JP2016160215A - METHOD FOR PRODUCING OPTICALLY ACTIVE α-THIO-β-AMINONITRILE - Google Patents

METHOD FOR PRODUCING OPTICALLY ACTIVE α-THIO-β-AMINONITRILE Download PDF

Info

Publication number
JP2016160215A
JP2016160215A JP2015040258A JP2015040258A JP2016160215A JP 2016160215 A JP2016160215 A JP 2016160215A JP 2015040258 A JP2015040258 A JP 2015040258A JP 2015040258 A JP2015040258 A JP 2015040258A JP 2016160215 A JP2016160215 A JP 2016160215A
Authority
JP
Japan
Prior art keywords
group
isomer
alkyl group
optically active
minor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015040258A
Other languages
Japanese (ja)
Inventor
修一 中村
Shuichi Nakamura
修一 中村
近藤 健
Ken Kondo
健 近藤
奈津美 小林
Natsumi Kobayashi
奈津美 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2015040258A priority Critical patent/JP2016160215A/en
Publication of JP2016160215A publication Critical patent/JP2016160215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Furan Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a convenient and high enantioselective synthesis method for optically active α-thioacetonitrile using α-thioacetonitrile.SOLUTION: The present invention provides an asymmetric catalytic production method for optically active α-thio-β-amino nitrile by the following formula using optically active palladium catalyst (R1 is an alkyl group, or an aryl group; R2 is a diarylphosphinoyl group, an arenesulfonyl group, an alkylcarbonyl group or the like; R3 is a cyclic alkyl group or the like; R4 is a cyclic alkyl group or the like; silver salt used therein is acetate or the like; palladium complex therein used is pincer-type bisimidazoline-palladium complex).SELECTED DRAWING: None

Description

本発明は、光学活性なα−チオ−β−アミノニトリル類の製造方法に関するものである。   The present invention relates to a method for producing optically active α-thio-β-amino nitriles.

光学活性なα−チオアセトニトリル化合物誘導体は、様々な生理活性物質や医農薬品合成の中間体として広く用いており、ホルミル及びアシルアニオン等価体、アルキルニトリル等価体として機能し得る(非特許文献1―2)。特に、光学活性なα−チオ−β−アミノニトリル類を合成する有力な手法としては、イミン類に対するα−チオアセトニトリルの不斉求核付加反応が挙げられる。しかしながら、α−チオアセトニトリルを求核剤として用いる反応は、用いることのできる求電子剤はカルボニル化合物に限定され、非不斉反応に限定されていた(非特許文献3)。

Optically active α-thioacetonitrile compound derivatives are widely used as intermediates in the synthesis of various physiologically active substances and medical and agrochemical products, and can function as formyl and acyl anion equivalents and alkylnitrile equivalents (Non-patent Document 1). ―2). In particular, an effective method for synthesizing optically active α-thio-β-amino nitriles includes asymmetric nucleophilic addition reaction of α-thioacetonitrile to imines. However, in the reaction using α-thioacetonitrile as a nucleophile, the electrophile that can be used is limited to carbonyl compounds, and is limited to non-asymmetric reactions (Non-patent Document 3).

B. M. Trost, J. R. Granja, J. Am. Chem. Soc. 1991, 113, 1044-1046.B. M. Trost, J. R. Granja, J. Am. Chem. Soc. 1991, 113, 1044-1046. D. Nath, M. C. Skilbeck, I. Coldham, F. F. Fleming, Org. Lett. 2014, 16, 62-65.D. Nath, M. C. Skilbeck, I. Coldham, F. F. Fleming, Org. Lett. 2014, 16, 62-65. D. Morgans, Jr. G. B. Feigelson, J. Org. Chem. 1982, 47, 1131-1133D. Morgans, Jr. G. B. Feigelson, J. Org. Chem. 1982, 47, 1131-1133

この出願の発明が解決しようとする課題は、現状の技術では、α−チオアセトニトリルを用いる光学活性なα−チオアセトニトリル類の簡便かつ高エナンチオ選択的合成法がない点である。 The problem to be solved by the invention of this application is that there is no simple and highly enantioselective synthesis method of optically active α-thioacetonitriles using α-thioacetonitrile in the present state of the art.

本発明の目的は、上記点に鑑みて、適切な不斉触媒を用いて光学活性なα−チオ−β−アミノニトリル類の不斉触媒的製造方法を提供することにある。

In view of the above points, an object of the present invention is to provide an asymmetric catalytic production method of optically active α-thio-β-amino nitriles using an appropriate asymmetric catalyst.

本発明は、下記化学式(化1)で示される反応により種々のイミン類に対し光学活性パラジウム錯体存在下でα−チオアセトニトリルを反応させることにより光学活性な四置換不斉炭素を有するα−チオ−β−アミノニトリル類を製造する方法を提供することにある(請求項1)。 In the present invention, α-thio having an optically active tetrasubstituted asymmetric carbon is obtained by reacting various imines with α-thioacetonitrile in the presence of an optically active palladium complex by a reaction represented by the following chemical formula (Formula 1). An object of the present invention is to provide a method for producing -β-aminonitriles (claim 1).

