JP2016157812A - Method for producing anisotropic magnet ribbon - Google Patents

Method for producing anisotropic magnet ribbon Download PDF

Info

Publication number
JP2016157812A
JP2016157812A JP2015034366A JP2015034366A JP2016157812A JP 2016157812 A JP2016157812 A JP 2016157812A JP 2015034366 A JP2015034366 A JP 2015034366A JP 2015034366 A JP2015034366 A JP 2015034366A JP 2016157812 A JP2016157812 A JP 2016157812A
Authority
JP
Japan
Prior art keywords
ribbon
anisotropic magnet
microwave
amorphous
amorphous ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015034366A
Other languages
Japanese (ja)
Other versions
JP6521670B2 (en
Inventor
正朗 伊東
Masao Ito
正朗 伊東
紀次 佐久間
Noritsugu Sakuma
紀次 佐久間
祐輔 志茂
Yusuke Shimo
祐輔 志茂
秀史 岸本
Hideshi Kishimoto
秀史 岸本
博胤 滝澤
Hirotane Takizawa
博胤 滝澤
福島 潤
Jun Fukushima
潤 福島
靖幸 岩淵
Yasuyuki Iwabuchi
靖幸 岩淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Toyota Motor Corp
Original Assignee
Tohoku University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Toyota Motor Corp filed Critical Tohoku University NUC
Priority to JP2015034366A priority Critical patent/JP6521670B2/en
Publication of JP2016157812A publication Critical patent/JP2016157812A/en
Application granted granted Critical
Publication of JP6521670B2 publication Critical patent/JP6521670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an anisotropic magnet ribbon capable of crystallizing an amorphous ribbon and capable of orienting an axis of easy magnetization in a direction vertical to a ribbon surface.SOLUTION: In a method for producing an anisotropic magnet ribbon, an amorphous ribbon is irradiated with a microwave to be heated to 550-850°C, the amorphous ribbon having a composition represented by: RFeCoBM(where R represents one or more selected from rare earth elements, M represents one or more selected from among Ga, Al, Cu, Au, Ag, Zn, In and Mn and inevitable impurity elements, and 5≤x≤20, 0≤y≤8, 4≤w≤6.5 and 0≤z≤2 are satisfied).SELECTED DRAWING: Figure 1

Description

本発明は、異方性磁石薄帯の製造方法、特に、マイクロ波を用いた異方性磁石薄帯の製造方法に関する。   The present invention relates to a method for manufacturing an anisotropic magnet ribbon, and more particularly to a method for manufacturing an anisotropic magnet ribbon using a microwave.

希土類磁石は、磁性面により、異方性磁石と等方性磁石に大別できる。等方性磁石は、磁石材料の結晶方向が揃っていないため、磁力はそれほど高くない。一方、異方性磁石は、磁石材料の方向が特定方向に揃っており、高い磁力が得られる。   Rare earth magnets can be roughly classified into anisotropic magnets and isotropic magnets according to their magnetic surfaces. An isotropic magnet does not have a high magnetic force because the crystal directions of the magnet material are not aligned. On the other hand, in the anisotropic magnet, the direction of the magnet material is aligned in a specific direction, and a high magnetic force can be obtained.

非特許文献1には、異方性の発現のため、熱間塑性加工によって結晶粒を配向させた、Nd−Fe−B系磁石の製造方法が開示されている。   Non-Patent Document 1 discloses a method for producing an Nd—Fe—B-based magnet in which crystal grains are oriented by hot plastic working in order to develop anisotropy.

非特許文献1に開示される製造方法においては、超急冷法により得られた薄帯を粉砕して原料粉とし、この原料粉を室温で冷間プレスし、さらに800℃前後で熱間プレスすることにより等方性磁石とし、この等方性磁石を800℃前後で熱間押出しをすることにより、異方性磁石を得る。   In the production method disclosed in Non-Patent Document 1, the ribbon obtained by the ultra-quenching method is pulverized into raw material powder, and this raw material powder is cold-pressed at room temperature and further hot-pressed at around 800 ° C. Thus, an isotropic magnet is obtained, and this isotropic magnet is hot extruded at around 800 ° C. to obtain an anisotropic magnet.

特許文献1には、磁性部材の磁化最容易方向(金属薄帯の長手方向)以外の方向にマイクロ波を印加することにより、磁性部材を加熱する方法が開示されている。また、磁性部材として、例えば、アモルファス薄帯が開示されている。そして、そのアモルファス薄帯の組成として、FeCo75Si16が開示されている。 Patent Document 1 discloses a method of heating a magnetic member by applying a microwave in a direction other than the easiest magnetization direction (longitudinal direction of the metal ribbon) of the magnetic member. As a magnetic member, for example, an amorphous ribbon is disclosed. As a composition of the amorphous ribbon, Fe 5 Co 75 Si 4 B 16 is disclosed.

特許文献1に開示される加熱によって、アモルファス薄帯は結晶化されると同時に、アモルファス薄帯の面内異方性が強められる。そして、その面内異方性は、元来、アモルファス薄帯製造時に付与されたものである。   By heating disclosed in Patent Document 1, the amorphous ribbon is crystallized, and at the same time, the in-plane anisotropy of the amorphous ribbon is strengthened. The in-plane anisotropy is originally imparted at the time of manufacturing the amorphous ribbon.

