JP2016160536A - Short fiber for polyamide composite and polyamide composite - Google Patents

Short fiber for polyamide composite and polyamide composite Download PDF

Info

Publication number
JP2016160536A
JP2016160536A JP2015037221A JP2015037221A JP2016160536A JP 2016160536 A JP2016160536 A JP 2016160536A JP 2015037221 A JP2015037221 A JP 2015037221A JP 2015037221 A JP2015037221 A JP 2015037221A JP 2016160536 A JP2016160536 A JP 2016160536A
Authority
JP
Japan
Prior art keywords
fiber
resin
polyamide composite
short fiber
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015037221A
Other languages
Japanese (ja)
Inventor
宮内 理治
Michiji Miyauchi
理治 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2015037221A priority Critical patent/JP2016160536A/en
Publication of JP2016160536A publication Critical patent/JP2016160536A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a short fiber for polyamide composite good in adhesiveness with a polyamide resin while maintaining high heat resistance and high Young modulus which a polyparaphenylene terephthalamide fiber originally has and capable of enhancing mechanical strength and abrasion resistance of a fiber reinforced polyamide resin (polyamide composite).SOLUTION: There are provided a short fiber for polyamide composite consisting of a polyparaphenylene terephthalamide short fiber by cutting a fiber composite obtained by penetrating a solution obtained by dissolving a resin having a functional group capable of reacting with an amide group into a hydrophilic solvent or a solution obtained by aqueous emulsifying it into a polyparaphenylene terephthalamide fiber skeleton having moisture amount adjusted to be 15 to 200 wt.% and heat treating it with a predetermined length and a polyamide composite by melting and mixing the same.SELECTED DRAWING: None

Description

本発明は、変性ポリパラフェニレンテレフタルアミド繊維からなるポリアミド複合材用短繊維に関し、詳細には、ポリアミド樹脂組成物の機械的強度、耐摩耗性を向上させることが可能なポリアミド複合材用短繊維に関するものである。   The present invention relates to a short fiber for a polyamide composite material comprising a modified polyparaphenylene terephthalamide fiber, and more particularly, to a short fiber for a polyamide composite material capable of improving the mechanical strength and wear resistance of a polyamide resin composition. It is about.

ポリパラフェニレンテレフタルアミド(以下、PPTAと記す)繊維は、紡糸時にポリマー溶解の溶媒として濃硫酸を用い液晶状態とした後、口金によるせん断を与えて結晶化度の高い糸に形成される。溶媒である濃硫酸は、紡糸直後に水洗およびアルカリにより中和処理され、200℃以上で乾燥・熱処理された後、フィラメントとして巻き取られて製造されることが知られている(特許文献1)。   Polyparaphenylene terephthalamide (hereinafter referred to as PPTA) fiber is formed into a highly crystallized yarn by applying concentrated sulfuric acid as a solvent for polymer dissolution at the time of spinning to a liquid crystal state, and then applying shear by a die. It is known that concentrated sulfuric acid, which is a solvent, is neutralized by washing and alkali immediately after spinning, dried and heat-treated at 200 ° C. or higher, and then wound up as a filament (Patent Document 1). .

PPTA繊維は、高強度、高弾性率、高耐熱性、非導電性、錆びないなどの高い機能性と、有機繊維特有のしなやかさと、軽量性を併せ持った合成繊維である。これらの特長から、自動車や自動二輪、および自転車用のタイヤ、自動車用歯付きベルト、コンベヤ等のゴム補強材料、あるいは、光ファイバーケーブルの補強やロープとして利用されている。さらに、防弾チョッキや、刃物に対して切れにくい性質を利用した作業用手袋や作業服などの防護衣料、燃え難さを利用した消防服への応用も行われている。   PPTA fiber is a synthetic fiber having both high functionality such as high strength, high elastic modulus, high heat resistance, non-conductivity, and no rust, flexibility that is unique to organic fibers, and light weight. Because of these features, they are used as rubber reinforcement materials for automobiles, motorcycles, bicycle tires, automobile toothed belts, conveyors, etc., or optical fiber cable reinforcements and ropes. Furthermore, it is also applied to bulletproof vests, protective clothing such as work gloves and work clothes that are difficult to cut against blades, and fire-fighting clothes that use incombustibility.

ところが、PPTA繊維は化学的に安定であるため、各種樹脂との接着性が良くないという問題点を有している。そこで、アラミド繊維と樹脂との接着性を改善するため、アラミド繊維を、ポリアミン化合物とグリシジルエーテル型エポキシ樹脂とのアダクトで被覆する方法(特許文献2)や、ビカット軟化点が40℃以上の炭素2〜4のオレフィン系共重合体で被覆する方法(特許文献3)が知られている。   However, since PPTA fiber is chemically stable, it has a problem of poor adhesion to various resins. Therefore, in order to improve the adhesion between the aramid fiber and the resin, a method in which the aramid fiber is coated with an adduct of a polyamine compound and a glycidyl ether type epoxy resin (Patent Document 2), or a carbon having a Vicat softening point of 40 ° C. or higher. A method of coating with 2 to 4 olefinic copolymers (Patent Document 3) is known.

また、樹脂とアラミド繊維との密着性を向上させて耐摩耗性等の機械的特性を向上させるために、マトリックス樹脂と相溶性がある高分子鎖を有するポリマーをカルボン酸や酸無水物で変性した変性ポリマーと、表面にアミノ基を有するアラミド繊維とを、マトリックス樹脂に配合する方法(特許文献4)が知られている。アラミド繊維チョップドファイバーを20質量%水酸化ナトリウム水溶液に懸濁させ、アラミド繊維の表面処理を行っている。   In addition, in order to improve adhesion between resin and aramid fiber and improve mechanical properties such as abrasion resistance, polymers with polymer chains compatible with matrix resin are modified with carboxylic acid or acid anhydride. A method (Patent Document 4) is known in which a modified polymer and an aramid fiber having an amino group on the surface are blended into a matrix resin. Aramid fiber chopped fiber is suspended in a 20% by mass sodium hydroxide aqueous solution to perform surface treatment of the aramid fiber.

米国特許第3,767,756号明細書US Pat. No. 3,767,756 特公平1−012864号公報Japanese Patent Publication No. 1-01864 特開平4−050377号公報JP-A-4-050377 特開2000−292861号公報JP 2000-292861 A

しかしながら、特許文献2および特許文献3に記載された方法は、アダクトやオレフィン系共重合体をアラミド繊維と反応させる方法ではなく、アダクトやオレフィン系共重合体の溶液をアラミド繊維表面に塗布または該溶液に繊維を浸漬して絞った後、乾燥する方法であるため、被覆が均一でないという問題点がある。特許文献4に記載された方法は、アラミド繊維を高濃度アルカリ水溶液で表面処理し、繊維表面にアミノ基を生成するため、アラミド繊維の物性低下を引き起こし易いという問題点がある。   However, the methods described in Patent Document 2 and Patent Document 3 are not a method of reacting an adduct or an olefin copolymer with an aramid fiber, but a solution of an adduct or an olefin copolymer is applied to the surface of the aramid fiber or the Since the fiber is dipped in the solution and squeezed and then dried, there is a problem that the coating is not uniform. The method described in Patent Document 4 has a problem in that aramid fibers are surface-treated with a high-concentration alkaline aqueous solution and amino groups are generated on the fiber surface, so that the physical properties of the aramid fibers are likely to deteriorate.