前記イミン類は、次式(化2)で示される。 The imines are represented by the following formula (Formula 2).

R1は、アルキル基、アリール基を示す。R2はジアリールホスフィノイル基、ジアルキルホスフィノイル基、アレーンスルホニル基、アルキルスルホニル基、アレーンカルボニル基、アルキルカルボニル基、アルコキシカルボニル基、アリール基、アルキル基を示す。
(化1)において、R3は、環状アルキル基、鎖状アルキル基、フルオロ基、クロロ基、ブロモ基、またはアリール基を示す。R4は、環状アルキル基、鎖状アルキル基、アリール基を示す。
R 1 represents an alkyl group or an aryl group. R 2 represents a diarylphosphinoyl group, a dialkylphosphinoyl group, an arenesulfonyl group, an alkylsulfonyl group, an arenecarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group, an aryl group, or an alkyl group.
In (Chemical Formula 1), R 3 represents a cyclic alkyl group, a chain alkyl group, a fluoro group, a chloro group, a bromo group, or an aryl group. R 4 represents a cyclic alkyl group, a chain alkyl group, or an aryl group.

また、用いる銀塩は、酢酸塩、安息香酸塩、アセチルアセトナート塩などでもよい。
用いるパラジウム錯体はピンサー型ビスイミダゾリン−パラジウム錯体である。
また、アルキルアルコール、フェノール、シリルアルコールなどの添加を行ってもよい。
以下、種々の実施例を示す。
The silver salt used may be acetate, benzoate, acetylacetonate salt or the like.
The palladium complex used is a pincer type bisimidazoline-palladium complex.
Moreover, you may perform addition of alkyl alcohol, phenol, silyl alcohol, etc.
Various examples will be described below.

発明者らは、イミンの窒素上にトルエンスルホニル基を導入し、α−チオアセトニトリルの不斉求核付加反応を求核剤として用いる触媒的不斉求核付加反応を実施検討した。
(第1実施形態)
次式(3)
The inventors conducted a catalytic asymmetric nucleophilic addition reaction using an asymmetric nucleophilic addition reaction of α-thioacetonitrile as a nucleophile by introducing a toluenesulfonyl group onto the nitrogen of the imine.
(First embodiment)
The following formula (3)

(実施例1)
次式(4)の化学式で与えられる(2S,3S)-3-(toluenesulfonyl)amino-3-phenyl-2- phenylthiopropionitrileの合成について記述する。
Example 1
The synthesis of (2S, 3S) -3- (toluenesulfonyl) amino-3-phenyl-2-phenylthiopropionitrile given by the chemical formula of the following formula (4) is described.

乾燥させた試験管にピンサー型ビスイミダゾリン−パラジウム錯体(4.3 mg, 0.00394 mmol)、アセチルアセトナート銀(I)(0.8 mg, 0.00394 mmol)をテトラヒドロフラン0.5 mLに溶解させ、-30 ℃に冷却した。続いてフェニルチオアセトニトリル(15 mL, 0.116 mmol)とヘキサフルオロイソプロパノール(10 mL, 0.095 mmol)、(N-Toluenesulfonyl)imine(20.4 mg, 0.0788 mmol)を加え-30 ℃で48時間攪拌した。反応はTLC(薄層クロマトグラフィー)にて確認後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥した。溶媒を減圧下、留去し、シリカゲルクロマトグラフィー(Benzene:CH3CN = 98:2)で精製し、目的生成物を30.5 mg(95%, 91:9 Dr, 99/89% ee)で得た。 In a dried test tube, pincer-type bisimidazoline-palladium complex (4.3 mg, 0.00394 mmol) and acetylacetonate silver (I) (0.8 mg, 0.00394 mmol) were dissolved in 0.5 mL of tetrahydrofuran and cooled to −30 ° C. Subsequently, phenylthioacetonitrile (15 mL, 0.116 mmol), hexafluoroisopropanol (10 mL, 0.095 mmol) and (N-Toluenesulfonyl) imine (20.4 mg, 0.0788 mmol) were added, and the mixture was stirred at −30 ° C. for 48 hours. The reaction was confirmed by TLC (thin layer chromatography), a saturated aqueous ammonium chloride solution was added, the mixture was extracted with ethyl acetate, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (Benzene: CH 3 CN = 98: 2) to obtain the target product as 30.5 mg (95%, 91: 9 Dr, 99/89% ee). It was.


