JP2016159289A - Light absorption material - Google Patents

Light absorption material Download PDF

Info

Publication number
JP2016159289A
JP2016159289A JP2015043737A JP2015043737A JP2016159289A JP 2016159289 A JP2016159289 A JP 2016159289A JP 2015043737 A JP2015043737 A JP 2015043737A JP 2015043737 A JP2015043737 A JP 2015043737A JP 2016159289 A JP2016159289 A JP 2016159289A
Authority
JP
Japan
Prior art keywords
light
bpy
absorbing material
bipyridyl
dcbpy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015043737A
Other languages
Japanese (ja)
Inventor
坂野 充
Mitsuru Sakano
充 坂野
雄作 稲冨
Yusaku Inatomi
雄作 稲冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015043737A priority Critical patent/JP2016159289A/en
Publication of JP2016159289A publication Critical patent/JP2016159289A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light absorption material having a wide light absorption wavelength region which may utilize effectively light energy.SOLUTION: A light absorption material is obtained by combining tris(2,2'-bipyridyl) ruthenium (II) complex (hereafter sometimes abbreviated to [Ru(bpy)]) with bis(2,2'-bipyridyl)(2,2'-bipyridyl-4,4' dicarboxylic acid) ruthenium (II) complex (hereafter sometimes abbreviated to [Ru(bpy)(dcbpy)]).SELECTED DRAWING: None

Description

本発明は、光吸収材料に関し、さらに詳しくは光エネルギーを有効に利用し得る光吸収波長域の広い光吸収材料に関する。   The present invention relates to a light-absorbing material, and more particularly to a light-absorbing material having a wide light-absorbing wavelength range that can effectively use light energy.

近年、温室効果ガスとして知られるCOから反応性化合物、例えば一酸化炭素(CO)を得る還元反応が温室効果ガスの固定法の1つとして検討されている。
前記の還元反応として、光吸収材料とCO還元触媒とを併用して光照射によりCOの還元を行う方法が提案されている。
In recent years, a reduction reaction for obtaining a reactive compound such as carbon monoxide (CO) from CO 2 known as a greenhouse gas has been studied as one method for fixing a greenhouse gas.
As the reduction reaction, a method has been proposed in which a light absorbing material and a CO 2 reduction catalyst are used in combination to reduce CO 2 by light irradiation.

このため、光吸収材料およびCO還元触媒について様々な検討がされている。
例えば、特許文献1には、光増感酸化還元反応における照射光を吸収するための光増感剤としてルテニウムトリス(2,2’−ビピリジル)錯体が記載されている。
しかし、前記の公知文献に記載の化合物を光吸収材料として用いてCO還元触媒と併用し光照射してもルテニウムトリス(2,2’−ビピリジル)(II)錯体の光吸収波長域が狭いために、光エネルギーを利用したCO還元反応において光エネルギーを有効に利用できずCOの還元性能が低い。
For this reason, various studies have been made on the light-absorbing material and the CO 2 reduction catalyst.
For example, Patent Document 1 describes a ruthenium tris (2,2′-bipyridyl) complex as a photosensitizer for absorbing irradiation light in a photosensitized redox reaction.
However, the light absorption wavelength region of the ruthenium tris (2,2′-bipyridyl) (II) complex is narrow even when the compound described in the above-mentioned known literature is used as a light absorption material and used in combination with a CO 2 reduction catalyst and irradiated with light. Therefore, in the CO 2 reduction reaction using light energy, the light energy cannot be effectively used, and the CO 2 reduction performance is low.

特開昭62−165647号公報Japanese Patent Laid-Open No. 62-165647

従って、本発明の目的は、光エネルギーを有効に利用し得る光吸収波長域の広い光吸収材料を提供することである。   Accordingly, an object of the present invention is to provide a light-absorbing material having a wide light absorption wavelength range in which light energy can be effectively used.