本発明の目的は、上記従来技術の欠点を解消し、ポリパラフェニレンテレフタルアミド繊維本来の高耐熱性および高ヤング率を保持しながら、ポリアミド樹脂との密着性が良好で、繊維強化ポリアミド樹脂(ポリアミド複合材)の機械的強度、耐摩耗性を向上させることができるポリアミド複合材用短繊維およびそれを溶融混合してなるポリアミド複合材を提供することにある。   The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and maintain good heat resistance and high Young's modulus inherent in polyparaphenylene terephthalamide fiber, while maintaining good adhesion with polyamide resin, and fiber reinforced polyamide resin ( An object of the present invention is to provide a short fiber for a polyamide composite capable of improving the mechanical strength and wear resistance of the polyamide composite) and a polyamide composite formed by melt-mixing the short fiber.

本発明は上記課題を解決するため、次の手段をとるものである。   In order to solve the above problems, the present invention takes the following means.

(1)100〜160℃で乾燥することにより水分量が15〜200重量%に調整されたポリパラフェニレンテレフタルアミド繊維骨格内に、アミド基と反応し得る官能基を有する樹脂を親水性溶媒に溶解した溶液もしくは水性エマルジョン化した溶液を浸透させ、熱処理して得られる繊維複合体を、所定長さに切断したポリパラフェニレンテレフタルアミド短繊維からなるポリアミド複合材用短繊維。 (1) A resin having a functional group capable of reacting with an amide group in a polyparaphenylene terephthalamide fiber skeleton whose water content is adjusted to 15 to 200% by drying at 100 to 160 ° C. as a hydrophilic solvent A short fiber for polyamide composite material comprising a polyparaphenylene terephthalamide short fiber obtained by infiltrating a dissolved solution or an aqueous emulsion solution and cutting the fiber composite obtained by heat treatment into a predetermined length.

(2)反応し得る官能基が、カルボン酸基、酸無水物基、またはイソシアネート基である上記(1)に記載のポリアミド複合材用短繊維。 (2) The short fiber for a polyamide composite material according to (1), wherein the functional group capable of reacting is a carboxylic acid group, an acid anhydride group, or an isocyanate group.

(3)反応し得る官能基を有する樹脂が、ラジカル重合性樹脂である上記(1)または(2)に記載のポリアミド複合材用短繊維。 (3) The short fiber for a polyamide composite material according to the above (1) or (2), wherein the resin having a functional group capable of reacting is a radical polymerizable resin.

(4)ラジカル重合性樹脂が、オレフィン系、スチレン系、またはアクリル系樹脂である上記(3)に記載のポリアミド複合材用短繊維。 (4) The short fiber for a polyamide composite material according to (3), wherein the radical polymerizable resin is an olefin, styrene, or acrylic resin.

(5)上記(1)〜(4)いずれかに記載のポリアミド複合材用短繊維の全重量に対して、繊維集束剤が1〜20質量%付着しているポリアミド複合材用短繊維集束体。 (5) The short fiber bundle for polyamide composites in which 1 to 20% by mass of the fiber sizing agent is attached to the total weight of the short fibers for polyamide composite according to any one of (1) to (4) above. .

(6)上記(1)〜(4)いずれかに記載のポリアミド複合材用短繊維または上記(5)に記載のポリアミド複合材用短繊維集束体を、ポリアミド樹脂に溶融混合してなるポリアミド複合材。 (6) A polyamide composite obtained by melt-mixing the short fiber for a polyamide composite material according to any one of (1) to (4) or the short fiber bundle for a polyamide composite material according to (5) above into a polyamide resin. Wood.

本発明によれば、PPTA繊維骨格内にアミド基と反応活性を有する樹脂を導入したPPTA短繊維は、PPTA繊維本来の高ヤング率、耐熱性を保持しつつ、ポリアミド樹脂との密着性に優れている。混練時には、PPTA繊維が均一にポリアミド樹脂に分散されるため、機械的強度、耐摩耗性に優れるポリアミド複合材を提供できる。   According to the present invention, a PPTA short fiber in which a resin having reactivity with an amide group is introduced into a PPTA fiber skeleton has excellent adhesion to a polyamide resin while maintaining the inherent high Young's modulus and heat resistance of the PPTA fiber. ing. Since the PPTA fibers are uniformly dispersed in the polyamide resin during kneading, a polyamide composite material having excellent mechanical strength and wear resistance can be provided.

本発明におけるポリパラフェニレンテレフタルアミド(PPTA)とは、テレフタル酸とパラフェニレンジアミンを重縮合して得られる重合体であるが、少量のジカルボン酸およびジアミンを共重合したものも使用でき、重合体または共重合体の分子量は通常20,000〜25,000が好ましい。   The polyparaphenylene terephthalamide (PPTA) in the present invention is a polymer obtained by polycondensation of terephthalic acid and paraphenylene diamine, but a polymer obtained by copolymerizing a small amount of dicarboxylic acid and diamine can also be used. Or, the molecular weight of the copolymer is usually preferably 20,000 to 25,000.

PPTA繊維は、PPTAを濃硫酸に溶解し、その粘調な溶液を紡糸口金から押し出し、空気中または水中に紡出することによりフィラメント状にした後、水酸化ナトリウム水溶液で中和し、最終的には120〜500℃の乾燥・熱処理をして得られる。   PPTA fibers are made by dissolving PPTA in concentrated sulfuric acid, extruding the viscous solution from a spinneret, spinning into air or water, neutralizing with an aqueous sodium hydroxide solution, and finally Is obtained by drying and heat treatment at 120 to 500 ° C.

本発明のポリアミド複合材用短繊維は、PPTA繊維複合体を所定長さに切断した、PPTA短繊維から構成されている。最初に、PPTA繊維およびPPTA繊維複合体の製造方法を説明する。   The short fiber for polyamide composite of the present invention is composed of PPTA short fiber obtained by cutting a PPTA fiber composite into a predetermined length. Initially, the manufacturing method of PPTA fiber and a PPTA fiber composite is demonstrated.