H NMR (300 MHz, CDCl3) δ7.59-7.50 (m, 4H), 7.44-7.32 (m, 3H), 7.26-7.11 (m, 7H),
, 5.69 (d, J = 8.1 Hz, 1H), 4.84 (m, 1H), 4.03 (d, J = 3.9 Hz, 1H), 2.34 (s, 3H);
HPLC (DAICEL CHIRALPAKID-3O, Hexane:iPrOH = 80:20, 1.0 mL/min , 225 nm ) tR = 45.1 min (minor syn-isomer), 95.5 min (major syn-isomer), 105.2 min (minor anti-isomer), 182.1 min (major anti-isomer).

(実施例2−10)
下記反応式(化5)で示すベンズアルデヒド由来のN-トルエンスルホニルイミンの代わりに窒素上の置換基を種々変更したイミン類へ種々の不斉触媒を用いた実施例の結果を表1に示す

1 H NMR (300 MHz, CDCl 3 ) δ7.59-7.50 (m, 4H), 7.44-7.32 (m, 3H), 7.26-7.11 (m, 7H),
, 5.69 (d, J = 8.1 Hz, 1H), 4.84 (m, 1H), 4.03 (d, J = 3.9 Hz, 1H), 2.34 (s, 3H);
HPLC (DAICEL CHIRALPAKID-3 O , Hexane: iPrOH = 80:20, 1.0 mL / min, 225 nm) tR = 45.1 min (minor syn-isomer), 95.5 min (major syn-isomer), 105.2 min (minor anti- isomer), 182.1 min (major anti-isomer).

(Example 2-10)
Table 1 shows the results of Examples in which various asymmetric catalysts were used for imines in which substituents on nitrogen were changed in place of benzaldehyde-derived N-toluenesulfonylimine represented by the following reaction formula (Formula 5).



表1から、Rとしては、トルエンスルホニル基が最も良く、触媒はベンゾイル基及びメシチル基を導入したピンサー型ビスイミダゾリン−パラジウム触媒が最も良い。さらに、アセチルアセトナート銀の添加により反応性が向上し、また、反応温度を下げることにより、立体選択性が向上する。また、ヘキサフルオロイソプロパノールを添加することにより、立体選択性が向上する・

(実施例11−20)
上記のベンズアルデヒド由来のイミンの代わりに、様々なアルデヒドから誘導したイミンを用いた実施例の結果を表2に示す。
From Table 1, as toluene, the toluenesulfonyl group is the best and the pincer type bisimidazoline-palladium catalyst into which the benzoyl group and the mesityl group are introduced is the best. Furthermore, the reactivity is improved by the addition of silver acetylacetonate, and the stereoselectivity is improved by lowering the reaction temperature. In addition, stereoselectivity is improved by adding hexafluoroisopropanol.

(Example 11-20)
Table 2 shows the results of Examples in which imines derived from various aldehydes were used instead of the above benzaldehyde-derived imines.


以下、上記式で生成した化合物2b、2c〜2mについて説明する。 Hereinafter, the compounds 2b and 2c to 2m generated by the above formula will be described.


(実施例3)

(Example 3)

1H NMR (300 MHz, CDCl3) δ7.65-7.53 (m, 2H), 7.45-7.30 (m, 8H), 5.40-5.27 (m, 1H), 5.27-5.13 (m, 1H), 4.22-4.13 (m, 1H), 1.46 (s, 9H);
HPLC (DAICEL CHIRALPAKIDO, Hexane:iPrOH = 80:20, 1.0 mL/min , 225 nm ) tR = 10.1 min (minor major-diastereomer), 15.4 min (minor minor-diastereomer), 20.7 min (major major-diastereomer), 25.2 min (major minor-diastereomer).
1 H NMR (300 MHz, CDCl 3 ) δ7.65-7.53 (m, 2H), 7.45-7.30 (m, 8H), 5.40-5.27 (m, 1H), 5.27-5.13 (m, 1H), 4.22- 4.13 (m, 1H), 1.46 (s, 9H);
HPLC (DAICEL CHIRALPAKID O , Hexane: iPrOH = 80:20, 1.0 mL / min, 225 nm) tR = 10.1 min (minor major-diastereomer), 15.4 min (minor minor-diastereomer), 20.7 min (major major-diastereomer) , 25.2 min (major minor-diastereomer).


(実施例10)

(Example 10)

1H NMR (300 MHz, CDCl3) δ 7.59-7.26 (m, 7H), 7.14-7.06 (m, 4H), 6.74 (d, J = 6.9 Hz, 2H), 5.60 (d, J = 8.1 Hz, 1H), 4.85-4.72 (m, 1H), 4.02 (d, J = 1.8 Hz, 1H), 3.75 (s, 3H), 2.35 (s, 3H);
HPLC (DAICEL CHIRALPAK ID-3O, Hexane:iPrOH = 80:20, 1.0 mL/min , 225 nm) tR = 79.6 min (minor syn-isomer), 152.9 min (major syn-isomer), 171.3 min (minor anti-isomer), 229.5 min (major anti-isomer).
1 H NMR (300 MHz, CDCl 3 ) δ 7.59-7.26 (m, 7H), 7.14-7.06 (m, 4H), 6.74 (d, J = 6.9 Hz, 2H), 5.60 (d, J = 8.1 Hz, 1H), 4.85-4.72 (m, 1H), 4.02 (d, J = 1.8 Hz, 1H), 3.75 (s, 3H), 2.35 (s, 3H);
HPLC (DAICEL CHIRALPAK ID-3 O , Hexane: iPrOH = 80:20, 1.0 mL / min, 225 nm) tR = 79.6 min (minor syn-isomer), 152.9 min (major syn-isomer), 171.3 min (minor anti -isomer), 229.5 min (major anti-isomer).


