JP2016160153A - Separation and recovery method of hydrogen fluoride and separation and recovery apparatus of hydrogen fluoride - Google Patents

Separation and recovery method of hydrogen fluoride and separation and recovery apparatus of hydrogen fluoride Download PDF

Info

Publication number
JP2016160153A
JP2016160153A JP2015042070A JP2015042070A JP2016160153A JP 2016160153 A JP2016160153 A JP 2016160153A JP 2015042070 A JP2015042070 A JP 2015042070A JP 2015042070 A JP2015042070 A JP 2015042070A JP 2016160153 A JP2016160153 A JP 2016160153A
Authority
JP
Japan
Prior art keywords
hydrogen fluoride
gas
recovery
reaction vessel
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015042070A
Other languages
Japanese (ja)
Inventor
孝治 笹山
Koji Sasayama
孝治 笹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015042070A priority Critical patent/JP2016160153A/en
Priority to TW104124198A priority patent/TW201632251A/en
Publication of JP2016160153A publication Critical patent/JP2016160153A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separation and recovery method of hydrogen fluoride and a separation and recovery apparatus of hydrogen fluoride, with which hydrogen fluoride is efficiently recovered from calcium fluoride discharged from various steps.SOLUTION: A separation and recovery method includes: a gas separation step to separate fluorine ingredients as a hydrogen fluoride-based gas by filling a closed type vertical reactor R with a calcium fluoride-based raw material (recovered calcium fluoride) and vertically stirring the raw material with a stirring blade 2a of stirring means 2 while adding sulfuric acid etc. thereto; a step to make an ejector E generate negative pressure by circulating an aqueous absorbent stored in a recovery storage tank T through the ejector E by using a pump P; a gas recovery step to suck out the hydrogen fluoride-based gas generated in the vertical reactor R by using the negative pressure and to recover and feed the gas into the recovery storage tank T; and a hydrogen fluoride concentration step to repeat circulation of the aqueous absorbent and recovery of the generated hydrogen fluoride-based gas in batches.SELECTED DRAWING: Figure 1

Description

本発明は、フッ化水素,ケイフッ化水素等のフッ素を含む排液を沈殿処理して取り出されたフッ化カルシウム系の脱水固形物から、フッ化水素,ケイフッ化水素等を効率的に分離・回収することのできるフッ化水素の分離回収方法と、それに用いるフッ化水素の分離回収装置に関するものである。   The present invention efficiently separates hydrogen fluoride, hydrogen silicofluoride, and the like from calcium fluoride-based dehydrated solids obtained by precipitation treatment of fluorine-containing waste liquids such as hydrogen fluoride and hydrogen silicofluoride. The present invention relates to a hydrogen fluoride separation and recovery method that can be recovered and a hydrogen fluoride separation and recovery device used therefor.

液晶(LCD)パネル用ガラスやシリコンウエハ等をエッチングする工程、代替フロン等のフッ素含有有機物を処理する工程、金属の表面処理や各種フッ化誘導体を製造する工場等においては、フッ化水素,ケイフッ化水素等を高濃度に含有する排液(処理液)が排出される。この排液としてのフッ化水素を含む水溶液(フッ化水素酸またはフッ酸)は、毒物及び劇物取締法の医薬用外毒物に指定されているもので、工程や工場から排出する際には、上記排液に水酸化カルシウム,酸化カルシウム,炭酸カルシウム,塩化カルシウム等のカルシウム化合物を混ぜて反応させ、フッ化水素等を難溶性(非水溶性)のフッ化カルシウム等として沈殿させて取り除いたうえで、残余のフッ化水素等をほとんど含まない排液を、工程外に排出することが行われている。   In the process of etching glass or silicon wafers for liquid crystal (LCD) panels, the process of processing fluorine-containing organic substances such as alternative chlorofluorocarbons, the factory for manufacturing metal surface treatment and various fluorinated derivatives, etc. Waste liquid (treatment liquid) containing hydrogen fluoride or the like at a high concentration is discharged. This aqueous solution containing hydrofluoric acid (hydrofluoric acid or hydrofluoric acid) as a waste liquid is designated as a poisonous and poisonous medicine for poisonous substances under the Act on the Control of Deleterious Substances. , Calcium hydroxide, calcium oxide, calcium carbonate, calcium chloride and other calcium compounds were mixed and reacted with the above effluent, and hydrogen fluoride was precipitated as hardly soluble (insoluble) calcium fluoride and removed. On the other hand, drainage containing almost no residual hydrogen fluoride is discharged out of the process.

また、上記排液から取り除かれたフッ化カルシウム系の軟らかい含水固形物は、圧縮または遠心分離等を用いた脱水操作によりケーキ状または板状等の固形物とされ、さらに乾燥工程や粉砕工程等を経て、通常、含水率が20%以下(好ましくは10%以下)のポーラスな粒体または粉体(スポンジ状)とされて、産業廃棄物として工程外に搬出される(以下、これらを「回収フッ化カルシウム」という)。そして、この搬出された回収フッ化カルシウムは、通常、製鉄などの一部原料(融剤)やセメントの原料、光学レンズの原料等として利用される他、多くはそのまま埋め立てる等により処分されているのが現状である。   In addition, the calcium fluoride-based soft water-containing solid material removed from the drainage liquid is made into a cake-like or plate-like solid matter by a dehydration operation using compression or centrifugation, and further, a drying step, a pulverizing step, etc. In general, porous particles or powder (sponge-like) having a water content of 20% or less (preferably 10% or less) are taken out of the process as industrial waste (hereinafter referred to as “ "Recovered calcium fluoride"). And this recovered calcium fluoride is usually used as a part of raw materials (flux) such as iron making, a raw material of cement, a raw material of optical lenses, etc. is the current situation.

一方、上記回収フッ化カルシウムからフッ化水素を分離して取り出し、フッ化水素酸(フッ化水素の水溶液)として回収して、再利用しようとする試みも行われている。例えば、工業的に確立されている、蛍石(天然のフッ化カルシウム鉱物)を用いたフッ化水素の従来の製造工程においては、上記蛍石に、回収フッ化カルシウムの粉末を原料として少量(数%程度)ずつ添加(混合)することが行われている(特許文献1等を参照)。   On the other hand, attempts have been made to separate and take out hydrogen fluoride from the recovered calcium fluoride, recover it as hydrofluoric acid (an aqueous solution of hydrogen fluoride), and reuse it. For example, in an industrially established conventional process for producing hydrogen fluoride using fluorite (natural calcium fluoride mineral), a small amount of recovered calcium fluoride powder is used as a raw material for the fluorite ( Addition (mixing) is performed (several percent) (see Patent Document 1).

また、特許文献2には、横型の反応炉(筒状の外熱式傾斜炉を有する小形のロータリーキルン)に、他の工程(工場)等から搬入された回収フッ化カルシウムを投入し、そこに濃硫酸または発煙硫酸を混合して、250℃以下(好ましくは80〜150℃)に加熱した状態で、筒状炉体を回転(撹拌)させながらゆっくり炉内を搬送する(滞留時間:約1時間)ことにより、硫酸の分解の起こらない温度域で、化学量論量の40%以上のフッ化水素を連続で発生させることができる、回収フッ化カルシウムを用いたフッ化水素の製造方法が開示されている。   Further, in Patent Document 2, the recovered calcium fluoride carried from another process (factory) or the like is put into a horizontal reaction furnace (a small rotary kiln having a cylindrical external heating type inclined furnace), and there Concentrated sulfuric acid or fuming sulfuric acid is mixed and heated in a state where it is heated to 250 ° C. or lower (preferably 80 to 150 ° C.) while slowly rotating (stirring) the cylindrical furnace body (residence time: about 1 A method for producing hydrogen fluoride using recovered calcium fluoride that can continuously generate 40% or more of the stoichiometric amount of hydrogen fluoride in a temperature range in which decomposition of sulfuric acid does not occur. It is disclosed.

特許第4316393号公報Japanese Patent No. 4316393 特許第4652948号公報Japanese Patent No. 4652948

しかしながら、回収フッ化カルシウムを、前記従来の蛍石を用いたフッ化水素の製造工程に混合する方法は、上記回収フッ化カルシウムが嵩比重の軽いポーラスな粒子であるため主原料である蛍石との混ざりが悪く、炉内の流動性を悪化させるとともに、長時間の強熱(約500〜600℃)による硫酸等の揮発や不純物の増加といった問題が発生する。   However, the method of mixing the recovered calcium fluoride with the conventional hydrogen fluoride production process using fluorite is the main raw material fluorite because the recovered calcium fluoride is porous particles having a low bulk specific gravity. In addition to worsening the fluidity in the furnace, problems such as volatilization of sulfuric acid and increase in impurities due to long-term ignition (about 500 to 600 ° C.) occur.

また、前記特許文献2に記載のフッ化水素の製造方法も、上記回収フッ化カルシウムが軽い粒子状で、かつ、この製造方法が連続式であるため、回収フッ化カルシウムと濃硫酸等との混合比率を一定に保つ(互いの接触機会を均等に保つ)のが難しく、フッ化水素の分離効率(回収率)がなかなか上がらない、という問題があった。そのため、回収フッ化カルシウムからフッ化水素を回収・再生する方法の改善が望まれている。   In addition, in the method for producing hydrogen fluoride described in Patent Document 2, since the recovered calcium fluoride is in the form of light particles and the manufacturing method is continuous, the recovered calcium fluoride and concentrated sulfuric acid or the like There was a problem that it was difficult to keep the mixing ratio constant (keep mutual contact opportunities uniform), and the separation efficiency (recovery rate) of hydrogen fluoride was not easily increased. Therefore, improvement of a method for recovering and regenerating hydrogen fluoride from recovered calcium fluoride is desired.

本発明は、このような事情に鑑みなされたもので、種々の工程から排出されるフッ化カルシウムから、フッ化水素を効率よく回収することのできるフッ化水素の分離回収方法およびフッ化水素の分離回収装置の提供をその目的とする。   The present invention has been made in view of such circumstances, and a method for separating and recovering hydrogen fluoride, which can efficiently recover hydrogen fluoride from calcium fluoride discharged from various processes, and hydrogen fluoride The purpose is to provide a separation and recovery device.

上記の目的を達成するため、本発明は、筒状の反応容器と、上記反応容器内の粉体を上下に撹拌する撹拌手段と、ガスを吸収するための吸収液を貯留する回収貯槽と、エゼクタとこれに負圧発生用の流体を供給するポンプとからなるガス吸引手段と、を備え、上記反応容器が、発生するガスを封じ込めることのできる密閉式の縦型反応容器であり、この縦型反応容器内にフッ化カルシウム系の原料を充填し、硫酸を添加しながらこれらを撹拌手段の撹拌羽根で上下に撹拌して、上記フッ化カルシウム系の原料からフッ素成分をフッ化水素系ガスとして分離するガス分離工程と、上記回収貯槽にフッ化水素系ガスを吸収する水系の吸収液を貯留するとともに、この水系吸収液を、ポンプを用いて上記エゼクタを経由して回収貯槽に戻るように循環させ、このエゼクタにガス吸引用の負圧を発生させる工程と、上記エゼクタの負圧を利用して、上記縦型反応容器内で発生したフッ化水素系ガスを吸い出し、このガスを上記エゼクタ内で水系吸収液に混合して、この混合液を上記回収貯槽に回収するガス回収工程と、上記ポンプを用いたエゼクタ経由の水系吸収液の循環と縦型反応容器で発生するフッ化水素系ガスの回収とを、上記回収貯槽内の水系吸収液に吸収されたフッ化水素系成分の濃度が所定の濃度に達するまで継続して行うフッ化水素濃縮工程と、を備えるフッ化水素の分離回収方法を第1の要旨とする。   In order to achieve the above object, the present invention comprises a cylindrical reaction vessel, a stirring means for stirring the powder in the reaction vessel up and down, a recovery storage tank for storing an absorption liquid for absorbing gas, Gas suction means comprising an ejector and a pump for supplying a negative pressure generating fluid to the ejector, and the reaction vessel is a sealed vertical reaction vessel capable of containing the generated gas. A calcium fluoride-based raw material is filled in a mold-type reaction vessel, and while adding sulfuric acid, these are stirred up and down with a stirring blade of a stirring means, and a fluorine component is removed from the calcium fluoride-based raw material by a hydrogen fluoride-based gas. Gas separation step of separating as follows, and a water-based absorption liquid that absorbs hydrogen fluoride gas is stored in the recovery storage tank, and this water-based absorption liquid is returned to the recovery storage tank via the ejector using a pump. Circulation A step of generating a negative pressure for gas suction in the ejector, and using the negative pressure of the ejector, the hydrogen fluoride gas generated in the vertical reaction vessel is sucked out, and the gas is discharged into the ejector. In the gas recovery step, the mixture is recovered in the recovery storage tank, the aqueous absorption liquid is circulated via the ejector using the pump, and the hydrogen fluoride gas generated in the vertical reaction vessel. And a hydrogen fluoride concentration step of continuously collecting the hydrogen fluoride until the concentration of the hydrogen fluoride-based component absorbed in the aqueous absorbent in the recovery storage tank reaches a predetermined concentration. The method is the first gist.

