JP2016159865A - Solar battery paddle controller - Google Patents

Solar battery paddle controller Download PDF

Info

Publication number
JP2016159865A
JP2016159865A JP2015043104A JP2015043104A JP2016159865A JP 2016159865 A JP2016159865 A JP 2016159865A JP 2015043104 A JP2015043104 A JP 2015043104A JP 2015043104 A JP2015043104 A JP 2015043104A JP 2016159865 A JP2016159865 A JP 2016159865A
Authority
JP
Japan
Prior art keywords
paddle
satellite
solar cell
orbit
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015043104A
Other languages
Japanese (ja)
Other versions
JP6323367B2 (en
Inventor
直樹 ▲高▼塚
直樹 ▲高▼塚
Naoki Takatsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015043104A priority Critical patent/JP6323367B2/en
Publication of JP2016159865A publication Critical patent/JP2016159865A/en
Application granted granted Critical
Publication of JP6323367B2 publication Critical patent/JP6323367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the disadvantage of an artificial satellite, specifically, because of the large possibility of a solar battery paddle receiving atmospheric pressure resistance, the effect of orbit altitude reduction is large on the satellite having a large solar battery paddle, and many propellants are necessary to hold the orbit altitude, causing a satellite weight increase.SOLUTION: When a power balance is established within time less than an orbit half round, a solar battery paddle is subjected to tracking control/hold control at a predetermined orbit position establishing the power balance, and coupled by through reverse rotation. When it is necessary to generate power equal to or more than the orbit half round, and when it is not necessary to always generate power by setting the solar battery paddle oppositely to the sun during sunshine, the solar battery paddle is subjected to tracking control/hold control at an orbit position according to necessary power generation time, and coupled by through forward rotation control. Other than this, tracking control/hold control is switched at a boundary between sunshine and shade of the earth to execute through forward rotation control. In the hold control, the solar battery paddle is controlled at a rotational angle where the effect of atmospheric pressure is smallest.SELECTED DRAWING: Figure 3

Description

この発明は、人工衛星における太陽電池パドルの回転を制御する太陽電池パドル制御装置に関する。   The present invention relates to a solar cell paddle control device that controls the rotation of a solar cell paddle in an artificial satellite.

人工衛星に搭載された太陽電池パドルは、太陽光のエネルギを電気エネルギに変換して、衛星システムに電力を供給する。太陽電池パドルは、複数の太陽電池セルを取り付けた構体パネルと、構体パネルを一軸駆動回転可能に衛星本体に取付ける駆動機構から構成される。   The solar battery paddle mounted on the artificial satellite converts the energy of sunlight into electric energy and supplies electric power to the satellite system. The solar battery paddle is composed of a structure panel to which a plurality of solar cells are attached, and a drive mechanism for attaching the structure panel to the satellite body so as to be capable of uniaxial drive rotation.

地球を観測する人工衛星は、光学観測機器やアンテナ等の観測センサを常に地球に向けておく必要がある。一方、太陽電池パドルは電力を発生するため太陽の方向を向けておく必要があり、駆動機構は太陽電池パドルを所定の回転軸回りに回転する。これにより太陽電池パドルは、受光面が太陽に正対するよう指向し、所要電力を確保することができる。通常の人工衛星は、地球の日照日陰領域に関わらずパドルを一定回転させ、太陽を常に追尾している。   An artificial satellite for observing the earth needs to always point an observation sensor such as an optical observation device or an antenna toward the earth. On the other hand, the solar cell paddle needs to be directed toward the sun in order to generate electric power, and the drive mechanism rotates the solar cell paddle around a predetermined rotation axis. Thus, the solar cell paddle can be oriented so that the light receiving surface faces the sun, and the required power can be secured. Ordinary artificial satellites always keep track of the sun by rotating the paddle at a constant speed regardless of the shaded area of the earth.

また、太陽電池パドルは、宇宙環境下における放射線および太陽電池セル面に付着するコンタミネーションにより、人工衛星のミッション期間を通じてその電力発生能力に経年劣化を生じる。このため太陽電池パドルの経年劣化を考慮して、ミッション末期の最小発生電力が人工衛星の最大消費電力以上となるように設計されている。   Also, the solar battery paddle deteriorates over time in its power generation capability throughout the mission period of the satellite due to radiation in the space environment and contamination that adheres to the solar cell surface. For this reason, in consideration of the aged deterioration of the solar cell paddle, the minimum generated power at the end of the mission is designed to be equal to or greater than the maximum power consumption of the artificial satellite.

このような人工衛星は、ミッション初期には太陽電池セルの劣化度合いが小さく、また日照中常に太陽電池パドルが太陽を指向している。このため太陽電池パドルの発生電力に余剰電力が発生している。以上のことから従来の人工衛星は、余剰電力を散逸させるためシャント機構と、発生電力および消費電力の収支を管理する電力制御器が設けられている。   In such an artificial satellite, the degree of deterioration of the solar battery cell is small at the beginning of the mission, and the solar battery paddle is always directed to the sun during sunshine. For this reason, surplus power is generated in the generated power of the solar cell paddle. From the above, conventional artificial satellites are provided with a shunt mechanism for dissipating surplus power and a power controller for managing the balance of generated power and power consumption.

上記に関連して特許文献1においては、シャント電流を検出し太陽電池パドルのパドル回転角を必要に応じて太陽を正対する角度から逸らすことで、パドル発生電力を抑制制御している。   In relation to the above, in Patent Literature 1, the shunt current is detected, and the paddle rotation angle of the solar cell paddle is deviated from the angle facing the sun as necessary, thereby suppressing the paddle generated power.

特開昭60−191900号公報JP 60-191900 A

従来の人工衛星は、太陽電池パドルと太陽が正対するようにパドルを追尾制御しているため常に発生可能な最大となる電力が生じる。またミッション末期の最小発生電力が人工衛星の最大消費電力以上となるように設計されている。このことから、結果として多くの余剰電力が発生し、シャント機構によりその電力が失われている。   Since the conventional artificial satellite performs tracking control of the paddle so that the solar battery paddle and the sun face each other, the maximum electric power that can always be generated is generated. It is also designed so that the minimum generated power at the end of the mission is greater than the maximum power consumption of the satellite. As a result, a lot of surplus power is generated, and the power is lost by the shunt mechanism.