(実施例11)

(Example 11)

1H NMR (300 MHz, CDCl3) δ 7.60-7.26 (m, 7H), 7.16-7.11 (m, 3H), 6.79-6.64 (m, 3H), 5.71(d, J = 8.4 Hz, 1H), 4.87-4.74 (m, 1H), 4.04 (d, J = 2.4 Hz, 1H), 3.69 (s, 3H), 2.34 (s, 3H);
HPLC (DAICEL CHIRALPAK IF-3O, Hexane:iPrOH = 70:30, 1.0 mL/min , 225 nm) tR = 30.3 min (minor syn-isomer), 34.9 min (minor anti-isomer), 36.8 min (major anti-isomer), 64.0 min (major syn-isomer).
1 H NMR (300 MHz, CDCl 3 ) δ 7.60-7.26 (m, 7H), 7.16-7.11 (m, 3H), 6.79-6.64 (m, 3H), 5.71 (d, J = 8.4 Hz, 1H), 4.87-4.74 (m, 1H), 4.04 (d, J = 2.4 Hz, 1H), 3.69 (s, 3H), 2.34 (s, 3H);
HPLC (DAICEL CHIRALPAK IF-3 O , Hexane: iPrOH = 70:30, 1.0 mL / min, 225 nm) tR = 30.3 min (minor syn-isomer), 34.9 min (minor anti-isomer), 36.8 min (major anti -isomer), 64.0 min (major syn-isomer).


(実施例12)

(Example 12)

1H NMR (300 MHz, CDCl3) δ 7.57 (d, J = 6.6 Hz,2H), 7.54-7.45 (m, 2H), 7.39-7.36 (m, 7H), 7.15-7.14 (m, 4H), 6.94-6.89(m, 2H), 5.58 (d, J = 7.2 Hz, 1H), 4.90-4.76 (m, 1H), 4.06-3.92 (m, 1H), 2.36 (s, 3H);HPLC (DAICEL CHIRALPAKID-3O, Hexane:iPrOH = 80:20, 1.0 mL/min , 225 nm) tR = 33.0 min (minor syn-isomer), 62.1 min (major syn-isomer), 76.2 min (minor anti-isomer), 96.0 min (major anti-isomer).
1 H NMR (300 MHz, CDCl 3 ) δ 7.57 (d, J = 6.6 Hz, 2H), 7.54-7.45 (m, 2H), 7.39-7.36 (m, 7H), 7.15-7.14 (m, 4H), 6.94-6.89 (m, 2H), 5.58 (d, J = 7.2 Hz, 1H), 4.90-4.76 (m, 1H), 4.06-3.92 (m, 1H), 2.36 (s, 3H); HPLC (DAICEL CHIRALPAKID -3 O , Hexane: iPrOH = 80:20, 1.0 mL / min, 225 nm) tR = 33.0 min (minor syn-isomer), 62.1 min (major syn-isomer), 76.2 min (minor anti-isomer), 96.0 min (major anti-isomer).


(実施例13)

(Example 13)

1H NMR (300 MHz, CDCl3) δ 7.57-7.38 (m, 7H), 7.26-7.08 (m, 6H), 5.74 (d, J = 7.8 Hz, 1H), 4.86-4.73 (m, 1H), 4.00 (d, J = 3.0 Hz, 1H), 2.37 (s, 3H);
HPLC (DAICEL CHIRALPAK ID-3O, Hexane:iPrOH = 80:20, 1.0 mL/min , 225 nm) tR = 30.0 min (minor syn-isomer), 54.5 min (major syn-isomer), 72.5 min (minor anti-isomer), 88.9 min (major anti-isomer).

1 H NMR (300 MHz, CDCl 3 ) δ 7.57-7.38 (m, 7H), 7.26-7.08 (m, 6H), 5.74 (d, J = 7.8 Hz, 1H), 4.86-4.73 (m, 1H), 4.00 (d, J = 3.0 Hz, 1H), 2.37 (s, 3H);
HPLC (DAICEL CHIRALPAK ID-3 O , Hexane: iPrOH = 80:20, 1.0 mL / min, 225 nm) tR = 30.0 min (minor syn-isomer), 54.5 min (major syn-isomer), 72.5 min (minor anti -isomer), 88.9 min (major anti-isomer).