PPTA繊維の製造方法の代表例としては、PPTAを濃硫酸に溶解して、18〜20重量%の粘調な溶液とし、これを紡糸口金から吐出して、わずかの間空気中に紡出後、水中へ紡糸する。この時、口金吐出時のせん断速度を25,000〜50,000sec−1にするのが好ましい。その後、紡糸浴中で凝固した繊維を水酸化ナトリウム水溶液で中和処理した後、100〜160℃で、好ましくは5〜20秒間乾燥する。このようにして、アミド基と反応し得る官能基を有する樹脂を含浸させる前のPPTA繊維の状態となる。続けて、この含浸処理前のPPTA繊維に、アミド基と反応し得る官能基を有する樹脂を親水性溶媒に溶解させた溶液あるいは水性エマルジョン化した溶液を付与し、続いて巻き取り工程でボビンに巻き取り、含水状態のPPTA繊維複合体を得る。さらに、ボビンから巻き出して熱処理して水分率を15重量%未満とすることで、PPTA繊維複合体を得る。 As a typical example of the production method of PPTA fiber, PPTA is dissolved in concentrated sulfuric acid to obtain a viscous solution of 18 to 20% by weight, and this is discharged from a spinneret and after being spun in air for a short time. Spin into water. At this time, it is preferable to set the shear rate during discharge of the die to 25,000 to 50,000 sec −1 . Thereafter, the fiber solidified in the spinning bath is neutralized with an aqueous sodium hydroxide solution, and then dried at 100 to 160 ° C., preferably for 5 to 20 seconds. In this way, the PPTA fiber is impregnated with a resin having a functional group that can react with an amide group. Subsequently, a solution in which a resin having a functional group capable of reacting with an amide group is dissolved in a hydrophilic solvent or an aqueous emulsion solution is applied to the PPTA fiber before the impregnation treatment, and then the bobbin is wound in a winding process. Winding and water-containing PPTA fiber composite are obtained. Furthermore, the PPTA fiber composite is obtained by unwinding from the bobbin and heat-treating the moisture content to be less than 15% by weight.

上記したPPTA繊維複合体は、温度100〜160℃で熱処理条件などを変更しながら、PPTA繊維の結晶サイズが50オングストローム未満の状態を保ち、かつ、水分率が15〜200重量%、好ましくは20〜50重量%の状態を保つようなPPTA繊維とし、そこにPPTA繊維の表面官能基と反応し得る官能基を有する樹脂(反応活性を有する樹脂)を含む溶液あるいはエマルジョンを浸透させることによって得られる。PPTA繊維は、紡出後水分率が15質量%未満に乾燥された履歴を持たないことが望ましい。   The PPTA fiber composite described above maintains the crystal size of the PPTA fiber less than 50 angstroms while changing the heat treatment conditions at a temperature of 100 to 160 ° C., and has a moisture content of 15 to 200% by weight, preferably 20 It is obtained by impregnating a solution or emulsion containing PPTA fiber that maintains a state of ˜50% by weight and containing a resin having a functional group capable of reacting with the surface functional group of PPTA fiber (resin having a reactive activity). . It is desirable that the PPTA fiber does not have a history of drying after spinning to a moisture content of less than 15% by mass.

PPTA繊維の結晶サイズが50オングストローム以上では、反応活性を有する樹脂を繊維骨格内に浸透させるのが困難となる。また、水分率が15重量%未満では反応活性を有する樹脂を繊維骨格内に浸透させるのが困難となり、水分率が200重量%を超えると繊維を巻き取る工程が困難になりコストアップの要因となる。   When the crystal size of the PPTA fiber is 50 angstroms or more, it becomes difficult to penetrate the resin having reaction activity into the fiber skeleton. Further, if the moisture content is less than 15% by weight, it becomes difficult to permeate the resin having reactive activity into the fiber skeleton, and if the moisture content exceeds 200% by weight, the process of winding the fiber becomes difficult, resulting in a cost increase. Become.

アミド基と反応し得る官能基を有する樹脂は、PPTA繊維の水分量を0%に換算した繊維重量に対して、0.1〜10.0重量%、好ましくは0.2〜5.0重量%含浸・浸透させるのがよい。浸透させる量が少ないと効果が不充分となる。   The resin having a functional group capable of reacting with an amide group is 0.1 to 10.0% by weight, preferably 0.2 to 5.0% by weight based on the fiber weight in which the moisture content of PPTA fiber is converted to 0%. % Impregnation and penetration. If the amount of penetration is small, the effect becomes insufficient.

アミド基と反応し得る官能基を有する樹脂は、オレフィン系、スチレン系、アクリル系樹脂等のラジカル重合性樹脂に、PPTA繊維の表面官能基と反応し得る官能基として、カルボン酸基、酸無水物基、イソシアネート基等を有する化合物を、公知の方法によりグラフトするか、公知の方法により変性することによって、得られる。あるいは、前記ラジカル重合性樹脂を構成するモノマーと、上記のカルボン酸基、酸無水物基、イソシアネート基等の官能基を有するモノマーとを、公知の方法により共重合することによって、得られる。反応活性を有する樹脂は2種以上をブレンドすることもできる。   Resins having functional groups capable of reacting with amide groups include olefinic, styrenic, and acrylic resins such as radical polymerizable resins such as carboxylic acid groups and acid anhydrides as functional groups capable of reacting with surface functional groups of PPTA fibers. A compound having a physical group, an isocyanate group or the like can be obtained by grafting by a known method or by modifying by a known method. Or it is obtained by copolymerizing the monomer which comprises the said radical polymerizable resin, and monomers which have functional groups, such as said carboxylic acid group, an acid anhydride group, an isocyanate group, by a well-known method. Two or more resins having reactive activity can be blended.

オレフィン系ラジカル重合性樹脂としては、ポリエチレン、ポリプロピレン、ポリブチレン、それらの材料のコポリマー等が挙げられる。なかでもポリエチレンが好ましく、高、中、低密度のいずれであってもよい。スチレン系ラジカル重合性樹脂としては、ポリスチレン、ポリ−α−メチルスチレン、それらの材料のコポリマー、スチレン−ブタジエンコポリマー等が挙げられる。アクリル系ラジカル重合性樹脂としては、ポリアクリル酸アルキルエステル、アクリル酸アルキルエステル−アクリル酸コポリマー、エチレン−メチルアクリレートコポリマー、エチレン−メチルメタクリレートコポリマー、エチレン−エチルアクリレートコポリマー、エチレン−酢酸ビニルコポリマー等が挙げられる。   Examples of the olefin radical polymerizable resin include polyethylene, polypropylene, polybutylene, copolymers of these materials, and the like. Of these, polyethylene is preferable, and any of high, medium, and low density may be used. Examples of the styrene radical polymerizable resin include polystyrene, poly-α-methylstyrene, copolymers of these materials, and styrene-butadiene copolymers. Examples of the acrylic radical polymerizable resin include polyacrylic acid alkyl ester, acrylic acid alkyl ester-acrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-vinyl acetate copolymer. It is done.