本発明は、トリス(2,2’−ビピリジル)ルテニウム(II)錯体(以下、[Ru(bpy)2+と略記する場合もある。)およびビス(2,2’−ビピリジル)(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)錯体(以下、[Ru(bpy)(dcbpy)]2+と略記する場合もある。)を組み合わせてなる光吸収材料に関する。 The present invention relates to a tris (2,2′-bipyridyl) ruthenium (II) complex (hereinafter sometimes abbreviated as [Ru (bpy) 3 ] 2+ ) and bis (2,2′-bipyridyl) (2, The present invention relates to a light-absorbing material obtained by combining a 2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) complex (hereinafter sometimes abbreviated as [Ru (bpy) 2 (dcbpy)] 2+ ).

本発明によれば、光エネルギーを有効に利用し得る光吸収波長域の広い光吸収材料を得ることができる。   According to the present invention, it is possible to obtain a light-absorbing material having a wide light absorption wavelength range in which light energy can be effectively used.

図1は、本発明の実施例の光吸収材料および比較例の光吸収材料の光吸収スペクトルを比較して示す。FIG. 1 shows a comparison of light absorption spectra of a light absorbing material of an example of the present invention and a light absorbing material of a comparative example. 図2は、本発明の光吸収材料とCO還元触媒とを併用したときのCO還元活性評価系を示す。FIG. 2 shows a CO 2 reduction activity evaluation system when the light absorbing material of the present invention and a CO 2 reduction catalyst are used in combination. 図3は、実施例および比較例におけるCO還元活性評価実験系を示す。FIG. 3 shows an experimental system for evaluating CO 2 reduction activity in Examples and Comparative Examples. 図4は、実施例および比較例におけるCO還元生成物であるCO発生量の光吸収材料濃度依存性を比較して示すグラフである。FIG. 4 is a graph showing a comparison of the dependency of CO generation amount, which is a CO 2 reduction product, in the examples and comparative examples on the concentration of the light absorbing material.

特に、本発明において、以下の実施態様を挙げることができる。
1) 二酸化炭素還元触媒と組み合わせて用いられる前記の光吸収材料。
2) 前記トリス(2,2’−ビピリジル)ルテニウム(II)錯体と前記ビス(2,2’−ビピリジル)(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)錯体との割合がモル比で1:2〜2:1である前記の光吸収材料。
In particular, in the present invention, the following embodiments can be mentioned.
1) The above light-absorbing material used in combination with a carbon dioxide reduction catalyst.
2) The tris (2,2′-bipyridyl) ruthenium (II) complex and the bis (2,2′-bipyridyl) (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) complex The above light-absorbing material, wherein the molar ratio is 1: 2 to 2: 1.

本発明においては、トリス(2,2’−ビピリジル)ルテニウム(II)錯体とビス(2,2’−ビピリジル)(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)錯体とを組み合わせた光吸収材料であることが必要である。
前記の2成分を組み合わせることによって、図1に示すように、照射光の吸収波長域の広域化が実現されている。このことは全く予想外のことである。これに対して、前記の2成分を単独で用いた光吸収材料は吸収波長域が狭い。
In the present invention, tris (2,2′-bipyridyl) ruthenium (II) complex and bis (2,2′-bipyridyl) (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) complex It is necessary to be a light absorbing material in combination.
By combining the two components described above, the broadening of the absorption wavelength range of the irradiation light is realized as shown in FIG. This is completely unexpected. On the other hand, the light absorption material using the two components alone has a narrow absorption wavelength region.

前記のトリス(2,2’−ビピリジル)ルテニウム(II)錯体とビス(2,2’−ビピリジル)(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)錯体との割合としては、好適にはモル比で1:2〜2:1、典型的にはモル比で1:1である。   Ratio of tris (2,2′-bipyridyl) ruthenium (II) complex to bis (2,2′-bipyridyl) (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) complex Is preferably 1: 2 to 2: 1 in a molar ratio, typically 1: 1 in a molar ratio.