また人工衛星は、宇宙環境下に僅かに存在する大気の抵抗を受けるため、人工衛星の軌道高度が低下する。大気抵抗は人工衛星の進行方向に射影した面積に比例し、太陽電池パドルが人工衛星全体に占める射影面積は大きい。それに伴い太陽電池パドルが大気抵抗を受ける割合も大きいため、大型の太陽電池パドルを搭載した人工衛星は軌道高度低下の影響が大きく、軌道高度を保持するために多くの推進薬を搭載する必要がある。このため人工衛星の重量増加の一因となる問題がある。   In addition, since the artificial satellite receives the resistance of the atmosphere that exists slightly in the space environment, the orbital altitude of the artificial satellite decreases. Atmospheric resistance is proportional to the area projected in the direction of travel of the satellite, and the projected area occupied by the solar cell paddle over the entire satellite is large. Along with this, the solar cell paddle is also subject to atmospheric resistance, so satellites equipped with large solar cell paddles are greatly affected by orbital altitude reduction, and it is necessary to install many propellants to maintain the orbital altitude. is there. Therefore, there is a problem that contributes to an increase in the weight of the artificial satellite.

この発明は係る課題を解決するために成されたものであって、太陽電池パドルによる人工衛星の運用に必要な発生電力を損なうことなく、太陽電池パドルが受ける大気抵抗の影響を低減することを目的とする。   The present invention has been made to solve the above-mentioned problems, and it is intended to reduce the influence of atmospheric resistance on a solar cell paddle without impairing the generated power necessary for the operation of the artificial satellite by the solar cell paddle. Objective.

この発明による太陽電池パドル制御装置は、衛星本体と、衛星本体に取り付けられた太陽電池パドルと、太陽電池パドルを一軸回転させるための駆動装置と、衛星本体に対する太陽電池パドルの回転角指令値を生成し、衛星本体に対する太陽電池パドルの回転角を算出し、当該回転角指令値に回転角が追従するように駆動装置を制御する制御部と、を備え、上記制御部は、太陽電池パドルによる電力の供給が不要となる場合は、太陽電池パドルの受ける大気抵抗を軽減する回転角へ制御し、さらに軌道半周回未満の充電で衛星全体の電力収支が成立するか否かを判定し、衛星全体の電力収支が成立する場合は必要な充電時間の間、太陽電池パドルの受光面が太陽と正対するように大気抵抗を軽減する回転角から太陽電池パドルを逆回転させる、または衛星全体の電力収支が成立しない場合は太陽電池パドルを順回転させるものである。   A solar cell paddle control device according to the present invention includes a satellite body, a solar cell paddle attached to the satellite body, a driving device for rotating the solar cell paddle uniaxially, and a rotation angle command value of the solar cell paddle for the satellite body. A control unit that generates and calculates a rotation angle of the solar cell paddle relative to the satellite body, and controls the driving device so that the rotation angle follows the rotation angle command value, and the control unit is based on the solar cell paddle When power supply is no longer necessary, control the rotation angle to reduce the atmospheric resistance received by the solar battery paddle, determine whether the power balance of the entire satellite is satisfied with charging less than half an orbit, When the overall power balance is established, the solar cell paddle is rotated backward from the rotation angle that reduces atmospheric resistance so that the light receiving surface of the solar cell paddle faces the sun during the required charging time. Or if the total power balance satellite is not satisfied is intended to sequentially rotate the solar arrays.

この発明による太陽電池パドル制御装置は、大気抵抗が低減するように太陽電池パドルの回転角を制御することにより、搭載推薬を軽減することができるとともに、人工衛星全体の質量を軽減することが可能となる。   The solar cell paddle control device according to the present invention can reduce the on-board propellant by controlling the rotation angle of the solar cell paddle so that the atmospheric resistance is reduced, and can reduce the mass of the entire satellite. It becomes possible.

実施の形態1による人工衛星の構成を示す斜視図である。1 is a perspective view showing a configuration of an artificial satellite according to Embodiment 1. FIG. 実施の形態1による従来の人工衛星のパドル制御の運用形態を示す図である。It is a figure which shows the operation | use form of the conventional paddle control of the artificial satellite by Embodiment 1. FIG. 実施の形態1による大気抵抗を低減する太陽電池パドル制御装置の構成図である。1 is a configuration diagram of a solar cell paddle control device that reduces atmospheric resistance according to Embodiment 1. FIG. 実施の形態1による大気抵抗を低減するための太陽電池パドルの制御装置の処理フローを示す図である。FIG. 3 is a diagram showing a processing flow of a control device for a solar cell paddle for reducing atmospheric resistance according to the first embodiment. 実施の形態1による順回転の場合のパドル制御の運用形態を示す図である。FIG. 6 is a diagram illustrating an operation mode of paddle control in the case of forward rotation according to the first embodiment. 実施の形態1による逆回転の場合のパドル制御の運用形態を示す図である。FIG. 6 is a diagram showing an operational form of paddle control in the case of reverse rotation according to the first embodiment.

実施の形態1.
図1は、この発明に係る実施の形態1による人工衛星の構成を示す斜視図である。図において、人工衛星は、衛星本体1と、観測センサおよび通信アンテナ2と、太陽電池パドル3と、パドル駆動装置4と、シャント5を備えて構成される。観測センサおよび通信アンテナ2は、別体の観測センサと通信アンテナがそれぞれ衛星本体1に固定されて取り付けられている。また、人工衛星は進行方向7に向かって移動する。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing the configuration of an artificial satellite according to Embodiment 1 of the present invention. In the figure, the artificial satellite includes a satellite body 1, an observation sensor and communication antenna 2, a solar cell paddle 3, a paddle driving device 4, and a shunt 5. The observation sensor and the communication antenna 2 are attached to the satellite body 1 with separate observation sensors and communication antennas fixed thereto. The artificial satellite moves in the traveling direction 7.