また、本発明は、上部にフッ化水素系ガスの吸出口を有するとともに底部に反応済みの粉体の排出口を有する密閉式の縦型反応容器と、上記縦型反応容器内のフッ化カルシウム系の原料を上下に撹拌する撹拌手段と、上記フッ化水素系ガスを吸収するための水系の吸収液を貯留する回収貯槽と、上記縦型反応容器と回収貯槽との間に配設されたエゼクタと、上記回収貯槽内の水系吸収液を上記エゼクタを経由させて貯槽内に戻す吸収液循環流路と、上記回収貯槽内の水系吸収液を負圧発生用の流体としてエゼクタに圧送するポンプと、上記縦型反応容器の吸出口と上記エゼクタとの間に設けられ、縦型反応容器内で発生するフッ化水素系ガスを吸い出すガス回収流路と、を備えるフッ化水素の分離回収装置を第2の要旨とする。   The present invention also provides a sealed vertical reaction vessel having a suction port for hydrogen fluoride gas at the top and a discharge port for reacted powder at the bottom, and calcium fluoride in the vertical reaction vessel. A stirring means for stirring the raw material of the system up and down, a recovery storage tank for storing an aqueous absorption liquid for absorbing the hydrogen fluoride gas, and a vertical reaction vessel and a recovery storage tank An ejector, an absorption liquid circulation channel for returning the aqueous absorbent in the recovery storage tank to the storage tank via the ejector, and a pump for pumping the aqueous absorbent in the recovery storage tank to the ejector as a fluid for generating negative pressure And a gas recovery passage that is provided between the suction port of the vertical reaction vessel and the ejector and sucks out the hydrogen fluoride-based gas generated in the vertical reaction vessel. Is the second gist.

すなわち、本発明者は、前記課題を解決するために鋭意研究を重ねた。その結果、粉体の撹拌混合性に優れる縦型(縦形)の反応容器を用いて、連続式ではなくバッチ式でフッ化カルシウムからフッ素系成分(フッ化水素)の分離操作を行うことにより、従来の連続式の分離操作に比べ、短い反応時間でも高い収率でフッ素を分離できることを見出した。また、フッ素系成分(ガス)を回収する工程にも工夫を凝らし、腐食性の高いフッ化水素やフッ化水素酸(水溶液)が接触する装置部分に、可動部分がなく液封(軸封)の必要のないエゼクタやポンプ等を用いるとともに、流路全体を樹脂ライニングが施されたもの(または樹脂製のもの)で構成することにより、フッ化水素の系外への漏出の防止と回収工程自体の長寿命化を図った。そして、上記のようにフッ化水素を高効率(省エネルギー)で分離できることと相俟って、フッ化水素の分離回収工程(装置)トータルでの、初期設備投資やランニングコストを実用的なレベルにまで低減できることを確信し、本発明を提案するに至った。   That is, the present inventor has intensively studied to solve the above problems. As a result, by using a vertical (vertical) reaction vessel with excellent powder agitation and mixing properties, separation operation of fluorine-based components (hydrogen fluoride) from calcium fluoride in batch mode instead of continuous type, It has been found that fluorine can be separated with a high yield even in a short reaction time as compared with the conventional continuous separation operation. In addition, the process of recovering fluorine-based components (gas) has also been devised, and there is no moving part in the device part that comes in contact with highly corrosive hydrogen fluoride or hydrofluoric acid (aqueous solution), so that the liquid seal (shaft seal) By using an ejector, pump, etc. that do not require air flow, and the entire flow path is made of resin lining (or made of resin), prevention of leakage of hydrogen fluoride outside the system and recovery process The service life was extended. Combined with the fact that hydrogen fluoride can be separated with high efficiency (energy saving) as described above, the initial equipment investment and running cost of hydrogen fluoride separation and recovery process (equipment) as a whole are at a practical level. I was convinced that it can be reduced up to this point and came to propose the present invention.

なお、本発明で用いるフッ化カルシウム系の原料は、フッ素系成分を使用する種々の工程から排出される排液を処理して得られる「回収フッ化カルシウム」と呼ばれるもので、その形態は含水状固形物やそれを乾燥させたスポンジ状もの、あるいは、これを粉砕した粉末状のもの(粉体または粒体が二次凝集した状態を含む)がある。また、上記フッ化水素の分離回収の「回収」には、上記「回収フッ化カルシウム」中のフッ素系成分を回収して「再生」または「再利用」に供する意味が含まれる。   The calcium fluoride-based raw material used in the present invention is called “recovered calcium fluoride” obtained by treating drainage discharged from various processes using a fluorine-based component. There are a solid solid, a sponge obtained by drying the solid, or a powder obtained by pulverizing the solid (including a state in which the powder or particles are secondarily aggregated). In addition, the term “recovery” in the separation and recovery of hydrogen fluoride includes the meaning of recovering the fluorine-based component in the “recovered calcium fluoride” and subjecting it to “regeneration” or “reuse”.

本発明のフッ化水素の分離回収方法は、発生するガスを封じ込めることのできる密閉式の縦型反応容器内に、フッ化カルシウム系の原料を充填し、これに硫酸を添加しながら撹拌手段の撹拌羽根で上下に撹拌して、上記フッ化カルシウム系の原料からフッ素成分をフッ化水素系ガスとして分離するガス分離工程を備える。これにより、上記縦型反応容器内に充填されたフッ化カルシウム系の原料は、その混合(反応)方式がバッチ式で上下に撹拌するものであるが故に、素早くかつ充分に、添加された硫酸(濃硫酸,発煙硫酸等)と混ざり合って接触し、短時間でフッ素系成分の分離(フッ化水素の脱離)を完了することができる。しかも、上記の反応(フッ素系成分の分離)は、従来のロータリーキルン等を用いた製造方法のような高温(硫酸の分解温度を超える250℃以上)をかける必要がなく、150℃以下の低温域で完了するため、反応に費やされるエネルギー(工程のランニングコスト)の観点からも有利である。   According to the method for separating and recovering hydrogen fluoride of the present invention, a calcium chloride-based raw material is charged into a sealed vertical reaction vessel capable of containing the generated gas, and sulfuric acid is added to the stirring means. A gas separation step of separating the fluorine component as a hydrogen fluoride gas from the calcium fluoride material by stirring up and down with a stirring blade is provided. As a result, the calcium fluoride-based raw material filled in the vertical reaction vessel is quickly and sufficiently added to the sulfuric acid added because the mixing (reaction) method is a batch type and stirred up and down. (Concentrated sulfuric acid, fuming sulfuric acid, etc.) are mixed and contacted, and separation of fluorine-based components (desorption of hydrogen fluoride) can be completed in a short time. Moreover, the above reaction (separation of the fluorine-based component) does not require high temperatures (250 ° C. or more exceeding the decomposition temperature of sulfuric acid) as in the conventional production method using a rotary kiln, and the low temperature range of 150 ° C. or less. Therefore, it is advantageous from the viewpoint of energy consumed in the reaction (running cost of the process).

また、本発明のフッ化水素の分離回収方法は、回収貯槽に貯留された水系の吸収液を、ポンプを用いてエゼクタを経由して回収貯槽に戻るように循環させ、このエゼクタにガス吸引用の負圧を発生させる工程と、エゼクタの負圧を利用して、上記縦型反応容器内で発生したフッ化水素系ガスを吸い出し、このガスを上記エゼクタ内で水系吸収液に混合して、この混合液を上記回収貯槽に回収するガス回収工程と、上記ポンプを用いたエゼクタ経由の水系吸収液の循環と縦型反応容器で発生するフッ化水素系ガスの回収とを、バッチ単位で、上記回収貯槽内の水系吸収液に吸収されたフッ化水素系成分の濃度が所定の濃度に達するまで継続して行うフッ化水素濃縮工程と、を備える。   Further, the method for separating and recovering hydrogen fluoride of the present invention circulates the water-based absorbent stored in the recovery storage tank using a pump so as to return to the recovery storage tank via the ejector, and this ejector is used for gas suction. Using the negative pressure of the ejector and the negative pressure of the ejector, the hydrogen fluoride-based gas generated in the vertical reaction vessel is sucked out, and this gas is mixed with the aqueous absorbent in the ejector. A gas recovery step for recovering this mixed liquid in the recovery storage tank, circulation of the water-based absorbent via the ejector using the pump, and recovery of the hydrogen fluoride-based gas generated in the vertical reaction vessel, in batch units, A hydrogen fluoride concentration step that is continuously performed until the concentration of the hydrogen fluoride-based component absorbed in the aqueous absorbent in the recovery storage tank reaches a predetermined concentration.

これらの工程の協業により、上記ガス分離工程の縦型反応容器で発生したフッ化水素系ガスを、素早く水系吸収液に吸収させて濃縮することができる。しかも、上記負圧の発生に用いているエゼクタは、負圧の発生機構に可動部分や軸封部分がないため、腐食性の高いフッ化水素酸(水溶液)を通しても、有害な液体が漏れるおそれが低い。さらに、上記縦型反応容器から吸引されたフッ化水素系ガスが、エゼクタ内で噴射される水系吸収液と即時に混ざり合って吸収されるという利点もある。   By cooperation of these processes, the hydrogen fluoride gas generated in the vertical reaction vessel in the gas separation process can be quickly absorbed into the aqueous absorbent and concentrated. Moreover, since the ejector used for generating the negative pressure has no movable part or shaft seal part in the negative pressure generation mechanism, harmful liquid may leak even through highly corrosive hydrofluoric acid (aqueous solution). Is low. Furthermore, there is an advantage that the hydrogen fluoride-based gas sucked from the vertical reaction vessel is immediately mixed with the water-based absorbent injected in the ejector and absorbed.

そして、本発明のフッ化水素の分離回収方法は、前記フッ化水素系ガスの分離工程から得られる作用効果と上記フッ化水素系ガスの回収(濃縮)工程から得られる作用効果の相乗効果により、従来の連続式のフッ化水素の製造装置に比べ、大幅に短い反応時間と高い効率および低コストで、フッ化カルシウム系原料中のフッ素系成分(フッ化水素)を分離・回収することができる。   The hydrogen fluoride separation and recovery method of the present invention is based on a synergistic effect of the action and effect obtained from the hydrogen fluoride gas separation step and the action and effect obtained from the hydrogen fluoride gas recovery (concentration) step. Compared with the conventional continuous hydrogen fluoride production equipment, the fluorine component (hydrogen fluoride) in the calcium fluoride raw material can be separated and recovered with significantly shorter reaction time, higher efficiency and lower cost. it can.

なお、本発明のフッ化水素の分離回収方法は、上記縦型反応容器の内面が、上部から下部に向かって漸次縮径する逆円錐形状になっているとともに、上記撹拌手段の撹拌羽根が、上記逆円錐形状の内周面に沿って歳差運動するようになっているものを、好適に用いることができる。また、少なくとも上記フッ化水素と接触する、縦型反応容器の内面,回収貯槽の内面,ガス吸引手段における水系吸収液との接触面、および、フッ化水素系ガスが通過する配管の内面が、耐腐食性を有する樹脂ライニングまたは樹脂皮膜で覆われていることが望ましい。   In the method for separating and recovering hydrogen fluoride according to the present invention, the inner surface of the vertical reaction vessel has an inverted conical shape in which the diameter gradually decreases from the upper part toward the lower part, and the stirring blade of the stirring means includes What precesses along the inner surface of the inverted conical shape can be suitably used. Further, at least the inner surface of the vertical reaction vessel that contacts with the hydrogen fluoride, the inner surface of the recovery storage tank, the contact surface with the water-based absorbent in the gas suction means, and the inner surface of the pipe through which the hydrogen fluoride-based gas passes, It is desirable to be covered with a resin lining or resin film having corrosion resistance.

また、本発明のフッ化水素の分離回収方法のなかでも、特に、上記回収貯槽とガス吸引手段とからなるガス回収ユニットを2組以上備え、上記縦型反応容器で発生するフッ化水素系ガスの種類と濃度の変化に対応して、この縦型反応容器に接続するガス回収ユニットを切り替えて回収するようになっている場合は、種々の工程から排出されるフッ化カルシウム系の原料が、フッ素の含有率が異なるものの混合系、もしくは、2種以上のフッ化カルシウムの混合系のもの等であっても、これらを、種類別あるいは濃度(純度)別に分別して回収(再生)することができる。   Further, among the hydrogen fluoride separation and recovery methods of the present invention, in particular, a hydrogen fluoride-based gas generated in the vertical reaction vessel provided with two or more gas recovery units comprising the recovery storage tank and the gas suction means. When the gas recovery unit connected to this vertical reaction vessel is switched and recovered in response to the change in type and concentration, the calcium fluoride-based raw material discharged from various processes is Even if it is a mixed system with different fluorine content, or a mixed system of two or more calcium fluorides, these can be recovered (regenerated) by sorting by type or concentration (purity). it can.