<カルボン酸基または酸無水物基を有する樹脂>
グラフトの例は、ポリオレフィン主鎖への付加である。グラフトポリマーは、ポリエチレン、プロプロピレン等のポリオレフィンに、不飽和カルボン酸、カルボン酸無水物、あるいは不飽和カルボン酸エステルを反応させることで得られる。好ましい酸、無水物、およびエステルとしては、アクリル酸、メタクリル酸、メタクリル酸グリシジル、アクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシエチル、マレイン酸ジエチル、マレイン酸モノエチル、マレイン酸ジ−n−ブチル、無水マレイン酸、マレイン酸、フマル酸、イタコン酸あるいは前記ジカルボン酸のモノエステル等が挙げられる。特に、無水マレイン酸が好ましい。グラフトポリマーにおけるグラフトモノマーの割合は、一般に約0.01〜20質量%、より好ましくは約0.1〜10質量%、特に好ましくは約0.2〜5質量%である。
コポリマーは、エチレン、プロピレン、ブテン等の炭素原子数が2〜10個のα−オレフィンと、1または2のカルボキシル基を有するα,β−エチレン系不飽和カルボン酸、エステル、無水物との共重合で得られる。好ましい酸、無水物、およびエステルとしては、マレイン酸ジエチル、マレイン酸モノエチル、マレイン酸ジ−n−ブチル、無水マレイン酸、マレイン酸、フマル酸、イタコン酸あるいは前記ジカルボン酸のモノエステル等が挙げられる。コポリマーにおけるα−オレフィン成分の割合は、約75モル%以上であり、カルボキシル基を有するモノマーの割合は、約0.2〜25モル%である。
上記の官能基を有する樹脂のなかで好ましいのは、ジカルボン酸または無水物もしくはエステルのようなジカルボン酸誘導体でグラフト化されたポリオレフィンである。
<Resin having carboxylic acid group or acid anhydride group>
An example of a graft is addition to a polyolefin backbone. The graft polymer can be obtained by reacting an unsaturated carboxylic acid, a carboxylic acid anhydride, or an unsaturated carboxylic acid ester with a polyolefin such as polyethylene or propylene. Preferred acids, anhydrides, and esters include acrylic acid, methacrylic acid, glycidyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, diethyl maleate, monoethyl maleate, di-n-butyl maleate , Maleic anhydride, maleic acid, fumaric acid, itaconic acid, or monoesters of the dicarboxylic acid. In particular, maleic anhydride is preferred. The proportion of the graft monomer in the graft polymer is generally about 0.01 to 20% by mass, more preferably about 0.1 to 10% by mass, and particularly preferably about 0.2 to 5% by mass.
The copolymer is a copolymer of an α-olefin having 2 to 10 carbon atoms such as ethylene, propylene, and butene and an α, β-ethylenically unsaturated carboxylic acid, ester, or anhydride having 1 or 2 carboxyl groups. Obtained by polymerization. Preferred acids, anhydrides, and esters include diethyl maleate, monoethyl maleate, di-n-butyl maleate, maleic anhydride, maleic acid, fumaric acid, itaconic acid or monoesters of the dicarboxylic acids. . The proportion of the α-olefin component in the copolymer is about 75 mol% or more, and the proportion of the monomer having a carboxyl group is about 0.2 to 25 mol%.
Among the resins having the above functional groups, polyolefins grafted with dicarboxylic acid or dicarboxylic acid derivatives such as anhydrides or esters are preferred.

<イソシアネート基を有する樹脂>
イソシアネート基を有する樹脂は、前述のラジカル重合性樹脂に、分子内にビニル基とイソシアネート基とを有するイソシアネート化合物をグラフトするかあるいは共重合して得られ、特開平11−035642号公報等で開示される樹脂が挙げられる。イソシアネート化合物としては、2−メタクリロイルオキシエチルイソシアネート、2−アクリロイルオキシエチルイソシアネート、1,1−(ビスアクリロイルオキシメチル)エチルイソシアネート等がある。
<Resin having an isocyanate group>
The resin having an isocyanate group is obtained by grafting or copolymerizing an isocyanate compound having a vinyl group and an isocyanate group in the molecule to the above-mentioned radical polymerizable resin, and disclosed in JP-A-11-035642 and the like. Resin to be used. Examples of the isocyanate compound include 2-methacryloyloxyethyl isocyanate, 2-acryloyloxyethyl isocyanate, 1,1- (bisacryloyloxymethyl) ethyl isocyanate, and the like.

アミド基と反応し得る官能基を有する樹脂は、それを親水性溶媒に溶解させた溶液あるいは水性エマルジョン化した溶液として、PPTA繊維骨格内に浸透させる。溶液は、水溶液または水と低沸点有機溶媒との混合液に溶解した溶液が用いられ、特に水溶液が好ましい。前記の官能基を有する樹脂の溶液中での濃度は、5〜80質量%が好ましく、より好ましくは15〜70質量%である。エマルジョン化した溶液は、粒子径が小さく、均一な粒子径のものが好ましい。   The resin having a functional group capable of reacting with an amide group is infiltrated into the PPTA fiber skeleton as a solution dissolved in a hydrophilic solvent or as an aqueous emulsion solution. As the solution, an aqueous solution or a solution dissolved in a mixed solution of water and a low-boiling organic solvent is used, and an aqueous solution is particularly preferable. As for the density | concentration in the solution of the resin which has the said functional group, 5-80 mass% is preferable, More preferably, it is 15-70 mass%. The emulsified solution preferably has a small particle size and a uniform particle size.

アミド基と反応し得る官能基を有する樹脂をPPTA繊維骨格内に浸透させる場合、油剤に含ませて用いてもよいし、油剤と別工程で用いてもよい。油剤としては、PPTA繊維に用いられる一般的な油剤、例えば、炭素数18以下の低分子量脂肪酸エステル、ポリエーテル、鉱物油などが挙げられる。   When a resin having a functional group capable of reacting with an amide group is allowed to penetrate into the PPTA fiber skeleton, it may be used by being included in an oil agent or may be used in a separate step from the oil agent. Examples of the oil agent include general oil agents used for PPTA fibers, such as low molecular weight fatty acid esters having 18 or less carbon atoms, polyethers, and mineral oils.

PPTA繊維の表面官能基と反応し得る官能基を有する樹脂を油剤に含ませて用いる場合は、上記油剤中に約20〜60重量%含有させることが好ましく、より好ましくは30〜50重量%である。   When a resin having a functional group capable of reacting with the surface functional group of PPTA fiber is used in an oil agent, it is preferably contained in the oil agent in an amount of about 20 to 60% by weight, more preferably 30 to 50% by weight. is there.

アミド基と反応し得る官能基を有する樹脂を溶解もしくはエマルジョン化した溶液、ならびに当該樹脂を含む油剤をPPTA繊維に付与する方法は、特に限定されず、従来公知の任意の方法が採用されてよく、例えば、浸漬給油法、スプレー給油法、ローラー給油法、計量ポンプを用いたガイド給油法等の方法でPPTA繊維に付与される。   A solution in which a resin having a functional group capable of reacting with an amide group is dissolved or emulsified, and a method of applying an oil containing the resin to PPTA fibers is not particularly limited, and any conventionally known method may be employed. For example, it is applied to the PPTA fiber by a method such as an immersion oiling method, a spray oiling method, a roller oiling method, or a guide oiling method using a metering pump.