特開2012−038491号公報JP 2012-038491 A

日置敬子、服部篤、「超急冷粉末を原料とした省Dy型Nd−Fe−B系熱間加工磁石の開発」、素形材、一般財団法人素形材センター、2011年8月、Vol.52、No.8、p.19−24Keiko Hioki, Atsushi Hattori, “Development of Dy-type Nd—Fe—B hot-working magnets made from ultra-quenched powders”, Shape Materials, Shape Materials Center, August 2011, Vol. 52, no. 8, p. 19-24

非特許文献1に開示された製造方法では、異方性を得るために、熱間押出し工程が必要であり、等方性磁石と比べると、製造方法が複雑であった。また、熱間押出し中に、結晶粒が粗大化していた。   In the manufacturing method disclosed in Non-Patent Document 1, a hot extrusion process is required to obtain anisotropy, and the manufacturing method is complicated as compared with an isotropic magnet. Further, the crystal grains were coarsened during the hot extrusion.

特許文献1に開示された加熱方法では、等方的な組織で、ナノオーダの微細組織を得ることはできても、磁化容易軸を配向させることはできなかった。 そのため、薄帯を粉砕して異方性磁石原料とする場合、0.01〜0.03μm程度にまで細かく粉砕する必要があった。特許文献1に開示された加熱方法によって面内異方性を強めただけでは、粉砕後の紛体内の磁化容易軸は一定の方向にならない。したがって、異方性磁石原料とするには、最小磁区近くまで粉砕する必要があるためである。   In the heating method disclosed in Patent Document 1, although an nanostructured microstructure can be obtained with an isotropic structure, the easy magnetization axis cannot be oriented. Therefore, when the ribbon is pulverized into an anisotropic magnet material, it is necessary to finely pulverize it to about 0.01 to 0.03 μm. By simply increasing the in-plane anisotropy by the heating method disclosed in Patent Document 1, the easy axis of magnetization in the powder after pulverization does not become a fixed direction. Therefore, in order to use an anisotropic magnet raw material, it is necessary to grind to near the minimum magnetic domain.

しかし、薄帯を細かく粉砕するには、多くの工数を有する。磁化容易軸を薄帯の面に垂直な方向(厚さ方向)に配向させれば、0.01〜0.03μm程度にまで細かく粉砕することなく、磁化容易軸を一定の方向にすることができる。   However, it takes many man-hours to finely pulverize the ribbon. If the easy magnetization axis is oriented in the direction perpendicular to the surface of the ribbon (thickness direction), the easy magnetization axis can be set to a certain direction without being finely pulverized to about 0.01 to 0.03 μm. it can.

そこで、本発明は、アモルファス薄帯を結晶化させると同時に、磁化容易軸を薄帯の面に垂直な方向に配向させることができる、異方性磁石薄帯の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an anisotropic magnet ribbon that can crystallize an amorphous ribbon and simultaneously orient the easy axis of magnetization in a direction perpendicular to the plane of the ribbon. And

本発明の要旨は、次のとおりである。
〈1〉アモルファス薄帯から異方性磁石薄帯を製造する方法であって、
前記アモルファス薄帯の組成は、RFe100−x−y−w−zCo(Rは希土類元素から選ばれる1種以上、MはGa、Al、Cu、Au、Ag、Zn、In及びMnから選ばれる1種以上と不可避的不純物元素、5≦x≦20、0≦y≦8、4≦w≦6.5、並びに0≦z≦2)であり、
前記異方性磁石薄帯の少なくとも一部は、正方晶の結晶構造を有しており、かつ、
前記異方性磁石薄帯の磁化容易軸は、前記異方性磁石薄帯の表面に対して垂直な方向に配向しており、かつ、
前記方法は、前記アモルファス薄帯にマイクロ波を照射し、前記アモルファス薄帯を550〜850℃に加熱すること、
を含む異方性磁石薄帯の製造方法。
〈2〉前記RがNd及び不可避的に含有するNd以外の希土類元素である、〈1〉項に記載の方法。
〈3〉前記マイクロ波の周波数が、2〜30GHzである、〈1〉項又は〈2〉項に記載の方法。
〈4〉前記マイクロ波を、1〜3600秒照射する、〈1〉〜〈3〉項のいずれか1項に記載の方法。
The gist of the present invention is as follows.
<1> A method for producing an anisotropic magnet ribbon from an amorphous ribbon,
The composition of the amorphous ribbon, R x Fe 100-x- y-w-z Co y B w M z (R is one or more members selected from rare earth elements, M is Ga, Al, Cu, Au, Ag, One or more selected from Zn, In and Mn and inevitable impurity elements, 5 ≦ x ≦ 20, 0 ≦ y ≦ 8, 4 ≦ w ≦ 6.5, and 0 ≦ z ≦ 2),
At least a part of the anisotropic magnet ribbon has a tetragonal crystal structure, and
The axis of easy magnetization of the anisotropic magnet ribbon is oriented in a direction perpendicular to the surface of the anisotropic magnet ribbon, and
The method includes irradiating the amorphous ribbon with microwaves and heating the amorphous ribbon to 550 to 850 ° C.
A method for producing an anisotropic magnet ribbon comprising:
<2> The method according to <1>, wherein R is a rare earth element other than Nd and inevitably contained Nd.
<3> The method according to <1> or <2>, wherein the frequency of the microwave is 2 to 30 GHz.
<4> The method according to any one of <1> to <3>, wherein the microwave is irradiated for 1 to 3600 seconds.