つぎに、上記分離回収方法に用いる、本発明のフッ化水素の分離回収装置は、上部にフッ化水素系ガスの吸出口を有するとともに底部に反応済みの粉体の排出口を有する密閉式の縦型反応容器と、上記縦型反応容器内のフッ化カルシウム系の原料を上下に撹拌する撹拌手段とを備え、上記縦型反応容器内で、フッ化カルシウム系の原料と硫酸とを混合して、フッ化水素系ガスを発生させるようになっている。この構成により、本発明の分離回収装置は、先にも述べたように、縦型反応容器内に充填されたフッ化カルシウム系の原料が、素早くかつ充分に、添加された硫酸(濃硫酸,発煙硫酸等)と混ざり合って接触し、短時間でフッ素系成分の分離(フッ化水素の脱離)を完了することができる。しかも、上記の反応(フッ素系成分の分離)は、従来のロータリーキルン等を用いた製造方法のような高温(硫酸の分解温度を超える250℃以上)をかける必要がなく、150℃以下の低温域で完了するため、省エネルギーである。   Next, the hydrogen fluoride separation and recovery apparatus of the present invention used in the separation and recovery method is a sealed type having a suction port for hydrogen fluoride gas at the top and a discharge port for the reacted powder at the bottom. A vertical reaction vessel and a stirring means for stirring the calcium fluoride-based material in the vertical reaction vessel up and down, and the calcium fluoride-based material and sulfuric acid are mixed in the vertical reaction vessel. Thus, hydrogen fluoride gas is generated. With this configuration, as described above, the separation and recovery apparatus of the present invention can quickly and sufficiently add the sulfuric acid (concentrated sulfuric acid, concentrated calcium fluoride-based raw material filled in the vertical reaction vessel). It can be mixed and contacted with fuming sulfuric acid and the like, and the separation of the fluorine-based component (desorption of hydrogen fluoride) can be completed in a short time. Moreover, the above reaction (separation of the fluorine-based component) does not require high temperatures (250 ° C. or more exceeding the decomposition temperature of sulfuric acid) as in the conventional production method using a rotary kiln, and the low temperature range of 150 ° C. or less. It is energy saving because it completes with.

また、上記分離回収装置は、上記フッ化水素系ガスを吸収するための水系の吸収液を貯留する回収貯槽と、上記縦型反応容器と回収貯槽との間に配設されたエゼクタと、上記回収貯槽内の水系吸収液を上記エゼクタを経由させて貯槽内に戻す吸収液循環流路と、上記回収貯槽内の水系吸収液を負圧発生用の流体としてエゼクタに圧送するポンプと、上記縦型反応容器の吸出口と上記エゼクタとの間に設けられ、縦型反応容器内で発生するフッ化水素系ガスを吸い出すガス回収流路と、を備えており、上記縦型反応容器で発生したフッ化水素系ガスを、エゼクタで発生する負圧を利用して吸引し、上記回収貯槽とエゼクタの間で循環する水系吸収液(エゼクタ内においては、負圧発生用の流体)に吸収させて回収・固定化(濃縮)するようになっている。   The separation and recovery device includes a recovery storage tank that stores an aqueous absorption liquid for absorbing the hydrogen fluoride gas, an ejector disposed between the vertical reaction container and the recovery storage tank, An absorption liquid circulation channel for returning the aqueous absorbent in the recovery storage tank to the storage tank through the ejector, a pump for pumping the aqueous absorbent in the recovery storage tank to the ejector as a negative pressure generating fluid, and the vertical A gas recovery passage that is provided between the suction port of the vertical reaction container and the ejector, and sucks out the hydrogen fluoride-based gas generated in the vertical reaction container, and is generated in the vertical reaction container. Hydrogen fluoride gas is sucked using the negative pressure generated by the ejector, and absorbed by the water-based absorbent (the fluid for generating negative pressure in the ejector) that circulates between the recovery storage tank and the ejector. Collect and fix (concentrate) To have.

この構成により、上記縦型反応容器で発生したフッ化水素系ガスを、素早く確実に吸収することができる。しかも、上記負圧の発生に用いているエゼクタは、先にも述べたように、一般的な吸引(真空)ポンプ等とは異なり、負圧の発生機構に可動部分がなく、軸封(液封)部分もないため、腐食性の高いフッ化水素酸(水溶液)を通しても、有害な液体が漏出しないようになっている。さらに、上記縦型反応容器から吸引されたフッ化水素系ガスが、エゼクタ内を通過(流通)する水系吸収液と即時に混ざり合って吸収されるため、その吸収(溶解)による体積減少とも相俟って、このエゼクタ内で発生する負圧が自然に上昇する(陰圧が高まる)という有効な効果もある。   With this configuration, the hydrogen fluoride gas generated in the vertical reaction vessel can be quickly and reliably absorbed. In addition, as described above, the ejector used for generating the negative pressure is different from a general suction (vacuum) pump or the like in that the negative pressure generating mechanism has no movable part and a shaft seal (liquid Since there is no sealing part, harmful liquids are prevented from leaking even through highly corrosive hydrofluoric acid (aqueous solution). Furthermore, since the hydrogen fluoride-based gas sucked from the vertical reaction vessel is immediately mixed with and absorbed by the water-based absorbent that passes (circulates) through the ejector, the volume is reduced due to absorption (dissolution). In other words, there is also an effective effect that the negative pressure generated in the ejector naturally increases (negative pressure increases).

なお、本発明のフッ化水素の分離回収装置のなかでも、上記縦型反応容器の内面が、上部から下部に向かって漸次縮径する逆円錐形状になっており、上記撹拌手段の撹拌羽根が、上記逆円錐形状の内周面に沿って歳差運動するようになっているものは、上記撹拌羽根によって撹拌されたフッ化カルシウム系の原料(粉体)と濃硫酸等(液体)とが、この縦型反応容器の内周面(逆円錐形)に沿って、容器底部の中央部へ向かって、集約されるように流動する。したがって、上記形状の縦型反応容器を用いたフッ化カルシウム系の原料と硫酸等の混合操作(フッ化水素系ガスの分離操作)は、他の形状の反応容器を用いた場合に比べて、これらフッ化カルシウム系の原料と濃硫酸等の接触機会が増えるため、より短時間で反応を完結させることができる。   In the hydrogen fluoride separation and recovery apparatus of the present invention, the inner surface of the vertical reaction vessel has an inverted conical shape that gradually decreases in diameter from the upper part toward the lower part. In addition, the one that precesses along the inner surface of the inverted conical shape consists of a calcium fluoride-based raw material (powder) and concentrated sulfuric acid or the like (liquid) stirred by the stirring blade. Then, it flows so as to be concentrated along the inner peripheral surface (inverted conical shape) of the vertical reaction vessel toward the center of the bottom of the vessel. Therefore, the mixing operation (separation operation of hydrogen fluoride gas) of calcium fluoride-based raw material and sulfuric acid or the like using the vertical reaction vessel of the above shape is compared with the case of using a reaction vessel of another shape, Since the chance of contacting these calcium fluoride-based raw materials with concentrated sulfuric acid and the like increases, the reaction can be completed in a shorter time.

また、本発明のフッ化水素の分離回収装置のなかでも、特に、少なくとも上記フッ化水素と接触する、縦型反応容器の内面,回収貯槽の内面,エゼクタ内部における流体との接触面、および、吸収液循環流路とガス回収流路の配管内面が、耐腐食性を有する樹脂ライニングまたは樹脂皮膜で覆われているものは、上記フッ化水素の腐食に起因する流体の系外への漏れが発生しにくく、装置のメンテナンス費用を低減することができる。さらに、装置全体を長寿命とすることができるという利点もある。   Further, among the hydrogen fluoride separation and recovery apparatus of the present invention, in particular, at least the inner surface of the vertical reaction vessel, the inner surface of the recovery storage tank, the contact surface with the fluid inside the ejector, which is in contact with the hydrogen fluoride, and If the pipe inner surfaces of the absorption liquid circulation channel and gas recovery channel are covered with a corrosion-resistant resin lining or resin film, fluid leaking out of the system due to the corrosion of hydrogen fluoride will occur. It is difficult to generate, and the maintenance cost of the apparatus can be reduced. Further, there is an advantage that the entire apparatus can have a long life.

そして、本発明のフッ化水素の分離回収装置のなかでも、上記回収貯槽およびエゼクタ,吸収液循環流路,ポンプからなるガス回収ユニットを2組以上備え、上記ガス回収流路のユニット側終端に、上記縦型反応容器で発生するフッ化水素系ガスの種類と濃度の変化に対応してこのガス回収流路に接続されるガス回収ユニットを切り替える回収ユニット切り替え手段が配設されているものは、種々の工程から排出されるフッ化カルシウム系の原料が、フッ素の含有率が低いもの,不純物が多いもの、もしくは、2種以上のフッ化カルシウムの混合系等であっても、これらを、種類別あるいは濃度(純度)別に分別して回収(再生)することが可能になる。   In the hydrogen fluoride separation and recovery apparatus of the present invention, two or more gas recovery units including the recovery storage tank and ejector, the absorption liquid circulation flow path, and the pump are provided, and the unit end of the gas recovery flow path is provided at the unit end. The recovery unit switching means for switching the gas recovery unit connected to the gas recovery flow path corresponding to the change in the type and concentration of the hydrogen fluoride gas generated in the vertical reaction vessel is provided. Even if the calcium fluoride-based raw materials discharged from various processes are low in fluorine content, high in impurities, or mixed with two or more calcium fluorides, It is possible to collect (regenerate) by sorting by type or concentration (purity).

本発明の第1実施形態のフッ化水素の分離回収方法に用いる分離回収装置の構成を説明する図である。It is a figure explaining the structure of the separation-and-recovery apparatus used for the separation-and-recovery method of hydrogen fluoride of 1st Embodiment of this invention. 上記フッ化水素の分離回収装置に用いられる縦型反応容器の構造を示す図である。It is a figure which shows the structure of the vertical reaction container used for the said separation-and-recovery apparatus of hydrogen fluoride. 本発明の第2実施形態のフッ化水素の分離回収方法に用いる分離回収装置の構成を説明する図である。It is a figure explaining the structure of the separation-and-recovery apparatus used for the separation-and-recovery method of hydrogen fluoride of 2nd Embodiment of this invention.

つぎに、本発明の実施の形態を、図面にもとづいて詳しく説明する。ただし、本発明は、この実施の形態に限定されるものではない。   Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to this embodiment.

図1は、本発明の第1実施形態のフッ化水素の分離回収方法の概略を説明する構成図であり、図2は、この分離回収方法に用いる縦型反応容器の概略構成図である。なお、工程で用いる原料(フッ化カルシウム,硫酸等)の貯蔵タンクと輸送配管や、上記縦型反応容器を支える支持部材(架台)や土台等は図示を省略している。   FIG. 1 is a configuration diagram for explaining the outline of the hydrogen fluoride separation and recovery method according to the first embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of a vertical reaction vessel used in the separation and recovery method. Note that the storage tank and transport piping for raw materials (calcium fluoride, sulfuric acid, etc.) used in the process, the support member (base) and the base for supporting the vertical reaction vessel are not shown.

この第1実施形態のフッ化水素の分離回収方法は、図1に示すように、縦型の反応容器R内でフッ化水素(HF)ガスを発生させて分離するガス分離工程と、回収貯槽T内の吸収液(水:HO)が循環することによりエゼクタEで発生する負圧を利用して、上記発生したフッ化水素ガスを縦型反応容器Rから吸い出し、このガスを吸収液(水)に混合した(吸収させた)状態で回収貯槽T内に貯蔵するガス回収工程と、を備える。このフッ化水素ガスの分離・回収の際、従来の横型のキルン炉等とは異なる、撹拌性に優れる縦型の反応容器Rを用いて、この中でバッチ式により短時間でフッ化水素ガスを効率的に発生させることが、本発明のフッ化水素の分離回収方法および分離回収装置の最大の特徴である。 As shown in FIG. 1, the hydrogen fluoride separation and recovery method according to the first embodiment includes a gas separation step of generating and separating hydrogen fluoride (HF) gas in a vertical reaction vessel R, and a recovery storage tank. The generated hydrogen fluoride gas is sucked out from the vertical reaction vessel R by utilizing the negative pressure generated in the ejector E by the absorption liquid (water: H 2 O) in T circulating, and this gas is absorbed into the absorption liquid. A gas recovery step of storing in the recovery storage tank T in a state of being mixed (absorbed) with (water). When separating and recovering the hydrogen fluoride gas, a vertical reaction vessel R having excellent stirring properties, which is different from a conventional horizontal kiln furnace, is used. Efficient generation of hydrogen is the greatest feature of the separation and recovery method and separation and recovery apparatus for hydrogen fluoride of the present invention.

なお、上記回収貯槽T内の吸収液は、主成分を水とするもので、凍結防止剤等の成分を多少含む場合がある。   In addition, the absorption liquid in the said collection | recovery storage tank T uses water as a main component, and may contain some components, such as an antifreezing agent.

上記フッ化水素の分離・回収の過程を装置構成順に説明すると、まず、フッ化水素ガスを発生させるガス分離工程は、図1の左側およびその拡大図である図2に示すような、縦型の反応容器Rを用いて行われる。この縦型反応容器Rは、腐食性を有するフッ化水素(HF)ガスを閉じこめることができるように、密閉式になっており、その容器Rの内面1aは、容器上部から下部(底部1b)に向かって漸次縮径する逆円錐形状になっている。   The process of separating and collecting the hydrogen fluoride will be described in the order of the apparatus configuration. First, the gas separation process for generating hydrogen fluoride gas is a vertical type as shown in the left side of FIG. 1 and an enlarged view of FIG. The reaction vessel R is used. The vertical reaction vessel R is hermetically sealed so that corrosive hydrogen fluoride (HF) gas can be trapped, and the inner surface 1a of the vessel R extends from the upper portion of the vessel to the lower portion (bottom portion 1b). It has an inverted conical shape that gradually decreases in diameter.