アミド基と反応し得る官能基を有する樹脂を溶解した溶液あるいはエマルジョン化した溶液または当該樹脂を含む油剤をPPTA繊維骨格内に浸透させPPTA繊維複合体となした後、続いてこのPPTA繊維複合体を巻き取り工程でボビンに巻き取る。   A solution in which a resin having a functional group capable of reacting with an amide group is dissolved or emulsified, or an oil containing the resin is infiltrated into the PPTA fiber skeleton to form a PPTA fiber composite, and then the PPTA fiber composite. Is wound on the bobbin in the winding process.

巻き取ったPPTA繊維複合体をボビンから巻き出して熱処理することにより、水分率を15重量%未満、より好ましくは10重量%未満とする。熱処理の条件は特に限定されない。例えば80〜300℃、好ましくは100〜250℃で熱処理をした場合、水分率は15重量%未満にすることができる。この熱処理によりPPTA繊維複合体のハンドリング性が良好になる。   The wound PPTA fiber composite is unwound from the bobbin and heat-treated to make the moisture content less than 15% by weight, more preferably less than 10% by weight. The conditions for the heat treatment are not particularly limited. For example, when heat treatment is performed at 80 to 300 ° C., preferably 100 to 250 ° C., the moisture content can be less than 15% by weight. This heat treatment improves the handleability of the PPTA fiber composite.

アミド基と反応し得る官能基を有する樹脂を導入したPPTA繊維複合体を所定長さに切断し、ポリパラフェニレンテレフタルアミド短繊維からなるポリアミド複合材用短繊維を得る。また、上記のPPTA繊維複合体に繊維集束剤を付与した繊維集束体を、所定長さに切断し、ポリアミド複合材用短繊維集束体としてもよい。集束剤の付与方法は、集束剤液に浸漬する方法、走行するPPTA繊維複合体に集束剤を付与した駆動ローラーを接触させる方法等が挙げられる。   A PPTA fiber composite into which a resin having a functional group capable of reacting with an amide group is introduced is cut into a predetermined length to obtain a polyamide composite short fiber made of polyparaphenylene terephthalamide short fibers. Moreover, the fiber bundle which added the fiber sizing agent to said PPTA fiber composite is cut | disconnected to predetermined length, and it is good also as a short fiber bundle for polyamide composites. Examples of the method for applying the sizing agent include a method of immersing in a sizing agent solution, a method of bringing a driving roller provided with a sizing agent into contact with a traveling PPTA fiber composite, and the like.

切断方法は特に限定されるものではなく、公知のギロチン式カッターやロータリー式カッターを用いて、切断することができる。切断する繊維長については特に限定されるものではないが、樹脂の補強効果や、樹脂への混合時の加工性から、0.1〜5.0mmの範囲であることが好ましく、より好ましくは0.2〜5.0mmである。   The cutting method is not particularly limited, and the cutting can be performed using a known guillotine cutter or rotary cutter. Although it does not specifically limit about the fiber length to cut | disconnect, It is preferable that it is the range of 0.1-5.0 mm from the reinforcement effect of resin, and the workability at the time of mixing to resin, More preferably, it is 0. .2 to 5.0 mm.

本発明のポリアミド複合材は、本発明のポリアミド複合材用短繊維を、ポリアミド樹脂とブレンダーで混合した後、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機、バンバリーミキサー等の溶融混練機に投入し溶融混合することにより製造することができる。ポリアミド複合材用短繊維は、溶融混練性に優れており、ポリアミド複合材中で繊維が均一に分散、配置されたものとなる。ポリアミド複合材を、射出成形、押出成形、中空成形、フィルム成形、プレス成形等の各種成形に供し、さらには必要に応じて2次加工を加えることにより成形品を得ることができる。   The polyamide composite material of the present invention is prepared by mixing the short fiber for polyamide composite material of the present invention with a polyamide resin and a blender, and then using a single screw extruder, a twin screw extruder, a multi-screw extruder, a Banbury mixer, etc. It can manufacture by throwing into a melt-kneader and melt-mixing. The short fiber for polyamide composite is excellent in melt kneadability, and the fibers are uniformly dispersed and arranged in the polyamide composite. The polyamide composite material is subjected to various moldings such as injection molding, extrusion molding, hollow molding, film molding, press molding and the like, and further, a secondary product is added as necessary to obtain a molded product.

ポリアミド樹脂としては、ポリカプロアミド(ナイロン6)樹脂、ポリヘキサメチレンアジパミド(ナイロン66)樹脂、ポリヘキサメチレンセバカミド(ナイロン610)樹脂、ポリヘキサメチレンドデカミド(ナイロン612)樹脂、ポリドデカンアミド(ナイロン12)樹脂、ポリヘキサメチレンテレフタラミド(ナイロン6T)樹脂、ポリヘキサンメチレンイソフタラミド(ナイロン6I)樹脂、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン6/6T)樹脂、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)樹脂、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)樹脂等のナイロン樹脂やナイロン共重合体樹脂、又はこれらの樹脂の変性樹脂等が挙げられる。これらの樹脂のブレンド物でもよい。中でも機械特性の点でナイロン6、ナイロン66が好ましい。   Polyamide resins include polycaproamide (nylon 6) resin, polyhexamethylene adipamide (nylon 66) resin, polyhexamethylene sebacamide (nylon 610) resin, polyhexamethylene dodecamide (nylon 612) resin, poly Dodecanamide (nylon 12) resin, polyhexamethylene terephthalamide (nylon 6T) resin, polyhexanemethylene isophthalamide (nylon 6I) resin, polycaproamide / polyhexamethylene terephthalamide copolymer (nylon 6 / 6T) resin, Nylon such as polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer (nylon 66 / 6T) resin, polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6I) resin Fat and nylon copolymer resin, or modified resins of these resins. A blend of these resins may also be used. Among these, nylon 6 and nylon 66 are preferable in terms of mechanical properties.

本発明のポリアミド複合材では、複合材全量に対して、ポリアミド複合材用短繊維を5〜50質量%添加することが好ましい。従来の短繊維と同じ添加量でも複合材の機械的強度、摩耗特性を向上させることができるが、より好ましくは15質量%以上、更に好ましくは20質量%以上添加するのがよい。また、50質量%以下で添加すると成形に必要な流動性を失うことも無い。   In the polyamide composite of the present invention, it is preferable to add 5 to 50% by mass of the short fiber for polyamide composite with respect to the total amount of the composite. Although the mechanical strength and wear characteristics of the composite material can be improved with the same addition amount as that of conventional short fibers, it is more preferable to add 15% by mass or more, and still more preferable to add 20% by mass or more. Moreover, when it adds at 50 mass% or less, the fluidity required for shaping | molding will not be lost.