太陽電池パドル3は、一軸周りに自在に回転するように、パドル駆動装置4を介して衛星本体1に支持されている。パドル駆動装置4は衛星本体1の内部に収納されている。また、太陽電池パドル3の片方の面は、電力を発生させる太陽電池セルが取り付けられている。太陽電池パドル3のパドル駆動装置4は、例えば回転軸が進行方向に対してキャントしたものであっても良い。また、衛星本体1に対して太陽電池パドルは片翼(1枚)でも両翼(2枚)でも良い。   The solar cell paddle 3 is supported by the satellite body 1 via the paddle drive device 4 so as to freely rotate around one axis. The paddle drive device 4 is housed inside the satellite body 1. Further, a solar battery cell for generating electric power is attached to one surface of the solar battery paddle 3. The paddle drive device 4 of the solar cell paddle 3 may be, for example, one whose rotating shaft is canted with respect to the traveling direction. Further, the solar cell paddle for the satellite body 1 may be one wing (one) or both wings (two).

ここで、理解を促進するために、比較例として従来の人工衛星のパドル制御を説明する。図2は、比較例として示す従来の人工衛星のパドル制御の運用形態を例示する図である。図2において、人工衛星は衛星本体1に取り付けた観測センサ2を地球100に向けている。人工衛星は、地球100を中心として衛星軌道面6を通る周回軌道に沿って、地球100を周回する。図2の例では、人工衛星は進行方向7に向かって移動する。また、太陽101に対して地球100の反対側にある軌道位置をA点と定義し、それを基準に進行方向7に向かって位相が90°進むごとにB点、C点、D点とする。   Here, in order to facilitate understanding, a conventional paddle control of an artificial satellite will be described as a comparative example. FIG. 2 is a diagram exemplifying an operation mode of paddle control of a conventional artificial satellite shown as a comparative example. In FIG. 2, the artificial satellite directs the observation sensor 2 attached to the satellite body 1 to the earth 100. The artificial satellite orbits the earth 100 along a circular orbit passing through the satellite orbit plane 6 around the earth 100. In the example of FIG. 2, the artificial satellite moves in the traveling direction 7. Further, an orbital position on the opposite side of the earth 100 with respect to the sun 101 is defined as point A, and points B, C, and D each time the phase advances by 90 ° in the traveling direction 7 with reference to that position. .

また、人工衛星がD点に位置するとき、太陽電池パドル3の受光面が太陽と正対するパドル回転角を0°と定義する。太陽電池パドル3の受光面が太陽と常に正対するようにパドルを回転させる向きを順回転とし、その反対を逆回転とする。   Further, when the artificial satellite is located at point D, the paddle rotation angle at which the light receiving surface of the solar cell paddle 3 faces the sun is defined as 0 °. The direction in which the paddle is rotated so that the light receiving surface of the solar cell paddle 3 always faces the sun is defined as forward rotation, and the opposite direction is defined as reverse rotation.

従来のパドル制御は、太陽電池パドルの受光面が太陽と常に正対するようにパドル制御が行われており、クロック・レートと呼ばれる軌道周回角速度にほぼ一致する角速度で太陽電池パドルが順回転するよう太陽追尾制御される。地球の日照日陰領域に関わらずパドルを回転させ、太陽を常に追尾している。   In the conventional paddle control, the paddle control is performed so that the light receiving surface of the solar cell paddle always faces the sun, and the solar cell paddle rotates forward at an angular velocity that approximately matches the orbital angular velocity called the clock rate. The sun tracking is controlled. Regardless of the shaded area of the earth, the paddle is rotated to keep track of the sun.

上記に加えて、従来のパドル制御には、一定の太陽電池パドルの回転角を保持するホールド制御、パドル駆動機構の出力可能な最大回転レートで太陽電池パドルを回転させるスルー制御が存在する。   In addition to the above, conventional paddle control includes hold control for maintaining a constant rotation angle of the solar battery paddle, and through control for rotating the solar battery paddle at the maximum rotation rate that can be output by the paddle drive mechanism.

従来のパドル制御において、太陽電池パドルが受ける大気抵抗に着目すると、人工衛星の進行方向に対して射影した面積に比例し、軌道位置D点とB点でパドル角0°と180°となり、太陽電池パドルが受ける大気抵抗が最大となる。一方、軌道位置A点とC点ではパドル角90°と270°となり、太陽電池パドルの進行方向に対して射影した面積が最小となり、大気抵抗も最小となる。   In the conventional paddle control, focusing on the atmospheric resistance received by the solar cell paddle, the paddle angles 0 ° and 180 ° at the orbital positions D and B are proportional to the area projected with respect to the traveling direction of the satellite. The atmospheric resistance experienced by the battery paddle is maximized. On the other hand, at the orbital positions A and C, the paddle angles are 90 ° and 270 °, respectively, and the area projected in the traveling direction of the solar cell paddle is minimized, and the atmospheric resistance is also minimized.

次に、実施の形態1による大気抵抗を低減した太陽電池パドル3の制御系の構成および動作について説明する。図3は、太陽電池パドル3の回転を制御する実施の形態1による太陽電池パドル制御装置の構成を示す図である。実施の形態1による太陽電池パドル制御装置は、計算機(制御部)10と、パドル駆動回路11から構成される。計算機10は、GPS受信機15と、恒星センサ16と、太陽モデル17と、電力制御器12に接続される。GPS受信機15と恒星センサ16と電力制御器12は、衛星本体1に取りつけられている。パドル駆動回路11はパドル駆動装置4の内部に設けられている。   Next, the configuration and operation of the control system of the solar cell paddle 3 with reduced atmospheric resistance according to the first embodiment will be described. FIG. 3 is a diagram showing a configuration of the solar cell paddle control apparatus according to the first embodiment that controls the rotation of the solar cell paddle 3. The solar cell paddle control apparatus according to Embodiment 1 includes a computer (control unit) 10 and a paddle drive circuit 11. The computer 10 is connected to a GPS receiver 15, a star sensor 16, a solar model 17, and a power controller 12. The GPS receiver 15, the star sensor 16, and the power controller 12 are attached to the satellite body 1. The paddle drive circuit 11 is provided inside the paddle drive device 4.