また、上記縦型反応容器Rの容器本体の上部(上面)には、ガス生成の原料となるフッ化カルシウム系原料(主成分CaF)を投入するための粉体投入口1wと、液体原料である硫酸(HSO:濃硫酸や発煙硫酸等)を投入するための液体投入口1xと、上記内部で発生したフッ化水素(HF)ガスを吸い出ためのガス吸出口1yとが設けられており、その容器本体の下部(底部1b)には、上記フッ化カルシウム系原料と濃硫酸等との反応(HFガスの発生)により生成する、残余の無水硫酸カルシウム(CaSO)の粉体〔いわゆる「無水石膏」〕を排出するための粉体排出口1zが設けられている。 In addition, in the upper part (upper surface) of the container body of the vertical reaction vessel R, a powder inlet 1w for introducing a calcium fluoride-based material (main component CaF 2 ) as a gas generation material, and a liquid material A liquid inlet 1x for introducing sulfuric acid (H 2 SO 4 : concentrated sulfuric acid, fuming sulfuric acid, etc.) and a gas inlet 1y for sucking out the hydrogen fluoride (HF) gas generated inside In the lower part (bottom 1b) of the container main body, residual anhydrous calcium sulfate (CaSO 4 ) produced by the reaction (generation of HF gas) of the calcium fluoride-based raw material with concentrated sulfuric acid or the like is provided. A powder discharge port 1z for discharging powder [so-called “anhydrous gypsum”] is provided.

なお、縦型反応容器Rの容器本体の材質は特に限定されないが、内部で発生するフッ化水素ガスによる腐食を受ける材質の場合、その容器Rの内面1a全体を、耐腐食性を有する樹脂ライニングまたは樹脂皮膜(被膜)で被覆しておくことが好ましい。さらに、上記縦型反応容器Rの容器本体の外面には、この容器R全体を保温・加温するためのヒートジャケット3が取り付けられている(図1,図2を参照)。   The material of the container body of the vertical reaction container R is not particularly limited, but in the case of a material that is corroded by hydrogen fluoride gas generated inside, the entire inner surface 1a of the container R is a resin lining having corrosion resistance. Or it is preferable to coat with a resin film (film). Furthermore, a heat jacket 3 for keeping the whole container R warm and warm is attached to the outer surface of the container body of the vertical reaction container R (see FIGS. 1 and 2).

そして、上記縦型反応容器Rの中(内部)には、原料となるフッ化カルシウム系原料(粉体または粒体)と硫酸等(液体)とを効率よく撹拌するための、二つの異なる回転軸(自転軸−公転軸)を有する撹拌手段2が配設されている。これも、本発明のフッ化水素の分離回収装置の特徴の一つである。   In the inside (inside) of the vertical reaction vessel R, two different rotations are provided for efficiently stirring the calcium fluoride raw material (powder or granule) and sulfuric acid (liquid) as raw materials. A stirring means 2 having a shaft (spinning shaft-revolving shaft) is disposed. This is also one of the features of the hydrogen fluoride separation and recovery apparatus of the present invention.

この撹拌手段2は、図2に示すように、モータMの駆動により、縦型反応容器Rの内面1aに沿った斜め状に自律回転(自転)する撹拌羽根2a(スパイラル状のスクリュー羽根またはヘリカルリボン翼等)と、この撹拌羽根2aが回転(自転)した状態で、これをモータM(回転軸)ごと容器Rの内面1aに沿って公転運動〔歳差運動(いわゆる「みそすり運動」)〕するように回転させるアーム2bおよび回転軸2cとを備える。 The stirring means 2, as shown in FIG. 2, the driving of the motor M 1, the vertical reaction vessel angled autonomous rotation along the inner surface 1a of the R (rotation) of stirring blades 2a (spiral screw blade or Helical ribbon blades) and the stirring blade 2a are rotated (spinned), and this is revolved along the inner surface 1a of the container R together with the motor M 1 (rotating shaft) [precession motion (so-called “slashing motion”). The arm 2b and the rotating shaft 2c are rotated as shown in FIG.

上記構成の撹拌手段2を作動させた場合、この縦型反応容器R内に投入されたフッ化カルシウム系原料(図2では図示せず)は、上記撹拌羽根2a(スクリュー羽根)自体の自転によって、容器底部1bから上部に向けて内壁(内面1a)に沿って上昇するように撹拌される。しかも、上記撹拌羽根2aが自転した状態で、その全体が容器内面1aに沿って公転(歳差運動)することから、上記フッ化カルシウム系原料と、上部の液体投入口1xから投入される濃硫酸等とは、短時間で充分に撹拌・混合される。   When the stirring means 2 configured as described above is operated, the calcium fluoride-based material (not shown in FIG. 2) charged into the vertical reaction vessel R is rotated by the rotation of the stirring blade 2a (screw blade) itself. Then, stirring is performed so as to rise along the inner wall (inner surface 1a) from the container bottom 1b to the upper part. In addition, since the entire stirring blade 2a rotates and revolves (precession) along the inner surface 1a of the container, the calcium fluoride raw material and the concentrated liquid introduced from the upper liquid inlet 1x. The sulfuric acid and the like are sufficiently stirred and mixed in a short time.

そして、縦型反応容器Rの外面に配置されたヒートジャケット3は、その中を熱した流体(オイル等の熱媒:約100〜150℃)を、媒体入口3bから媒体出口3aに向けて流通させることにより、上記フッ化カルシウム系原料と濃硫酸等との撹拌・混合の間、容器R全体を保温・加温する。なお、上記ヒートジャケット3の設定温度は、通常100〜150℃、より好ましくは110〜130℃である。   The heat jacket 3 arranged on the outer surface of the vertical reaction vessel R circulates the fluid (heat medium such as oil: about 100 to 150 ° C.) heated inside from the medium inlet 3b toward the medium outlet 3a. As a result, the entire container R is kept warm and heated during the stirring and mixing of the calcium fluoride material and concentrated sulfuric acid. The set temperature of the heat jacket 3 is usually 100 to 150 ° C, more preferably 110 to 130 ° C.

以上のような構成の本実施形態におけるフッ化水素の分離回収方法(ガス分離工程)および装置は、この撹拌手段2の構成と上記縦型反応容器Rの内面1aが逆円錐形状になっていることが相俟って、フッ化カルシウム系原料と濃硫酸等との混合、およびそれに伴うフッ素系成分の分離(フッ化水素ガスの脱離)を、従来法より短時間で完了することができる。また、フッ化カルシウムと当量の濃硫酸とが、容器内部で均等に素早く混ざり合うことから、それらの反応によるフッ化水素(HF)ガスの発生効率(収率)を高めることができる。   In the hydrogen fluoride separation and recovery method (gas separation step) and apparatus in the present embodiment having the above-described configuration, the configuration of the stirring means 2 and the inner surface 1a of the vertical reaction vessel R have an inverted conical shape. In combination, the mixing of the calcium fluoride-based raw material with concentrated sulfuric acid and the accompanying separation of the fluorine-based components (desorption of hydrogen fluoride gas) can be completed in a shorter time than the conventional method. . In addition, since calcium fluoride and an equivalent amount of concentrated sulfuric acid are mixed evenly and quickly inside the container, the generation efficiency (yield) of hydrogen fluoride (HF) gas by the reaction can be increased.

なお、上記縦型反応容器Rおよび撹拌手段2の構成には、容器Rの内面1a形状(逆円錐形状)と相俟って、上記撹拌羽根2a(スクリュー羽根)を逆転(上記自転方向と逆方向に回転)させることにより、フッ化カルシウム系原料と濃硫酸等が反応した後に生成する無水硫酸カルシウム(CaSO)の粉体〔無水石膏〕を、底部1b側の粉体排出口1zから簡単に排出できるという利点もある。 In addition, the configuration of the vertical reaction vessel R and the stirring means 2 is coupled with the shape of the inner surface 1a (reverse conical shape) of the vessel R to reverse the stirring blade 2a (screw blade) (reverse to the rotation direction). The powder of anhydrous calcium sulfate (CaSO 4 ) produced after the calcium fluoride raw material and concentrated sulfuric acid react with each other can be easily removed from the powder outlet 1z on the bottom 1b side. There is also an advantage that it can be discharged easily.

つぎに、上記縦型反応容器Rで発生したフッ化水素ガスを吸引,回収,濃縮(貯留)する各工程は、図1の右側に示す、フッ化水素ガスの回収貯槽T,エゼクタE,循環ポンプPおよびこれらを繋ぐ吸収液循環流路11と、上記縦型反応容器R内で発生するフッ化水素(HF)ガスを吸い出す(エゼクタEに導く)ためのガス回収流路10と、を用いて構成されている。   Next, each step of sucking, collecting and concentrating (retaining) the hydrogen fluoride gas generated in the vertical reaction vessel R is shown in the right side of FIG. 1 as a hydrogen fluoride gas recovery storage tank T, ejector E, circulation. Using the pump P and the absorption liquid circulation passage 11 connecting them, and the gas recovery passage 10 for sucking out hydrogen fluoride (HF) gas generated in the vertical reaction vessel R (leading to the ejector E) Configured.

まず、上記フッ化水素ガスを吸引する工程は、循環ポンプPを用いて、図1のように、回収貯槽T内に貯留されたフッ化水素吸収液(この場合、水:HO)を、上記吸収液循環流路11を通じて、エゼクタEの通過用流体入口4側(図示上側)に圧送し、このエゼクタE内部のオリフィス(狭窄部または小孔等:図示省略)を通して通過用流体出口5側(図示下側)に向けて通過させ、側方のガス回収流路10に繋がる吸引流体流入口6に、ガス吸引用の負圧を発生させるとともに、上記通過用流体出口5から流出した吸収液を、吸収液循環流路11を介して循環回収貯槽Tに回収する。この吸収液(水)の循環により、上記エゼクタEの吸引口(吸引流体流入口6)に、フッ化水素ガス吸引用の負圧を、連続して発生させることができる。 First, the step of sucking the hydrogen fluoride gas uses the circulation pump P to remove the hydrogen fluoride absorbing liquid (in this case, water: H 2 O) stored in the recovery storage tank T as shown in FIG. Then, it is pumped to the passage fluid inlet 4 side (the upper side in the figure) of the ejector E through the absorption liquid circulation channel 11, and the passage fluid outlet 5 is passed through an orifice (narrowed portion or small hole: not shown) inside the ejector E. A negative pressure for gas suction is generated at the suction fluid inlet 6 that is passed toward the side (the lower side in the drawing) and connected to the side gas recovery flow path 10, and absorption that has flowed out of the passage fluid outlet 5 The liquid is collected in the circulation collection storage tank T through the absorption liquid circulation channel 11. By circulating the absorption liquid (water), a negative pressure for sucking hydrogen fluoride gas can be continuously generated at the suction port (suction fluid inlet 6) of the ejector E.

つぎに、上記フッ化水素(HF)ガスを吸い出す回収工程は、図1のように、縦型反応容器R内で発生したフッ化水素(HF)ガスを、上部のガス吸出口1yから、これに繋がるガス回収流路10を介して、上記エゼクタEで発生する負圧を利用して吸い出し、そのガスを、上記負圧の発生元であるエゼクタEの吸引流体流入口6からエゼクタE内に吸い込んで、上記オリフィス(図示省略)経てエゼクタE内を通過する吸収液(水)に混合した状態で、この混合液(水+HF)を上記回収貯槽Tに回収する。   Next, in the recovery step of sucking out the hydrogen fluoride (HF) gas, as shown in FIG. 1, the hydrogen fluoride (HF) gas generated in the vertical reaction vessel R is discharged from the upper gas suction port 1y. The gas is sucked out using the negative pressure generated in the ejector E through the gas recovery flow path 10 connected to the gas, and the gas is sucked into the ejector E from the suction fluid inlet 6 of the ejector E that is the source of the negative pressure. The mixed liquid (water + HF) is collected in the collection storage tank T while being sucked and mixed with the absorbing liquid (water) passing through the ejector E through the orifice (not shown).

なお、前記ガス吸引用の負圧を発生させる工程と、上記フッ化水素ガスを吸い出して吸収液に吸収させる(混合する)工程とは、上記回収貯槽T内の吸収液(水)に吸収されたフッ化水素(HF)成分の濃度が所定の濃度に達するまで、継続して連続で運転(稼働)され、上記縦型反応容器Rから取り出されたフッ化水素が、回収貯槽T内で濃縮される(フッ化水素濃縮工程)。   The step of generating the negative pressure for gas suction and the step of sucking out the hydrogen fluoride gas and absorbing (mixing) it into the absorption liquid are absorbed by the absorption liquid (water) in the recovery storage tank T. The hydrogen fluoride (HF) component is continuously operated (operated) until the concentration of the hydrogen fluoride (HF) component reaches a predetermined concentration, and the hydrogen fluoride taken out from the vertical reaction vessel R is concentrated in the recovery storage tank T. (Hydrogen fluoride concentration step).

