パネルの発電抗力中心より下方を通る水平線上の前述枠構造体の左右に各1個所の前述係留点を設けることにより前述潮流発電パネルに前述2個所の係留点間を軸として抗力中心に加わる抗力が発生させる回転力を前述浮力中心と懸垂点が一致していないために発生する逆方向の回転力で打ち消し、この2本の船側係留索を前述2個所の係留点の間隔の2倍乃至20倍の範囲の等距離で係留中継点に集め、前述係留中継点に海底係留基礎から延伸した基礎側係留索を接続してなる請求項1に記載の潮流発電パネル。  In a moored tidal power generation ship that vertically suspends and fixes a tidal power generation panel that is rotatable relative to the hull between the two hulls at a position upstream of the tidal current from the catamaran's buoyancy center, Rotation that generates drag applied to the drag center around the two mooring points on the tidal power generation panel by providing one mooring point on each side of the frame structure on the horizontal line passing below the center. The force is canceled by the reverse rotational force generated because the suspension point does not match the buoyancy center, and the two mooring lines on the ship side are in the range of 2 to 20 times the distance between the two mooring points. The tidal current power generation panel according to claim 1, wherein the tidal power generation panel is formed by collecting at a mooring relay point at equal distances and connecting a mooring line on a base side extending from the submarine mooring base to the mooring relay point. 係留型潮流発電船方式において潮汐流の満ち潮方向と引き潮方向に発電パネルの前後対称に各2個所の係留点と2本の船側係留索と1個所の係留中継点と1本の基礎側係留索と1基の海底係留基礎を各一式、前方と後方で計二式設け、時間帯によって水流の方向が反転する潮汐流にも対応できる請求項1に記載の潮流発電パネル。  Two mooring points, two ship-side mooring lines, one mooring relay point, and one base-side mooring line in the mooring-type tidal power generation system symmetrically in front and rear of the power generation panel in the tidal current full tide direction and the tidal direction The tidal current power generation panel according to claim 1, wherein a tidal current power generation panel according to claim 1, capable of dealing with a tidal current in which the direction of the water current is reversed depending on the time zone, is provided with a set of two mooring foundations in each, a total of two sets in front and rear. 潮流の上流側に設けた前述海底係留基礎に発する一組目の係留索と、潮流の下流側に設けた海底係留基礎に発する二組目の係留索に上流側と下流側の両サイドから係留された潮流発電パネルの下方端には枠構造体の垂直部を海底に着くまで延伸した脚部を有し、同じく上方端には前述枠構造体の垂直部を海上に至るまで延伸した支柱部を有し、前述脚部は海底の脚部支持基礎に取り外し可能に取り付けることができ、前述支柱は海上で上部構造体を支持し、前述上部構造体内に電力プラント、水素生成プラント、発電ユニット保管庫、自動着脱装置、管制室等の諸設備が設置されてなる請求項1に記載の潮流発電パネル。  Moored from both the upstream and downstream sides to the first set of mooring lines originating from the seabed mooring foundation provided upstream of the tidal current and the second set of mooring lines originating from the seabed mooring foundation provided downstream from the tidal current The lower end of the tidal power generation panel has a leg portion extending until the vertical portion of the frame structure reaches the seabed, and the column portion extending the vertical portion of the frame structure until reaching the sea at the upper end. And the above-mentioned legs can be removably attached to the submarine leg support foundation, and the above-mentioned support supports the upper structure at sea, and the electric power plant, hydrogen generation plant, and power generation unit are stored in the upper structure. The tidal current power generation panel according to claim 1, wherein various facilities such as a storage, an automatic attachment / detachment device, and a control room are installed. 陸上で建造後に現地まで浮上・曳航し、現地に到着したら係留索により発電パネルの係留点と海底係留基礎を連結し、発電パネルの下方の脚部と脚部海底基礎間を牽引して海中に沈めて前述脚部と前述脚部海底基礎を連結・固定し、発電パネルが海面に対して垂直となって運転状態に入ることができ、将来、潮流発電パネル本体に大規模な補修・改造等が必要になった場合は前述脚部海底基礎と前述脚部との連結・固定や、前述海底係留基礎と前述係留索との連結を解除して潮流発電パネルを含む全構造体を再び海面に浮上した状態にして陸上の施設まで曳航して、必要な改修を地上で行えるようにしてなる請求項6に記載の潮流発電パネル。  After building on land, ascend and tow to the site, and when arriving at the site, the mooring line connects the mooring point of the power generation panel and the submarine mooring foundation, and pulls between the lower leg and the submarine foundation of the power generation panel to enter the sea After sinking, the above-mentioned leg and the above-mentioned leg submarine foundation are connected and fixed, and the power generation panel can enter the operating state perpendicular to the sea surface. When it is necessary to connect and fix the above-mentioned leg submarine foundation and the above-mentioned leg, or disconnect the above-mentioned submarine mooring foundation and the above-mentioned mooring line, the entire structure including the tidal power generation panel is brought back to the sea surface again. The tidal current power generation panel according to claim 6, wherein the tidal power generation panel according to claim 6 is configured to be levitated and towed to a facility on land to perform necessary repairs on the ground. 前述枠構造体の外周部分を発電ユニットが取り付けてある平板状の面より潮流の来る方向に向かって相当量突出させることにより、平板状の面より抗力係数を若干高めるようにしてなる請求項1に記載の潮流発電パネル。  2. The drag coefficient is slightly higher than that of the flat plate surface by projecting a substantial amount of the outer peripheral portion of the frame structure from the flat plate surface on which the power generation unit is attached toward the direction of the tidal current. The tidal power generation panel described in 1.
JP2015056889A 2015-03-04 2015-03-04 Tidal power panels and mooring lines Active JP6103449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015056889A JP6103449B2 (en) 2015-03-04 2015-03-04 Tidal power panels and mooring lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015056889A JP6103449B2 (en) 2015-03-04 2015-03-04 Tidal power panels and mooring lines