本発明によれば、アモルファス薄帯を結晶化させると同時に、磁化容易軸を薄帯の表面と垂直な方向に配向させることができる、異方性磁石薄帯の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of an anisotropic magnet ribbon which can crystallize an amorphous ribbon and can orientate an easy axis of magnetization in the direction perpendicular | vertical to the surface of a ribbon can be provided. .

本発明に係る異方性磁石薄帯の製造方法を実施するための装置の一例を示す模式図である。It is a schematic diagram which shows an example of the apparatus for enforcing the manufacturing method of the anisotropic magnet ribbon which concerns on this invention.

以下、本発明に係る異方性磁石薄帯の製造方法の実施形態を詳細に説明する。なお、以下に示す実施形態は、本発明を限定するものではない。   Hereinafter, an embodiment of a method for producing an anisotropic magnet ribbon according to the present invention will be described in detail. In addition, embodiment shown below does not limit this invention.

(アモルファス薄帯の組成)
本発明で使用するアモルファス薄帯は、その組成を、RFe100−x−y−w−zCoとする。Rは、希土類元素から選ばれる1種以上である。Mは、Ga、Al、Cu、Au、Ag、Zn、In及びMnから選ばれる1種以上並びに不可避的不純物元素である。
(Amorphous ribbon composition)
Amorphous ribbon for use in the present invention, its composition, and R x Fe 100-x-y -w-z Co y B w M z. R is at least one selected from rare earth elements. M is one or more selected from Ga, Al, Cu, Au, Ag, Zn, In, and Mn, and an unavoidable impurity element.

組成式:RFe100−x−y−w−zCoにおいて、x、y、及びzは、5≦x≦20、0≦y≦8、4≦w≦6.5、及び0≦z≦2である。これは、Rの含有量が5〜20原子%、Coの含有量が0〜8原子%、及びBの含有量が4〜6.5原子%、Mの含有量が0〜2原子%、及び、Feが残部であることを示す。 Composition formula: in R x Fe 100-x-y -w-z Co y B w M z, x, y, and z, 5 ≦ x ≦ 20,0 ≦ y ≦ 8,4 ≦ w ≦ 6.5 And 0 ≦ z ≦ 2. The content of R is 5 to 20 atomic%, the content of Co is 0 to 8 atomic%, the content of B is 4 to 6.5 atomic%, the content of M is 0 to 2 atomic%, And it shows that Fe is the remainder.

(Rの含有量:5〜20原子%)
上述したように、Rは希土類元素から選ばれる1種以上である。希土類元素とは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの17元素をいう。
(R content: 5 to 20 atomic%)
As described above, R is at least one selected from rare earth elements. The rare earth element refers to 17 elements of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

Rの含有量は5〜20原子%の範囲とする。この範囲内であれば、異方性磁石薄帯はRFe14B相を多く含み、その磁気特性が向上するためである。 The R content is in the range of 5 to 20 atomic%. If it is within this range, the anisotropic magnet ribbon contains a large amount of R 2 Fe 14 B phase, and its magnetic properties are improved.

Rの代表例はNdであるが、特にこれに限定されることはない。本発明の製造方法で得られる異方性磁石薄帯は、主相として、RFe14B相を有する。また、RFe14B相の結晶構造は、正方晶である。Rが上述した17種のうちのいずれであっても、RFe14B相の中で相互に置換可能であり、正方晶の全体構造は変わらないためである。また、RをNdとした場合においても、不可避的に含有するNd以外の希土類元素が含有することを妨げない。複数種類の希土類元素から特定の希土類元素に完全に分離することは、困難であるためである。 A typical example of R is Nd, but is not particularly limited thereto. The anisotropic magnet ribbon obtained by the production method of the present invention has an R 2 Fe 14 B phase as a main phase. The crystal structure of the R 2 Fe 14 B phase is tetragonal. This is because even if R is any of the 17 types described above, they can be substituted for each other in the R 2 Fe 14 B phase, and the overall structure of the tetragonal crystal does not change. Moreover, even when R is Nd, it does not prevent the rare earth elements other than Nd inevitably contained from being contained. This is because it is difficult to completely separate a plurality of types of rare earth elements into specific rare earth elements.

(Coの含有量:0〜8原子%)
Coは、鉄族元素に分類され、Co及びFeそれぞれの性質は、常温及び常圧で強磁性を示す点で共通する。したがって、RFe14B相において、Feの一部をCoに置換可能であるため、Coを含有してもよい。CoはFeと比べて高価であるから、Coの含有量の上限は8原子%とする。
(Co content: 0 to 8 atomic%)
Co is classified as an iron group element, and the properties of Co and Fe are common in that they exhibit ferromagnetism at normal temperature and normal pressure. Therefore, in the R 2 Fe 14 B phase, a part of Fe can be substituted with Co, and therefore, Co may be contained. Since Co is more expensive than Fe, the upper limit of the Co content is 8 atomic%.

(Bの含有量:4〜6.5原子%)
Bの含有量は4〜6.5原子%の範囲とする。この範囲内であれば、異方性磁石薄帯はRFe14B相を多く含み、その磁気特性が向上するためである。
(B content: 4 to 6.5 atomic%)
The B content is in the range of 4 to 6.5 atomic%. If it is within this range, the anisotropic magnet ribbon contains a large amount of R 2 Fe 14 B phase, and its magnetic properties are improved.