上記各工程で用いられるエゼクタEは、構造(形状)自体は汎用のものと変わらないが、フッ化水素に対して耐腐食性を有する樹脂を用いて形成されているか、もしくは、フッ化水素系の流体が接触するエゼクタEの表面(主に内面)に、上記と同様のフッ化水素に対して耐腐食性を有する樹脂ライニング(樹脂皮膜)が施されている。これもまた、本発明の特徴の一つである。   The ejector E used in each of the above steps has the same structure (shape) as that of a general-purpose one, but is formed using a resin having corrosion resistance against hydrogen fluoride, or a hydrogen fluoride-based one. The surface (mainly the inner surface) of the ejector E that is in contact with the fluid is provided with a resin lining (resin film) that is resistant to hydrogen fluoride as described above. This is also one of the features of the present invention.

上記エゼクタEの形成またはライニングに用いられる樹脂としては、テフロン(登録商標),ポリエチレン等の合成樹脂をあげられる。また、上記テフロン(登録商標),ポリエチレンで形成されたエゼクタEの他に、炭素繊維や有機繊維を用いたFRP製とすることもできる(ガラス繊維を用いてもよい)。   Examples of the resin used for forming or lining the ejector E include synthetic resins such as Teflon (registered trademark) and polyethylene. In addition to the ejector E formed of Teflon (registered trademark) and polyethylene, it can be made of FRP using carbon fiber or organic fiber (glass fiber may be used).

上記構成のエゼクタEによれば、従来の吸引(真空)ポンプ等に比べ、可動部(軸封部)がないため、フッ化水素の漏出のおそれが少なく、安全に吸い出し操作を継続することができる。また、軸封部やフッ化水素の漏出のおそれがないことから、エゼクタEおよび装置全体のメンテナンス頻度が少なく、装置を長寿命とすることができる。   According to the ejector E having the above configuration, since there is no movable part (shaft seal part) compared to a conventional suction (vacuum) pump or the like, there is less risk of leakage of hydrogen fluoride, and the suction operation can be continued safely. it can. Further, since there is no risk of leakage of the shaft seal or hydrogen fluoride, the maintenance frequency of the ejector E and the entire apparatus is low, and the apparatus can have a long life.

また、上記各工程で用いられるフッ化水素の回収貯槽Tは、図1に示すように、充填物(気液接触用の充填材)が配設された回収槽7と、脱気槽8とから構成されており、上記回収したフッ化水素(HF)を、主成分を水とする吸収液に溶かし込んだ状態で貯留するようになっている。   Further, as shown in FIG. 1, the hydrogen fluoride recovery storage tank T used in each of the above steps includes a recovery tank 7 in which a filler (filler for gas-liquid contact) is disposed, a degassing tank 8, The recovered hydrogen fluoride (HF) is stored in a state of being dissolved in an absorption liquid whose main component is water.

なお、この回収貯槽Tもフッ化水素の漏出を防止するため、密閉構造となっており、その排気(少量のフッ化水素を含む)は、専用の排ガス設備(図示省略)に送られる。また、上記エゼクタEと同様、フッ化水素系の流体が接触する回収貯槽Tの表面(主に内面)に、フッ化水素に対して耐腐食性を有する樹脂ライニング(樹脂皮膜)を施しておくことが望ましい。さらに、上記回収貯槽T(脱気槽8)内の吸収液のフッ化水素濃度を測定(モニタリング)できる濃度検出手段(図示省略)を備えていてもよい。   The recovery storage tank T also has a sealed structure in order to prevent leakage of hydrogen fluoride, and the exhaust gas (including a small amount of hydrogen fluoride) is sent to a dedicated exhaust gas facility (not shown). Similarly to the ejector E, a resin lining (resin film) having corrosion resistance against hydrogen fluoride is applied to the surface (mainly the inner surface) of the recovery tank T in contact with the hydrogen fluoride fluid. It is desirable. Furthermore, you may provide the concentration detection means (illustration omitted) which can measure the hydrogen fluoride density | concentration of the absorption liquid in the said collection | recovery storage tank T (deaeration tank 8).

一方、上記フッ化水素を含む吸収液(水)を循環させるのに用いられる循環ポンプPは、この吸収水の漏れを起こさないことが必須であり、本実施形態においては、液封(軸封)部のない、電磁ポンプ(誘導型電磁ポンプ)やダイアフラム式ポンプ,ピストン式ポンプ等が好適に用いられる。なお、上記ポンプの形式(タイプ)に特に制限はないが、エゼクタEや回収貯槽Tと同様、フッ化水素と接触するポンプの内容積部分や配管部分、および、回転子やダイアフラム,ピストン等は、フッ化水素に対して耐腐食性を有する樹脂ライニング(樹脂皮膜)が施されているものが好ましい。また、上記電磁ポンプの代わりに、ハステロイ(登録商標)(HASTELLOY(登録商標))等の耐食性金属(合金)を用いて構成された、通常の圧送ポンプを用いても、差し支えない。   On the other hand, the circulation pump P used to circulate the absorption liquid (water) containing hydrogen fluoride must not cause leakage of the absorption water. In this embodiment, the liquid seal (shaft seal) is used. An electromagnetic pump (induction type electromagnetic pump), a diaphragm type pump, a piston type pump, or the like having no part) is preferably used. The type (type) of the pump is not particularly limited, but the internal volume portion and piping portion of the pump that comes into contact with hydrogen fluoride, as well as the rotor, diaphragm, piston, etc., like the ejector E and the recovery storage tank T A resin lining (resin film) having corrosion resistance against hydrogen fluoride is preferable. Further, instead of the electromagnetic pump, there may be used a normal pumping pump configured using a corrosion-resistant metal (alloy) such as Hastelloy (registered trademark).

さらに、上記循環ポンプPに繋がる上記吸収液循環流路11やフッ化水素(HF)ガスを吸い出すためのガス回収流路10等の配管内面,接続部分も、同様にフッ化水素に対して耐腐食性を有する樹脂ライニングを施しておくことが望ましい。このように、装置全体を耐腐食構造とすることにより、装置の寿命と装置を操作する人(従事者)に対する安全性を高めることができる。   In addition, the inner surface of the piping and the connecting portion of the absorption liquid circulation channel 11 connected to the circulation pump P and the gas recovery channel 10 for sucking out hydrogen fluoride (HF) gas are also resistant to hydrogen fluoride. It is desirable to provide a resin lining having corrosive properties. Thus, by making the entire apparatus have a corrosion resistant structure, it is possible to improve the life of the apparatus and the safety for the person (operator) who operates the apparatus.

以上の構成のフッ化水素の分離回収方法(ガス回収・濃縮工程)および装置によれば、フッ化水素の漏れなく安全に、吸収液(水)に素早く吸収させることができる。しかも、上記吸収液を循環させ続けることにより、前記ガス分離工程(縦型反応容器R)におけるフッ化水素(HF)ガスの発生効率の高さと相俟って、上記吸収液のフッ化水素濃度を、容易に、製品(再生品としてのフッ化水素酸)として取り出せる濃度(約50〜60重量%)にまで高めることができる。したがって、本実施形態のフッ化水素の分離回収方法および装置によれば、フッ化水素の再生(再利用)にかかるコスト(ランニングコスト)を、実用化に則した水準にまで押し下げることができる。   According to the hydrogen fluoride separation and recovery method (gas recovery / concentration step) and apparatus configured as described above, hydrogen fluoride can be safely and quickly absorbed into the absorption liquid (water) without leakage. In addition, by continuing to circulate the absorption liquid, the hydrogen fluoride concentration of the absorption liquid is combined with the high generation efficiency of hydrogen fluoride (HF) gas in the gas separation step (vertical reaction vessel R). Can be easily increased to a concentration (about 50 to 60% by weight) that can be taken out as a product (hydrofluoric acid as a recycled product). Therefore, according to the method and apparatus for separating and recovering hydrogen fluoride of the present embodiment, the cost (running cost) required for regeneration (reuse) of hydrogen fluoride can be pushed down to a level according to practical use.

最後に、上記フッ化水素の分離回収方法(フッ化水素の再生)および装置に用いる、フッ化カルシウム系の原料(回収フッ化カルシウム)について説明する。   Finally, the calcium fluoride-based raw material (recovered calcium fluoride) used in the hydrogen fluoride separation and recovery method (regeneration of hydrogen fluoride) and apparatus will be described.

通常、本実施形態で使用する回収フッ化カルシウムとしては、先にも述べたように、フッ化水素,ケイフッ化水素等を高濃度に含有する排液(処理液)を排液処理して得られた、フッ化カルシウム(CaF)やケイフッ化カルシウム〔Ca[SiF]:ヘキサフルオロケイ酸(珪酸)カルシウム〕等を、脱水,乾燥させたものが用いられる。この回収フッ化カルシウムは、圧縮または円心分離等を用いた脱水操作により、一旦ケーキ状等の軟らかい含水固形物とされ、さらに乾燥や粉砕工程等を経て、通常、含水率が20重量%以下(好ましくは10重量%以下)のスポンジ状の粉体または粒体の塊とされて、産業廃棄物として工程(工場)外に搬出されたものである。 Usually, as described above, the recovered calcium fluoride used in the present embodiment is obtained by draining a waste liquid (treatment liquid) containing hydrogen fluoride, hydrogen silicofluoride or the like at a high concentration. Calcium fluoride (CaF 2 ), calcium silicofluoride [Ca [SiF 6 ]: hexafluorosilicic acid (silicic acid) calcium] and the like obtained are dehydrated and dried. This recovered calcium fluoride is once made into a soft water-containing solid such as cake by a dehydration operation using compression or center separation, etc., and further through a drying or pulverization step, etc., and usually the water content is 20% by weight or less. It is made into a lump of sponge-like powder or granules (preferably 10% by weight or less) and is carried out of the process (factory) as industrial waste.

なかでも、本実施形態で用いる回収フッ化カルシウムとしては、その純度(他の灰分に対するフッ化カルシウムの含有率)が、通常70重量%以上、できれば80重量%以上のものが使用される。その理由は、フッ化カルシウムの純度(含有率)が低すぎると、バッチあたりのフッ化水素酸(再生品)の生成量が少なくなって、生産効率が下がる傾向がみられるからである。また、反応残渣物である無水石膏の純度が下がるため、その利用用途や価値が下がるという弊害が生じてしまう。   Among them, as the recovered calcium fluoride used in the present embodiment, one having a purity (content of calcium fluoride with respect to other ash) of usually 70% by weight or more, preferably 80% by weight or more is used. The reason is that if the purity (content rate) of calcium fluoride is too low, the production amount of hydrofluoric acid (regenerated product) per batch decreases, and the production efficiency tends to decrease. Moreover, since the purity of anhydrous gypsum, which is a reaction residue, is lowered, there is an adverse effect that its use and value are lowered.

また、上記回収フッ化カルシウムの含水率が多すぎると、硫酸等を投入(混合)した際に、この回収フッ化カルシウムに含まれる水分が沸騰して、発生したフッ化水素(HF)ガスとともに前記エゼクタEの負圧に引かれて回収ライン(ガス回収流路10)から循環ライン(吸収液循環流路11)に入り込み、回収貯槽T(脱気槽8)内の吸収液のフッ化水素濃度を低下させてしまうおそれがある。   Also, if the water content of the recovered calcium fluoride is too high, the water contained in the recovered calcium fluoride will boil when sulfuric acid or the like is added (mixed) together with the generated hydrogen fluoride (HF) gas. The negative pressure of the ejector E enters the circulation line (absorption liquid circulation flow path 11) from the recovery line (gas recovery flow path 10), and hydrogen fluoride of the absorption liquid in the recovery storage tank T (deaeration tank 8). There is a risk of reducing the concentration.

ただし、この場合や前記フッ化カルシウムの純度が低い等の場合、回収フッ化カルシウムに加える濃硫酸に発煙硫酸を添加して併用すると、これらの「回収貯槽T(脱気槽8)内の吸収液中のフッ化水素濃度が上がりにくい」(バッチあたりの効率・収率が悪い)という問題を解消することができる。また、上記回収貯槽T内に貯留される、製品(再生品)としてのフッ化水素酸の濃度(目標:約50〜60重量%)は、上記フッ化水素の分離−回収−濃縮の一連の工程(バッチ数)を繰り返すようにして調製しても、差し支えない。   However, in this case, or when the purity of the calcium fluoride is low, when the fuming sulfuric acid is added to the concentrated sulfuric acid added to the recovered calcium fluoride and used together, the absorption in these “recovery storage tank T (deaeration tank 8)” It is possible to solve the problem that the hydrogen fluoride concentration in the liquid is difficult to increase (the efficiency / yield per batch is poor). The concentration of hydrofluoric acid as a product (recycled product) stored in the recovery storage tank T (target: about 50 to 60% by weight) is a series of separation, recovery and concentration of the hydrogen fluoride. It may be prepared by repeating the process (number of batches).