本発明の光吸収材料の第1成分である[Ru(bpy)2+は、任意の対アニオンとの塩として、例えば[ClO、ClあるいはPF の塩として、すなわち[Ru(bpy)](ClO、[Ru(bpy)]Clあるいは[Ru(bpy)](PFとして用いられ得る。
また、本発明の光吸収材料の第2成分である[Ru(bpy)(dcbpy)]2+は、任意の対アニオンとの塩として、例えば[ClO、ClあるいはPF との塩として、すなわち[Ru(bpy)(dcbpy)](ClO、[Ru(bpy)(dcbpy)]Clあるいは[Ru(bpy)(dcbpy)](PFとして用いられ得る。
[Ru (bpy) 3 ] 2+ which is the first component of the light-absorbing material of the present invention is a salt with an arbitrary counter anion, for example, a salt of [ClO 4 ] , Cl or PF 6 , that is, [ It can be used as Ru (bpy) 3 ] (ClO 4 ) 2 , [Ru (bpy) 3 ] Cl 2 or [Ru (bpy) 3 ] (PF 6 ) 2 .
[Ru (bpy) 2 (dcbpy)] 2+ , which is the second component of the light-absorbing material of the present invention, is, for example, [ClO 4 ] , Cl or PF 6 as a salt with any counter anion. As [Ru (bpy) 2 (dcbpy)] (ClO 4 ) 2 , [Ru (bpy) 2 (dcbpy)] Cl 2 or [Ru (bpy) 2 (dcbpy)] (PF 6 ) 2 Can be used.

前記の光吸収材料の第1成分は公知であり、購入することによりあるいはそれ自体公知の方法により合成することにより得ることができる。
また、前記の光吸収材料の第2成分は、例えば以下の工程によって得ることができる。
[Ru(bpy)(dcbpy)](PFは、[Ru(bpy)]Clとdcbpyとを出発原料として、アルカリ性物質の存在下、水溶液中で撹拌下に加熱した後、冷却して、水溶液を酸性として結晶を析出させ、結晶をろ過した母液を必要であれば濃縮し、NaPFを添加して、生成した粗[Ru(bpy)(dcbpy)](PFを精製する工程によって得ることができる。
The first component of the light-absorbing material is known and can be obtained by purchasing or synthesizing by a method known per se.
Moreover, the 2nd component of the said light absorption material can be obtained by the following processes, for example.
[Ru (bpy) 2 (dcbpy)] (PF 6 ) 2 was heated with stirring in an aqueous solution in the presence of an alkaline substance using [Ru (bpy) 3 ] Cl 2 and dcbpy as starting materials. Upon cooling, the aqueous solution is acidified to precipitate crystals, and the mother liquor from which the crystals have been filtered is concentrated if necessary, and NaPF 6 is added to form the crude [Ru (bpy) 2 (dcbpy)] (PF 6 ) 2 can be obtained by purifying.

[Ru(bpy)(dcbpy)]Clは、前記の[Ru(bpy)(dcbpy)](PFを極性有機溶媒に溶解し、含窒素有機塩化物、例えばnBuNClを加えて、生成した粗[Ru(bpy)(dcbpy)]Clを精製する工程によって得ることができる。
[Ru(bpy)(dcbpy)](ClOは、前記の[Ru(bpy)(dcbpy)]Clを水に溶解させた後、AgClOを加えて、生成した粗[Ru(bpy)(dcbpy)](ClOに例えば含酸素有機溶媒、例えばアセトンを加えて生成した粗[Ru(bpy)(dcbpy)](ClOを精製する工程によって得ることができる。
[Ru (bpy) 2 (dcbpy)] Cl 2 is obtained by dissolving the above [Ru (bpy) 2 (dcbpy)] (PF 6 ) 2 in a polar organic solvent, and adding a nitrogen-containing organic chloride such as nBu 4 NCl. In addition, the resulting crude [Ru (bpy) 2 (dcbpy)] Cl 2 can be obtained by purifying it.
[Ru (bpy) 2 (dcbpy)] (ClO 4 ) 2 is obtained by dissolving the above [Ru (bpy) 2 (dcbpy)] Cl 2 in water and then adding AgClO 4 to produce the crude [Ru Obtained by purifying crude [Ru (bpy) 2 (dcbpy)] (ClO 4 ) 2 produced by adding (bpy) 2 (dcbpy)] (ClO 4 ) 2 to, for example, an oxygen-containing organic solvent such as acetone. Can do.