(Mの含有量:0〜2原子%)
Mは、Ga、Al、Cu、Au、Ag、Zn、In及びMnから選ばれる1種以上と不可避的不純物元素である。これらの元素を含有しても、これらの元素の合計が2原子%以下であれば、異方性磁石薄帯の磁気特性を損なわないためである。
(M content: 0 to 2 atomic%)
M is at least one element selected from Ga, Al, Cu, Au, Ag, Zn, In, and Mn and an unavoidable impurity element. This is because even if these elements are contained, the magnetic properties of the anisotropic magnet ribbon are not impaired as long as the total of these elements is 2 atomic% or less.

(Fe:残部)
Feは、RFe14B相を構成する主たる元素である。R、Co、B及びMの含有量を、これまで説明してきた範囲とし、Feを残部とすれば、異方性磁石薄帯はRFe14B相を多く含み、その磁気特性が向上する。
(Fe: balance)
Fe is a main element constituting the R 2 Fe 14 B phase. If the contents of R, Co, B, and M are within the ranges described so far, and Fe is the balance, the anisotropic magnet ribbon contains a large amount of R 2 Fe 14 B phase, and its magnetic properties are improved. .

(アモルファス薄帯の製造方法)
アモルファス薄帯の製造方法は、特に限定されることはなく、例えば、単ロール液体急冷法などを適用することができる。
(Amorphous ribbon manufacturing method)
The method for producing the amorphous ribbon is not particularly limited, and for example, a single roll liquid quenching method can be applied.

(マイクロ波の照射)
上述した組成を有するアモルファス薄帯に、マイクロ波を照射し、アモルファス薄帯を、電場及び磁場中で加熱する。
(Microwave irradiation)
The amorphous ribbon having the above composition is irradiated with microwaves, and the amorphous ribbon is heated in an electric field and a magnetic field.

(加熱温度:550〜850℃)
加熱温度は550〜850℃とする。加熱温度が550℃以上であれば、アモルファス薄帯の少なくとも一部を結晶化させると同時に、磁化容易軸を異方性磁石薄帯の表面に対して垂直な方向に配向させることができる。一方、加熱温度が850℃以下であれば、異方性磁石薄帯の結晶を粗大化させることはない。
(Heating temperature: 550-850 ° C.)
The heating temperature is 550 to 850 ° C. When the heating temperature is 550 ° C. or higher, at least a part of the amorphous ribbon can be crystallized, and at the same time, the easy axis of magnetization can be oriented in a direction perpendicular to the surface of the anisotropic magnet ribbon. On the other hand, when the heating temperature is 850 ° C. or lower, the anisotropic magnet ribbon crystal is not coarsened.

なお、加熱温度を上記範囲にするに際し、補助的に、マイクロ波以外の熱源、例えば、ランプ加熱又は電気炉加熱を用いてもよい。電気炉とは、例えば、照射室に電熱線を設置した炉のことをいう。   In addition, when making heating temperature into the said range, you may use heat sources other than a microwave, for example, lamp heating or electric furnace heating, as an auxiliary. An electric furnace refers to a furnace in which a heating wire is installed in an irradiation chamber, for example.

このような結晶化の進行は、RFe100−x−y−w−zCo(ただし、x、y、及びzは、5≦x≦20、0≦y≦8、4≦w≦6.5、及び0≦z≦2)の組成を有するアモルファス薄帯において、特有に認められるものである。 The progress of such crystallization is represented by R x Fe 100-xy- wz Co y B w M z (where x, y, and z are 5 ≦ x ≦ 20, 0 ≦ y ≦ 8, It is recognized uniquely in amorphous ribbons having compositions of 4 ≦ w ≦ 6.5 and 0 ≦ z ≦ 2).

磁化容易軸が異方性磁石薄帯の表面に対して垂直な方向に配向しているとは、配向度が70%以上のことをいうものとする。本発明における配向度は、磁化容易軸と異方性磁石薄帯の表面に垂直な直線との角度をθ(45°≦θ≦90°)、角度θを有する結晶の存在百分率をrとし、rcosθを、θが45°〜90°の範囲で積分して算出する。また、角度θと存在百分率rは、異方性磁石薄帯を電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)分析して得られるヒストグラムから求められる。   The orientation of the easy axis of magnetization in the direction perpendicular to the surface of the anisotropic magnet ribbon means that the degree of orientation is 70% or more. In the present invention, the degree of orientation is defined as θ (45 ° ≦ θ ≦ 90 °) between the axis of easy magnetization and a straight line perpendicular to the surface of the anisotropic magnet ribbon, and r as the percentage of crystals having an angle θ, r cos θ is calculated by integrating θ in the range of 45 ° to 90 °. In addition, the angle θ and the existence percentage r are obtained from a histogram obtained by analyzing an anisotropic magnet ribbon with an electron backscatter diffraction (EBSD) analysis.

加熱雰囲気中でアモルファス薄帯にマイクロ波を照射するに際しては、予め、アモルファス薄帯を石英管に真空封入しておくことが好ましい。高温の薄帯が酸化することを防止するためである。   When irradiating the amorphous ribbon with microwaves in a heated atmosphere, it is preferable to previously vacuum seal the amorphous ribbon in a quartz tube. This is to prevent the hot ribbon from being oxidized.