つぎに、複数種のフッ化水素系ガス〔この場合は、フッ化水素(HF)とケイフッ化水素(H[SiF])〕を分別して回収することのできる、本発明の第2実施形態について説明する。 Next, a second embodiment of the present invention, in which a plurality of types of hydrogen fluoride gases [in this case, hydrogen fluoride (HF) and silicofluoride (H 2 [SiF 6 ])] can be separated and recovered. A form is demonstrated.

図3は、本発明の第2実施形態のフッ化水素の分離回収方法の概略を説明する構成図である。なお、縦型反応容器を支える支持部材(架台)や土台、原料貯蔵タンクや輸送配管、および、各回収貯槽T,Tに設けられる排気,排水システム等は図示を省略している。また、前記第1実施形態と同様の機能を有する構成部材には同じ符号を付して、その詳細な説明を省略する。 FIG. 3 is a configuration diagram for explaining the outline of the method for separating and recovering hydrogen fluoride according to the second embodiment of the present invention. Note that the support member (base) and the base for supporting the vertical reaction vessel, the raw material storage tank and the transportation piping, and the exhaust and drainage systems provided in the respective recovery storage tanks T 1 and T 2 are not shown. Moreover, the same reference numerals are given to the constituent members having the same functions as those in the first embodiment, and detailed description thereof will be omitted.

この第2実施形態のフッ化水素の分離回収方法(装置)は、フッ化カルシウム系原料としてケイフッ化カルシウム〔Ca[SiF]:ヘキサフルオロケイ酸(珪酸)カルシウム〕を用いて、硫酸等との混合により発生するケイフッ化水素(H[SiF])とフッ化水素(HF)とを、二段階に分別して回収しようとするものである。 The hydrogen fluoride separation and recovery method (apparatus) according to the second embodiment uses calcium silicofluoride [Ca [SiF 6 ]: hexafluorosilicic acid (silicate) calcium] as a calcium fluoride-based raw material, The hydrogen silicofluoride (H 2 [SiF 6 ]) and the hydrogen fluoride (HF) generated by mixing these are separated and collected in two stages.

上記フッ化水素の分離(分別)回収方法で用いられる装置が、前記第1実施形態と異なる点は、図3のように、ガス回収工程を2組(エゼクタEと回収貯槽Tおよび循環ポンプPからなる第1ガス回収工程、および、エゼクタEと回収貯槽Tおよび循環ポンプPからなる第2ガス回収工程の2ユニット)備える点である。これら2組のガス回収工程は、縦型反応容器R内で発生するフッ化水素系ガスを吸い出す(エゼクタに導く)ためのガス回収流路10の終端から二分岐するように、並列に接続されており、この分岐点には、流量調整弁Vと、ガス回収流路10管内を流れるフッ化水素ガスの流下先を切り替える切替弁V(三方コック:回収ユニット切り替え手段)とが配設されている。 The apparatus used in the hydrogen fluoride separation (separation) recovery method is different from the first embodiment in that two sets of gas recovery steps (ejector E 1 , recovery storage tank T 1 and circulation as shown in FIG. 3). the first gas recovery step consisting pump P 1, and is 2 units) comprising the point of the ejector E 2 and the collection tank T 2 and a second gas recovery step consisting circulation pump P 2. These two sets of gas recovery steps are connected in parallel so as to branch into two from the end of the gas recovery flow path 10 for sucking out the hydrogen fluoride gas generated in the vertical reaction vessel R (leading to the ejector). and, in the branch point, the flow control valve V 1, the switching valve V 2 for switching the flow-down destination of the hydrogen fluoride gas flowing in the gas recovery channel 10 tubes (three-way cock: recovery unit switching means) are disposed Has been.

なお、第1ガス回収工程(図示上側)におけるガス回収流路10’には、下側の第2ガス回収工程にはない、エゼクタE(オリフィス)の目詰まり防止手段9が、エゼクタEの上流側に介在配置されている〔第2ガス回収工程(図示下側)は、前記第1実施形態のガス回収工程と同じ構成である。〕。また、上記縦型反応容器R(ガス吸出口1y)直後のガス回収流路10には、フッ化水素系ガスの濃度を測定(モニタリング)する濃度検出手段(図示省略)が配置されており、このガス回収流路10内を流れるガスの成分(主成分)を、リアルタイム(オンタイム)で測定できるようになっている。 Incidentally, in the gas recovery channel 10 'in the first gas recovery step (shown above) are not in the second gas recovering step lower, clogging prevention means 9 of the ejector E 1 (orifice) is, ejector E 1 [The second gas recovery step (the lower side in the drawing) has the same configuration as the gas recovery step of the first embodiment. ]. Further, a concentration detection means (not shown) for measuring (monitoring) the concentration of the hydrogen fluoride-based gas is disposed in the gas recovery flow path 10 immediately after the vertical reaction vessel R (gas inlet 1y), The component (main component) of the gas flowing in the gas recovery channel 10 can be measured in real time (on time).

上記構成の分離(分別)回収装置を用いたフッ化水素の分離回収方法も、まず最初は、内面1aが逆円錐形状になった反応容器R内に、粉体投入口1wから上記ケイフッ化カルシウム(Ca[SiF])の粉体を投入し、これを撹拌羽根2aを有する撹拌手段2で撹拌しながら、液体投入口1xから濃硫酸(または、濃硫酸と発煙硫酸の混合物)を添加することにより、フッ化水素系のガスを発生させる。 The hydrogen fluoride separation / recovery method using the separation (separation) recovery device having the above-described configuration also begins with the calcium silicofluoride from the powder inlet 1w in the reaction vessel R having the inner surface 1a having an inverted conical shape. (Ca [SiF 6 ]) powder is charged, and concentrated sulfuric acid (or a mixture of concentrated sulfuric acid and fuming sulfuric acid) is added from the liquid charging port 1x while stirring with the stirring means 2 having the stirring blade 2a. As a result, a hydrogen fluoride-based gas is generated.

この反応(ケイフッ化カルシウムと濃硫酸の混合)の際、本発明者の知見によれば、撹拌・混合直後の前半は、優先的にケイフッ化水素(H[SiF])が高濃度で発生し、それがほぼ完全に終了した後、続いてフッ化水素(HF)が、ガスの主成分として高濃度で発生することが分かっている。また、上記ケイフッ化水素ガスは、前記フッ化水素ガスに比べて析出(結晶化)し易く、エゼクタのオリフィスが目詰まりし易いことを、本発明者は経験的に知っている。 In this reaction (mixing of calcium silicofluoride and concentrated sulfuric acid), according to the knowledge of the present inventor, hydrogen silicofluoride (H 2 [SiF 6 ]) is preferentially high in the first half immediately after stirring and mixing. It has been found that hydrogen fluoride (HF) is subsequently generated at a high concentration as the main component of the gas after it has been generated and almost completely finished. Further, the inventor has empirically known that the hydrogen silicofluoride gas is more easily precipitated (crystallized) than the hydrogen fluoride gas, and the orifice of the ejector is easily clogged.

そのため、この第2実施形態のフッ化水素の分離回収方法では、まず最初に、ガス回収流路10の終端(切替弁V)には、目詰まり防止手段9を有する第1ガス回収工程(図示上側)が接続され、析出して目詰まりを起こし易いケイフッ化水素(H[SiF])ガスが、エゼクタEを介して、回収貯槽Tの回収槽7’および脱気槽8’に回収・濃縮される。 Therefore, in the hydrogen fluoride separation and recovery method of the second embodiment, first, the first gas recovery step (including the clogging prevention means 9) at the end of the gas recovery flow path 10 (the switching valve V 2 ) ( shown above) is connected, it precipitated easily silicic hydrogen fluoride clogged with (H 2 [SiF 6]) gas, via the ejector E 1, the recovery tank 7 for recovery storage tank T 1 'and the deaeration tank 8 It is collected and concentrated.

続いて、上記フッ化水素系ガスの濃度検出手段(図示省略)により、上記ガス回収流路10内を流れるガスの成分の切り替わりが確認されれば、このガス回収流路10終端の切替弁(三方コック)Vの接続先が切り替えられ、上記縦型反応容器Rで発生したガス〔この時点では、第1実施形態と同様のフッ化水素(HF)ガス〕が、図示下側の第2ガス回収工程に向けて流される。これにより、発生したフッ化水素は、回収貯槽Tの回収槽7および脱気槽8に回収・濃縮される。 Subsequently, if the switching of the component of the gas flowing in the gas recovery passage 10 is confirmed by the hydrogen fluoride gas concentration detecting means (not shown), a switching valve (terminal valve) at the end of the gas recovery passage 10 ( Three-way cock) The connection destination of V 2 is switched, and the gas generated in the vertical reaction vessel R [at this time, hydrogen fluoride (HF) gas similar to that of the first embodiment] is the second lower side in the drawing. Flowed towards the gas recovery process. Thus, the hydrogen fluoride generated is recovered and concentrated in the collection tank 7 and degassing tank 8 of the collection tank T 2.

そして、上記縦型反応容器Rによるフッ化水素系ガスの発生−ガス成分のモニタリングによるガス回収工程(第1←→第2)の切り替え−フッ化水素系ガスの回収・濃縮を、バッチ単位で繰り返すことにより、上記ケイフッ化カルシウムから発生するケイフッ化水素とフッ化水素とを、分別しながら効率よく回収することができる。   Then, generation of hydrogen fluoride gas by the above vertical reaction vessel R-switching of gas recovery process (first ← → second) by monitoring gas components-recovery / concentration of hydrogen fluoride gas in batch units By repeating, the hydrogen silicofluoride and hydrogen fluoride generated from the calcium silicofluoride can be efficiently recovered while being separated.

なお、上記ガス濃度を測定(モニタリング)する濃度検出手段と、目詰まり防止手段9とは、それぞれ、第1実施形態と同様の構成の第2ガス回収工程に付設してもよく、これらが分岐する前のガス回収流路10の途中に配設してもよい。   Note that the concentration detecting means for measuring (monitoring) the gas concentration and the clogging preventing means 9 may be attached to the second gas recovery step having the same configuration as that of the first embodiment, respectively. You may arrange | position in the middle of the gas collection | recovery flow path 10 before performing.

つぎに、上記本発明のフッ化水素の分離回収装置(図1)を用いて行った実施例(実証試験)について説明する。   Next, examples (demonstration tests) performed using the hydrogen fluoride separation and recovery apparatus (FIG. 1) of the present invention will be described.

[実施例1]
<原料:回収フッ化カルシウム>
半導体製造工場等において、排出されたフッ化水素を含む排液に、水酸化カルシウムを添加して、遠心脱水・圧縮により、含水率33重量%の軟らかい固形物を得た。そして、それを加熱乾燥して粉砕することにより、含水率10重量%の回収フッ化カルシウム(フッ化カルシウムが二次凝集した粒状:平均粒径5.4μm,粒度分布1〜50μm)を得た。なお、上記回収フッ化カルシウム(水分を除く固形分)の構成成分は、フッ化カルシウム82.5重量%,硫酸カルシウム10重量%,酸化アルミニウム2重量%,酸化ケイ素1重量%,その他灰分4.5重量%であった。また、上記回収フッ化カルシウムの粒径(分布)は、JIS M 8100「粉塊混合物−サンプリング方法通則」に規定された粒度測定方法により測定したものであり、回収フッ化カルシウムの含水率(水分率)は、JIS K 1468−1「ふっ化水素酸用ほたる石分析方法(第1部 ロットの水分含有量の定量)」に規定された水分含有量(105℃×5時間絶乾後)により測定したものである。
[Example 1]
<Raw material: recovered calcium fluoride>
In a semiconductor manufacturing factory or the like, calcium hydroxide was added to the discharged liquid containing hydrogen fluoride, and a soft solid having a water content of 33% by weight was obtained by centrifugal dehydration and compression. Then, it was dried by heating and pulverized to obtain recovered calcium fluoride having a water content of 10% by weight (granularity in which calcium fluoride was secondarily aggregated: average particle size 5.4 μm, particle size distribution 1 to 50 μm). . The components of the recovered calcium fluoride (solid content excluding moisture) are 82.5% by weight of calcium fluoride, 10% by weight of calcium sulfate, 2% by weight of aluminum oxide, 1% by weight of silicon oxide, and other ash content. It was 5% by weight. Further, the particle size (distribution) of the recovered calcium fluoride is measured by a particle size measuring method defined in JIS M 8100 “Powder mixture-General rules of sampling method”. Rate) according to the moisture content (105 ° C x 5 hours after absolute drying) specified in JIS K 1468-1 “Method for analyzing fluorite for hydrofluoric acid (Part 1 Determination of moisture content of lot)” It is measured.