本発明の前記Ru(bpy)2+および[Ru(bpy)(dcbpy)]2+を組み合わせた光吸収材料は、CO還元触媒と併用することによって、光照射してCO還元性能を高くし得る。
前記のCO還元触媒としては、金属錯体、例えば、ポリフィリン、フタロシアニン
サイクラム、サレンあるいはアクエンの金属錯体、例えば前記金属が鉄、コバルト、ニッケルあるいは銀である錯体、例えばコバルトポルフィリン、鉄ポルフィリン、ニッケルサイクラム、Agサイクラムなどが挙げられる。
The light-absorbing material in which the Ru (bpy) 3 ] 2+ and [Ru (bpy) 2 (dcbpy)] 2+ of the present invention are combined is used in combination with a CO 2 reduction catalyst, thereby irradiating with light to give CO 2 reduction performance. Can be high.
Examples of the CO 2 reduction catalyst include metal complexes such as polyphylline, phthalocyanine cyclam, salen or aquene metal complexes such as complexes in which the metal is iron, cobalt, nickel or silver, such as cobalt porphyrin, iron porphyrin, nickel. A cyclam, an Ag cyclam, etc. are mentioned.

本発明の光吸収材料とCO還元触媒と、好適にはさらに犠牲還元剤と組み合わせた反応系により、光照射してCOを還元する還元反応は、例えば水溶液中で行われ得る。
前記反応を実施する際に、反応器に光吸収材料とCO還元触媒と入れ、COを例えば水溶液に導入し、光照射下に流通式反応器を用いる連続式あるいはバッチ式に反応を行うことができる。
前記の照射光としては、特に制限はなく任意の光源、例えばキセノンランプを用いた光線であり得る。
The reduction reaction in which CO 2 is reduced by irradiation with light can be performed, for example, in an aqueous solution by a reaction system in which the light absorbing material of the present invention, a CO 2 reduction catalyst, and a sacrificial reducing agent are combined.
When carrying out the reaction, a light absorbing material and a CO 2 reduction catalyst are put into the reactor, CO 2 is introduced into an aqueous solution, for example, and the reaction is carried out continuously or batchwise using a flow reactor under light irradiation. be able to.
The irradiation light is not particularly limited and may be a light beam using an arbitrary light source such as a xenon lamp.

前記の犠牲還元剤としては、例えばメタノール、エタノールなどのアルコール類、グルコース、スクロースなどの糖類、セルロース、アスコルビン酸及びその塩、キチン、キトサン、エチレンジアミン四酢酸二ナトリウム(EDTA)、トリエタノールアミン、硫化物イオン等が水性溶液に溶解あるいは分散させて用いられる。犠牲還元剤は、還元触媒に光照射すると、自由電子と自由正孔が生じ、その強い還元反応により、目的とする化学物質以外に触媒それ自身が還元され、触媒作用を失う場合があるので電子供与体として機能する剤として用いられる。   Examples of the sacrificial reducing agent include alcohols such as methanol and ethanol, saccharides such as glucose and sucrose, cellulose, ascorbic acid and salts thereof, chitin, chitosan, disodium ethylenediaminetetraacetate (EDTA), triethanolamine, sulfide. Substance ions are used by dissolving or dispersing in an aqueous solution. The sacrificial reducing agent generates free electrons and free holes when light is irradiated to the reducing catalyst. Due to the strong reduction reaction, the catalyst itself may be reduced in addition to the target chemical substance, and the catalytic action may be lost. Used as an agent that functions as a donor.

本発明の光吸収材料によれば、例えば図2に示すように、光吸収材料が光を吸収して電子が励起された状態に対して、犠牲還元剤から電子が移動して光吸収材料である錯体の一電子還元種が生成する。錯体の一電子還元種の高い還元力によりCO還元触媒がCOに還元されることが可能となる。 According to the light-absorbing material of the present invention, for example, as shown in FIG. 2, the light-absorbing material absorbs light and the electrons are excited. A one-electron reduced species of a complex is produced. The high reducing power of the one-electron reducing species of the complex enables the CO 2 reduction catalyst to be reduced to CO.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.