(マイクロ波周波数:2〜30GHz)
マイクロ波は、一般的に、周波数が300MHz〜300GHzの電磁波をいう。本発明で照射するマイクロ波の周波数は、特に限定されないが、2〜30GHzとすることが好ましい。2GHz以上であれば、アモルファス薄帯の結晶化と磁化容易軸の配向を短時間に行うことができる。30GHz以下であれば、マイクロ波発生装置が大型化しない。
(Microwave frequency: 2 to 30 GHz)
A microwave generally refers to an electromagnetic wave having a frequency of 300 MHz to 300 GHz. Although the frequency of the microwave irradiated by this invention is not specifically limited, It is preferable to set it as 2-30 GHz. If it is 2 GHz or more, crystallization of the amorphous ribbon and orientation of the easy magnetization axis can be performed in a short time. If it is 30 GHz or less, a microwave generator will not enlarge.

(マイクロ波照射時間:1〜3600秒)
マイクロ波の照射は極短時間であっても効果がある。したがって、マイクロ波の照射時間は、特に限定されないが、1〜3600秒とすることが好ましい、1秒以上であれば、アモルファス薄帯の結晶化と磁化容易軸の配向が可能である。一方、3600秒以下であれば、アモルファス薄帯の結晶化と磁化容易軸の配向が終了した後、無駄にマイクロ波を照射し続けることはない。
(Microwave irradiation time: 1-3600 seconds)
Microwave irradiation is effective even for a very short time. Therefore, although the microwave irradiation time is not particularly limited, it is preferably 1 to 3600 seconds, and if it is 1 second or longer, crystallization of the amorphous ribbon and orientation of the easy magnetization axis are possible. On the other hand, if it is 3600 seconds or less, microwave irradiation is not continued unnecessarily after the crystallization of the amorphous ribbon and the orientation of the easy magnetization axis are completed.

(マイクロ波照射装置)
本発明に係る異方性磁石薄帯の製造方法を実施するための装置は、アモルファス薄帯にマイクロ波を、上述したように照射することができれば、特に限定されないが、シングルモードキャビティマイクロ波照射装置が好ましい。被照射物であるアモルファス薄帯は、食品等に比較して、誘電損率が非常に小さいためである。
(Microwave irradiation equipment)
The apparatus for carrying out the method for producing an anisotropic magnet ribbon according to the present invention is not particularly limited as long as the amorphous ribbon can be irradiated with microwaves as described above, but single mode cavity microwave irradiation is not limited. An apparatus is preferred. This is because the amorphous ribbon that is the object to be irradiated has a very low dielectric loss factor compared to foods and the like.

図1は、本発明に係る異方性磁石薄帯の製造方法を実施するための装置の一例を示す模式図である。   FIG. 1 is a schematic view showing an example of an apparatus for carrying out the method for producing an anisotropic magnet ribbon according to the present invention.

マイクロ波照射装置100は、シングルモードキャビティマイクロ波照射装置であり、マイクロ波発振器10、アイソレータ20、導波管30、整合器40、マイクロ波導入用結合口(アイリス)50、照射室(キャビティ)60、及び可動短絡器70を有する。   The microwave irradiation apparatus 100 is a single mode cavity microwave irradiation apparatus, and includes a microwave oscillator 10, an isolator 20, a waveguide 30, a matching unit 40, a microwave introduction coupling port (iris) 50, and an irradiation chamber (cavity). 60 and a movable short circuit 70.

マイクロ波発振器10で発生させたマイクロ波は、アイソレータ20、整合器40、及びマイクロ波導入用結合口(アイリス)50を経て、照射室(キャビティ)60に伝播し、可動短絡器70に達する。   The microwave generated by the microwave oscillator 10 propagates to the irradiation chamber (cavity) 60 through the isolator 20, the matching unit 40, and the microwave introduction coupling port (iris) 50, and reaches the movable short circuit 70.

マイクロ波発振器10としては、マグネトロンが一般的であるが、これに限られない。マイクロ波発振器10と整合器40の間には、被照射物から反射してきたマイクロ波が再びマイクロ波発振器10に戻らないようにするため、アイソレータ20を設ける。   The microwave oscillator 10 is generally a magnetron, but is not limited thereto. An isolator 20 is provided between the microwave oscillator 10 and the matching unit 40 so that the microwave reflected from the irradiated object does not return to the microwave oscillator 10 again.

整合器40は、インピーダンスを調整する。整合器40は、3本の調整棒42a、42b、42cを導波管30に出し入れするスリースタブチューナが一般的であるが、これに限られない。   The matching unit 40 adjusts the impedance. The matching unit 40 is generally a three stub tuner that allows the three adjustment rods 42a, 42b, and 42c to be taken in and out of the waveguide 30, but is not limited thereto.

マイクロ波導入用結合口(アイリス)50と可動短絡器70は、これら相互の位置関係を調整することによって、照射室(キャビティ)60の内部を共振状態にする。なお、この調整は、マイクロ波の照射前に、予め行う。   The microwave introduction coupling port (iris) 50 and the movable short-circuit 70 adjust the mutual positional relationship to bring the irradiation chamber (cavity) 60 into a resonance state. This adjustment is performed in advance before the microwave irradiation.

照射室(キャビティ)60の内部に、被照射物(図示せず)を設置する。被照射物の設置は、被照射物を真空封入した石英管62を、開閉孔64から挿入することによって行う。   An object to be irradiated (not shown) is installed inside the irradiation chamber (cavity) 60. The object to be irradiated is set by inserting a quartz tube 62 in which the object to be irradiated is vacuum-sealed through the opening / closing hole 64.