(実施例14)

(Example 14)

1H NMR (300 MHz, CDCl3) δ 7.56-7.26 (m, 9H), 7.15-7.01 (m, 4H), 5.64 (d, J = 8.1 Hz, 1H), 4.84-4.73 (m, 1H), 3.99 (d, J = 3.0 Hz, 1H), 2.38 (s, 3H);
HPLC (DAICEL CHIRALPAKID-3O, Hexane:iPrOH = 80:20, 1.0 mL/min , 225 nm) tR = 31.1 min (minor syn-isomer), 55.4 min (major syn-isomer), 77.3 min (minor anti-isomer), 88.1 min (major anti-isomer).
1 H NMR (300 MHz, CDCl 3 ) δ 7.56-7.26 (m, 9H), 7.15-7.01 (m, 4H), 5.64 (d, J = 8.1 Hz, 1H), 4.84-4.73 (m, 1H), 3.99 (d, J = 3.0 Hz, 1H), 2.38 (s, 3H);
HPLC (DAICEL CHIRALPAKID-3 O , Hexane: iPrOH = 80:20, 1.0 mL / min, 225 nm) tR = 31.1 min (minor syn-isomer), 55.4 min (major syn-isomer), 77.3 min (minor anti- isomer), 88.1 min (major anti-isomer).


(実施例15)

(Example 15)

1H NMR (300 MHz, CDCl3) δ 7.81-7.71 (m, 2H), 7.62-7.58 (m, 2H), 7.50-7.29 (m, 9H), 6.97 (d, J = 7.2 Hz, 2H), 5.71-5.50 (m, 2H), 4.19 -4.03 (m, 1H), 2.27 (s, 3H);HPLC (DAICEL CHIRALPAK IE-3O, Hexane:iPrOH = 80:20, 1.0 mL/min , 225 nm) tR = 39.1 min (minor syn-isomer), 53.1 min (major syn-isomer), 90.6 min (minor anti-isomer), 168.3 min (major anti-isomer).
1 H NMR (300 MHz, CDCl 3 ) δ 7.81-7.71 (m, 2H), 7.62-7.58 (m, 2H), 7.50-7.29 (m, 9H), 6.97 (d, J = 7.2 Hz, 2H), 5.71-5.50 (m, 2H), 4.19 -4.03 (m, 1H), 2.27 (s, 3H); HPLC (DAICEL CHIRALPAK IE-3 O , Hexane: iPrOH = 80:20, 1.0 mL / min, 225 nm) tR = 39.1 min (minor syn-isomer), 53.1 min (major syn-isomer), 90.6 min (minor anti-isomer), 168.3 min (major anti-isomer).


(実施例16)

(Example 16)

1H NMR (300 MHz, CDCl3) δ 7.77-7.70 (m, 3H), 7.55-7.39 (m, 10H), 6.85(d, J = 6.9 Hz, 2H), 5.57 (d, J = 5.1 Hz, 1H), 5.05-4.94 (m, 1H) , 4.20-4.06 (m, 1H), 2.18 (s, 3H);HPLC (DAICEL CHIRALPAK IE-3O, Hexane:iPrOH = 80:20, 1.0 mL/min , 225 nm) tR = 66.0 min (minor syn-isomer), 79.6 min (major syn-isomer), 99.3 min (minor anti-isomer), 115.3 min (major anti-isomer).
1 H NMR (300 MHz, CDCl 3 ) δ 7.77-7.70 (m, 3H), 7.55-7.39 (m, 10H), 6.85 (d, J = 6.9 Hz, 2H), 5.57 (d, J = 5.1 Hz, 1H), 5.05-4.94 (m, 1H), 4.20-4.06 (m, 1H), 2.18 (s, 3H); HPLC (DAICEL CHIRALPAK IE-3 O , Hexane: iPrOH = 80:20, 1.0 mL / min, 225 nm) tR = 66.0 min (minor syn-isomer), 79.6 min (major syn-isomer), 99.3 min (minor anti-isomer), 115.3 min (major anti-isomer).


(実施例17)

(Example 17)