本発明のポリアミド複合材においては、本発明の目的を損なわない範囲で必要に応じて、可塑剤、顔料、充填剤、発泡剤、結晶核剤、滑剤、加工助剤、帯電防止剤、酸化防止剤、紫外線吸収剤、難燃剤、抗菌剤、熱安定剤、界面活性剤などを配合することができる。また、本発明の目的を損なわない限り、ポリアミド複合材用短繊維とポリアミド樹脂との接着性を高めるために接着剤を配合してもよい。また、本発明の目的を損なわない限り、ガラス繊維、セラミック繊維、フッ素繊維、炭素繊維、金属繊維などの強化繊維を配合してもよい。   In the polyamide composite material of the present invention, a plasticizer, a pigment, a filler, a foaming agent, a crystal nucleating agent, a lubricant, a processing aid, an antistatic agent, and an antioxidant are added as necessary without departing from the object of the present invention. An agent, an ultraviolet absorber, a flame retardant, an antibacterial agent, a heat stabilizer, a surfactant and the like can be blended. In addition, an adhesive may be blended in order to improve the adhesiveness between the polyamide composite short fibers and the polyamide resin as long as the object of the present invention is not impaired. Moreover, unless the object of the present invention is impaired, reinforcing fibers such as glass fiber, ceramic fiber, fluorine fiber, carbon fiber, and metal fiber may be blended.

ポリアミド樹脂は、耐熱性、成形性、電気特性において優れた物性を有している。そのため、本発明のポリアミド複合材からなる成形品は、高い機械的特性と摩耗特性、更には電気特性が求められる用途に好適に用いることができ、自動車部品、電気絶縁材料、摺動材等に好適に利用される。例えば、コネクタ、プラグ、アーム、ソケット、キャップ、ロータ、モータ部品等の電気・電子部品、自動車部品、プレート、軸受、ギヤー、カム、パイプ、棒材等の機械要素部品、スピーカコーン等のAV・OA機器部品、ブッシュ、座金、ガイド、プーリー、フェーシング、インシュレーター、ロッド、ベアリング保持器、筐体、軸受、ロッド、ガイド、ギヤー、建築用の部品・部材、建具や建材用のストッパー、ガイド、戸車、アングル等、その他ヘルメット、プラモデル部品、タイヤ用の中子材料、釣具用リール部品、シール類、パッキン類、グランドパッキン等である。   The polyamide resin has excellent physical properties in heat resistance, moldability, and electrical characteristics. Therefore, the molded article made of the polyamide composite material of the present invention can be suitably used for applications requiring high mechanical characteristics and wear characteristics, as well as electrical characteristics, and can be used for automobile parts, electrical insulating materials, sliding materials, etc. It is preferably used. For example, electrical / electronic parts such as connectors, plugs, arms, sockets, caps, rotors, motor parts, automobile parts, mechanical elements such as plates, bearings, gears, cams, pipes, bars, AV / OA equipment parts, bushes, washers, guides, pulleys, facings, insulators, rods, bearing cages, housings, bearings, rods, guides, gears, building parts and components, stoppers for construction equipment and building materials, guides, doors And other parts such as helmets, plastic model parts, tire core materials, fishing tackle reel parts, seals, packings, gland packings, and the like.

以下、実施例および比較例を用いて本発明を更に具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。なお、実施例中における各測定値は次の方法にしたがった。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to only the following Examples. In addition, each measured value in an Example followed the following method.

(1)水分量
試料約5gの重量を測定し、300℃×20分の熱処理を行い、25℃65%RHで5分間放置した後、再度重量を測定する。ここで使う水分率は、[乾燥前重量−乾燥後重量]/[乾燥後重量]で得られるドライベース水分率である。
(1) Water content About 5 g of the sample is weighed, heat-treated at 300 ° C. for 20 minutes, left at 25 ° C. and 65% RH for 5 minutes, and then weighed again. The moisture content used here is the dry base moisture content obtained by [weight before drying−weight after drying] / [weight after drying].

(2)複合材の引張特性、曲げ特性の評価
成形品から切り出した試験片について、ASTM D638号の方法により引張強度、引張弾性率を、ASTM D790号の方法により曲げ強度、曲げ弾性率を測定した。
(2) Evaluation of tensile properties and bending properties of composite materials For test pieces cut out from molded products, the tensile strength and tensile modulus were measured by the method of ASTM D638, and the bending strength and flexural modulus were measured by the method of ASTM D790. did.

(3)複合材の摩擦特性
鈴木式摩耗試験機を使用し、試験条件は、サンプルは30mm×30mm×2mm、相手(リング)材料はS45C、リング面積は200mm、試験速度(周速度)0.15m/sec、荷重500N、滑り距離3km、N=3にて測定した。
PV値:JIS K 7218(A法)に準拠した。荷重と周速度条件よりPV値を求めると、375(kPa・m/sec)となる。
減耗量は、摩擦前の重さ(g)から摩擦後の重さ(g)を差し引いた重さとした。
動摩擦係数は、動摩擦係数(μ)=摩擦トルク(T)/荷重(N) より算出した。
(3) Friction characteristics of composite material Using a Suzuki wear tester, the test conditions are 30 mm × 30 mm × 2 mm for the sample, S45C for the mating (ring) material, 200 mm 2 for the ring area, and 0 for the test speed (circumferential speed). .15 m / sec, load 500 N, sliding distance 3 km, N = 3.
PV value: Conforms to JIS K 7218 (A method). When the PV value is obtained from the load and the peripheral speed condition, it is 375 (kPa · m / sec).
The amount of wear was the weight obtained by subtracting the weight (g) after friction from the weight (g) before friction.
The dynamic friction coefficient was calculated from the dynamic friction coefficient (μ) = friction torque (T) / load (N).

(実施例1)
通常の方法で得られたPPTA(分子量約20,000)1kgを4kgの濃硫酸に溶解し、直径0.1mmのホールを1,000個有する口金からせん断速度30,000sec−1となるよう吐出し、4℃の水中に紡糸した後、10重量%の水酸化ナトリウム水溶液で、10℃×15秒の条件で中和処理し、その後、110℃×15秒間の低温乾燥をして、水分率35重量%の処理前のPPTA繊維(水分率0重量%換算のとき繊度1,670dtex)になるように調製した。
Example 1
Dissolve 1 kg of PPTA (molecular weight of about 20,000) obtained in the usual way in 4 kg of concentrated sulfuric acid and discharge from a die having 1,000 holes with a diameter of 0.1 mm to a shear rate of 30,000 sec −1. And after spinning in water at 4 ° C., it was neutralized with a 10 wt% aqueous sodium hydroxide solution at 10 ° C. for 15 seconds, and then dried at a low temperature of 110 ° C. for 15 seconds to obtain a moisture content. It was prepared to be 35% by weight of PPTA fiber before treatment (fineness of 1,670 dtex when converted to 0% by weight).

このPPTA繊維に、アミド基と反応し得る官能基を有する樹脂として、エチレン−無水マレイン酸コポリマー(無水マレイン酸含量:約2質量%、融点:108℃、メルトフローレート:25g/10分)を水に乳化し分散させた水系エマルジョンを、水分率0重量%換算としたときの繊維に対し2.5質量%(コポリマー換算)含浸し、PPTA繊維に浸透させた後、巻き取り工程でボビンに巻き取り、水分率35重量%のPPTA繊維複合体を製造した。   An ethylene-maleic anhydride copolymer (maleic anhydride content: about 2% by mass, melting point: 108 ° C., melt flow rate: 25 g / 10 min) is used as a resin having functional groups capable of reacting with amide groups on this PPTA fiber. A water-based emulsion emulsified and dispersed in water is impregnated with 2.5% by mass (copolymer conversion) of the fiber when the moisture content is converted to 0% by weight, impregnated into PPTA fiber, and then bobbed in the winding process. A PPTA fiber composite having a moisture content of 35% by weight was wound up.