計算機10は、衛星本体1に搭載される各衛星機器から衛星イベント情報18を受ける。パドル駆動回路11は、太陽電池パドル3を回転させる。太陽電池パドル3は太陽電池セルで発生した電力を、シャント4を通過して衛星本体1に供給し、シャント4は余剰電力を散逸させる。電力制御器12は、人工衛星に搭載された各衛星機器における衛星負荷13と、バッテリ14に電力を供給する。シャント4は電力制御器12に接続される。衛星イベント情報18は、衛星に搭載される観測センサ2によるミッション観測イベント、ミッション観測データの伝送通信処理イベント、衛星本体1の姿勢マヌーバ等の各種イベントの発生情報を示している。   The computer 10 receives satellite event information 18 from each satellite device mounted on the satellite body 1. The paddle drive circuit 11 rotates the solar cell paddle 3. The solar battery paddle 3 supplies power generated in the solar battery cell to the satellite body 1 through the shunt 4, and the shunt 4 dissipates surplus power. The power controller 12 supplies power to the satellite load 13 and the battery 14 in each satellite device mounted on the artificial satellite. The shunt 4 is connected to the power controller 12. The satellite event information 18 indicates occurrence information of various events such as a mission observation event by the observation sensor 2 mounted on the satellite, a transmission communication processing event of mission observation data, and the attitude maneuver of the satellite body 1.

図3において、GPS受信機15はGPS信号を観測して人工衛星の軌道位置を計測し、恒星センサ16は衛星の姿勢角を計測し、太陽モデル17は衛星時刻より太陽方向を算出し、それら各種情報を計算機10に出力する。また、計算機10から出力された太陽電池パドル3のパドル角度指示値は、パドル駆動回路11に出力される。   In FIG. 3, the GPS receiver 15 observes the GPS signal and measures the orbit position of the artificial satellite. The star sensor 16 measures the attitude angle of the satellite. The solar model 17 calculates the sun direction from the satellite time. Various information is output to the computer 10. Further, the paddle angle instruction value of the solar battery paddle 3 output from the computer 10 is output to the paddle drive circuit 11.

パドル駆動回路11は、計算機10からのパドル角度指示値に基づいて、太陽電池パドル3が所定の回転角になるように制御する。太陽電池パドル3の太陽電池セルに太陽光が照射されると電力Psが発生し、発生した電力Psはシャント4から電力制御器12に供給される。電力制御器12は、シャント4を経由した電力Paを、計算機10、衛星本体1の衛星負荷13およびバッテリ14に供給する。電力制御器12は、衛星負荷13の負荷状態とバッテリ14の充放電状態を管理する。電力制御器12は、衛星負荷13により消費している電力Plとバッテリ14の充放電状況(満充電から現在の充電電力を差し引いた電力)と太陽電池パドル3で発生した電力をモニタする。電力制御器12は、バッテリ14の充放電状況に基づいてバッテリ14の充電に必要な電力を求め、太陽電池パドル3で発生した電力Psから衛星負荷13の電力Plとバッテリ14の充電に必要な電力Pbを引いた人工衛星の余剰電力(Ps−Pl−Pb)を算出する。ここでPa=P1+Pbである。電力制御器12は、算出した人工衛星の余剰電力に基づいて、シャント4にて余剰電力を散逸させるようにシャント4に指令を送り、シャント4が電力Psh(=Ps−Pa)を消費して、人工衛星の余剰電力を制御する。さらに計算機10は、電力制御器12からバッテリ14の充放電状況と、観測機器の使用有無、ミッション観測データの通信等の衛星イベント情報18を入力する機能が備えられている。   The paddle drive circuit 11 controls the solar cell paddle 3 to have a predetermined rotation angle based on the paddle angle instruction value from the computer 10. When sunlight is applied to the solar cells of the solar battery paddle 3, power Ps is generated, and the generated power Ps is supplied from the shunt 4 to the power controller 12. The power controller 12 supplies the power Pa via the shunt 4 to the computer 10, the satellite load 13 of the satellite body 1, and the battery 14. The power controller 12 manages the load state of the satellite load 13 and the charge / discharge state of the battery 14. The power controller 12 monitors the power Pl consumed by the satellite load 13, the charge / discharge status of the battery 14 (power obtained by subtracting the current charge power from full charge), and the power generated in the solar cell paddle 3. The power controller 12 obtains the power necessary for charging the battery 14 based on the charge / discharge status of the battery 14, and is necessary for charging the power Pl of the satellite load 13 and the battery 14 from the power Ps generated in the solar cell paddle 3. The surplus power (Ps−Pl−Pb) of the artificial satellite minus the power Pb is calculated. Here, Pa = P1 + Pb. The power controller 12 sends a command to the shunt 4 to dissipate the surplus power in the shunt 4 based on the calculated surplus power of the artificial satellite, and the shunt 4 consumes the power Psh (= Ps−Pa). Control the surplus power of the artificial satellite. Further, the computer 10 is provided with a function of inputting the satellite event information 18 such as the charge / discharge status of the battery 14, the presence / absence of observation equipment, and communication of mission observation data from the power controller 12.

図4は、大気抵抗を低減するための太陽電池パドル3の制御アルゴリズムフローを示す。判定処理30は、上記計算機10において電力制御器12からバッテリ14の充放電状況と、観測機器の使用有無、ミッションデータの通信等の衛星イベント情報18から、特定の軌道位置を基準に将来の1周回の消費電力を推定する。また、推定した将来の1周回の消費電力をもとに、将来の1周回のバッテリ14が放電する電力(放電電力)と充電する電力(充電電力)が一致するために必要な発生電力時間の目標値を算出する。これによって、次の軌道1周回のバッテリ蓄放電収支を満足するために必要な充電時間を算出し、電力発生時間の目標値が軌道半周回未満の充電時間で電力収支が成立するか否かを判定する。
なお、電力収支が成立するとは、バッテリ14の充電電力と放電電力が一致する状態である。
FIG. 4 shows a control algorithm flow of the solar cell paddle 3 for reducing the atmospheric resistance. The determination process 30 is based on a specific orbital position based on the specific orbital position from the charge / discharge status of the battery 14 from the power controller 12 in the computer 10 and the satellite event information 18 such as the presence / absence of use of observation equipment and the transmission of mission data. Estimate the power consumption of the circuit. In addition, based on the estimated power consumption of one round of the future, the generation power time required for the power (discharge power) discharged from the battery 14 of the future round to coincide with the power to be charged (charge power) is Calculate the target value. As a result, the charging time required to satisfy the battery storage / discharge balance for the next orbit of the track is calculated, and whether or not the power balance is established in the charging time when the target value of the power generation time is less than a half cycle of the track. judge.
Note that the power balance is established is a state where the charging power and discharging power of the battery 14 coincide.