1H NMR (300 MHz, CDCl3) δ 7.68-7.66 (d, J = 7.2 Hz, 2H), 7.60-7.47 (m, 2H), 7.45-7.32 (m, 3H), 7.42-7.21 (s, 2H), 6.22 (d, J = 10.5 Hz,2H), 5.39 (d, J = 9.6 Hz, 1H), 5.00-4.88 (m, 1H), 4.12 (d, J = 3.0Hz , 1H), 2.40 (s, 3H);
HPLC (DAICEL CHIRALPAK IDO, Hexane:iPrOH = 80:20, 1.0 mL/min , 225 nm ) tR = 70.2 min (minor syn-isomer), 113.2 min (major syn-isomer), 172.2 min (minor anti-isomer), 222.9 min (major anti-isomer).
1 H NMR (300 MHz, CDCl 3 ) δ 7.68-7.66 (d, J = 7.2 Hz, 2H), 7.60-7.47 (m, 2H), 7.45-7.32 (m, 3H), 7.42-7.21 (s, 2H ), 6.22 (d, J = 10.5 Hz, 2H), 5.39 (d, J = 9.6 Hz, 1H), 5.00-4.88 (m, 1H), 4.12 (d, J = 3.0Hz, 1H), 2.40 (s , 3H);
HPLC (DAICEL CHIRALPAK ID O , Hexane: iPrOH = 80:20, 1.0 mL / min, 225 nm) tR = 70.2 min (minor syn-isomer), 113.2 min (major syn-isomer), 172.2 min (minor anti-isomer ), 222.9 min (major anti-isomer).


(実施例18)

(Example 18)

1H NMR (300 MHz, CDCl3) δ 7.68-7.65 (m, 1H), 7.60-7.54 (m, 2H), 726-7.22 (m, 6H), 6.98-6.88 (m, 2H), 5.14 (d, J = 6.0 Hz, 1H, major), 65.36 (d, J = 4.8 Hz, 1H, minor), 5.24-4.88 (m, 1H, major), 5.07-4.77 (m, 1H, minor), 4.27 (d, J = 6.0 Hz, 1H, minor), 4.12 (d, J = 3.9 Hz, 1H, major), 2.38 (s, 3H);HPLC (DAICEL CHIRALPAK ID-3O, Hexane:iPrOH = 70:30, 1.0 mL/min , 225 nm ) tR = 29.7 min (minor syn-isomer), 46.9 min (major syn-isomer), 61.2 min (minor anti-isomer), 111.7 min (major anti-isomer).
1 H NMR (300 MHz, CDCl 3 ) δ 7.68-7.65 (m, 1H), 7.60-7.54 (m, 2H), 726-7.22 (m, 6H), 6.98-6.88 (m, 2H), 5.14 (d , J = 6.0 Hz, 1H, major), 65.36 (d, J = 4.8 Hz, 1H, minor), 5.24-4.88 (m, 1H, major), 5.07-4.77 (m, 1H, minor), 4.27 (d , J = 6.0 Hz, 1H, minor), 4.12 (d, J = 3.9 Hz, 1H, major), 2.38 (s, 3H); HPLC (DAICEL CHIRALPAK ID-3 O , Hexane: iPrOH = 70:30, 1.0 mL / min, 225 nm) tR = 29.7 min (minor syn-isomer), 46.9 min (major syn-isomer), 61.2 min (minor anti-isomer), 111.7 min (major anti-isomer).


(実施例19)

(Example 19)

1H NMR (300 MHz, CDCl3) δ 7.77-7.67 (m, 2H), 7.61-7.47 (m, 2H), 7.40-7.22 (m, 11H), 6.45-6.31 (m, 1H), 5.98-5.90 (m, 1H), 5.28 (d, J = 6.0 Hz, 1H, minor), 5.11 (d, J = 4.5 Hz, 1H, major), 4.59-4.43 (m, 1H, minor), 4.26-4.03 (m, 2H, major), 4.00-3.87 (m, 1H, minor), 2.36 (s ,3H, major), 2.33 (s, 3H, minor);
HPLC (DAICEL CHIRALPAK IA-3O, Hexane:iPrOH = 80:20, 1.0 mL/min, 225 nm) tR = 16.7 min (major syn-isomer), 18.5 min (minor syn-isomer), 21.0 min (minor anti-isomer), 33.6 min (major anti-isomer).

(実施例20)
1 H NMR (300 MHz, CDCl 3 ) δ 7.77-7.67 (m, 2H), 7.61-7.47 (m, 2H), 7.40-7.22 (m, 11H), 6.45-6.31 (m, 1H), 5.98-5.90 (m, 1H), 5.28 (d, J = 6.0 Hz, 1H, minor), 5.11 (d, J = 4.5 Hz, 1H, major), 4.59-4.43 (m, 1H, minor), 4.26-4.03 (m , 2H, major), 4.00-3.87 (m, 1H, minor), 2.36 (s, 3H, major), 2.33 (s, 3H, minor);
HPLC (DAICEL CHIRALPAK IA-3 O , Hexane: iPrOH = 80:20, 1.0 mL / min, 225 nm) tR = 16.7 min (major syn-isomer), 18.5 min (minor syn-isomer), 21.0 min (minor anti -isomer), 33.6 min (major anti-isomer).