得られたPPTA繊維複合体をボビンから巻出しウレタン系繊維集束剤を、水分率0重量%換算としたときの繊維に対し2.5質量%付与し、乾燥したものをカッターで目標値3.0mmになるように連続的に切断し、繊維集束剤を付与した短繊維チョップを得た。   The obtained PPTA fiber composite is unwound from a bobbin, and 2.5% by mass of a urethane fiber sizing agent is added to the fiber when converted to a moisture content of 0% by weight. A continuous fiber chop with a fiber sizing agent was obtained by continuously cutting to 0 mm.

ナイロン66樹脂ペレット(Zytel(R)101、米国デュポン社製)80質量部、短繊維チョップ20質量部を、タンブラーミキサーで混合した後、二軸押出機(シリンダー温度約270℃)を用いて混練、押出成形することにより、ペレットを製造した。製造したペレットを用いて、射出成形機で試験片(ポリアミド複合材)を作製した。   80 parts by mass of nylon 66 resin pellets (Zytel (R) 101, manufactured by DuPont, USA) and 20 parts by mass of short fiber chops were mixed with a tumbler mixer and then kneaded using a twin screw extruder (cylinder temperature of about 270 ° C.). The pellets were produced by extrusion molding. A test piece (polyamide composite material) was produced by an injection molding machine using the produced pellet.

(比較例1)
実施例1と同様の方法で、短繊維チョップ無添加のナイロン66樹脂からなる試験片を作製した。
(Comparative Example 1)
A test piece made of nylon 66 resin with no short fiber chop added was prepared in the same manner as in Example 1.

(比較例2)
実施例1で得た水分率35重量%の処理前のPPTA繊維に対して、PPTA繊維の表面官能基と反応し得る官能基を有する樹脂を浸透させなかった以外は、実施例1と同様の方法で水分率が6.9重量%のPPTA繊維を得た。
実施例1と同様、得られたPPTA繊維糸条を用いて、集束剤を付与した短繊維チョップを得た後、実施例1と同様の方法で試験片を作製した。
(Comparative Example 2)
The PPTA fiber before treatment having a moisture content of 35% by weight obtained in Example 1 was the same as Example 1 except that the resin having a functional group capable of reacting with the surface functional group of the PPTA fiber was not permeated. The PPTA fiber having a moisture content of 6.9% by weight was obtained by this method.
Similarly to Example 1, after using the obtained PPTA fiber yarn to obtain a short fiber chop provided with a sizing agent, a test piece was prepared in the same manner as in Example 1.

実施例および比較例で得た試験片の特性を表1に示す。   Table 1 shows the characteristics of the test pieces obtained in Examples and Comparative Examples.

Figure 2016160536
Figure 2016160536

表1の結果から、本実施例の短繊維チョップをナイロン66樹脂に溶融混合してなる複合材は、短繊維チョップ無添加の樹脂(比較例1)および通常の短繊維チョップを溶融混合した複合材(比較例2)に比べて、引張強さおよび曲げ強度が画期的に大きくなり、摩耗特性に優れていることが認められた。   From the results shown in Table 1, the composite material obtained by melt-mixing the short fiber chop of this example with nylon 66 resin is a composite in which a short fiber chop-free resin (Comparative Example 1) and a normal short fiber chop are melt-mixed. Compared to the material (Comparative Example 2), the tensile strength and bending strength were remarkably increased, and it was recognized that the wear characteristics were excellent.

本発明のポリアミド複合材の機械的強度、摩耗特性が向上する理由は明らかではない。しかし、PPTA繊維骨格内にアミド基と反応し得る官能基を有する樹脂を導入することにより、アミド基と官能基とが反応することで樹脂との密着性のよい短繊維が得られるだけでなく、さらに短繊維をポリアミド樹脂に溶融混合する際に受ける熱により、付加反応や架橋反応が起こり、ポリアミド複合材の機械的強度が向上するものと推察する。   The reason why the mechanical strength and wear characteristics of the polyamide composite of the present invention are improved is not clear. However, by introducing a resin having a functional group capable of reacting with an amide group into the PPTA fiber skeleton, not only a short fiber having good adhesion to the resin can be obtained by the reaction of the amide group and the functional group. Further, it is presumed that an addition reaction or a crosslinking reaction occurs due to heat received when the short fibers are melt-mixed with the polyamide resin, and the mechanical strength of the polyamide composite is improved.

本発明のポリアミド複合材は、自動車部品、携帯機器の筐体、摺動材等の用途に好適に使用できる。   The polyamide composite material of the present invention can be suitably used for applications such as automobile parts, portable equipment casings, sliding materials and the like.

Claims (6)

100〜160℃で乾燥することにより水分量が15〜200重量%に調整されたポリパラフェニレンテレフタルアミド繊維骨格内に、アミド基と反応し得る官能基を有する樹脂を親水性溶媒に溶解した溶液もしくは水性エマルジョン化した溶液を浸透させ、熱処理して得られる繊維複合体を、所定長さに切断したポリパラフェニレンテレフタルアミド短繊維からなるポリアミド複合材用短繊維。   A solution in which a resin having a functional group capable of reacting with an amide group is dissolved in a hydrophilic solvent in a polyparaphenylene terephthalamide fiber skeleton whose water content is adjusted to 15 to 200% by weight by drying at 100 to 160 ° C. Or the short fiber for polyamide composite materials which consists of the polyparaphenylene terephthalamide short fiber which cut | disconnected the fiber composite obtained by making the aqueous | water-based emulsion solution penetrate | infiltrated and heat-processing to predetermined length. 反応し得る官能基が、カルボン酸基、酸無水物基、またはイソシアネート基である請求項1に記載のポリアミド複合材用短繊維。   The short fiber for polyamide composite according to claim 1, wherein the functional group capable of reacting is a carboxylic acid group, an acid anhydride group, or an isocyanate group. 反応し得る官能基を有する樹脂が、ラジカル重合性樹脂である請求項1または2に記載のポリアミド複合材用短繊維。   The short fiber for polyamide composite according to claim 1 or 2, wherein the resin having a functional group capable of reacting is a radical polymerizable resin. ラジカル重合性樹脂が、オレフィン系、スチレン系、またはアクリル系樹脂である請求項3に記載のポリアミド複合材用短繊維。   The short fiber for polyamide composite according to claim 3, wherein the radical polymerizable resin is an olefin, styrene, or acrylic resin. 請求項1〜4いずれかに記載のポリアミド複合材用短繊維の全重量に対して、繊維集束剤が1〜20質量%付着しているポリアミド複合材用短繊維集束体。   A short fiber bundle for polyamide composite material, wherein 1 to 20% by mass of a fiber sizing agent is attached to the total weight of the short fiber for polyamide composite material according to any one of claims 1 to 4. 請求項1〜4いずれかに記載のポリアミド複合材用短繊維または請求項5に記載のポリアミド複合材用短繊維集束体を、ポリアミド樹脂に溶融混合してなるポリアミド複合材。   A polyamide composite material obtained by melt-mixing the short fiber for a polyamide composite according to any one of claims 1 to 4 or the short fiber bundle for a polyamide composite according to claim 5 in a polyamide resin.
JP2015037221A 2015-02-26 2015-02-26 Short fiber for polyamide composite and polyamide composite Pending JP2016160536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015037221A JP2016160536A (en) 2015-02-26 2015-02-26 Short fiber for polyamide composite and polyamide composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037221A JP2016160536A (en) 2015-02-26 2015-02-26 Short fiber for polyamide composite and polyamide composite