以下、本発明を実施例により、さらに具体的に説明する。なお、本発明は、以下の実施例で用いた条件に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the conditions used in the following examples.

(アモルファス薄帯の作製)
組成がNd13.4Fe79.95.8Ga0.5Al0.3Cu0.1である合金をアルゴンガスの減圧雰囲気中で溶解して得た1400℃の溶湯を、周速36m/sで回転する銅ロールに噴射し、急冷薄帯(急冷リボン)を作製した。X線回折(XRD:X Ray Diffraction)分析により、この急冷薄帯が、アモルファス薄帯であることを確認した。そして、このアモルファス薄帯を、石英管に真空封入した。
(Preparation of amorphous ribbon)
An alloy having a composition of Nd 13.4 Fe 79.9 B 5.8 Ga 0.5 Al 0.3 Cu 0.1 was melted in a reduced pressure atmosphere of argon gas, and a 1400 ° C. molten metal was obtained at a peripheral speed. It was sprayed on a copper roll rotating at 36 m / s to produce a quenched ribbon (quenched ribbon). X-ray diffraction (XRD) analysis confirmed that the quenched ribbon was an amorphous ribbon. The amorphous ribbon was vacuum sealed in a quartz tube.

(実施例の作製)
石英管に真空封入したアモルファス薄帯を、図1に示したシングルモードキャビティマイクロ波照射装置100の照射室(キャビティ)60の内部に挿入し、マイクロ波照射して実施例1〜14を作製した。マイクロ波照射に際しては、予め、マイクロ波導入用結合口(アイリス)50と可動短絡器70の位置関係を調整し、照射室(キャビティ)60の内部を共振状態にすることにより、アモルファス薄帯が設置された位置を、電場又は磁場が最大になるようにした。
(Production of Examples)
Examples 1-14 were fabricated by inserting an amorphous ribbon sealed in a quartz tube into the irradiation chamber (cavity) 60 of the single-mode cavity microwave irradiation apparatus 100 shown in FIG. . When microwave irradiation is performed, the positional relationship between the microwave introduction coupling port (iris) 50 and the movable short circuit 70 is adjusted in advance, and the inside of the irradiation chamber (cavity) 60 is brought into a resonance state, whereby the amorphous ribbon is formed. The installed position was set to maximize the electric or magnetic field.

マイクロ波照射の具体的条件は、次のとおりである。
マイクロ波周波数:2.45GHz
加熱温度:600℃、700℃、及び800℃
加熱時間:1秒、10秒、60秒、600秒、1800秒、及び3600秒
Specific conditions of microwave irradiation are as follows.
Microwave frequency: 2.45 GHz
Heating temperature: 600 ° C, 700 ° C, and 800 ° C
Heating time: 1 second, 10 seconds, 60 seconds, 600 seconds, 1800 seconds, and 3600 seconds

(比較例の作製)
マイクロ波の照射により、加熱温度を500℃とし、加熱時間を1800秒としたこと以外は、実施例1〜14と同様にして、比較例1を作製した。
(Production of comparative example)
Comparative Example 1 was produced in the same manner as in Examples 1 to 14 except that the heating temperature was 500 ° C. and the heating time was 1800 seconds by microwave irradiation.

また、マイクロ波を照射せず、電気炉のみで、加熱温度を900℃とし、加熱時間を1800秒としたこと以外は、実施例1〜14と同様にして、比較例2を作製した。   Further, Comparative Example 2 was produced in the same manner as in Examples 1 to 14 except that the microwave was not irradiated, the heating temperature was set to 900 ° C., and the heating time was set to 1800 seconds with only an electric furnace.

さらに、マイクロ波を照射せず、電気炉のみで、加熱温度を700℃とし、加熱時間を1800秒としたこと以外は、実施例1〜14と同様にして、比較例3を作製した。   Further, Comparative Example 3 was produced in the same manner as in Examples 1 to 14 except that the microwave was not irradiated, the heating temperature was set to 700 ° C., and the heating time was set to 1800 seconds only with an electric furnace.

(組織観察)
実施例1〜14及び比較例1〜3について、結晶粒が粗大化していないかを、走査型電子顕微鏡(SEM:Scanning Electron Microscope)により確認した。結晶粒の磁化困難軸(a軸)が400nm以上のとき、結晶粒が粗大化していると判断することとした。
(Tissue observation)
About Examples 1-14 and Comparative Examples 1-3, it was confirmed by the scanning electron microscope (SEM: Scanning Electron Microscope) whether the crystal grain was coarsened. When the hard axis (a-axis) of crystal grains is 400 nm or more, it is determined that the crystal grains are coarsened.

(電子線後方散乱回折分析)
また、実施例1〜14及び比較例1〜3を電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)分析し、結晶化の有無と磁気容易軸の配向度を調査した。配向度は上述した方法で算出した。
(Electron backscatter diffraction analysis)
Further, Examples 1 to 14 and Comparative Examples 1 to 3 were analyzed by electron backscatter diffraction (EBSD), and the presence or absence of crystallization and the degree of orientation of the easy magnetic axis were investigated. The degree of orientation was calculated by the method described above.

結果を表1に示す。電子線後方散乱回折分析して得られるヒストグラムから、結晶化が認められるものについては、その結晶はNdFe14Bであることが判明した。したがって、その結晶構造は、正方晶である。 The results are shown in Table 1. From the histograms obtained by electron beam backscatter diffraction analysis, it was found that the crystals were Nd 2 Fe 14 B for those where crystallization was observed. Therefore, the crystal structure is tetragonal.