(Example 20)

実施例1で得られた生成物を出発物質として下式により光学活性β−アミノニトリルが合成できる。
乾燥させた試験管に亜鉛(13.1 mg, 0.04 mmol)、硫酸銅(31.9 mg, 0.04 mmol)とα−チオ−β−アミノニトリル(16.3 mg, 0.02 mmol)、酢酸0.4 mLを加え、5時間加熱還流した。その後、ジエチルエーテルと飽和炭酸水素ナトリウム水溶液を加え、ジエチルエーテルで抽出し、無水硫酸ナトリウムで乾燥した。溶媒を減圧下、留去し、シリカゲルクロマトグラフィー(Hexane: AcOEt = 70:30)で精製し、目的生成物を8.5 mg(71%)で得た。
Using the product obtained in Example 1 as a starting material, an optically active β-amino nitrile can be synthesized according to the following formula.
Add zinc (13.1 mg, 0.04 mmol), copper sulfate (31.9 mg, 0.04 mmol), α-thio-β-aminonitrile (16.3 mg, 0.02 mmol), and acetic acid 0.4 mL to the dried test tube and heat for 5 hours. Refluxed. Then, diethyl ether and saturated aqueous sodium hydrogen carbonate solution were added, extracted with diethyl ether, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (Hexane: AcOEt = 70: 30) to obtain 8.5 mg (71%) of the desired product.

1H NMR (300 MHz, CDCl3) δ 7.68 (d, J = 7.5 Hz, 2H), 7.30-7.14 (m, 7H), 5.01 (d, J = 6.0 Hz, 1H), 4.57 (d, J = 5.4Hz, 1H), 3.02-2.86 (m, 2H), 2.42 (s, 3H);
(実施例21)
1 H NMR (300 MHz, CDCl 3 ) δ 7.68 (d, J = 7.5 Hz, 2H), 7.30-7.14 (m, 7H), 5.01 (d, J = 6.0 Hz, 1H), 4.57 (d, J = 5.4Hz, 1H), 3.02-2.86 (m, 2H), 2.42 (s, 3H);
(Example 21)

実施例1で得られた生成物を出発物質として下式により光学活性α−チオ−β−アミノアミドが合成できる。   By using the product obtained in Example 1 as a starting material, optically active α-thio-β-aminoamide can be synthesized according to the following formula.

乾燥させた試験管にα−チオ−β−アミノニトリル(16.3 mg, 0.04 mmol)、アセトアルドキシム(7.2 ml, 0.12 mmol)と塩化インジウム4水和物(0.59 mg, 0.002 mmol)、トルエン0.2 mLを加え、18時間40℃にて加熱した。その後、溶媒を減圧下、留去し、シリカゲルクロマトグラフィー(Hexane: AcOEt = 50:50)で精製し、目的生成物を17.0 mg(99%)で得た。1H NMR (300 MHz, CDCl3) δ 7.54 (d, J = 7.5 Hz, 2H), 7.36-7.28 (m, 6H), 7.13-7.03 (m, 7H), 6.66 (d, J = 8.7 Hz,1H), 5.88 (br, 2H), 5.10-4.92 (m, 1H), 3.81 (d, J = 4.2 Hz, 1H), 2.31 (s, 3H); In a dried test tube, α-thio-β-amino nitrile (16.3 mg, 0.04 mmol), acetaldoxime (7.2 ml, 0.12 mmol) and indium chloride tetrahydrate (0.59 mg, 0.002 mmol), toluene 0.2 mL And heated at 40 ° C. for 18 hours. Then, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (Hexane: AcOEt = 50: 50) to obtain 17.0 mg (99%) of the desired product. 1 H NMR (300 MHz, CDCl 3 ) δ 7.54 (d, J = 7.5 Hz, 2H), 7.36-7.28 (m, 6H), 7.13-7.03 (m, 7H), 6.66 (d, J = 8.7 Hz, 1H), 5.88 (br, 2H), 5.10-4.92 (m, 1H), 3.81 (d, J = 4.2 Hz, 1H), 2.31 (s, 3H);

Claims (1)

下記化学式(化1)で示される種々のイミン類に対し光学活性パラジウム錯体存在下でα−チオアセトニトリルを反応させることによりα−チオ−β−アミノニトリル類を製造する方法。

前記イミン類は、次式(化2)で示される。

(R1は、アルキル基、アリール基を示す。R2はジアリールホスフィノイル基、ジアルキルホスフィノイル基、アレーンスルホニル基、アルキルスルホニル基、アレーンカルボニル基、アルキルカルボニル基、アルコキシカルボニル基、アリール基、アルキル基を示す。)
化学式(化1)において、R3は、環状アルキル基、鎖状アルキル基、フルオロ基、クロロ基、ブロモ基、またはアリール基を示す。R4は、環状アルキル基、鎖状アルキル基、アリール基を示す。用いる銀塩は、酢酸塩、安息香酸塩、アセチルアセトナート塩 で、
用いるパラジウム錯体はピンサー型ビスイミダゾリン−パラジウム錯体である。
また、アルキルアルコール、フェノール、シリルアルコールの添加を行ってもよい。
A method for producing α-thio-β-amino nitriles by reacting various imines represented by the following chemical formula (Chemical Formula 1) with α-thioacetonitrile in the presence of an optically active palladium complex.