Publications (1)

Publication Number Publication Date
JP2016160536A true JP2016160536A (en) 2016-09-05

Family

ID=56844414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037221A Pending JP2016160536A (en) 2015-02-26 2015-02-26 Short fiber for polyamide composite and polyamide composite

Country Status (1)

Country Link
JP (1) JP2016160536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104580A (en) * 2016-12-27 2018-07-05 東レ・デュポン株式会社 Polyparaphenylene terephthalamide fiber composite and polycarbonate resin composite material containing the same
JP2018104853A (en) * 2016-12-27 2018-07-05 東レ・デュポン株式会社 Polyparaphenylene terephthalamide fiber composite and polycarbonate resin composite material containing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392417A (en) * 1986-10-07 1988-04-22 Asahi Fiber Glass Co Ltd Reinforcing material and composite member
JPH0450377A (en) * 1990-06-14 1992-02-19 Nippon Aramido Kk Aromatic polyamide short fiber for reinforcement of thermoplastic resin, its production and thermo-plastic resin composition reinforced therewith
JPH06329813A (en) * 1993-05-24 1994-11-29 Teijin Ltd Reinforcing fiber for polyethylene resin molded article
JP2000239417A (en) * 1998-12-21 2000-09-05 Toray Ind Inc Cloth prepreg and fiber-reinforced composite material
JP2002194669A (en) * 2000-10-20 2002-07-10 Du Pont Toray Co Ltd Aramid fiber and method for producing the same
JP2004091540A (en) * 2002-08-29 2004-03-25 Du Pont Toray Co Ltd Polyamide resin composite material
JP2006152533A (en) * 2006-03-13 2006-06-15 Du Pont Toray Co Ltd Polyparaphenylene terephthalamide fiber composite and its application
JP2009256827A (en) * 2008-04-16 2009-11-05 Teijin Techno Products Ltd Bundled body of aromatic polyamide staple fiber
JP2013241575A (en) * 2012-04-23 2013-12-05 Toray Ind Inc Friction material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392417A (en) * 1986-10-07 1988-04-22 Asahi Fiber Glass Co Ltd Reinforcing material and composite member
JPH0450377A (en) * 1990-06-14 1992-02-19 Nippon Aramido Kk Aromatic polyamide short fiber for reinforcement of thermoplastic resin, its production and thermo-plastic resin composition reinforced therewith
JPH06329813A (en) * 1993-05-24 1994-11-29 Teijin Ltd Reinforcing fiber for polyethylene resin molded article
JP2000239417A (en) * 1998-12-21 2000-09-05 Toray Ind Inc Cloth prepreg and fiber-reinforced composite material
JP2002194669A (en) * 2000-10-20 2002-07-10 Du Pont Toray Co Ltd Aramid fiber and method for producing the same
JP2004091540A (en) * 2002-08-29 2004-03-25 Du Pont Toray Co Ltd Polyamide resin composite material
JP2006152533A (en) * 2006-03-13 2006-06-15 Du Pont Toray Co Ltd Polyparaphenylene terephthalamide fiber composite and its application
JP2009256827A (en) * 2008-04-16 2009-11-05 Teijin Techno Products Ltd Bundled body of aromatic polyamide staple fiber
JP2013241575A (en) * 2012-04-23 2013-12-05 Toray Ind Inc Friction material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104580A (en) * 2016-12-27 2018-07-05 東レ・デュポン株式会社 Polyparaphenylene terephthalamide fiber composite and polycarbonate resin composite material containing the same
JP2018104853A (en) * 2016-12-27 2018-07-05 東レ・デュポン株式会社 Polyparaphenylene terephthalamide fiber composite and polycarbonate resin composite material containing the same

Similar Documents

Publication Publication Date Title
JP5633660B1 (en) Fiber-reinforced thermoplastic resin molded article, fiber-reinforced thermoplastic resin molding material, and method for producing fiber-reinforced thermoplastic resin molding material
US20210147664A1 (en) Moldings of fiber-reinforced thermoplastic resin
EP2096134B1 (en) Organic fiber-reinforced composite resin composition and organic fiber-reinforced composite resin molding
TWI795516B (en) Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molded material
CN106661242A (en) Fibre-reinforced thermoplastic resin moulding material, and fibre-reinforced thermoplastic resin moulded article
KR20160086821A (en) Polyamide moulding compounds for large moulded parts
JP6766877B2 (en) Fiber reinforced thermoplastic resin molded product
JP2013177560A (en) Method for producing carbon fiber reinforced molded product, and carbon fiber reinforced molded product
CN104822736A (en) Pellet mixture, carbon fiber-reinforced polypropylene resin composition, molded body, and method for producing pellet mixture
CN106589604A (en) Basalt fiber-reinforced high-weather-resistance PP composite and preparation method thereof
JP6497050B2 (en) Fiber-reinforced thermoplastic resin molding material and fiber-reinforced thermoplastic resin molded product
JP2016160535A (en) Polyparaphenylene terephthalamide fiber composite and manufacturing method therefor
JP2016160536A (en) Short fiber for polyamide composite and polyamide composite
TWI763635B (en) Fiber bundle to which propylene resin adheres, method for producing the same, and molded article
WO2011152439A1 (en) Polyolefin resin composition pellets and moldings obtained therefrom
CN114667310A (en) Fiber-reinforced thermoplastic resin molded article
JP3736260B2 (en) Organic fiber resin composition and use thereof
JP2018104853A (en) Polyparaphenylene terephthalamide fiber composite and polycarbonate resin composite material containing the same
JP2018104580A (en) Polyparaphenylene terephthalamide fiber composite and polycarbonate resin composite material containing the same
JP2013253331A (en) Organic fiber for reinforcing resin and organic fiber-reinforced thermoplastic resin
JP5649532B2 (en) Aliphatic polyester resin composition pellets and molded articles obtained by molding the same
CN114507400B (en) Modified glass fiber reinforced polypropylene composition and preparation method thereof
JP5226595B2 (en) Aliphatic polyester resin composition and molded article obtained by molding them
JP2016003424A (en) Vinylon fiber for resin reinforcement and production method thereof
TW202321352A (en) Fiber-reinforced thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190603