以下の各例において、得られた還元触媒の評価は、発生するCO等のガスを図3に示す活性評価実験系による計測システムで評価した。
また、以下の各例において、全ての試料について、ろ液のAgサイクラム濃度はICPにより定量した。
In each of the following examples, the obtained reduction catalyst was evaluated by measuring a generated gas such as CO with a measurement system based on an activity evaluation experimental system shown in FIG.
In each of the following examples, the concentration of Ag cyclam in the filtrate was quantified by ICP for all samples.

参考例1
1−1 Agサイクラム(溶液)の合成
40質量%のAgClO水溶液5gにサイクラム1g、水7mLを加え1時間撹拌した。析出したAgをろ過し、ろ液(Agサイクラム溶液)を回収した。
1−2 Agサイクラム+添加剤(THF)の調製
40質量%のAgClO水溶液5gにサイクラム1g、水7mLを加え1時間撹拌した。析出したAgをろ過し、ろ液(Agサイクラム溶液)を回収した。ろ液にTHF30mLを加えた。
Reference example 1
1-1 Synthesis of Ag cyclam (solution) 1 g of cyclam and 7 mL of water were added to 5 g of 40 mass% AgClO 4 aqueous solution and stirred for 1 hour. The precipitated Ag was filtered, and the filtrate (Ag cyclam solution) was recovered.
1-2 Preparation of Ag Cyclam + Additive (THF) 1 g of cyclam and 7 mL of water were added to 5 g of 40% by mass AgClO 4 aqueous solution and stirred for 1 hour. The precipitated Ag was filtered, and the filtrate (Ag cyclam solution) was recovered. 30 mL of THF was added to the filtrate.

1−3 光吸収材料の第2成分の合成
1)550mgのRu(bpy)Cl、dcbpy444mg、NaHCO553mg、HO1.4mLを加熱還流下に1夜撹拌後、氷冷下c−HSOを追加してpHを4に調整した。晶析した結晶をろ過し、メタノール5.5mLで洗浄して母液を濃縮した。濃縮残渣にNaPF水溶液(6.9gのNaPFを水35mLに溶解したもの)を添加して氷冷し、晶析した結晶をろ過・水洗した後、乾燥して759mgの[Ru(bpy)(dcbpy)](PFを得た。
1-3 Synthesis of Second Component of Light Absorbing Material 1) 550 mg of Ru (bpy) Cl 2 , dcbpy 444 mg, NaHCO 3 553 mg, H 2 O 1.4 mL was stirred overnight under reflux with heating, and then cooled with ice-cooled c-H 2 SO 4 was added to adjust the pH to 4. The crystallized crystals were filtered, washed with 5.5 mL of methanol, and the mother liquor was concentrated. An aqueous NaPF 6 solution (6.9 g of NaPF 6 dissolved in 35 mL of water) was added to the concentrated residue, ice-cooled, the crystallized crystals were filtered and washed with water, and then dried to obtain 759 mg of [Ru (bpy) 2 (dcbpy)] (PF 6 ) 2 was obtained.

2)586mgの[Ru(bpy)(dcbpy)](PFをCHCN6mLに溶解し、705mgのnBuNClを追加した。晶析した結晶を遠心分離し、CHCN5mLで4回洗浄し、蒸留水で溶解後、凍結乾燥して454mgの[Ru(bpy)(dcbpy)]Clを得た。 2) 586 mg of [Ru (bpy) 2 (dcbpy)] (PF 6 ) 2 was dissolved in 6 mL of CH 3 CN and 705 mg of nBu 4 NCl was added. The crystallized crystal was centrifuged, washed 4 times with 5 mL of CH 3 CN, dissolved in distilled water, and lyophilized to obtain 454 mg of [Ru (bpy) 2 (dcbpy)] Cl 2 .

3)200mgの[Ru(bpy)(dcbpy)]ClをHO20mLに溶解後、285mgのAgClOを加え1時間撹拌した。副生したAgClをろ過して除去した後、終夜減圧乾燥して106mgの[Ru(bpy)(dcbpy)](ClOを得た。 3) After 200 mg of [Ru (bpy) 2 (dcbpy)] Cl 2 was dissolved in 20 mL of H 2 O, 285 mg of AgClO 4 was added and stirred for 1 hour. The by-produced AgCl was removed by filtration and then dried under reduced pressure overnight to obtain 106 mg of [Ru (bpy) 2 (dcbpy)] (ClO 4 ) 2 .