Figure 2016157812
Figure 2016157812

表1から明らかなように、実施例1〜14に関しては、いずれも、結晶化が認められ、かつ配向度が70%以上である。即ち、結晶化と同時に、磁化容易軸が、異方性磁石薄帯の表面と垂直な方向に配向している。   As is clear from Table 1, in each of Examples 1 to 14, crystallization was observed and the degree of orientation was 70% or more. That is, simultaneously with crystallization, the easy axis of magnetization is oriented in a direction perpendicular to the surface of the anisotropic magnet ribbon.

一方、比較例1に関しては、結晶化が認められなかった。結晶化していないことから、磁化容易軸も存在しない。また、比較例2に関しては、結晶化は認められた。しかし、SEM観察結果から、結晶粒が粗大化していることが判明した。そして、比較例3に関しては、結晶化は認められた。しかし、配向度が70%未満であり、磁化容易軸が異方性磁石薄帯の表面と垂直な方向に配向していなかった。   On the other hand, with respect to Comparative Example 1, no crystallization was observed. Since it is not crystallized, there is no easy axis of magnetization. In Comparative Example 2, crystallization was observed. However, SEM observation results revealed that the crystal grains were coarsened. For Comparative Example 3, crystallization was observed. However, the degree of orientation was less than 70%, and the easy axis of magnetization was not oriented in the direction perpendicular to the surface of the anisotropic magnet ribbon.

以上の結果から、本発明の効果を確認できた。   From the above results, the effect of the present invention was confirmed.

本発明によれば、アモルファス薄帯を結晶化すると同時に、磁化容易軸を結晶化された薄帯の表面と垂直な方向に配向させることができる。したがって、本発明は、産業上の利用可能性が大きい。   According to the present invention, the easy axis of magnetization can be oriented in a direction perpendicular to the surface of the crystallized ribbon at the same time that the amorphous ribbon is crystallized. Therefore, the present invention has great industrial applicability.

10 マイクロ波発振器
20 アイソレータ
30 導波管
40 整合器
42a、42b、42c 調整棒
50 マイクロ波導入用結合口(アイリス)
60 照射室(キャビティ)
62 石英管
64 開閉孔
70 可動短絡器
100 マイクロ波照射装置
DESCRIPTION OF SYMBOLS 10 Microwave oscillator 20 Isolator 30 Waveguide 40 Matching device 42a, 42b, 42c Adjustment rod 50 Microwave introduction coupling port (iris)
60 Irradiation chamber (cavity)
62 Quartz tube 64 Opening and closing hole 70 Movable short circuit 100 Microwave irradiation device

Claims (4)

アモルファス薄帯から異方性磁石薄帯を製造する方法であって、
前記アモルファス薄帯の組成は、RFe100−x−y−w−zCo(Rは希土類元素から選ばれる1種以上、MはGa、Al、Cu、Au、Ag、Zn、In及びMnから選ばれる1種以上と不可避的不純物元素、5≦x≦20、0≦y≦8、4≦w≦6.5、並びに0≦z≦2)であり、
前記異方性磁石薄帯の少なくとも一部は、正方晶の結晶構造を有しており、かつ、
前記異方性磁石薄帯の磁化容易軸は、前記異方性磁石薄帯の表面に対して垂直な方向に配向しており、かつ、
前記方法は、前記アモルファス薄帯にマイクロ波を照射し、前記アモルファス薄帯を550〜850℃に加熱すること、
を含む異方性磁石薄帯の製造方法。
A method for producing an anisotropic magnet ribbon from an amorphous ribbon,
The composition of the amorphous ribbon, R x Fe 100-x- y-w-z Co y B w M z (R is one or more members selected from rare earth elements, M is Ga, Al, Cu, Au, Ag, One or more selected from Zn, In and Mn and inevitable impurity elements, 5 ≦ x ≦ 20, 0 ≦ y ≦ 8, 4 ≦ w ≦ 6.5, and 0 ≦ z ≦ 2),
At least a part of the anisotropic magnet ribbon has a tetragonal crystal structure, and
The axis of easy magnetization of the anisotropic magnet ribbon is oriented in a direction perpendicular to the surface of the anisotropic magnet ribbon, and
The method includes irradiating the amorphous ribbon with microwaves and heating the amorphous ribbon to 550 to 850 ° C.
A method for producing an anisotropic magnet ribbon comprising:
前記RがNd及び不可避的に含有するNd以外の希土類元素である、請求項1に記載の方法。   The method according to claim 1, wherein R is a rare earth element other than Nd and Nd inevitably contained. 前記マイクロ波の周波数が、2〜30GHzである、請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein a frequency of the microwave is 2 to 30 GHz. 前記マイクロ波を、1〜3600秒照射する、請求項1〜3のいずれか1項に記載の方法。   The method according to claim 1, wherein the microwave is irradiated for 1 to 3600 seconds.
JP2015034366A 2015-02-24 2015-02-24 Method of manufacturing anisotropic magnet ribbon Active JP6521670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034366A JP6521670B2 (en) 2015-02-24 2015-02-24 Method of manufacturing anisotropic magnet ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034366A JP6521670B2 (en) 2015-02-24 2015-02-24 Method of manufacturing anisotropic magnet ribbon

Publications (2)