<フッ化水素分離工程>
上記の回収フッ化カルシウム(含水率10重量%)100kgを、縦型反応容器R(図1参照)に投入し、容器Rを取り巻くヒートジャケット3に110℃に加温したオイルを循環させて、準備した。ついで、撹拌手段2を作動させて回収フッ化カルシウム(粉体)を撹拌しながら、投入されたフッ化カルシウム(ネット74.25kg)に対して規定量(モル当量)の濃硫酸を、30分かけて一定流量でゆっくりと縦型反応容器R内に投入(添加)した。なお、撹拌は濃硫酸の投入終了後も継続され、最終的な撹拌時間は、フッ化水素ガスの発生が終了するまで、濃硫酸の投入開始から2時間にわたって行われた(1バッチ=2時間)。
<Hydrogen fluoride separation process>
100 kg of the recovered calcium fluoride (water content 10% by weight) is put into a vertical reaction vessel R (see FIG. 1), and oil heated to 110 ° C. is circulated through the heat jacket 3 surrounding the vessel R, Got ready. Next, while stirring the recovered calcium fluoride (powder) by operating the stirring means 2, a prescribed amount (molar equivalent) of concentrated sulfuric acid is added to the charged calcium fluoride (net 74.25 kg) for 30 minutes. Then, it was slowly charged (added) into the vertical reaction vessel R at a constant flow rate. Stirring was continued after completion of the addition of concentrated sulfuric acid, and the final stirring time was 2 hours from the start of the addition of concentrated sulfuric acid until the generation of hydrogen fluoride gas was completed (1 batch = 2 hours). ).

<フッ化水素回収工程>
上記濃硫酸の投入開始と同時に循環ポンプPを作動させ、エゼクタEで発生した負圧を利用して、上記1バッチの稼働時間(2時間)全体にわたって、縦型反応容器R内で発生したガス(主にフッ化水素)を吸収液(水:30kg)に吸収させ、回収貯槽Tに回収した。なお、1バッチ2時間の終了後、縦型反応容器R内に残余の石膏を、容器R下部の粉体排出口1zから抜き出して反応容器R内を空にし、次回(次バッチ)の準備を行った。
<Hydrogen fluoride recovery process>
The gas generated in the vertical reaction vessel R over the entire operation time (2 hours) of the one batch using the negative pressure generated in the ejector E by operating the circulation pump P simultaneously with the start of the addition of the concentrated sulfuric acid. (Mainly hydrogen fluoride) was absorbed in the absorption liquid (water: 30 kg) and recovered in the recovery storage tank T. After 2 hours of 1 batch, the remaining gypsum in the vertical reaction vessel R is extracted from the powder discharge port 1z at the bottom of the vessel R, and the reaction vessel R is emptied to prepare for the next (next batch). went.

<フッ化水素濃縮工程>
上記フッ化カルシウムの投入−硫酸の投入−フッ化水素の回収の1サイクル(1バッチ)を3回繰り返し、フッ化水素の濃度が56重量%の再生フッ化水素酸(水溶液)を得た。
<Hydrogen fluoride concentration process>
One cycle (one batch) of charging the calcium fluoride, charging the sulfuric acid, and recovering the hydrogen fluoride was repeated three times to obtain a regenerated hydrofluoric acid (aqueous solution) having a hydrogen fluoride concentration of 56% by weight.

なお、フッ化水素の濃度は、1バッチ目終了時が35.5重量%、、2バッチ目終了時点で48.8重量%であった。上記3バッチ目で得られた、濃度が56重量%(製品出荷基準:55重量%以上)のフッ化水素酸は、工業的に充分、再使用に供することのできるものである。また、縦型反応容器R下部から抜き出した石膏を分析(蛍光エックス線分析)したところ、フッ素は残留しておらず、その97重量%が工業的に利用可能な無水石膏であることがわかった。ちなみに、上記再生された濃度56重量%のフッ化水素酸を、ガラスのエッチングに利用してみたが、問題なく使用することができた。   The concentration of hydrogen fluoride was 35.5% by weight at the end of the first batch and 48.8% by weight at the end of the second batch. The hydrofluoric acid having a concentration of 56% by weight (product shipment standard: 55% by weight or more) obtained in the third batch is industrially sufficient and can be reused. Further, when the gypsum extracted from the lower part of the vertical reaction vessel R was analyzed (fluorescence X-ray analysis), it was found that no fluorine remained and 97% by weight of the gypsum was industrially usable anhydrous gypsum. Incidentally, the regenerated hydrofluoric acid having a concentration of 56% by weight was used for etching glass, but it could be used without any problem.

[実施例2]
<原料:回収フッ化カルシウム>
フッ素を含む化合物の焼却(処分)工程等において、排出されたフッ化水素を含む排液に、水酸化カルシウムを添加して、遠心脱水・圧縮により、含水率33重量%の軟らかい固形物を得た。そして、それを加熱乾燥して粉砕することにより、含水率5重量%の回収フッ化カルシウム(フッ化カルシウムが二次凝集した粒状:平均粒径10.7μm,粒度分布1〜100μm)を得た。なお、上記回収フッ化カルシウム(水分を除く固形分)の構成成分は、フッ化カルシウム94重量%,硫酸カルシウム1重量%,酸化ケイ素1重量%,その他灰分4重量%であった。また、上記回収フッ化カルシウムの粒径(分布)および含水率(水分率)は、先に述べたとおり、JIS M 8100「粉塊混合物−サンプリング方法通則」およびJIS K 1468−1「ふっ化水素酸用ほたる石分析方法」により測定したものである。
[Example 2]
<Raw material: recovered calcium fluoride>
In the incineration (disposal) process of fluorine-containing compounds, calcium hydroxide is added to the drained liquid containing hydrogen fluoride, and a soft solid with a moisture content of 33% by weight is obtained by centrifugal dehydration and compression. It was. Then, it was dried by heating and pulverized to obtain recovered calcium fluoride having a water content of 5% by weight (particles in which calcium fluoride was secondarily aggregated: average particle size 10.7 μm, particle size distribution 1 to 100 μm). . The components of the recovered calcium fluoride (solid content excluding water) were 94% by weight of calcium fluoride, 1% by weight of calcium sulfate, 1% by weight of silicon oxide, and 4% by weight of other ash. The particle diameter (distribution) and water content (moisture content) of the recovered calcium fluoride are, as described above, JIS M 8100 “Powder mixture-General sampling method” and JIS K 1468-1 “Hydrogen fluoride”. It is measured by “Analysis method for acid fluorite”.

<フッ化水素分離工程>
上記の回収フッ化カルシウム(含水率5重量%)100kgを、縦型反応容器R(図1参照)に投入し、容器Rを取り巻くヒートジャケット3に110℃に加温したオイルを循環させて、準備した。ついで、撹拌手段2を作動させて回収フッ化カルシウム(粉体)を撹拌しながら、投入されたフッ化カルシウム(ネット89.3kg)に対して規定量(モル当量)の濃硫酸を、30分かけて一定流量でゆっくりと縦型反応容器R内に投入(添加)した。なお、撹拌は濃硫酸の投入終了後も継続され、最終的な撹拌時間は、フッ化水素ガスの発生が終了するまで、濃硫酸の投入開始から2時間にわたって行われた(1バッチ=2時間)。
<Hydrogen fluoride separation process>
100 kg of the recovered calcium fluoride (water content 5% by weight) is put into a vertical reaction vessel R (see FIG. 1), and oil heated to 110 ° C. is circulated through the heat jacket 3 surrounding the vessel R, Got ready. Next, while stirring the recovered calcium fluoride (powder) by operating the stirring means 2, a specified amount (molar equivalent) of concentrated sulfuric acid is added to the charged calcium fluoride (net 89.3 kg) for 30 minutes. Then, it was slowly charged (added) into the vertical reaction vessel R at a constant flow rate. Stirring was continued after completion of the addition of concentrated sulfuric acid, and the final stirring time was 2 hours from the start of the addition of concentrated sulfuric acid until the generation of hydrogen fluoride gas was completed (1 batch = 2 hours). ).

<フッ化水素回収工程>
上記濃硫酸の投入開始と同時に循環ポンプPを作動させ、エゼクタEで発生した負圧を利用して、上記1バッチの稼働時間(2時間)全体にわたって、縦型反応容器R内で発生したガス(主にフッ化水素)を吸収液(水:30kg)に吸収させ、回収貯槽Tに回収した。なお、1バッチ2時間の終了後、縦型反応容器R内に残余の石膏を、容器R下部の粉体排出口1zから抜き出して反応容器R内を空にし、次回(次バッチ)の準備を行った。
<Hydrogen fluoride recovery process>
The gas generated in the vertical reaction vessel R over the entire operation time (2 hours) of the one batch using the negative pressure generated in the ejector E by operating the circulation pump P simultaneously with the start of the addition of the concentrated sulfuric acid. (Mainly hydrogen fluoride) was absorbed in the absorption liquid (water: 30 kg) and recovered in the recovery storage tank T. After 2 hours of 1 batch, the remaining gypsum in the vertical reaction vessel R is extracted from the powder discharge port 1z at the bottom of the vessel R, and the reaction vessel R is emptied to prepare for the next (next batch). went.

<フッ化水素濃縮工程>
上記フッ化カルシウムの投入−硫酸の投入−フッ化水素の回収の1サイクル(1バッチ)を3回繰り返し、フッ化水素の濃度が64.8重量%の再生フッ化水素酸(水溶液)を得た。
<Hydrogen fluoride concentration process>
One cycle (1 batch) of the above calcium fluoride input, sulfuric acid input and hydrogen fluoride recovery was repeated three times to obtain regenerated hydrofluoric acid (aqueous solution) having a hydrogen fluoride concentration of 64.8% by weight. It was.

なお、フッ化水素の濃度は、1バッチ目終了時が41.4重量%、、2バッチ目終了時点で56.8重量%であった。上記3バッチ目で得られた、濃度が64.8重量%(製品出荷基準:55重量%以上)のフッ化水素酸は、工業的に充分、再使用に供することのできるものである。また、縦型反応容器R下部から抜き出した石膏を分析(蛍光エックス線分析)したところ、フッ素は残留しておらず、その97重量%が工業的に利用可能な無水石膏であることがわかった。ちなみに、上記再生された濃度64.8重量%のフッ化水素酸も、ガラスのエッチング加工に問題なく使用することができた。   The concentration of hydrogen fluoride was 41.4% by weight at the end of the first batch and 56.8% by weight at the end of the second batch. The hydrofluoric acid having a concentration of 64.8% by weight (product shipment standard: 55% by weight or more) obtained in the third batch is industrially sufficient and can be reused. Further, when the gypsum extracted from the lower part of the vertical reaction vessel R was analyzed (fluorescence X-ray analysis), it was found that no fluorine remained and 97% by weight of the gypsum was industrially usable anhydrous gypsum. Incidentally, the regenerated hydrofluoric acid having a concentration of 64.8% by weight could also be used for glass etching without problems.

本発明のフッ化水素の分離回収方法およびフッ化水素の分離回収装置によれば、安全にかつメンテナンスフリーで、種々の工程から排出されるフッ化カルシウムから、フッ化水素を効率よく回収することができる。したがって、フッ素を含む排液,廃棄物を排出する工程や工場に併設することにより、持続可能な低ランニングコストで、フッ化水素のリサイクルシステムを実用化できる。   According to the hydrogen fluoride separation and recovery method and the hydrogen fluoride separation and recovery apparatus of the present invention, hydrogen fluoride can be efficiently recovered from calcium fluoride discharged from various processes in a safe and maintenance-free manner. Can do. Therefore, a hydrogen fluoride recycling system can be put to practical use at a sustainable low running cost by adding to a process or factory for discharging waste liquid and waste containing fluorine.

2 撹拌手段
2a 撹拌羽根
E エゼクタ
P ポンプ
R 縦型反応容器
T 回収貯槽
2 Stirring means 2a Stirring blade E Ejector P Pump R Vertical reaction vessel T Collection storage tank

Claims (8)

筒状の反応容器と、上記反応容器内の粉体を上下に撹拌する撹拌手段と、ガスを吸収するための吸収液を貯留する回収貯槽と、エゼクタとこれに負圧発生用の流体を供給するポンプとからなるガス吸引手段と、を備え、上記反応容器が、発生するガスを封じ込めることのできる密閉式の縦型反応容器であり、この縦型反応容器内にフッ化カルシウム系の原料を充填し、硫酸を添加しながらこれらを撹拌手段の撹拌羽根で上下に撹拌して、上記フッ化カルシウム系の原料からフッ素成分をフッ化水素系ガスとして分離するガス分離工程と、上記回収貯槽にフッ化水素系ガスを吸収する水系の吸収液を貯留するとともに、この水系吸収液を、ポンプを用いて上記エゼクタを経由して回収貯槽に戻るように循環させ、このエゼクタにガス吸引用の負圧を発生させる工程と、上記エゼクタの負圧を利用して、上記縦型反応容器内で発生したフッ化水素系ガスを吸い出し、このガスを上記エゼクタ内で水系吸収液に混合して、この混合液を上記回収貯槽に回収するガス回収工程と、上記ポンプを用いたエゼクタ経由の水系吸収液の循環と縦型反応容器で発生するフッ化水素系ガスの回収とを、上記回収貯槽内の水系吸収液に吸収されたフッ化水素系成分の濃度が所定の濃度に達するまで継続して行うフッ化水素濃縮工程と、を備えることを特徴とするフッ化水素の分離回収方法。   A cylindrical reaction vessel, a stirring means for stirring the powder in the reaction vessel up and down, a recovery storage tank for storing an absorbing liquid for absorbing gas, an ejector, and a fluid for generating negative pressure are supplied to this And a gas suction means comprising a pump that performs the above operation, and the reaction vessel is a sealed vertical reaction vessel that can contain the generated gas, and a calcium fluoride-based raw material is placed in the vertical reaction vessel. A gas separation step in which the fluorine component is separated as a hydrogen fluoride gas from the calcium fluoride raw material by stirring up and down with a stirring blade of a stirring means while adding and adding sulfuric acid, and in the recovery storage tank Aqueous absorption liquid that absorbs hydrogen fluoride gas is stored, and this aqueous absorption liquid is circulated back to the recovery storage tank via the ejector using a pump, and the negative pressure for gas suction is returned to the ejector. And using the negative pressure of the ejector, the hydrogen fluoride gas generated in the vertical reaction vessel is sucked out, and the gas is mixed with the aqueous absorbent in the ejector. A gas recovery step for recovering the liquid in the recovery storage tank, circulation of the water-based absorbent via the ejector using the pump, and recovery of the hydrogen fluoride-based gas generated in the vertical reaction vessel. And a hydrogen fluoride concentration step that is continuously performed until the concentration of the hydrogen fluoride-based component absorbed in the absorption liquid reaches a predetermined concentration. 上記縦型反応容器の内面が、上部から下部に向かって漸次縮径する逆円錐形状になっているとともに、上記撹拌手段の撹拌羽根が、上記逆円錐形状の内周面に沿って歳差運動するようになっている請求項1記載のフッ化水素の分離回収方法。   The inner surface of the vertical reaction vessel has an inverted cone shape that gradually decreases in diameter from the upper part toward the lower part, and the stirring blade of the stirring means precesses along the inner circumferential surface of the inverted cone shape. The method for separating and recovering hydrogen fluoride according to claim 1. 少なくとも上記フッ化水素と接触する、縦型反応容器の内面,回収貯槽の内面,ガス吸引手段における水系吸収液との接触面、および、フッ化水素系ガスが通過する配管の内面が、耐腐食性を有する樹脂ライニングまたは樹脂皮膜で覆われている請求項1または2記載のフッ化水素の分離回収方法。   At least the inner surface of the vertical reaction vessel in contact with the hydrogen fluoride, the inner surface of the recovery storage tank, the contact surface with the water-based absorbent in the gas suction means, and the inner surface of the pipe through which the hydrogen fluoride-based gas passes are corrosion resistant. The method for separating and recovering hydrogen fluoride according to claim 1 or 2, wherein the method is covered with a resin lining or resin film having a property. 上記回収貯槽とガス吸引手段とからなるガス回収ユニットを2組以上備え、上記縦型反応容器で発生するフッ化水素系ガスの種類と濃度の変化に対応して、この縦型反応容器に接続するガス回収ユニットを切り替えて回収するようになっている請求項1〜3のいずれか一項に記載のフッ化水素の分離回収方法。   Two or more gas recovery units consisting of the recovery storage tank and gas suction means are provided and connected to the vertical reaction vessel according to changes in the type and concentration of the hydrogen fluoride gas generated in the vertical reaction vessel. The method for separating and recovering hydrogen fluoride according to any one of claims 1 to 3, wherein the gas recovery unit is switched for recovery. 上部にフッ化水素系ガスの吸出口を有するとともに底部に反応済みの粉体の排出口を有する密閉式の縦型反応容器と、上記縦型反応容器内のフッ化カルシウム系の原料を上下に撹拌する撹拌手段と、上記フッ化水素系ガスを吸収するための水系の吸収液を貯留する回収貯槽と、上記縦型反応容器と回収貯槽との間に配設されたエゼクタと、上記回収貯槽内の水系吸収液を上記エゼクタを経由させて貯槽内に戻す吸収液循環流路と、上記回収貯槽内の水系吸収液を負圧発生用の流体としてエゼクタに圧送するポンプと、上記縦型反応容器の吸出口と上記エゼクタとの間に設けられ、縦型反応容器内で発生するフッ化水素系ガスを吸い出すガス回収流路と、を備えることを特徴とするフッ化水素の分離回収装置。   A closed vertical reaction vessel having a suction port for hydrogen fluoride gas at the top and a discharge port for reacted powder at the bottom, and a calcium fluoride material in the vertical reaction vessel up and down Stirring means for stirring, a recovery storage tank for storing an aqueous absorbing liquid for absorbing the hydrogen fluoride gas, an ejector disposed between the vertical reaction container and the recovery storage tank, and the recovery storage tank An absorption liquid circulation channel for returning the aqueous absorbent in the storage tank through the ejector, a pump for pumping the aqueous absorbent in the recovery storage tank to the ejector as a negative pressure generating fluid, and the vertical reaction A hydrogen fluoride separation and recovery device, comprising: a gas recovery channel that is provided between a suction port of the container and the ejector and sucks out a hydrogen fluoride-based gas generated in the vertical reaction container. 上記縦型反応容器の内面が、上部から下部に向かって漸次縮径する逆円錐形状になっており、上記撹拌手段の撹拌羽根が、上記逆円錐形状の内周面に沿って歳差運動するようになっている請求項5記載のフッ化水素の分離回収装置。   The inner surface of the vertical reaction vessel has an inverted conical shape that gradually decreases in diameter from the upper part to the lower part, and the stirring blades of the stirring means precess along the inner peripheral surface of the inverted conical shape. The apparatus for separating and recovering hydrogen fluoride according to claim 5. 少なくとも上記フッ化水素と接触する、縦型反応容器の内面,回収貯槽の内面,エゼクタ内部における流体との接触面、および、吸収液循環流路とガス回収流路の配管内面が、耐腐食性を有する樹脂ライニングまたは樹脂皮膜で覆われている請求項5または6記載のフッ化水素の分離回収装置。   At least the inner surface of the vertical reaction vessel, the inner surface of the recovery tank, the contact surface with the fluid inside the ejector, and the inner surfaces of the absorption liquid circulation channel and the gas recovery channel, which are in contact with the above hydrogen fluoride, are corrosion resistant. The hydrogen fluoride separation and recovery device according to claim 5 or 6, wherein the hydrogen fluoride separation and recovery device is covered with a resin lining or a resin film. 上記回収貯槽およびエゼクタ,吸収液循環流路,ポンプからなるガス回収ユニットを2組以上備え、上記ガス回収流路のユニット側終端に、上記縦型反応容器で発生するフッ化水素系ガスの種類と濃度の変化に対応してこのガス回収流路に接続されるガス回収ユニットを切り替える回収ユニット切り替え手段が配設されている請求項5〜7のいずれか一項に記載のフッ化水素の分離回収装置。   Two or more gas recovery units comprising the recovery storage tank and ejector, absorption liquid circulation channel, and pump are provided, and the type of hydrogen fluoride gas generated in the vertical reaction vessel at the unit side end of the gas recovery channel Separation of hydrogen fluoride according to any one of claims 5 to 7, further comprising recovery unit switching means for switching a gas recovery unit connected to the gas recovery flow path in response to a change in concentration. Recovery device.
JP2015042070A 2015-03-04 2015-03-04 Separation and recovery method of hydrogen fluoride and separation and recovery apparatus of hydrogen fluoride Pending JP2016160153A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015042070A JP2016160153A (en) 2015-03-04 2015-03-04 Separation and recovery method of hydrogen fluoride and separation and recovery apparatus of hydrogen fluoride
TW104124198A TW201632251A (en) 2015-03-04 2015-07-27 Separation and recovery method for hydrogen fluoride and separation and recovery apparatus for hydrogen fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015042070A JP2016160153A (en) 2015-03-04 2015-03-04 Separation and recovery method of hydrogen fluoride and separation and recovery apparatus of hydrogen fluoride

Publications (1)

Publication Number Publication Date
JP2016160153A true JP2016160153A (en) 2016-09-05

Family

ID=56846391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015042070A Pending JP2016160153A (en) 2015-03-04 2015-03-04 Separation and recovery method of hydrogen fluoride and separation and recovery apparatus of hydrogen fluoride

Country Status (2)

Country Link
JP (1) JP2016160153A (en)
TW (1) TW201632251A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523220A (en) * 2019-09-29 2019-12-03 武汉青江化工黄冈有限公司 A kind of reagent of sulfuric acid production removing SO2Device and method
CN110935289A (en) * 2019-12-04 2020-03-31 宁夏盈氟金和科技有限公司 Sealed gas collection absorption system of hydrogen fluoride reacting furnace head and tail
CN113880048A (en) * 2021-09-30 2022-01-04 中化蓝天霍尼韦尔新材料有限公司 Efficient hydrofluoric acid recovery system and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733103B (en) * 2019-04-26 2021-07-11 國立成功大學 Low-temperature wet process for manufacturing hydrofluoric acid
CN111592144A (en) * 2020-05-29 2020-08-28 盛隆资源再生(无锡)有限公司 Treatment method of waste acid in photovoltaic industry
CN113334607B (en) * 2021-06-09 2023-08-29 海德里希(厦门)真空机械制造有限公司 Multicomponent mixing device for wind power blade production and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132704A (en) * 1985-12-05 1987-06-16 Hitachi Zosen Corp Recovery of hydrogen fluoride in deashed coal production process
JP2773882B2 (en) * 1989-02-13 1998-07-09 ホソカワミクロン株式会社 Drainage device
JP2002148857A (en) * 2000-11-06 2002-05-22 Nippon Zeon Co Ltd Method of manufacturing toner
JP4371443B2 (en) * 1997-11-10 2009-11-25 ホソカワミクロン株式会社 Mixer screw
JP2011519335A (en) * 2008-04-22 2011-07-07 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Production of hydrogen fluoride from waste containing fluorite or calcium fluoride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132704A (en) * 1985-12-05 1987-06-16 Hitachi Zosen Corp Recovery of hydrogen fluoride in deashed coal production process
JP2773882B2 (en) * 1989-02-13 1998-07-09 ホソカワミクロン株式会社 Drainage device
JP4371443B2 (en) * 1997-11-10 2009-11-25 ホソカワミクロン株式会社 Mixer screw
JP2002148857A (en) * 2000-11-06 2002-05-22 Nippon Zeon Co Ltd Method of manufacturing toner
JP2011519335A (en) * 2008-04-22 2011-07-07 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Production of hydrogen fluoride from waste containing fluorite or calcium fluoride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523220A (en) * 2019-09-29 2019-12-03 武汉青江化工黄冈有限公司 A kind of reagent of sulfuric acid production removing SO2Device and method
CN110935289A (en) * 2019-12-04 2020-03-31 宁夏盈氟金和科技有限公司 Sealed gas collection absorption system of hydrogen fluoride reacting furnace head and tail
CN110935289B (en) * 2019-12-04 2022-02-11 宁夏盈氟金和科技有限公司 Sealed gas collection absorption system of hydrogen fluoride reacting furnace head and tail
CN113880048A (en) * 2021-09-30 2022-01-04 中化蓝天霍尼韦尔新材料有限公司 Efficient hydrofluoric acid recovery system and method

Also Published As

Publication number Publication date
TW201632251A (en) 2016-09-16

Similar Documents

Publication Publication Date Title
JP2016160153A (en) Separation and recovery method of hydrogen fluoride and separation and recovery apparatus of hydrogen fluoride
WO2007040185A1 (en) Process for production of silicon tetrafluoride, and apparatus for the process
CN104986899B (en) High-concentration ammonia nitrogenous wastewater ammonia aeration and recycling treatment system and processing method
CN105461571B (en) A kind of cleaning procedure for being continuously synthesizing to 2,6 dichloro paranitroanilinum
CN103910333A (en) Method for recovering hydrogen fluoride in hydrofluorination process tail gas
CN110280095A (en) A kind of method for removing hydrargyrum of flue gas during smelting
CN104906920B (en) System for recycling fluorine and silicon resources from wet-process phosphoric acid tail gas and recovery method thereof
CN103342435A (en) Comprehensive utilization device of acetylene purification waste sodium hypochlorite
CN204275790U (en) The treating apparatus of titanium tetrachloride production tail gas recycle hydrochloric acid
CN210993671U (en) Device for recovering nitric acid from waste gas containing nitrogen oxide
CN103866132B (en) A kind of technique that reclaims mercury from non-ferrous metal metallurgy flue gas
US20070107748A1 (en) Vacuum cavitational streaming
CN107445379A (en) A kind of device and method of acid waste water evaporation emission reduction
CN210905615U (en) Anhydrous hydrofluoric acid tail gas treatment device
CN102489034B (en) Respective recovery method for rare earth concentrate multi-stage baking tail gases, and device thereof
CN210131397U (en) Ammonia water gas-liquid separation system
CN105461132B (en) A kind of wastewater treatment method and system
CN106925071A (en) Hydrofluorination process tail gas processing method
CN104724776B (en) Devices and methods therefor in pressure evaporating indirect steam incorporation press water
KR101382682B1 (en) Apparatus and method for refining silicon
JP2000218279A (en) Method for removing calcium from water concentrated in calcium bicarbonate
CN102294170B (en) Titanium high temperature electrolytic furnace special-purpose tail gas processing system
CN101862586A (en) System for industrial waste gas treatment and salt regeneration
CN204275769U (en) A kind for the treatment of apparatus of tower titanium tetrachloride production tail gas recycle hydrochloric acid
CN106830480A (en) Etch the processing system and method for high-concentration waste liquid recycling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170410

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170410

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180130