実施例1
光吸収材料の第1成分としてRu(bpy)(ClOを用い、第2成分として[Ru(bpy)(dcbpy)](ClOを用いて、両成分の合計の濃度が125μmol/L、250μmol/L、500μmol/Lであって2成分が半々の濃度になるように水に加えて混合した。
以下の組成で反応溶液を調製した。
Example 1
Using Ru (bpy) 3 (ClO 4 ) 2 as the first component of the light-absorbing material and [Ru (bpy) 2 (dcbpy)] (ClO 4 ) 2 as the second component, the total concentration of both components Were 125 μmol / L, 250 μmol / L, and 500 μmol / L, and the two components were added to water and mixed so that the concentration was half.
A reaction solution was prepared with the following composition.

反応溶液2mLの構成(実施例1、比較例1〜2)
CO還元触媒 Agサイクラム+添加剤250μmol/l(水)
光吸収材料 125、250、500μmol/L(水)
犠牲還元剤 400μLのトリエタノールアミン
溶媒 0.2MのHBO−NaOH緩衝液(pH=10)
Composition of 2 mL of reaction solution (Example 1, Comparative Examples 1-2)
CO 2 reduction catalyst Ag cyclam + additive 250 μmol / l (water)
Light absorbing material 125, 250, 500 μmol / L (water)
Sacrificial reducing agent 400 μL of triethanolamine solvent 0.2 M H 3 BO 3 -NaOH buffer (pH = 10)

評価方法(以下の測定はいずれも室温にて実施)
反応溶液2mLを入れた1cm角の石英製セルをセプタムとビニールテープで封止した後、真空ジョイント部にセットし、気相部分を減圧・脱気した後、COをパージすることを3回繰り返して循環部にCOを満たした。その後、循環ポンプにより50mL/分でCOを循環させて反応溶液を撹拌しながら約550W/mの光照射強度でXeランプにより光を照射した。照射後30分毎にシリンジポンプにより気相部分の気体をサンプリングし、高速GCに導入することでCO等の成分の定量分析を行い、照射後3時間後のCO発生量で反応溶液としての活性を比較した。
得られた結果を比較例の結果とまとめて図4に示す。
なお、図4におけるTNCOは、CO還元触媒1分子当たりのCO発生分子数を示す。
Evaluation method (all the following measurements are performed at room temperature)
After sealing a 1 cm square quartz cell containing 2 mL of the reaction solution with a septum and vinyl tape, set it on the vacuum joint, depressurize and degas the gas phase, and then purge CO 2 three times. filled with CO 2 to the circulation unit repeatedly. Thereafter, CO 2 was circulated at a rate of 50 mL / min with a circulation pump, and the reaction solution was stirred and irradiated with light with an Xe lamp at a light irradiation intensity of about 550 W / m 2 . Every 30 minutes after irradiation, the gas in the gas phase is sampled by a syringe pump and introduced into the high-speed GC for quantitative analysis of components such as CO. Compared.
The obtained results are summarized in FIG. 4 together with the results of the comparative example.
Note that TN CO in FIG. 4 represents the number of CO-generated molecules per molecule of the CO 2 reduction catalyst.

比較例1〜2
光吸収材料として、Ru(bpy)(ClO(比較例1)又は[Ru(bpy)(dcbpy)](ClO(比較例2)を単独で用いて、各成分の合計の濃度が125μmol/L、250μmol/L又は500μmol/Lとなるように、水に加えて混合した。
前記の組成で反応溶液を調製した。
得られた反応溶液により実施例1と同様に活性を評価した。
得られた結果を実施例1の結果とまとめて図4に示す。
Comparative Examples 1-2
As a light-absorbing material, Ru (bpy) 3 (ClO 4 ) 2 (Comparative Example 1) or [Ru (bpy) 2 (dcbpy)] (ClO 4 ) 2 (Comparative Example 2) is used alone. It added to water and mixed so that a total density | concentration might be 125 micromol / L, 250 micromol / L, or 500 micromol / L.
A reaction solution was prepared with the above composition.
The activity was evaluated in the same manner as in Example 1 with the obtained reaction solution.
The obtained results are shown in FIG. 4 together with the results of Example 1.