Publications (2)

Publication Number Publication Date
JP2016160928A true JP2016160928A (en) 2016-09-05
JP6103449B2 JP6103449B2 (en) 2017-03-29

Family

ID=56844475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056889A Active JP6103449B2 (en) 2015-03-04 2015-03-04 Tidal power panels and mooring lines

Country Status (1)

Country Link
JP (1) JP6103449B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115013231A (en) * 2022-05-18 2022-09-06 中国科学院广州能源研究所 Pneumatic wave energy power supply submerged buoy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416047A (en) * 1978-06-26 1979-02-06 Shigeji Sugaya Mooring device of power generating unit which utilizes ocean current
JP2007177797A (en) * 2007-04-06 2007-07-12 Seabell International Co Ltd Hydraulic power generating device
WO2008114019A2 (en) * 2007-03-22 2008-09-25 Marine Current Turbines Limited Deep water water current turbine installations
JP2010203319A (en) * 2009-03-03 2010-09-16 Nippon System Kikaku Kk Installation structure for hydraulic power generation device
JP2014503048A (en) * 2011-01-20 2014-02-06 シー−リックス アーエス Rotor device
JP5622013B1 (en) * 2013-11-27 2014-11-12 悠一 桐生 Collective tidal current power generation facility
JP5656155B1 (en) * 2013-12-16 2015-01-21 悠一 桐生 Multihull type tidal current power generation facility

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416047A (en) * 1978-06-26 1979-02-06 Shigeji Sugaya Mooring device of power generating unit which utilizes ocean current
WO2008114019A2 (en) * 2007-03-22 2008-09-25 Marine Current Turbines Limited Deep water water current turbine installations
JP2007177797A (en) * 2007-04-06 2007-07-12 Seabell International Co Ltd Hydraulic power generating device
JP2010203319A (en) * 2009-03-03 2010-09-16 Nippon System Kikaku Kk Installation structure for hydraulic power generation device
JP2014503048A (en) * 2011-01-20 2014-02-06 シー−リックス アーエス Rotor device
JP5622013B1 (en) * 2013-11-27 2014-11-12 悠一 桐生 Collective tidal current power generation facility
JP5656155B1 (en) * 2013-12-16 2015-01-21 悠一 桐生 Multihull type tidal current power generation facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115013231A (en) * 2022-05-18 2022-09-06 中国科学院广州能源研究所 Pneumatic wave energy power supply submerged buoy

Also Published As

Publication number Publication date
JP6103449B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
US8668452B2 (en) Floating device for production of energy from water currents
US8579576B2 (en) Articulated false seabed
RU2349791C2 (en) Submerged hydraulic turbines mounted on deck
CN208416796U (en) A kind of four columns band ballast semi-submersible type floating blower foundation
CN105240221A (en) Semi-submersible raft type overwater wind power generation equipment turning along with wind
US8558403B2 (en) Single moored offshore horizontal turbine train
WO2009144493A2 (en) Submersible turbine apparatus
JP2007515588A5 (en)
US20180347538A1 (en) Hydroelectricity Generating Unit Capturing Marine Current Energy
EP2141353B1 (en) Submergible system for exploiting the energy of marine currents
GB2480000A (en) Water turbine assembly
JP6103449B2 (en) Tidal power panels and mooring lines
KR101850900B1 (en) Buoyant And Mooring Current Power Generating Device
JP5656155B1 (en) Multihull type tidal current power generation facility
JP6063358B2 (en) Ocean current power generator
CN104100455B (en) Floating type marine anemometer tower structure
JP6117498B2 (en) Ocean current and tidal current generator
Chen et al. Hydrodynamic consideration in ocean current turbine design
JP2015107781A (en) Catamaran type darrieus/gyro mill turbine generator
Coiro Development of innovative tidal current energy converters: from research to deployment
Crowle et al. Challenges during installation of floating wind turbines
Peiffer et al. Floating wind turbines: The new wave in offshore wind power
KR102093240B1 (en) Multi-column structured and self weather vaning type offshore wind turbine support ship
TW202144669A (en) The structure of electricity generation by ocean currents and the method of placing
JP2022117496A (en) Offshore wind power generation system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170217

R150 Certificate of patent or registration of utility model

Ref document number: 6103449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150