Publication Number Publication Date
JP2016157812A true JP2016157812A (en) 2016-09-01
JP6521670B2 JP6521670B2 (en) 2019-05-29

Family

ID=56826393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034366A Active JP6521670B2 (en) 2015-02-24 2015-02-24 Method of manufacturing anisotropic magnet ribbon

Country Status (1)

Country Link
JP (1) JP6521670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210329751A1 (en) * 2018-06-19 2021-10-21 The Penn State Research Foundation In-line microwave processing of alloys

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118109A (en) * 1997-04-21 1999-01-12 Shin Etsu Chem Co Ltd Rare earth permanent magnet material and its manufacture
JP2003193112A (en) * 2001-12-28 2003-07-09 Sumitomo Coal Mining Co Ltd Pulse energized pressure sintering method, sintering apparatus, and sintered compact
JP2009158860A (en) * 2007-12-27 2009-07-16 Seiko Instruments Inc Method of manufacturing bond magnet, bond magnet, and manufacturing apparatus
JP2011042873A (en) * 2009-07-22 2011-03-03 Hitachi Ltd Porous metal and method for producing the same
JP2011162837A (en) * 2010-02-09 2011-08-25 Shinko Kagaku Kogyosho:Kk Metal nanoparticle cluster, labeled material using the metal nanoparticle cluster, immunochromatography kit using the metal nanoparticle cluster, method for producing the metal nanoparticle cluser, method for producing the labeled material using the metal nanoparticle cluster, and method for producing the immunochromatography kit using the metal nanoparticle cluster
JP2011202208A (en) * 2010-03-24 2011-10-13 Tohoku Univ Method of producing metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118109A (en) * 1997-04-21 1999-01-12 Shin Etsu Chem Co Ltd Rare earth permanent magnet material and its manufacture
JP2003193112A (en) * 2001-12-28 2003-07-09 Sumitomo Coal Mining Co Ltd Pulse energized pressure sintering method, sintering apparatus, and sintered compact
JP2009158860A (en) * 2007-12-27 2009-07-16 Seiko Instruments Inc Method of manufacturing bond magnet, bond magnet, and manufacturing apparatus
JP2011042873A (en) * 2009-07-22 2011-03-03 Hitachi Ltd Porous metal and method for producing the same
JP2011162837A (en) * 2010-02-09 2011-08-25 Shinko Kagaku Kogyosho:Kk Metal nanoparticle cluster, labeled material using the metal nanoparticle cluster, immunochromatography kit using the metal nanoparticle cluster, method for producing the metal nanoparticle cluser, method for producing the labeled material using the metal nanoparticle cluster, and method for producing the immunochromatography kit using the metal nanoparticle cluster
JP2011202208A (en) * 2010-03-24 2011-10-13 Tohoku Univ Method of producing metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210329751A1 (en) * 2018-06-19 2021-10-21 The Penn State Research Foundation In-line microwave processing of alloys

Also Published As

Publication number Publication date
JP6521670B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
Liu et al. Microstructure and property evolution of isotropic and anisotropic NdFeB magnets fabricated from nanocrystalline ribbons by spark plasma sintering and hot deformation
TWI767308B (en) Rare earth permanent magnet material, raw material composition, preparation method, application, motor
Yan et al. Fast development of high coercivity in melt-spun Sm (Co, Fe, Cu, Zr) z magnets
JP4596645B2 (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
CN105723476B (en) permanent magnet, motor and generator
CN105989983B (en) Permanent magnet
WO2016015662A1 (en) Rapidly-quenched alloy and preparation method for rare-earth magnet
US20160167978A1 (en) A permanent magnetic material
KR102527123B1 (en) Rare earth permanent magnet material and its raw material composition, manufacturing method and application
Xie et al. Improved sintering characteristics and gyromagnetic properties of low-temperature sintered Li. 42Zn. 27Ti. 11Mn. 1Fe2. 1O4 ferrite ceramics modified with Bi2O3-ZnO-B2O3 glass additive
Shannigrahi et al. Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications
CN110993239A (en) Iron-cobalt-based amorphous soft magnetic alloy and preparation method thereof
CN108695033B (en) R-T-B sintered magnet
EP2478528A1 (en) Rare earth permanent magnetic material and preparation method thereof
Pazhanivelu et al. Unexpected ferromagnetism in Ist group elements doped ZnO based DMS nanoparticles
TW202125544A (en) R-t-b series permanent magnetic material and preparation method and application thereof
Chrobak et al. Magnetic shielding effectiveness of iron-based amorphous alloys and nanocrystalline composites
KR101868763B1 (en) Rare earth thin-film magnet and method for producing same
Isogai et al. Magnetic properties of MnBi fine particles fabricated using hydrogen plasma metal reaction
CA1318835C (en) Permanent magnet for accelerating corpuscular beam
JP6521670B2 (en) Method of manufacturing anisotropic magnet ribbon
Si et al. Enhanced magnetic performance of bulk nanocrystalline MnAl–C prepared by high pressure compaction of gas atomized powders
Zhao et al. Microstructure and magnetic properties of hot-deformed anisotropic Nd–Fe–B magnets prepared from amorphous precursors with different crystallization proportions
Hou et al. Magnetic properties, phase evolution, and microstructure of the Co–Zr–V ribbons
KR101982998B1 (en) Rare earth thin film magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190423

R151 Written notification of patent or utility model registration

Ref document number: 6521670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250