参考例2
図4から、Ru(bpy)(ClO又は[Ru(bpy)(dcbpy)](ClOを単独で用いた光吸収材料に比べて、2成分を混合した光吸収材料がCO発生量が多いことから、CO還元活性が高くなっていることが理解される。
2成分の光吸収材料成分を混合することによりCO還元活性が向上した理由を考察するために、各光吸収材料の吸収スペクトルをまとめて図1に示す。
図1から、比較例2の光吸収材料(濃度:250μmol/L)は、比較例1の光吸収材料(濃度:250μmol/L)に比べてより長波長側の光を吸収し、混合した実施例の光吸収材料(濃度:125μmol/L+125μmol/L))の場合、吸収波長が広域化していることが理解される。この結果、光エネルギーの利用効率が上り、CO還元活性が向上したと考えられる。
Reference example 2
FIG. 4 shows that a light absorbing material in which two components are mixed is compared with a light absorbing material using Ru (bpy) (ClO 4 ) 2 or [Ru (bpy) 2 (dcbpy)] (ClO 4 ) 2 alone. It is understood that the CO 2 reduction activity is high because of the large amount of CO generated.
In order to consider the reason why the CO 2 reduction activity is improved by mixing the two light-absorbing material components, the absorption spectra of the respective light-absorbing materials are collectively shown in FIG.
From FIG. 1, the light absorbing material of Comparative Example 2 (concentration: 250 μmol / L) absorbs light on the longer wavelength side compared to the light absorbing material of Comparative Example 1 (concentration: 250 μmol / L) and is mixed. In the case of the example light absorbing material (concentration: 125 μmol / L + 125 μmol / L), it is understood that the absorption wavelength is broadened. As a result, it is considered that the utilization efficiency of light energy is increased and the CO 2 reduction activity is improved.

本発明の光吸収材料によれば、光エネルギーを有効に利用し得る光吸収波長域の広い光吸収材料を得ることができ、CO還元触媒の存在下に光を照射して室温程度の反応温度で有用な反応性化合物であるCOを高い選択性で生成することを可能とし得る。 According to the light-absorbing material of the present invention, a light-absorbing material having a wide light-absorbing wavelength range in which light energy can be effectively used can be obtained, and light is irradiated in the presence of a CO 2 reduction catalyst to react at about room temperature. It may be possible to produce CO with high selectivity, a reactive compound useful at temperature.

Claims (3)

トリス(2,2’−ビピリジル)ルテニウム(II)錯体およびビス(2,2’−ビピリジル)(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)錯体を組み合わせてなる光吸収材料。   Light combining tris (2,2′-bipyridyl) ruthenium (II) complex and bis (2,2′-bipyridyl) (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) complex Absorbing material. 二酸化炭素還元触媒と組み合わせて用いられる請求項1に記載の光吸収材料。   The light absorbing material according to claim 1, which is used in combination with a carbon dioxide reduction catalyst. 前記トリス(2,2’−ビピリジル)ルテニウム(II)錯体と前記ビス(2,2’−ビピリジル)(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)錯体との割合がモル比で1:2〜2:1である請求項1又は2に記載の光吸収材料。   Ratio of the tris (2,2′-bipyridyl) ruthenium (II) complex and the bis (2,2′-bipyridyl) (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) complex The light absorbing material according to claim 1, wherein is a molar ratio of 1: 2 to 2: 1.
JP2015043737A 2015-03-05 2015-03-05 Light absorption material Pending JP2016159289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015043737A JP2016159289A (en) 2015-03-05 2015-03-05 Light absorption material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015043737A JP2016159289A (en) 2015-03-05 2015-03-05 Light absorption material

Publications (1)

Publication Number Publication Date
JP2016159289A true JP2016159289A (en) 2016-09-05

Family

ID=56843977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015043737A Pending JP2016159289A (en) 2015-03-05 2015-03-05 Light absorption material

Country Status (1)