判定処理30にて、電力発生時間の目標値が軌道半周回未満の充電時間で電力収支が成立する場合は、電力収支を成立する所定の軌道位置において、太陽電池パドル3を追尾制御・ホールド制御し、その間をスルー逆回転31で結合させる。このとき、太陽電池パドル3の受光面を太陽と正対するように太陽電池パドル3を最大駆動レートで回転させて制御する。   In the determination process 30, when the power balance is established when the target value of the power generation time is less than a half orbit of the orbit, the tracking control / hold control of the solar battery paddle 3 is performed at a predetermined orbit position where the power balance is established. Then, they are coupled by through reverse rotation 31. At this time, control is performed by rotating the solar cell paddle 3 at the maximum drive rate so that the light receiving surface of the solar cell paddle 3 faces the sun.

一方、判定処理30にて、電力発生時間の目標値が軌道半周回未満の充電時間で電力収支が成立せず、電力発生を軌道半周回以上発生させる必要がある場合は、さらに判定処理32にて日照中常に太陽電池パドル3を太陽と正対させ電力を発生する必要がないかを判定する。判定処理32の結果、日照中常に太陽電池パドル3を太陽と正対させ電力を発生する必要がない場合は、必要な電力発生時間に応じた軌道位置において、太陽電池パドル3を追尾制御・ホールド制御し、その間をスルー順回転制御33で結合する。   On the other hand, in the determination process 30, if the power balance is not established in the charging time when the target value of the power generation time is less than a half orbit of the orbit and it is necessary to generate the power more than a half orbit of the orbit, the determination process 32 further The solar battery paddle 3 is always opposed to the sun during sunshine to determine whether it is necessary to generate electric power. As a result of the determination process 32, when there is no need to generate electric power by always facing the solar cell paddle 3 to the sun during sunshine, tracking control / holding of the solar cell paddle 3 is performed at an orbital position corresponding to the required electric power generation time. These are coupled by through forward rotation control 33.

それ以外は地球の日照日陰の境界にて追尾制御・ホールド制御を切替え、その間、スルー順順回転制御34を実施する。このとき、太陽電池パドル3の受光面を太陽と正対するように太陽電池パドル3を最大駆動レートで回転させて制御する。この際、いずれも太陽電池パドル3の回転角をホールドする際は、大気抵抗を最小化する太陽電池パドル3のパドル制御角を保持し、太陽電池パドル3が受ける大気抵抗を低減させる。   Other than that, tracking control and hold control are switched at the boundary of the shade of the earth, and during that time, through forward rotation control 34 is performed. At this time, control is performed by rotating the solar cell paddle 3 at the maximum drive rate so that the light receiving surface of the solar cell paddle 3 faces the sun. At this time, in both cases, when holding the rotation angle of the solar cell paddle 3, the paddle control angle of the solar cell paddle 3 that minimizes the atmospheric resistance is held, and the atmospheric resistance received by the solar cell paddle 3 is reduced.

上記スルー順回転とスルー逆回転の違いを、図を用いて説明する。図5はスルー順回転の場合の太陽電池パドル3のパドル制御の運用形態を示し、図6はスルー逆回転の場合のパドル制御の運用形態を示す。   The difference between the through forward rotation and the through reverse rotation will be described with reference to the drawings. FIG. 5 shows an operation mode of paddle control of the solar cell paddle 3 in the case of through forward rotation, and FIG. 6 shows an operation mode of paddle control in the case of through reverse rotation.

図5は、電力発生を軌道半周回以上発生させる必要があることから、日照における、A点−B点間の所定の軌道位置から、D点−A点間の所定の軌道位置で、太陽電池パドル3は太陽追尾制御で発生電力を確保する。
D点からB点の間の軌道位置に対しては、計算機10において電力収支を満足する軌道位置に対して、太陽電池パドル3を太陽追尾制御からスルー順回転制御、ホールド制御、スルー順回転制御、最後に元の太陽追尾制御の順に制御する。
この時、パドルホールド制御時のパドル回転角は90°となり、太陽電池パドル3が受ける大気抵抗の影響が最も小さくなる。さらに、太陽電池パドル3をスルーさせる回転角はスルー順回転の場合90°未満となり、逆回転の場合と比べ短時間にスルーさせることができ、大気抵抗の低減につながる。
In FIG. 5, since it is necessary to generate electric power more than half an orbit, the solar cell is changed from a predetermined orbit position between point A and point B to a predetermined orbit position between point D and point A in sunshine. The paddle 3 secures generated power by solar tracking control.
For the trajectory position between D point and B point, the solar paddle 3 is controlled from solar tracking control through through forward rotation control, hold control, through forward rotation control to the trajectory position satisfying the power balance in the computer 10. Finally, control is performed in the order of the original sun tracking control.
At this time, the paddle rotation angle during the paddle hold control is 90 °, and the influence of atmospheric resistance on the solar cell paddle 3 is minimized. Further, the rotation angle through which the solar cell paddle 3 is passed is less than 90 ° in the case of forward rotation, and can be passed in a shorter time than in the case of reverse rotation, leading to a reduction in atmospheric resistance.