The imines are represented by the following formula (Formula 2).

(R 1 represents an alkyl group or an aryl group. R 2 represents a diarylphosphinoyl group, a dialkylphosphinoyl group, an arenesulfonyl group, an alkylsulfonyl group, an arenecarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group, or an aryl group. Represents an alkyl group.)
In the chemical formula (Chemical Formula 1), R 3 represents a cyclic alkyl group, a chain alkyl group, a fluoro group, a chloro group, a bromo group, or an aryl group. R 4 represents a cyclic alkyl group, a chain alkyl group, or an aryl group. The silver salt used is acetate, benzoate, acetylacetonate salt,
The palladium complex used is a pincer type bisimidazoline-palladium complex.
Alkyl alcohol, phenol, and silyl alcohol may be added.
JP2015040258A 2015-03-02 2015-03-02 METHOD FOR PRODUCING OPTICALLY ACTIVE α-THIO-β-AMINONITRILE Pending JP2016160215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015040258A JP2016160215A (en) 2015-03-02 2015-03-02 METHOD FOR PRODUCING OPTICALLY ACTIVE α-THIO-β-AMINONITRILE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015040258A JP2016160215A (en) 2015-03-02 2015-03-02 METHOD FOR PRODUCING OPTICALLY ACTIVE α-THIO-β-AMINONITRILE

Publications (1)

Publication Number Publication Date
JP2016160215A true JP2016160215A (en) 2016-09-05

Family

ID=56844328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015040258A Pending JP2016160215A (en) 2015-03-02 2015-03-02 METHOD FOR PRODUCING OPTICALLY ACTIVE α-THIO-β-AMINONITRILE

Country Status (1)

Country Link
JP (1) JP2016160215A (en)

Similar Documents

Publication Publication Date Title
US8420847B2 (en) Bis-phosphate compound and asymmetric reaction using the same
KR20130142477A (en) Method for preparation of nitrocyclopropane derivatives
CN110099893B (en) Preparation method of droxidopa and intermediate thereof
KR102479201B1 (en) Process for preparing (1R,3R)- and (1S,3S)-2,2-dihalo-3-(substituted phenyl)cyclopropanecarboxylic acids
Marini et al. A new stereoselective synthesis of cyclopropanes containing quaternary stereocentres via organocatalytic Michael addition to vinyl selenones
Nakamoto et al. α-Isocupreine, an enantiocomplementary catalyst of β-isocupreidine.
JPWO2005070875A1 (en) Method for producing amines
Kang et al. Enantioselective alkynylation of aromatic ketones catalyzed by new chiral oxazolidine ligands
JP4709009B2 (en) Guanidine compounds and asymmetric reactions using the same
Ma et al. Rigid backbone 1, 8-anthracene-linked bis-oxazolines (AnBOXes): Design, synthesis, application and characteristics in catalytic asymmetric aziridination
Li et al. An efficient enantioselective synthesis of florfenicol via a vanadium-catalyzed asymmetric epoxidation
Miura et al. Direct asymmetric aldol reactions in brine with recyclable fluorous β-aminosulfonamide organocatalysts
Wang et al. Synthesis of enantiopure 1, 2-azido and 1, 2-amino alcohols via regio-and stereoselective ring-opening of enantiopure epoxides by sodium azide in hot water
CN100560555C (en) A kind of synthetic 1, the method for 3-two replacement-4-alkene-1-cyclo-pentanone compounds
Unsworth et al. Substrate scope and stereocontrol in the Rh (II)-catalysed oxyamination of allylic carbamates
Gao et al. Enantioselective synthesis of monofluorinated allylic compounds: Pd-catalyzed asymmetric allylations of dimethyl 2-fluoromalonate using new N-sulfinyl-based ligands
Sha et al. Detrifluoroacetylative cascade reactions of bicyclic fluoro-enolates with ortho-phthalaldehyde: Aspects of reactivity, diastereo-and enantioselectivity
Kajiwara et al. Asymmetric catalytic hydrogenation for large scale preparation of optically active 2-(N-benzoylamino) cyclohexanecarboxylic acid derivatives
Schoonen et al. Chiral amides via copper-catalysed enantioselective conjugate addition
JP2013173677A (en) Method for producing (1r,2s)-1-amino-2-vinyl cyclopropane carboxylic acid ester
KR20120127276A (en) Method for preparing chiral -amino nitrile using catalyst for strecker reaction
US20140012005A1 (en) Process for preparing chiral amino acids
JP2016160215A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE α-THIO-β-AMINONITRILE
Zhou et al. Asymmetric addition of phenylacetylene to aromatic ketones catalyzed by zinc or titanium complexes with chiral hydroxysulfonamide
KR101960859B1 (en) Method for preparation of chiral 2-fluoro-1,3-dikeone derivatives