Country Link
JP (1) JP2016159289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892592A (en) * 2021-01-05 2021-06-04 中国科学院青岛生物能源与过程研究所 A rhodium-based electron mediator [ Cp Rh (bpy) H2O]2+Method for fixing photocatalyst Uio-66-NH2 surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892592A (en) * 2021-01-05 2021-06-04 中国科学院青岛生物能源与过程研究所 A rhodium-based electron mediator [ Cp Rh (bpy) H2O]2+Method for fixing photocatalyst Uio-66-NH2 surface

Similar Documents

Publication Publication Date Title
Nasalevich et al. Co@ NH 2-MIL-125 (Ti): cobaloxime-derived metal–organic framework-based composite for light-driven H 2 production
Kimura et al. A new nickel (II) cyclam (cyclam= 1, 4, 8, 11-tetraazacyclotetradecane) complex covalently attached to tris (1, 10-phenanthroline) ruthenium (2+). A new candidate for the catalytic photoreduction of carbon dioxide
Fox et al. Photoactivation of metal oxide surfaces: photocatalyzed oxidation of alcohols by heteropolytungstates
Agarwal et al. Exploring the effect of axial ligand substitution (X= Br, NCS, CN) on the photodecomposition and electrochemical activity of [MnX (N–C)(CO) 3] complexes
Jasimuddin et al. Photocatalytic hydrogen production from water in self-assembled supramolecular iridium–cobalt systems
Cortés et al. Heteroleptic copper complexes with nitrogen and phosphorus ligands in photocatalysis: Overview and perspectives
Kuo et al. A cyanide-bridged di-manganese carbonyl complex that photochemically reduces CO 2 to CO
Liu et al. Well-defined organometallic Copper (III) complexes: Preparation, characterization and reactivity
Stanbury et al. Mn-carbonyl molecular catalysts containing a redox-active phenanthroline-5, 6-dione for selective electro-and photoreduction of CO2 to CO or HCOOH
Dakkach et al. New aqua N-heterocyclic carbene Ru (II) complexes with two-electron process as selective epoxidation catalysts: An evaluation of geometrical and electronic effects
Das et al. Crystallography of reactive intermediates
Jang et al. Frontier orbitals of photosubstitutionally active ruthenium complexes: an experimental study of the spectator ligands’ electronic properties influence on photoreactivity
Karmakar et al. Solvent-free microwave-assisted peroxidative oxidation of alcohols catalyzed by iron (III)-TEMPO catalytic systems
Phungsripheng et al. Photocatalytic oxygenation of sulfide and alkenes by trinuclear ruthenium clusters
Hirahara et al. Intramolecular hydrogen bonding: A key factor controlling the photosubstitution of ruthenium complexes
Modi et al. Zeolite-Y entrapped metallo-pyrazolone complexes as heterogeneous catalysts: Synthesis, catalytic aptitude and computational investigation
JP2015147205A (en) carbon dioxide reduction catalyst
JP2016159289A (en) Light absorption material
García et al. Synthesis, spectral, electrochemical and flash photolysis studies of Fe (II), Ni (II) tetrapyridylporphyrins coordinated at the periphery with chromium (III) phenanthroline complexes
d’Alessandro et al. Thermal stability and photostability of water solutions of sulfophthalocyanines of Ru (II), Cu (II), Ni (II), Fe (III) and Co (II)
Charboneau et al. Structural, electronic and acid/base properties of [Ru (bpy)(bpy (OH) 2) 2] 2+(bpy= 2, 2′-bipyridine, bpy (OH) 2= 4, 4′-dihydroxy-2, 2′-bipyridine)
Younus et al. Ligand photodissociation in Ru (ii)–1, 4, 7-triazacyclononane complexes enhances water oxidation and enables electrochemical generation of surface active species
Dmitrieva et al. Meso-nitro substitution as a means of Mn-octaethylporphyrin redox state controlling
Dong et al. Study two kind different catalytic behaviors for K4H1. 2 [Co0. 6 (H2O) 0.6 SiW11. 4O39. 4]-cocatalyzed visible light driven water oxidation in pH 1–7 media
WO2012002548A1 (en) Novel organic ligand, chelate complex, and multi-electron storage type molecular device for photoinduced charge separation