また、日照中常に太陽電池パドル3を太陽と正対させ電力を発生する必要がある場合でも、日陰中の大気抵抗を低減することを目的に、日照日陰の境界をパドルスルー順回転制御と太陽追尾制御を切替える軌道位置として設定することで、太陽電池パドル3が受ける大気抵抗を低減することが可能となる。   In addition, even when it is necessary to generate power by always facing the solar cell paddle 3 with the sun during sunshine, the boundary of the sunshine / shade is controlled with paddle-through forward rotation control and the sun to reduce atmospheric resistance during the shade. It is possible to reduce the atmospheric resistance received by the solar cell paddle 3 by setting the track position for switching the tracking control.

一方、図6では、電力発生時間が軌道半周回未満の電力発生で電力収支が成立することから、D点からB点の間では電力発生とは無関係に、太陽電池パドル3が受ける大気抵抗を最小化するようにパドルホールド制御で太陽電池パドル3の回転角を維持する。
また、B点からD点の間にかけては、電力収支を成り立たせる軌道位置に対して、太陽電池パドル3をホールド制御からスルー逆回転制御、太陽追尾制御、スルー逆回転制御、ホールド制御の順に制御し、太陽追尾制御の間に発生電力を得る。
この場合におけるパドルホールド制御時のパドル回転角は270°となる。さらに太陽電池パドル3をスルーさせる回転角は逆回転の場合90°未満となり、スルー順回転の場合と比べ短時間にスルーすることが可能となる。
On the other hand, in FIG. 6, since the power balance is established when the power generation time is less than a half orbit of the orbit, the atmospheric resistance received by the solar cell paddle 3 between the point D and the point B is independent of the power generation. The rotation angle of the solar cell paddle 3 is maintained by paddle hold control so as to minimize.
Further, from point B to point D, the solar battery paddle 3 is controlled in the order of hold control, through reverse rotation control, solar tracking control, through reverse rotation control, and hold control with respect to the orbital position that establishes the power balance. Then, the generated power is obtained during solar tracking control.
In this case, the paddle rotation angle during the paddle hold control is 270 °. Further, the rotation angle through which the solar cell paddle 3 is passed is less than 90 ° in the case of reverse rotation, and it is possible to pass through in a shorter time than in the case of through-forward rotation.

この実施の形態1による大気抵抗を低減するパドル制御は、衛星イベント情報から、将来の1周回の消費電力を推定した上で、それに必要な発生電力は必ず確保するように太陽電池パドル3のパドル制御が計画される。このため人工衛星の電力収支は必ず成立する。また、日照中常に太陽電池パドル3を太陽に正対するように追尾制御する場合においても適用可能である。また、大気抵抗の低減により搭載推薬を軽減することができ、衛星全体の質量を軽減することが可能となり、さらに人工衛星のミッション期間を延ばすことが可能となる。また、大気抵抗による軌道降下も低減されることから、高精度の軌道保持が可能となる。   The paddle control for reducing atmospheric resistance according to the first embodiment estimates the power consumption of one round of the future from the satellite event information, and the paddle of the solar cell paddle 3 to ensure the necessary generated power. Control is planned. For this reason, the power balance of the satellite is always established. The present invention is also applicable to the case where tracking control is performed so that the solar cell paddle 3 always faces the sun during sunshine. In addition, the on-board propellant can be reduced by reducing atmospheric resistance, the mass of the entire satellite can be reduced, and the mission period of the artificial satellite can be extended. In addition, since orbital descent due to atmospheric resistance is reduced, it is possible to maintain the orbit with high accuracy.

以上説明した通り、実施の形態1による太陽電池パドル制御装置は、衛星本体1と、衛星本体1に取り付けられた太陽電池パドル3と、太陽電池パドル3を一軸回転させるための駆動装置4と、衛星本体1に対する太陽電池パドル3の回転角指令値を生成し、衛星本体1に対する太陽電池パドル3の回転角を算出し、当該回転角指令値に回転角が追従するように駆動装置4を制御する計算機(制御部)10とを備え、計算機(制御部)10は、太陽電池パドル3による電力の供給が不要となる場合は、太陽電池パドル3の受ける大気抵抗を軽減する回転角へ制御し、さらに軌道半周回未満の充電で衛星全体の電力収支が成立するか否かを判定し、衛星全体の電力収支が成立する場合は必要な充電時間の間、太陽電池パドル3の受光面が太陽と正対するように大気抵抗を軽減する回転角から太陽電池パドル3を逆回転させる、ことを特徴とする。   As described above, the solar cell paddle control apparatus according to the first embodiment includes the satellite body 1, the solar cell paddle 3 attached to the satellite body 1, the drive device 4 for rotating the solar cell paddle 3 uniaxially, A rotation angle command value of the solar cell paddle 3 for the satellite body 1 is generated, a rotation angle of the solar cell paddle 3 for the satellite body 1 is calculated, and the driving device 4 is controlled so that the rotation angle follows the rotation angle command value. The computer (control unit) 10 controls the rotation angle to reduce the atmospheric resistance received by the solar cell paddle 3 when the power supply by the solar cell paddle 3 is not required. Further, it is determined whether or not the power balance of the entire satellite is established by charging less than half of the orbit, and if the power balance of the entire satellite is established, the light receiving surface of the solar cell paddle 3 is solar When Rotated in reverse solar wing 3 from the rotation angle to reduce the air resistance as against, characterized in that.

また、計算機(制御部)10は、衛星の軌道位置を決定するためのGPS受信機15と、衛星時刻情報から慣性系に対する太陽方向を算出する計算機(制御部)10と、慣性系に対する姿勢角を検出する恒星センサ16に基づいて、衛星座標系に対する太陽方向を算出し、算出した太陽方向と太陽電池パドル3の受光面の法線とのなす角から太陽電池パドル3を逆回転させる回転角を算出する。   The computer (control unit) 10 includes a GPS receiver 15 for determining the orbital position of the satellite, a computer (control unit) 10 that calculates the solar direction with respect to the inertial system from the satellite time information, and an attitude angle with respect to the inertial system. Based on the star sensor 16 that detects the sun, the sun direction relative to the satellite coordinate system is calculated, and the rotation angle that reversely rotates the solar cell paddle 3 from the angle formed by the calculated solar direction and the normal line of the light receiving surface of the solar cell paddle 3 Is calculated.

また、計算機(制御部)10は、特定の軌道位置を基準に、次の軌道1周回当たりの衛星イベントの消費電力を算出し、算出した消費電力に基づき次の軌道1周回のバッテリ14の蓄放電収支を満足するために必要な充電期間を算出し、当該充電期間に、太陽電池パドルの受光面を太陽と正対するように太陽電池パドル3を回転し、当該充電期間以外において、太陽電池パドル3が受ける大気抵抗を最小化するように回転角を保持し、当該2つの期間は太陽電池パドル3を最大駆動レートで回転させるように回転角指令値を設定する。   Further, the computer (control unit) 10 calculates the power consumption of the satellite event per one orbit of the next orbit based on the specific orbit position, and stores the battery 14 in the next orbit of the next orbit based on the calculated power consumption. A charging period necessary to satisfy the discharge balance is calculated, and the solar battery paddle 3 is rotated so that the light receiving surface of the solar battery paddle faces the sun during the charging period. The rotation angle is maintained so as to minimize the atmospheric resistance received by 3 and the rotation angle command value is set so that the solar cell paddle 3 is rotated at the maximum drive rate during the two periods.

これにより、大気抵抗が低減されることにより、搭載推薬を軽減することができるとともに、人工衛星全体の質量を軽減することが可能となる。もしくは、人工衛星のミッション期間を延ばすことが可能となる。さらに、大気抵抗による軌道降下も低減されることから高精度の軌道保持が可能となる。   Thereby, it is possible to reduce the propellant on board and reduce the mass of the entire artificial satellite by reducing the atmospheric resistance. Alternatively, the mission period of the artificial satellite can be extended. Furthermore, since orbital descent due to atmospheric resistance is reduced, it is possible to maintain the orbit with high accuracy.

1 衛星本体、2 観測センサ、3 太陽電池パドル、4 パドル駆動装置、5 シャント、6 衛星軌道面、7 進行方向、10 計算機(制御部)、11 パドル駆動回路、12 電力制御器、13 衛星負荷、14 バッテリ、15 GPS受信機、16 恒星センサ、17 太陽モデル、18 衛星イベント情報、30 判定部処理、31 パドルスルー逆回転制御、32 判定処理、33 パドルスルー順回転(要求位置で切替)、34 パドルスルー順回転(日照日陰の境界で切替)、100 地球、101 太陽。   DESCRIPTION OF SYMBOLS 1 Satellite body, 2 Observation sensor, 3 Solar cell paddle, 4 Paddle drive device, 5 Shunt, 6 Satellite orbital plane, 7 Traveling direction, 10 Computer (control part), 11 Paddle drive circuit, 12 Power controller, 13 Satellite load , 14 battery, 15 GPS receiver, 16 star sensor, 17 solar model, 18 satellite event information, 30 determination unit processing, 31 paddle through reverse rotation control, 32 determination processing, 33 paddle through forward rotation (switched at requested position), 34 Paddle-through forward rotation (switches at the border of sunshine and shade), 100 Earth, 101 Sun.

Claims (3)

衛星本体と、
衛星本体に取り付けられた太陽電池パドルと、
太陽電池パドルを一軸回転させるための駆動装置と、
衛星本体に対する太陽電池パドルの回転角指令値を生成し、衛星本体に対する太陽電池パドルの回転角を算出し、当該回転角指令値に回転角が追従するように駆動装置を制御する制御部と、
を備え、
上記制御部は、太陽電池パドルによる電力の供給が不要となる場合は、太陽電池パドルの受ける大気抵抗を軽減する回転角へ制御し、さらに軌道半周回未満の充電で衛星全体の電力収支が成立するか否かを判定し、衛星全体の電力収支が成立する場合は必要な充電時間の間、太陽電池パドルの受光面が太陽と正対するように大気抵抗を軽減する回転角から太陽電池パドルを逆回転させる、または衛星全体の電力収支が成立しない場合は太陽電池パドルを順回転させる、
太陽電池パドル制御装置。
The satellite body,
A solar cell paddle attached to the satellite body,
A driving device for rotating the solar cell paddle uniaxially;
A control unit that generates a rotation angle command value of the solar battery paddle for the satellite body, calculates a rotation angle of the solar battery paddle for the satellite body, and controls the driving device so that the rotation angle follows the rotation angle command value;
With
When the power supply by the solar cell paddle is no longer necessary, the control unit controls the rotation angle to reduce the atmospheric resistance received by the solar cell paddle, and further, the power balance of the entire satellite is established by charging less than half an orbit If the power balance of the entire satellite is established, the solar battery paddle is removed from the rotation angle that reduces the atmospheric resistance so that the light receiving surface of the solar battery paddle faces the sun during the required charging time. Reverse rotation or if the power balance of the entire satellite is not established, rotate the solar cell paddle forward,
Solar cell paddle control device.
上記制御部は、衛星の軌道位置を決定するためのGPS受信機と、衛星時刻情報から慣性系に対する太陽方向を算出する計算機と、慣性系に対する姿勢角を検出する恒星センサに基づいて、衛星座標系に対する太陽方向を算出し、算出した太陽方向と太陽電池パドルの受光面の法線とのなす角から太陽電池パドルを逆回転させる回転角を算出する請求項1記載の太陽電池パドル制御装置。   The control unit includes satellite coordinates based on a GPS receiver for determining the orbital position of the satellite, a calculator for calculating the sun direction with respect to the inertial system from the satellite time information, and a star sensor for detecting an attitude angle with respect to the inertial system. The solar cell paddle control device according to claim 1, wherein a solar direction with respect to the system is calculated, and a rotation angle for reversely rotating the solar cell paddle is calculated from an angle formed by the calculated solar direction and a normal line of the light receiving surface of the solar cell paddle. 上記制御部は、特定の軌道位置を基準に、次の軌道1周回当たりの衛星イベントの消費電力を算出し、算出した消費電力に基づき次の軌道1周回のバッテリ蓄放電収支を満足するために必要な充電期間を算出し、
当該充電期間に、太陽電池パドルの受光面を太陽と正対するように太陽電池パドルを回転し、
当該充電期間以外において、太陽電池パドルが受ける大気抵抗を最小化するように回転角を保持するように回転角指令値を設定する請求項1記載の人工衛星。
In order to satisfy the battery storage / discharge balance of the next orbit of the next orbit based on the calculated power consumption, the control unit calculates the power consumption of the satellite event per one orbit of the next orbit based on the specific orbit position. Calculate the required charging period,
During the charging period, the solar cell paddle is rotated so that the light receiving surface of the solar cell paddle faces the sun,
2. The artificial satellite according to claim 1, wherein the rotation angle command value is set so as to maintain the rotation angle so as to minimize the atmospheric resistance received by the solar battery paddle during a period other than the charging period.
JP2015043104A 2015-03-05 2015-03-05 Solar cell paddle controller Expired - Fee Related JP6323367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015043104A JP6323367B2 (en) 2015-03-05 2015-03-05 Solar cell paddle controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015043104A JP6323367B2 (en) 2015-03-05 2015-03-05 Solar cell paddle controller

Publications (2)

Publication Number Publication Date
JP2016159865A true JP2016159865A (en) 2016-09-05
JP6323367B2 JP6323367B2 (en) 2018-05-16

Family

ID=56846229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015043104A Expired - Fee Related JP6323367B2 (en) 2015-03-05 2015-03-05 Solar cell paddle controller

Country Status (1)

Country Link
JP (1) JP6323367B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191900A (en) * 1984-03-12 1985-09-30 三菱電機株式会社 Method of controlling solar cell paddle
JPS60152600U (en) * 1984-03-23 1985-10-11 株式会社東芝 Solar cell generated power control device
JPH05213288A (en) * 1992-02-10 1993-08-24 Nec Corp Solar battery paddle system for space navigating body
JPH05223590A (en) * 1992-02-18 1993-08-31 Hitachi Ltd Artificial satellite for earth survey
JP2000211596A (en) * 1999-01-25 2000-08-02 Mitsubishi Electric Corp Orbital flight type satellite and system therefor
US6227497B1 (en) * 1998-08-19 2001-05-08 Mobile Communications Holdings, Inc. Adaptively positioned solar array
US6439511B1 (en) * 2000-07-26 2002-08-27 Hughes Electronics Corporation Thermal shock avoidance for satellite solar panels
JP2006264434A (en) * 2005-03-23 2006-10-05 Mitsubishi Electric Corp Observation satellite
US7246775B1 (en) * 2004-08-02 2007-07-24 Lockheed Martin Corporation System and method of substantially autonomous geosynchronous time-optimal orbit transfer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191900A (en) * 1984-03-12 1985-09-30 三菱電機株式会社 Method of controlling solar cell paddle
JPS60152600U (en) * 1984-03-23 1985-10-11 株式会社東芝 Solar cell generated power control device
JPH05213288A (en) * 1992-02-10 1993-08-24 Nec Corp Solar battery paddle system for space navigating body
JPH05223590A (en) * 1992-02-18 1993-08-31 Hitachi Ltd Artificial satellite for earth survey
US6227497B1 (en) * 1998-08-19 2001-05-08 Mobile Communications Holdings, Inc. Adaptively positioned solar array
JP2000211596A (en) * 1999-01-25 2000-08-02 Mitsubishi Electric Corp Orbital flight type satellite and system therefor
US6439511B1 (en) * 2000-07-26 2002-08-27 Hughes Electronics Corporation Thermal shock avoidance for satellite solar panels
US7246775B1 (en) * 2004-08-02 2007-07-24 Lockheed Martin Corporation System and method of substantially autonomous geosynchronous time-optimal orbit transfer
JP2006264434A (en) * 2005-03-23 2006-10-05 Mitsubishi Electric Corp Observation satellite

Also Published As

Publication number Publication date
JP6323367B2 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
Tsiotras et al. Satellite attitude control and power tracking with energy/momentum wheels
US11827381B2 (en) Spacecraft and control method
US9067694B2 (en) Position-based gyroless control of spacecraft attitude
US9334068B2 (en) Unified orbit and attitude control for nanosatellites using pulsed ablative thrusters
CN106096148B (en) A kind of high inclination-angle orbiter solar array pointing method under simple gesture stability
US8868263B2 (en) Spacecraft momentum management using solar array
US9988162B2 (en) Method and device for control of a sunlight acquisition phase of a spacecraft
US9428285B2 (en) System and method for managing momentum accumulation
JP6586658B2 (en) Torque generation system, spacecraft attitude control system, spacecraft relative position / speed control system
US9650159B2 (en) Method and device for electric satellite propulsion
CN109625329A (en) A kind of autonomous discharging method of flywheel angular momentum based on discrete jet
CN106628261B (en) It is a kind of electricity pushing protect during the high stability attitude control method of satellite high-precision
CN112572838B (en) Spacecraft attitude control system based on momentum wheel and reflectivity control device
JP6323367B2 (en) Solar cell paddle controller
US11124320B2 (en) Spacecraft control using residual dipole
CN109032158B (en) Head-to-day-tail-to-day alternating continuous yaw attitude control method for linear programming
KR101877414B1 (en) Control method of angular momentum of a satellite
Liu et al. Spacecraft Acquisition Maneuvers Using the Position Based Gyroless Control
CN111891402B (en) Mars detection ground antenna pointing recovery method based on autonomous maneuvering
KR102464558B1 (en) Satellite performing momentum dumping of reaction wheel through maneuvering of satellite, and method of momentum dumping of the reaction wheel of the satellite
JP2005247127A (en) Electric power supply satellite, missions satellite, and artificial satellite external electric power supply system
JPWO2019044735A1 (en) Spacecraft control device, spacecraft control method, and program
Xing et al. An efficient momentum dumping method through an alternative sun pointing strategy for small Near Equatorial Orbit satellite
US11459126B2 (en) Reconnaissance rover designed for multiple agile and autonomous landings over a small body or moon
CN113486491B (en) Satellite autonomous mission planning constraint condition self-perfecting method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R151 Written notification of patent or utility model registration

Ref document number: 6323367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees