JP2016157538A - Power storage device and manufacturing method for the same - Google Patents

Power storage device and manufacturing method for the same Download PDF

Info

Publication number
JP2016157538A
JP2016157538A JP2015033350A JP2015033350A JP2016157538A JP 2016157538 A JP2016157538 A JP 2016157538A JP 2015033350 A JP2015033350 A JP 2015033350A JP 2015033350 A JP2015033350 A JP 2015033350A JP 2016157538 A JP2016157538 A JP 2016157538A
Authority
JP
Japan
Prior art keywords
storage device
adhesive
exterior member
portions
adhesive portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015033350A
Other languages
Japanese (ja)
Inventor
翔治 吉田
Shoji Yoshida
翔治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2015033350A priority Critical patent/JP2016157538A/en
Publication of JP2016157538A publication Critical patent/JP2016157538A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device and a manufacturing method for the same that can prevent burst of an exterior member while enhancing the sealing performance of the exterior member.SOLUTION: A power storage device 1 includes an exterior member 12 and a laminate body 119. The exterior member 12 includes a first adhesion portion 123 formed by adhesively attaching at least the whole outer edge portion of an overlap portion of a film member formed at the peripheral portion of the film member, and an area S1 which is hermetically sealed by the film member and the first adhesion portion 123. The laminate body 119 is mounted in the area S1 of the exterior member 12. The exterior member 12 has two second adhesion portions 123a which are disposed at the laminate body 119 side along the boundary between the area S1 and the first adhesion portion 123 and formed by adhesively attaching the overlap portion. The two second adhesion portions 123a have through-holes 16 which penetrate through the second adhesion portions 123a and are sized so that the adhesively attached areas remain around the through-holes.SELECTED DRAWING: Figure 2

Description

本発明は、蓄電デバイスおよび蓄電デバイスの製造方法に関する。   The present invention relates to a power storage device and a method for manufacturing a power storage device.

近年、軽量化および薄型化の要請に応じてラミネート型の外装部材を用いた蓄電デバイスが提供されている。   In recent years, an electricity storage device using a laminate-type exterior member has been provided in response to demands for weight reduction and thickness reduction.

この種の蓄電デバイスでは、使用中に規格範囲外の電圧が印加されたり、一時的に高温になったりすると、内部の電解液が分解されてガスが発生することがある。ガスが多量に発生して外装部材の内圧が異常に上昇すると、外装部材が破裂してしまう虞がある。   In this type of electricity storage device, when a voltage outside the standard range is applied during use or when the temperature temporarily rises, the internal electrolyte may be decomposed to generate gas. If a large amount of gas is generated and the internal pressure of the exterior member rises abnormally, the exterior member may burst.

これに対して、従来、電池要素を収納するラミネート型の外装部材の封止領域の一部に、外装部材の内部でガスが発生すると封止領域に剥離応力が集中する1つの応力集中部を形成し、この応力集中部に圧力開放部として1つの貫通孔を設けた電気デバイス(蓄電デバイス)が提案されている(特許文献1参照)。この蓄電デバイスでは、外装部材の内側と貫通孔との間の最短距離によって、外装部材内部のガスが貫通孔を通じて外部へ放出される際の外装部材の内圧(ガス放出時内圧)が定まる。具体的には、前述の最短距離が短いほど、ガス放出時内圧が低下する。   On the other hand, conventionally, one stress concentration portion in which peeling stress is concentrated in the sealing region when gas is generated inside the exterior member is formed in a part of the sealing region of the laminate type exterior member that houses the battery element. An electric device (electric storage device) that has been formed and provided with one through hole as a pressure release portion in the stress concentration portion has been proposed (see Patent Document 1). In this electricity storage device, the shortest distance between the inside of the exterior member and the through hole determines the internal pressure of the exterior member when the gas inside the exterior member is released to the outside through the through hole (gas release internal pressure). Specifically, the shorter the shortest distance, the lower the internal pressure during gas discharge.

特開2005−203262号公報JP 2005-203262 A

特許文献1に記載された構成では、ガス放出時内圧を低下させようとする場合、前述の最短距離を短く設定する必要がある。しかしながら、前述の最短距離を短くしすぎると、外装部材の密封性が低下し、外装部材の外部から内部へ水分等が侵入して電池性能が低下してしまう虞がある。一方、前述の最短距離を長くして外装部材の密封性を十分に確保しようとすると、ガス放出時内圧が上昇し、外装部材が破裂する虞がある。外装部材が破裂すると、外装部材内部の電解液や電極等が飛散してしまう。   In the configuration described in Patent Document 1, in order to reduce the internal pressure at the time of gas discharge, it is necessary to set the shortest distance short. However, if the above-mentioned shortest distance is too short, the sealing performance of the exterior member is lowered, and moisture or the like may enter from the outside to the inside of the exterior member, thereby reducing the battery performance. On the other hand, if the above-mentioned shortest distance is lengthened to sufficiently secure the sealing performance of the exterior member, the internal pressure at the time of gas release increases, and the exterior member may burst. When the exterior member ruptures, the electrolyte solution, electrodes, and the like inside the exterior member are scattered.

本発明は、上記事由に鑑みてなされたものであり、外装部材の密封性を高めつつ、外装部材の破裂を防止することができる蓄電デバイスおよび蓄電デバイスの製造方法を提供することを目的とする。   The present invention has been made in view of the above-described reasons, and an object thereof is to provide an electricity storage device and a method for manufacturing the electricity storage device that can prevent the exterior member from bursting while improving the sealing performance of the exterior member. .

本発明に係る蓄電デバイスは、
フィルム部材の周部に形成された前記フィルム部材の重なり部における、少なくとも外側の縁部全体を接着することにより形成された第1接着部と、前記フィルム部材および前記第1接着部により密封された領域と、を有する外装部材と、
前記第1接着部により密封された領域に収納された電池要素と、を備える蓄電デバイスであって、
前記外装部材は、
前記第1接着部により密封された領域と前記第1接着部との境界に沿った前記電池要素側に配置された、前記重なり部を接着することにより形成された複数の第2接着部を備え、
前記複数の第2接着部は、それぞれ第2接着部を貫通し且つ周囲に接着された領域が残る大きさの貫通孔を有する。
The electricity storage device according to the present invention is:
A first adhesive portion formed by adhering at least the entire outer edge of the overlapping portion of the film member formed on the periphery of the film member, and sealed by the film member and the first adhesive portion. An exterior member having a region;
A battery element housed in a region sealed by the first adhesive portion, and an electricity storage device comprising:
The exterior member is
A plurality of second adhesive portions formed by adhering the overlapping portions disposed on the battery element side along a boundary between the region sealed by the first adhesive portions and the first adhesive portion; ,
Each of the plurality of second adhesive portions has a through-hole having a size that penetrates the second adhesive portion and leaves a region bonded around the second adhesive portion.

本発明に係る蓄電デバイスの製造方法は、
フィルム部材により、電池要素を挟む両側から前記電池要素を包囲して、前記フィルム部材の周部に重なり部を設ける重なり部形成工程と、
前記重なり部における、少なくとも前記電池要素側とは反対側の縁部全体を接着して第1接着部を形成することにより、前記電池要素が配置される領域を形成するとともに、前記第1接着部と前記電池要素が配置される領域との境界に沿った前記電池要素側に配置された複数の第2接着部を形成する接着部形成工程と、
前記第2接着部を貫通し且つ周囲に接着された領域が残る大きさの貫通孔を穿設する貫通孔穿設工程と、を含む。
A method for manufacturing an electricity storage device according to the present invention includes:
An overlapping part forming step of surrounding the battery element from both sides sandwiching the battery element with a film member and providing an overlapping part on a peripheral part of the film member;
A region where the battery element is arranged is formed by adhering at least the entire edge of the overlapping portion opposite to the battery element side to form a first adhesive portion, and the first adhesive portion Forming a plurality of second adhesive portions arranged on the battery element side along a boundary between the battery element and the region where the battery element is arranged;
A through-hole drilling step of drilling a through-hole having a size that penetrates the second adhesive portion and leaves a region bonded around the second adhesive portion.

本発明によれば、複数の第2接着部が設けられるとともに、複数の第2接着部それぞれに貫通孔が設けられている。これにより、外装部材の領域と貫通孔との間の最短距離をある程度長くしても、ガス放出時内圧の過度の上昇を抑制できるので、外装部材の密封性を高めつつ、外装部材の破裂を防止することができる。   According to the present invention, a plurality of second adhesive portions are provided, and through holes are provided in each of the plurality of second adhesive portions. Thereby, even if the shortest distance between the region of the exterior member and the through-hole is increased to some extent, an excessive increase in the internal pressure during gas release can be suppressed, so that the exterior member can be ruptured while improving the sealability of the exterior member. Can be prevented.

実施の形態1に係る蓄電デバイスの構成を示す分解斜視図である。1 is an exploded perspective view showing a configuration of an electricity storage device according to Embodiment 1. FIG. 実施の形態1に係る蓄電デバイスの平面図である。3 is a plan view of the electricity storage device according to Embodiment 1. FIG. (a)は図2におけるA−A線断面矢視図であり、(b)から(d)は実施の形態1に係る蓄電デバイスの製造方法における各工程での断面図である。(A) is an AA line cross-sectional arrow view in FIG. 2, (b) to (d) are cross-sectional views at each step in the method for manufacturing an electricity storage device according to the first embodiment. 実施の形態1に係る蓄電デバイスの構成を示す断面図である。1 is a cross-sectional view illustrating a configuration of an electricity storage device according to Embodiment 1. FIG. 実施の形態1に係る蓄電デバイスのガス放出性能の評価を行った結果を示す図である。It is a figure which shows the result of having evaluated the gas emission performance of the electrical storage device which concerns on Embodiment 1. FIG. 実施の形態2に係る蓄電デバイスの平面図である。6 is a plan view of an electricity storage device according to Embodiment 2. FIG. 変形例に係る蓄電デバイスの平面図である。It is a top view of the electrical storage device concerning a modification. 変形例に係る蓄電デバイスの平面図である。It is a top view of the electrical storage device concerning a modification. 変形例に係る蓄電デバイスの平面図である。It is a top view of the electrical storage device concerning a modification. 変形例に係る蓄電デバイスの平面図である。It is a top view of the electrical storage device concerning a modification.

以下、本発明の各実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
本実施の形態に係る蓄電デバイス1は、図1に示すように、正極と負極とがセパレータを介して積層された積層体(電池要素)119と、積層体119から積層体119の積層方向に直交する方向へ延出する正極用外部端子111と、負極用外部端子112と、積層体119を外装する外装部材12と、を備える。正極用外部端子111は、取り出し電極部117aおよび接合部117bを介して積層体119の正極に電気的に接続されている。負極および負極用外部端子112は、取り出し電極部118aおよび接合部118bを介して積層体119の負極に電気的に接続されている。積層体119の構造の詳細は後述する。外装部材12は、フィルム部材125a、125bから構成される。
(Embodiment 1)
As shown in FIG. 1, the electricity storage device 1 according to the present embodiment includes a stacked body (battery element) 119 in which a positive electrode and a negative electrode are stacked via a separator, and the stacked body 119 extends in the stacking direction of the stacked body 119. The positive electrode external terminal 111 extending in the orthogonal direction, the negative electrode external terminal 112, and the exterior member 12 that covers the laminate 119 are provided. The positive electrode external terminal 111 is electrically connected to the positive electrode of the multilayer body 119 via the extraction electrode portion 117a and the joint portion 117b. The negative electrode and the negative electrode external terminal 112 are electrically connected to the negative electrode of the multilayer body 119 via the extraction electrode portion 118a and the joint portion 118b. Details of the structure of the stacked body 119 will be described later. The exterior member 12 includes film members 125a and 125b.

外装部材12は、フィルム部材125a、125bが接着されてなる第1接着部123と、内側の領域に積層体119を収納する積層体収納部(電池要素収納部)121と、を有する。第1接着部123は、積層体119を挟む両側から積層体119を包囲するフィルム部材125a、125bの周部に形成されたフィルム部材125a、125bの重なり部における積層体119側とは反対側の少なくとも縁部全体を熱融着法で接着することにより形成される。積層体収納部121は、平面視長方形状である。外装部材12の周部には、フィルム部材125a、125bが重なった重なり部122a、122bが形成されている。重なり部122a、122bにおける、熱融着しない非接着部に対応する領域126a、126bの間には、スペーサ14が介在している。重なり部122a、122bの間に3つのスペーサ14を挟んだ状態で、重なり部122a、122bに対して熱融着処理を行うことにより、第1接着部、第2接着部および非接着部が形成される。   The exterior member 12 includes a first adhesive portion 123 formed by bonding the film members 125a and 125b, and a laminate housing portion (battery element housing portion) 121 that houses the laminate 119 in an inner region. The first adhesive portion 123 is opposite to the laminated body 119 side in the overlapping portion of the film members 125a and 125b formed on the periphery of the film members 125a and 125b surrounding the laminated body 119 from both sides of the laminated body 119. It is formed by adhering at least the entire edge portion by a heat fusion method. The stacked body storage unit 121 has a rectangular shape in plan view. Overlap portions 122 a and 122 b where the film members 125 a and 125 b overlap are formed on the periphery of the exterior member 12. The spacers 14 are interposed between the regions 126a and 126b corresponding to the non-bonded portions that are not thermally fused in the overlapping portions 122a and 122b. The first adhesive portion, the second adhesive portion, and the non-adhesive portion are formed by performing heat fusion processing on the overlap portions 122a and 122b with the three spacers 14 sandwiched between the overlap portions 122a and 122b. Is done.

フィルム部材125a、125bは、熱融着性樹脂層および金属薄膜層を有する。熱融着性樹脂層に用いられる樹脂としては、ポリプロピレン等の熱融着が可能な樹脂を用いることができる。熱融着性樹脂層の厚さは、例えば10μmから200μmに設定される。金属薄膜層としては、例えば厚さ10μmから100μmのアルミニウム等の箔を用いることができる。また、重なり部122a、122bの間には、ポリイミド等の耐熱性樹脂から形成された3つのスペーサ14が配置されている。   The film members 125a and 125b have a heat-fusible resin layer and a metal thin film layer. As the resin used for the heat-fusible resin layer, a resin capable of heat-sealing such as polypropylene can be used. The thickness of the heat-fusible resin layer is set to, for example, 10 μm to 200 μm. As the metal thin film layer, for example, a foil such as aluminum having a thickness of 10 μm to 100 μm can be used. In addition, three spacers 14 made of a heat resistant resin such as polyimide are disposed between the overlapping portions 122a and 122b.

図2は、実施の形態1に係る蓄電デバイスの平面図である。図2に示すように、積層体収納部121の外周部122には、フィルム部材125a、125bの一部が熱融着されることにより形成された第1接着部123および第2接着部123a(図2中のハッチングで示した部分)と、積層体収納部121内部に連通しうる非接着部124と、から構成される。ここで、「連通しうる」とは、外装部材12の内圧が上昇し、フィルム部材125a、125bが互いに離れる方向に膨出した場合にフィルム部材125a、125bの内面とスペーサ14との間に生じる隙間を通じて連通するという意味である。   FIG. 2 is a plan view of the electricity storage device according to the first embodiment. As shown in FIG. 2, a first adhesive part 123 and a second adhesive part 123 a (formed by heat-sealing part of the film members 125 a and 125 b on the outer peripheral part 122 of the multilayer body accommodating part 121. 2) and a non-adhesive portion 124 that can communicate with the inside of the stacked body storage portion 121. Here, “can communicate” occurs between the inner surface of the film members 125 a and 125 b and the spacer 14 when the internal pressure of the exterior member 12 increases and the film members 125 a and 125 b bulge away from each other. It means to communicate through a gap.

第2接着部123aおよび非接着部124は、積層体収納部121の内側の領域S1と第1接着部123との境界に沿った積層体119側に配置されている。第2接着部123aは、例えば平面視略矩形状であり、境界に沿った方向の両側に非接着部124が位置する。第2接着部123aは、フィルム部材125aとフィルム部材125bとの重なり部122a、122bにスペーサ14を介在させた状態で重なり部122a、122bを接着することにより形成される。ここで、重なり部122a、122bにおけるスペーサ14が介在する部位が非接着部124に相当し、重なり部122a、122bにおけるそれ以外の部位は、第1接着部123または第2接着部123aに相当する。積層体収納部121の外周部122におけるスペーサ14が介在する部位に相当する。3つのスペーサ14は、一部が積層体収納部121の内側にはみ出した状態で配置されている。これにより、非接着部124は、積層体収納部121の内側(領域S1)内に連通した状態となっている。第1接着部123における、3つの非接着部124の間に相当する部位は、非接着部124に隣接する第2接着部123aに相当する。外装部材12の第2接着部123aが設けられる一辺での第1接着部123の幅L4は、第2接着部123aが設けられていない一辺における第1接着部123の幅L3に比べて狭くなっている。   The second bonding portion 123 a and the non-bonding portion 124 are disposed on the stacked body 119 side along the boundary between the region S <b> 1 inside the stacked body storage section 121 and the first bonding section 123. The second bonding portion 123a has, for example, a substantially rectangular shape in plan view, and the non-bonding portions 124 are located on both sides in the direction along the boundary. The second bonding portion 123a is formed by bonding the overlapping portions 122a and 122b with the spacer 14 interposed in the overlapping portions 122a and 122b between the film member 125a and the film member 125b. Here, the part where the spacer 14 is interposed in the overlapping parts 122a and 122b corresponds to the non-bonding part 124, and the other part in the overlapping parts 122a and 122b corresponds to the first bonding part 123 or the second bonding part 123a. . This corresponds to a portion where the spacer 14 is interposed in the outer peripheral portion 122 of the stacked body storage portion 121. The three spacers 14 are arranged in a state where part of the three spacers 14 protrudes to the inside of the stacked body storage unit 121. Thereby, the non-bonding part 124 is in a state of communicating with the inside (region S1) of the stacked body storage part 121. A portion of the first bonding portion 123 corresponding to the space between the three non-bonding portions 124 corresponds to the second bonding portion 123 a adjacent to the non-bonding portion 124. The width L4 of the first bonding portion 123 on one side where the second bonding portion 123a of the exterior member 12 is provided is narrower than the width L3 of the first bonding portion 123 on one side where the second bonding portion 123a is not provided. ing.

第2接着部123aは、平面視長方形の外装部材12の長辺に沿って設けられている。図3(a)は、図2におけるA−A線断面矢視図である。図2および図3(a)に示すように、2つの第2接着部123aは、それぞれフィルム部材125a、125bの重なり部122a、122bを貫通し、周囲に接着された領域が残る大きさの貫通孔16を有する。積層体収納部121の内側の領域S1と貫通孔16との間の最短距離(最短接着幅)W0は、例えば2mmに設定される。   The 2nd adhesion part 123a is provided along the long side of exterior member 12 of a plane view rectangle. Fig.3 (a) is the AA sectional view taken on the line in FIG. As shown in FIG. 2 and FIG. 3 (a), the two second adhesive portions 123a penetrate through the overlapping portions 122a and 122b of the film members 125a and 125b, respectively, so that a region adhered to the periphery remains. It has a hole 16. The shortest distance (shortest adhesion width) W0 between the inner region S1 of the stacked body storage unit 121 and the through hole 16 is set to 2 mm, for example.

図4は、本実施の形態1に係る蓄電デバイス1の断面図である。図4に示すように、積層体119は、複数(図2では3つ)の正極113と、複数(図1では2つ)の負極114と、正極113および負極114を互いに隔離するセパレータ116とが積層された構造を有する。外装部材12の内部の領域S1には、非水電解液が充填されている。積層体119は、非水電解液が充填された領域S1内に配置されている。非接着部124は、領域S1に連通しており、非接着部124にも非水電解液が充填されている。   FIG. 4 is a cross-sectional view of the electricity storage device 1 according to the first embodiment. As shown in FIG. 4, the laminate 119 includes a plurality (three in FIG. 2) of positive electrodes 113, a plurality (two in FIG. 1) of negative electrodes 114, and a separator 116 that separates the positive electrodes 113 and the negative electrodes 114 from each other. Have a laminated structure. A region S1 inside the exterior member 12 is filled with a non-aqueous electrolyte. The stacked body 119 is disposed in the region S1 filled with the nonaqueous electrolytic solution. The non-adhesion portion 124 communicates with the region S1, and the non-adhesion portion 124 is also filled with a non-aqueous electrolyte.

非水電解液は、LiPF6等のリチウム塩を含む電解質を、エチレンカーボネート等の有機溶媒に溶解した有機電解液である。   The non-aqueous electrolyte is an organic electrolyte obtained by dissolving an electrolyte containing a lithium salt such as LiPF6 in an organic solvent such as ethylene carbonate.

正極113は、例えば多孔アルミ箔等から形成された薄板形状の正極集電体の表裏面に正極活物質層が形成されたものである。正極活物質は、例えば天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、活性炭等の炭素材料から構成される。各正極113は、取り出し電極部117aに連続している。3つの取り出し電極部117aは、接合部117bによって1つに束ねられた状態で正極用外部端子111に接続されている。   The positive electrode 113 has a positive electrode active material layer formed on the front and back surfaces of a thin plate-shaped positive electrode current collector formed of, for example, a porous aluminum foil. The positive electrode active material is composed of a carbon material such as natural graphite, artificial graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, activated carbon and the like. Each positive electrode 113 is continuous with the extraction electrode portion 117a. The three extraction electrode portions 117a are connected to the positive electrode external terminal 111 in a state where they are bundled together by the joint portion 117b.

負極114は、例えば多孔銅箔等から形成された薄板形状の負極集電体の表裏面に負極活物質層が形成されたものである。負極活物質は、例えばリチウムイオンを吸蔵または脱離する人造黒鉛等から構成される。各負極114は、取り出し電極部118aに連続している。2つの取り出し電極118aは、接合部118bによって1つに束ねられた状態で負極用外部端子112に接続されている。   The negative electrode 114 is formed by forming a negative electrode active material layer on the front and back surfaces of a thin plate-shaped negative electrode current collector formed of, for example, a porous copper foil. The negative electrode active material is composed of, for example, artificial graphite that absorbs or desorbs lithium ions. Each negative electrode 114 is continuous with the extraction electrode portion 118a. The two extraction electrodes 118a are connected to the negative external terminal 112 in a state where they are bundled together by the joint portion 118b.

セパレータ116は、正極113と、負極114との接触を防止し、絶縁性を確保しつつイオンの透過を許容する観点から、例えば厚さ50μmで気孔率70%程度の膜から形成される。セパレータ116は、例えばセルロース系の不織布等の非水電解液を含浸することができるシート状の部材から構成される。   The separator 116 is formed of, for example, a film having a thickness of 50 μm and a porosity of about 70% from the viewpoint of preventing contact between the positive electrode 113 and the negative electrode 114 and allowing permeation of ions while ensuring insulation. The separator 116 is composed of a sheet-like member that can be impregnated with a nonaqueous electrolytic solution such as a cellulose-based nonwoven fabric.

次に、本実施の形態に係る蓄電デバイス1の動作について説明する。
蓄電デバイス1の使用中に積層体119へ規格範囲外の電圧が印加されたり、一時的に高温になったりすると、外装部材12内部でガスが発生し、積層体収納部121の内側(領域S1)および非接着部124の内圧が上昇する。積層体収納部121の内側および非接着部124の内圧が上昇すると、第2接着部123aに剥離応力が作用し、第2接着部123aでは、積層体119に近い方から剥離が進行していく。2つの第2接着部123aそれぞれにおいて、剥離が貫通孔16に達すると、第2接着部123aでは、積層体収納部121の内側に充満したガスが貫通孔16を通じて外装部材12の外部へ放出される。剥離の程度は、剥離応力の大きさに依存する。積層体収納部121の内圧が上昇した場合、2つの第2接着部123aは、それぞれ第1接着部123の他の部位に比べて大きな剥離応力が生じる。従って、積層体収納部121の内圧が上昇していくと、第2接着部123aから剥離が進行する。そして、積層体収納部123aの内側は、最初に第2接着部123aに穿設された貫通孔16を介して外装部材12外部に連通する。ガス放出時内圧は、剥離応力が最も大きい第2接着部123aに穿設された貫通孔16と、積層体収納部121の内側との間の最短距離(最短接着幅)W0により決定する。
Next, the operation of the electricity storage device 1 according to the present embodiment will be described.
When a voltage outside the standard range is applied to the laminate 119 during use of the electricity storage device 1 or when the temperature is temporarily increased, gas is generated inside the exterior member 12 and the inside of the laminate housing portion 121 (region S1). ) And the internal pressure of the non-bonding portion 124 increases. When the internal pressure of the laminated body storage part 121 and the internal pressure of the non-adhesive part 124 rise, peeling stress acts on the second adhesive part 123a, and the second adhesive part 123a progresses from the side closer to the laminated body 119. . When the separation reaches the through hole 16 in each of the two second adhesive portions 123a, in the second adhesive portion 123a, the gas filled inside the stacked body storage portion 121 is released to the outside of the exterior member 12 through the through hole 16. The The degree of peeling depends on the magnitude of the peeling stress. When the internal pressure of the stacked body storage unit 121 rises, the two second bonding portions 123 a generate a large peeling stress as compared with other portions of the first bonding portion 123. Therefore, when the internal pressure of the stacked body storage unit 121 rises, the peeling proceeds from the second adhesive portion 123a. And the inner side of the laminated body accommodation part 123a is connected to the exterior of the exterior member 12 through the through-hole 16 first drilled in the second adhesive part 123a. The internal pressure at the time of gas release is determined by the shortest distance (shortest adhesive width) W0 between the through hole 16 formed in the second adhesive portion 123a having the largest peeling stress and the inside of the laminate housing portion 121.

ここで、本実施の形態に係る蓄電デバイス1のガス放出性能の評価を行った結果について説明する。蓄電デバイス1のガス放出性能の評価は、外装部材12の内部にガスを供給して外装部材12の内圧を上昇させていき、内部のガスが外部に放出される直前の内圧を計測することにより行った。以後、この計測した圧力を「ガス放出時内圧」と称する。   Here, the result of having evaluated the gas discharge | release performance of the electrical storage device 1 which concerns on this Embodiment is demonstrated. The gas discharge performance of the electricity storage device 1 is evaluated by supplying gas into the exterior member 12 to increase the internal pressure of the exterior member 12 and measuring the internal pressure immediately before the internal gas is released to the outside. went. Hereinafter, this measured pressure is referred to as “gas release internal pressure”.

評価に使用した本実施の形態に係る蓄電デバイス1は、2つの第2接着部123aを有し、2つの第2接着部123aそれぞれに貫通孔16が穿設されたものとした。ここで、外装部材12は、平面視長方形状であり縦140mm横140mmの2枚のフィルム部材125a、125bから構成される。また、図2を参照して、積層体収納部121の外周部122の幅L3は、10mmに設定した。3つの平面視略矩形状の非接着部124それぞれの並び方向における長さL1が10mm、並び方向に直交する方向の長さdが5mm、隣接する非接着部124同士の並び方向における距離L2が6mmに設定されている。貫通孔16の直径は2mmであり、貫通孔16の最短接着幅W0は2mmである。   The power storage device 1 according to the present embodiment used for the evaluation has two second adhesive portions 123a, and the through holes 16 are formed in each of the two second adhesive portions 123a. Here, the exterior member 12 has a rectangular shape in plan view, and includes two film members 125a and 125b having a length of 140 mm and a width of 140 mm. Moreover, with reference to FIG. 2, the width L3 of the outer peripheral part 122 of the laminated body accommodating part 121 was set to 10 mm. The length L1 in the alignment direction of each of the three non-adhesive portions 124 having a substantially rectangular shape in plan view is 10 mm, the length d in the direction orthogonal to the alignment direction is 5 mm, and the distance L2 in the alignment direction between adjacent non-adhesive portions 124 is It is set to 6 mm. The diameter of the through hole 16 is 2 mm, and the shortest adhesion width W0 of the through hole 16 is 2 mm.

比較例1に係る蓄電デバイスは、1つの第2接着部を有し、その第2接着部に1つの貫通孔が穿設されたものとした。積層体収納部121の外周部122の幅、非接着部の形状および寸法、貫通孔の直径および貫通孔の最短接着幅は、前述の本実施の形態に係る蓄電デバイス1と同様にした。比較例2に係る蓄電デバイスは、第2接着部および貫通孔が無いものとした。積層体収納部121の外周部122の幅、非接着部の形状および寸法、貫通孔の直径および貫通孔の最短接着幅は、前述の本実施の形態に係る蓄電デバイス1と同様にした。本実施の形態、比較例1および比較例2に係る蓄電デバイスをそれぞれ5個ずつ準備し、それぞれについてガス放出時内圧を計測した。   The electricity storage device according to Comparative Example 1 had one second adhesive portion, and one through hole was formed in the second adhesive portion. The width of the outer peripheral portion 122 of the laminate housing portion 121, the shape and size of the non-adhesive portion, the diameter of the through hole, and the shortest adhesion width of the through hole were the same as those of the electricity storage device 1 according to the above-described embodiment. The electricity storage device according to Comparative Example 2 was assumed to have no second adhesive portion and through hole. The width of the outer peripheral portion 122 of the laminate housing portion 121, the shape and size of the non-adhesive portion, the diameter of the through hole, and the shortest adhesion width of the through hole were the same as those of the electricity storage device 1 according to the above-described embodiment. Five electrical storage devices according to the present embodiment, Comparative Example 1 and Comparative Example 2 were prepared, and the internal pressure during gas release was measured for each of the electrical storage devices.

比較例1に係る蓄電デバイスでは、図5に示すように、ガス放出時内圧の最大値が251.9kPa、最小値が193.1kPa、平均値が233.0kPa、最大値と最小値との差(圧力差)が58.8kPaであった。比較例2に係る蓄電デバイスでは、ガス放出時内圧の最大値が379.3kPa、最小値が347.8kPa、平均値が367.8kPa、圧力差が31.5kPaであった。これに対して、本実施の形態に係る蓄電デバイス1では、ガス放出時内圧の最大値が190.6kPa、最小値が163.4kPa、平均値が174.6kPa、圧力差が27.2kPaであった。   In the electricity storage device according to Comparative Example 1, as shown in FIG. 5, the maximum value of the internal pressure at the time of gas release is 251.9 kPa, the minimum value is 193.1 kPa, the average value is 233.0 kPa, and the difference between the maximum value and the minimum value The (pressure difference) was 58.8 kPa. In the electricity storage device according to Comparative Example 2, the maximum value of the internal pressure during gas release was 379.3 kPa, the minimum value was 347.8 kPa, the average value was 367.8 kPa, and the pressure difference was 31.5 kPa. On the other hand, in the electricity storage device 1 according to the present embodiment, the maximum value of the internal pressure during gas discharge is 190.6 kPa, the minimum value is 163.4 kPa, the average value is 174.6 kPa, and the pressure difference is 27.2 kPa. It was.

このように、本実施の形態に係る蓄電デバイス1では、比較例1、2に比べて、ガス放出時内圧を大幅に低下させることができることが分かった。特に、本実施の形態に係るガス放出時内圧は、比較例2に係るガス放出時内圧の半分にも満たなかった。また、本実施の形態に係るガス放出時内圧は、比較例1に係るガス放出時内圧に比べても低いことが分かった。従って、本実施の形態に係る蓄電デバイス1において、最短接着幅W0を、比較例1の場合に比べて長く設定しても、比較例1と同等のガス放出時内圧を得ることができることが分かった。つまり、本実施の形態に係る蓄電デバイス1において、比較例1の場合に比べて最短接着幅W0を長く設定することにより、積層体収納部121の内側の領域S1の密封性を高めても、ガス放出時内圧の過度の上昇を抑制できる。更に、本実施の形態に係る蓄電デバイス1では、比較例1に比べて、ガス放出時内圧の圧力差が小さいことも分かった。従って、本実施の形態に係る蓄電デバイス1では、比較例1に比べて、ガス放出時内圧のばらつきに対するマージンを小さくできるので、蓄電デバイス1の設計が容易になるという利点がある。   As described above, it was found that in the electricity storage device 1 according to the present embodiment, the internal pressure during gas discharge can be significantly reduced as compared with Comparative Examples 1 and 2. In particular, the internal pressure during gas discharge according to the present embodiment was less than half of the internal pressure during gas discharge according to Comparative Example 2. Further, it was found that the gas discharge internal pressure according to the present embodiment is lower than the gas discharge internal pressure according to Comparative Example 1. Therefore, in the electricity storage device 1 according to the present embodiment, it is understood that even when the shortest adhesion width W0 is set longer than that in the case of the comparative example 1, an internal pressure at the time of gas discharge equivalent to that in the comparative example 1 can be obtained. It was. That is, in the electricity storage device 1 according to the present embodiment, by setting the shortest adhesion width W0 longer than in the case of Comparative Example 1, even if the sealing performance of the inner region S1 of the stacked body storage unit 121 is increased, An excessive increase in internal pressure during gas release can be suppressed. Furthermore, it was also found that in the electricity storage device 1 according to the present embodiment, the pressure difference of the internal pressure during gas discharge was smaller than that in Comparative Example 1. Therefore, the power storage device 1 according to the present embodiment has an advantage that the design of the power storage device 1 can be facilitated because the margin for variation in the internal pressure during gas discharge can be reduced compared to the first comparative example.

次に、蓄電デバイス1の製造方法について説明する。
まず、フィルム部材125a、125bにより、積層体119を挟む両側から積層体119を包囲して、フィルム部材125a、125bの周部に、フィルム部材125aとフィルム部材125bとの重なり部122a、122bを設ける。そして、重なり部122a、122bに熱融着処理を施すことにより、第1接着部123、第2接着部123aおよび非接着部124が形成される。
Next, a method for manufacturing the electricity storage device 1 will be described.
First, the laminated body 119 is surrounded by the film members 125a and 125b from both sides of the laminated body 119, and the overlapping portions 122a and 122b of the film member 125a and the film member 125b are provided on the periphery of the film members 125a and 125b. . And the 1st adhesion part 123, the 2nd adhesion part 123a, and the non-adhesion part 124 are formed by performing heat fusion processing to overlap parts 122a and 122b.

図3(b)から図3(d)は、蓄電デバイス1の製造方法の各工程における断面図を示す。ここでは、重なり部122a、122bにスペーサ14を介在させた状態で熱融着処理を施した場合について説明する。
重なり部122a、122bにおける複数(図3(b)では2つ)の第2接着部123aに対応する部分の間(非接着部形成領域126a、126b)には、スペーサ14が配置される。図3(b)に示すように、スペーサ14が、重なり部122a、122bにおける非接着部形成領域126a、126bに介在した状態となる。なお、スペーサ14は、フィルム部材125a、125bいずれか一方に載置した状態でフィルム部材125a、125bを重ね合わせることにより、重なり部122a、122b間に介在させるようにしてもよい。
FIG. 3B to FIG. 3D show cross-sectional views in each step of the method for manufacturing the electricity storage device 1. Here, a case will be described in which the heat-sealing process is performed with the spacers 14 interposed between the overlapping portions 122a and 122b.
The spacers 14 are arranged between portions corresponding to a plurality of (two in FIG. 3B) second adhesive portions 123a in the overlapping portions 122a and 122b (non-adhesive portion forming regions 126a and 126b). As shown in FIG. 3B, the spacer 14 is in a state of being interposed in the non-adhesive portion forming regions 126a and 126b in the overlapping portions 122a and 122b. The spacer 14 may be interposed between the overlapping portions 122a and 122b by overlapping the film members 125a and 125b in a state where the spacer 14 is placed on one of the film members 125a and 125b.

次に、重なり部122a、122bに熱融着処理を施すことにより、積層体119を収納する積層体収納部121、第1接着部123および非接着部124を形成する。具体的には、図3(c)に示すように、熱融着ヘッドHにより、重なり部122a、122bの重なり方向における両側から熱を加えながら重なり部122a、122bを挟み込む(図3(c)中の矢印参照)熱融着処理を施す。そうすると、重なり部122a、122bにおけるスペーサ14が配置された非接着部予定領域126a、126b以外の領域が熱融着される。   Next, a heat-bonding process is performed on the overlapping portions 122a and 122b, thereby forming a stacked body storage portion 121 that stores the stacked body 119, a first bonding portion 123, and a non-bonding portion 124. Specifically, as shown in FIG. 3C, the overlapping portions 122a and 122b are sandwiched by the heat fusion head H while applying heat from both sides in the overlapping direction of the overlapping portions 122a and 122b (FIG. 3C). (Refer to the arrow in the figure.) Apply heat fusion treatment. If it does so, area | regions other than the non-bonding part scheduled area | regions 126a and 126b in which the spacer 14 is arrange | positioned in the overlapping parts 122a and 122b will be heat-seal | fused.

その後、第1接着部123における第2接着部123aに、第2接着部123aを貫通する貫通孔16を穿設する。例えば図3(d)に示すように、穿孔機Pを用いて、第2接着部123aに貫通孔16を穿設する。   Thereafter, the through hole 16 penetrating the second adhesive portion 123 a is formed in the second adhesive portion 123 a of the first adhesive portion 123. For example, as shown in FIG. 3 (d), the through-hole 16 is drilled in the second adhesive portion 123a using the punching machine P.

以上説明したように、本実施の形態に係る蓄電デバイス1は、2つの第2接着部123aと、それらに設けられた貫通孔16と、を有する。これにより、積層体収納部121の内側(領域S1)と貫通孔16の間の最短距離(最短接着幅)を外部からの水分等の侵入防止に必要な長さに設定しても、ガス放出時内圧の過度の上昇を抑制できる。従って、外装部材12の積層体収納部121の内側の密封性を高めつつ、外装部材12の破裂を防止することができるので、蓄電デバイス1の安全性を高めることができる。そして、積層体収納部121の内側の密封性を高めることにより、積層体収納部121の内側への水分等の侵入を抑制できるので、蓄電デバイス1の性能維持を図ることができる。   As described above, the power storage device 1 according to the present embodiment has the two second adhesive portions 123a and the through holes 16 provided in them. As a result, even if the shortest distance (shortest adhesion width) between the inner side (region S1) of the multilayer body storage unit 121 and the through-hole 16 is set to a length necessary to prevent intrusion of moisture and the like from the outside, gas release An excessive rise in internal pressure can be suppressed. Therefore, it is possible to prevent the exterior member 12 from being ruptured while enhancing the sealing performance inside the laminate housing portion 121 of the exterior member 12, so that the safety of the electricity storage device 1 can be enhanced. And since the penetration | invasion of the water | moisture content etc. to the inner side of the laminated body storage part 121 can be suppressed by improving the sealing performance inside the laminated body storage part 121, the performance maintenance of the electrical storage device 1 can be aimed at.

また、本実施の形態に係る蓄電デバイス1は、2つの第2接着部123aを有する。これにより、例えば製造ばらつき等に起因して、2つの第2接着部123aのいずれか一方の接着強度が極端に強くなりガス放出時内圧に達してもガスを放出できない場合でも他方の第2接着部123aからガスを放出することができる。   Moreover, the electrical storage device 1 according to the present embodiment has two second adhesive portions 123a. Thereby, for example, due to manufacturing variation, the bonding strength of one of the two second bonding portions 123a becomes extremely strong, and even if the gas cannot be released even if the internal pressure at the time of gas discharge is reached, the other second bonding is performed. Gas can be released from the portion 123a.

外装部材12の内圧が上昇した場合に第1接着部123に加わる剥離応力は、外装部材12の短辺に比べて長辺の方が大きい。
これに対して、本実施の形態では、第2接着部123aが、外装部材12の長辺に沿って設けられている。これにより、第2接着部123aでの剥離の程度を大きくできるので、あるガス放出時圧力に設定しようとする場合、第2接着部を外装部材12の短辺に沿って設けた構成に比べて、貫通孔16の積層体収納部121の内側からの最短距離を短くできる。従って、外装部材12の密封性を高めることができる。
When the internal pressure of the exterior member 12 increases, the peeling stress applied to the first adhesive portion 123 is greater on the long side than on the short side of the exterior member 12.
On the other hand, in the present embodiment, the second bonding portion 123 a is provided along the long side of the exterior member 12. As a result, the degree of peeling at the second adhesive portion 123a can be increased. Therefore, when trying to set a certain gas discharge pressure, the second adhesive portion is provided along the short side of the exterior member 12. And the shortest distance from the inner side of the laminated body storage part 121 of the through-hole 16 can be shortened. Therefore, the sealing performance of the exterior member 12 can be improved.

本実施の形態に係る蓄電デバイス1の製造方法によれば、熱融着処理を施すことにより、フィルム部材125a、125bの重なり部122a、122b同士を熱融着してから貫通孔16を穿設する。これにより、平面視において、各フィルム部材125a、125bに設けられた貫通孔を一致させることができる。また、熱融着処理を施してから貫通孔16を穿設するので、フィルム部材125a、125bの熱融着性樹脂層を構成する樹脂の一部が貫通孔16内へはみ出す不具合の発生を防止できるという利点がある。   According to the method for manufacturing the electricity storage device 1 according to the present embodiment, the through-hole 16 is formed after the overlapping portions 122a and 122b of the film members 125a and 125b are heat-sealed by performing heat-sealing treatment. To do. Thereby, the through-hole provided in each film member 125a, 125b can be made to correspond in planar view. In addition, since the through-hole 16 is formed after the heat-sealing process is performed, it is possible to prevent the occurrence of a problem that a part of the resin constituting the heat-fusible resin layer of the film members 125a and 125b protrudes into the through-hole 16 There is an advantage that you can.

(実施の形態2)
本実施の形態に係る蓄電デバイス201は、図6に示すように、4つの第2接着部223a、223bと、第2接着部223a、223bに穿設された貫通孔216a、216bと、を備える。図6では、4つの第2接着部のうち平面視における外装部材12の長手方向における中心に近い方(角部から遠い方)を223a、中心から離れた方(角部から遠い方)を223bとしている。なお、積層体収納部121は、実施の形態1と同様に、平面視長方形状である。貫通孔216a、216bの中心は、外装部材12の長手方向に延伸する仮想直線KL上に位置している。
(Embodiment 2)
As shown in FIG. 6, the power storage device 201 according to the present embodiment includes four second adhesive portions 223a and 223b and through holes 216a and 216b formed in the second adhesive portions 223a and 223b. . In FIG. 6, among the four second adhesive portions, the one closer to the center in the longitudinal direction of the exterior member 12 in plan view (the one far from the corner) is 223 a, and the one far from the center (the one far from the corner) is 223 b. It is said. In addition, the laminated body storage unit 121 has a rectangular shape in plan view as in the first embodiment. The centers of the through holes 216a and 216b are located on a virtual straight line KL extending in the longitudinal direction of the exterior member 12.

蓄電デバイス201では、第2接着部223aと第2接着部223bとで、ガス放出時内圧が異なる。具体的には、第2接着部223aにおけるガス放出時内圧が、第2接着部223bにおけるガス放出時内圧に比べて低くなる。従って、外装部材12内部の圧力が上昇した場合、製造上の不具合等により第2接着部223aに穿設された貫通孔216aからガス放出がなされなかった場合に、第2接着部223bに穿設された貫通孔216bからガス放出がなされる。   In the electricity storage device 201, the gas release internal pressure differs between the second adhesive portion 223a and the second adhesive portion 223b. Specifically, the internal pressure at the time of gas release at the second adhesive portion 223a is lower than the internal pressure at the time of gas release at the second adhesive portion 223b. Therefore, when the pressure inside the exterior member 12 rises, when the gas is not released from the through-hole 216a formed in the second adhesive portion 223a due to a manufacturing defect or the like, the second adhesive portion 223b is provided. Gas is released from the formed through-hole 216b.

ところで、実施の形態1で説明したガス放出性能の評価結果からも分かるように、第2接着部および貫通孔の数の増加に伴い、ガス放出時内圧が低下する。また、ガス放出時内圧のばらつきも、第2接着部および貫通孔の数の増加に伴い低減する。   By the way, as can be seen from the evaluation result of the gas release performance described in the first embodiment, the internal pressure at the time of gas discharge decreases with the increase in the number of the second adhesive portions and the through holes. In addition, the variation in the internal pressure during gas discharge is also reduced as the number of second adhesive portions and through holes is increased.

本実施の形態に係る蓄電デバイス201は、実施の形態1の蓄電デバイス1に比べて、第2接着部223a、223bおよび貫通孔216a、216bの数が多い。これにより、外装部材12のガス放出時内圧をある特定の圧力に設定する場合、実施の形態1の蓄電デバイス1に比べて最短接着幅を長く設定することができる。従って、蓄電デバイス201は、実施の形態1に係る蓄電デバイス1に比べて、外装部材12内部の密封性を向上させることができる。更に、ガス放出時内圧のはらつきを低減することもできる。   The power storage device 201 according to the present embodiment has a larger number of second adhesive portions 223a and 223b and through holes 216a and 216b than the power storage device 1 of the first embodiment. Thereby, when setting the internal pressure at the time of gas discharge | release of the exterior member 12 to a certain specific pressure, compared with the electrical storage device 1 of Embodiment 1, the shortest adhesion width | variety can be set long. Therefore, the electricity storage device 201 can improve the sealing performance inside the exterior member 12 as compared to the electricity storage device 1 according to Embodiment 1. Furthermore, fluctuations in the internal pressure during gas discharge can be reduced.

以上、本発明の各実施の形態について説明したが、本発明は実施の形態によって限定されるものではない。   Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments.

実施の形態1および2では、貫通孔16、216a、216bが穿設された第2接着部123、223a、223bが、2つおよび4つ有する構成について説明したが、貫通孔が穿設された第2接着部の個数はこれらに限定されるものではない。例えば、3つ或いは5つ以上の貫通孔が穿設された第2接着部を有する構成であってもよい。   In the first and second embodiments, the configuration in which the second adhesive portions 123, 223a, and 223b in which the through holes 16, 216a, and 216b are formed has two and four is described. However, the through holes are formed in the first and second embodiments. The number of second adhesive portions is not limited to these. For example, the structure which has the 2nd adhesion part by which the 3 or 5 or more through-hole was pierced may be sufficient.

特に、貫通孔が穿設された第2接着部を5つ以上有する場合、貫通孔が穿設された第2接着部の数が多いほど、ガス放出の確実性を高めることができる。ガス放出は、少なくとも正常な第2接着部が1つ存在すれば、その貫通孔からガスが放出される。従って、第2接着部の数が多いほど、ガス放出不能な第2接着部の許容数が増加するので、ガス放出の確実性を高めることができる。   In particular, when there are five or more second adhesive portions having through holes, the greater the number of second adhesive portions having through holes, the higher the reliability of gas emission. The gas is released from the through-hole if there is at least one normal second adhesive portion. Accordingly, the greater the number of second adhesive portions, the greater the allowable number of second adhesive portions that are not capable of releasing gas, thereby increasing the certainty of gas release.

実施の形態では、非接着部124が平面視略矩形状であり、非接着部124の間に第2接着部123aが設けられる例について説明したが、非接着部124の形状はこれに限定されるものではない。例えば、図7に示す蓄電デバイス401のように、4つの島状の第2接着部423を有し、各第2接着部423に貫通孔416が穿設された構成であってもよい。蓄電デバイス401は、平面視で第2接着部423の周囲を囲むように設けられた非接着部424を有する。   In the embodiment, the example has been described in which the non-bonding portion 124 has a substantially rectangular shape in plan view, and the second bonding portion 123a is provided between the non-bonding portions 124. However, the shape of the non-bonding portion 124 is limited to this. It is not something. For example, as in the power storage device 401 illustrated in FIG. 7, a configuration in which four island-shaped second adhesive portions 423 are provided and through holes 416 are formed in each of the second adhesive portions 423 may be employed. The power storage device 401 includes a non-adhesive portion 424 provided to surround the second adhesive portion 423 in plan view.

実施の形態1では、非接着部124、第2接着部123aが外装部材12の一つの辺に沿って設けられる例について説明したが、非接着部124、第2接着部123aが設けられる部位は外装部材12の一つの辺に沿った部位に限定されるわけではない。   In the first embodiment, the example in which the non-bonding portion 124 and the second bonding portion 123a are provided along one side of the exterior member 12 has been described. However, the portion where the non-bonding portion 124 and the second bonding portion 123a are provided is as follows. It is not limited to a portion along one side of the exterior member 12.

例えば、図8に示すように、外装部材12が平面視長方形状の形状を有し、非接着部524が、対向する2つの長辺に沿って3つずつ設けられ、接着部523の第2接着部523aが、対向する2つの長辺に沿って2つずつ設けられた蓄電デバイス501であってもよい。   For example, as shown in FIG. 8, the exterior member 12 has a rectangular shape in plan view, and three non-bonding portions 524 are provided along two opposing long sides, and the second of the bonding portion 523 is provided. The power storage device 501 provided with two bonding portions 523a along two opposing long sides may be used.

本構成によれば、外装部材12内部に充満したガスを、外装部材12の対向する2辺に沿った部位から外部へ放出させることができるので、外装部材12内部のガスを効率的に外部へ放出させることができる。また、ガス放出時内圧のはらつきを低減することもできる。   According to this configuration, the gas filled in the exterior member 12 can be released to the outside from the portions along the two opposing sides of the exterior member 12, so that the gas inside the exterior member 12 can be efficiently discharged to the outside. Can be released. In addition, the fluctuation in the internal pressure during gas discharge can be reduced.

実施の形態1では、外装部材12を平面視したときに、積層体収納部121の外周全体に亘って第1接着部123が形成されている例について説明したが、外装部材12の構成はこれに限定されるものではない。例えば、図9に示すように、蓄電デバイス601の外装部材612を平面視したときに、長方形状の積層体収納部621の三辺に沿った外周にのみ接着部623が形成されている構成であってもよい。外装部材612は、例えば2つに折りたたまれた1つのフィルム部材により積層体119をその積層方向における両側から挟んだ状態で3辺に沿った周縁部を熱融着することにより形成される。外装部材612では、例えば非接着部624および接着部623の第2接着部623aが、外装部材612を平面視したときに、積層体収納部621における接着部623が設けられていない一辺に対向する辺側に設けられる。   In the first embodiment, the example in which the first adhesive portion 123 is formed over the entire outer periphery of the stacked body storage portion 121 when the exterior member 12 is viewed in plan is described. It is not limited to. For example, as shown in FIG. 9, when the exterior member 612 of the power storage device 601 is viewed in plan, the adhesive portion 623 is formed only on the outer periphery along the three sides of the rectangular laminate housing portion 621. There may be. The exterior member 612 is formed by, for example, heat-sealing the peripheral portions along the three sides with the laminated body 119 sandwiched from both sides in the laminating direction by one film member folded in two. In the exterior member 612, for example, the non-adhesive portion 624 and the second adhesive portion 623a of the adhesive portion 623 face one side where the adhesive portion 623 is not provided in the stacked body storage portion 621 when the exterior member 612 is viewed in plan. Provided on the side.

実施の形態1では、平面視長方形の外装部材12の第2接着部123aが設けられる一辺での第1接着部123の幅L4が、外装部材12の他の各辺での第1接着部123の幅L3に比べて狭い例について説明した。但し、外装部材12の各辺での第1接着部123の幅の設定はこれに限定されるものではない。
例えば、図10に示すように、外装部材712の各辺での第1接着部123の幅が同じ幅L3に設定されていてもよい。この場合、積層体収納部721の内側に窪んだ窪み部721cに第2接着部723aが設けられる構成とすればよい。
In Embodiment 1, the width L4 of the first adhesive portion 123 on one side where the second adhesive portion 123a of the exterior member 12 having a rectangular shape in plan view is provided is equal to the width L4 of the first adhesive portion 123 on each other side of the exterior member 12. An example narrower than the width L3 has been described. However, the setting of the width | variety of the 1st adhesion part 123 in each edge | side of the exterior member 12 is not limited to this.
For example, as shown in FIG. 10, the width of the first bonding portion 123 on each side of the exterior member 712 may be set to the same width L3. In this case, what is necessary is just to set it as the structure by which the 2nd adhesion part 723a is provided in the hollow part 721c dented inside the laminated body storage part 721.

実施の形態1では、第2接着部123aが平面視長方形状である例について説明したが、第2接着部123aの形状はこれに限定されるものではない。例えば、平面視三角形の形状を有し、その一辺で接着部における非接着部以外の部位に繋がっている構成であってもよい。   In Embodiment 1, the example in which the second bonding portion 123a is rectangular in plan view has been described, but the shape of the second bonding portion 123a is not limited to this. For example, it may have a shape of a triangular shape in plan view and may be connected to a portion other than the non-bonded portion in the bonded portion on one side.

実施の形態1では、スペーサ14がポリイミドから形成される例について説明したが、スペーサ14の材料はこれに限定されるものではない。例えば、スペーサ14が、ポリアミド、セルロース、PTFE(ポリテトラフルオロエチレン)等の耐熱性シートから形成されていてもよい。   In Embodiment 1, the example in which the spacer 14 is formed of polyimide has been described, but the material of the spacer 14 is not limited to this. For example, the spacer 14 may be formed from a heat resistant sheet such as polyamide, cellulose, PTFE (polytetrafluoroethylene), or the like.

各実施の形態では、スペーサ14を備える例について説明したが、スペーサ14が無い構成であってもよい。   In each embodiment, although the example provided with the spacer 14 was demonstrated, the structure without the spacer 14 may be sufficient.

前述した実施の形態では、蓄電デバイス1は、デュアルカーボン電池としているが、蓄電デバイスの種類はこれに限定されない。例えば、リチウムイオン電池、電気二重層キャパシタ、リチウムイオンキャパシタ等の各種の二次電池としてもよい。   In the embodiment described above, the power storage device 1 is a dual carbon battery, but the type of power storage device is not limited to this. For example, various secondary batteries such as a lithium ion battery, an electric double layer capacitor, and a lithium ion capacitor may be used.

1、501、601 蓄電デバイス
12、612 外装部材
14、214 スペーサ
16、216a、216b、316a、316b、416a、416b 貫通孔
111 正極用外部端子
112 負極用外部端子
113 正極
114 負極
116 セパレータ
117a、118a 取り出し電極部
117b、118b 接合部
119 積層体
121、621 積層体収納部
122、622 外周部
122a、122b 重なり部
123 接着部
123a、223a、223b、323a、323b、423a、423b、523a、623a 第2接着部
124、224、324、424、524、624 非接着部
125a、125b フィルム部材
H 熱融着ヘッド
P 穿孔機
S1 領域
1, 501, 601 Power storage device 12, 612 Exterior member 14, 214 Spacer 16, 216a, 216b, 316a, 316b, 416a, 416b Through hole 111 External terminal for positive electrode 112 External terminal for negative electrode 113 Positive electrode 114 Negative electrode 116 Separator 117a, 118a Extraction electrode portion 117b, 118b Joint portion 119 Laminated body 121, 621 Laminated body storage portion 122, 622 Outer peripheral portion 122a, 122b Overlap portion 123 Adhesive portion 123a, 223a, 223b, 323a, 323b, 423a, 423b, 523a, 623a Second Adhesion part 124, 224, 324, 424, 524, 624 Non-adhesion part 125a, 125b Film member H Thermal fusion head P Punching machine S1 area

Claims (4)

フィルム部材の周部に形成された前記フィルム部材の重なり部における、少なくとも外側の縁部全体を接着することにより形成された第1接着部と、前記フィルム部材および前記第1接着部により密封された領域と、を有する外装部材と、
前記第1接着部により密封された領域に収納された電池要素と、を備える蓄電デバイスであって、
前記外装部材は、
前記第1接着部により密封された領域と前記第1接着部との境界に沿った前記電池要素側に配置された、前記重なり部を接着することにより形成された複数の第2接着部を備え、
前記複数の第2接着部は、それぞれ第2接着部を貫通し且つ周囲に接着された領域が残る大きさの貫通孔を有する、
蓄電デバイス。
A first adhesive portion formed by adhering at least the entire outer edge of the overlapping portion of the film member formed on the periphery of the film member, and sealed by the film member and the first adhesive portion. An exterior member having a region;
A battery element housed in a region sealed by the first adhesive portion, and an electricity storage device comprising:
The exterior member is
A plurality of second adhesive portions formed by adhering the overlapping portions disposed on the battery element side along a boundary between the region sealed by the first adhesive portions and the first adhesive portion; ,
The plurality of second adhesive portions each have a through-hole having a size penetrating the second adhesive portion and leaving a region adhered to the periphery.
Power storage device.
前記第1接着部により密封された領域は、平面視長方形状であり、
前記複数の第2接着部は、前記第1接着部により密封された領域の長辺と前記第1接着部との境界の前記電池要素側に沿って配置されている、
請求項1に記載の蓄電デバイス。
The region sealed by the first adhesive portion has a rectangular shape in plan view,
The plurality of second adhesive portions are disposed along the battery element side of the boundary between the long side of the region sealed by the first adhesive portion and the first adhesive portion.
The electricity storage device according to claim 1.
フィルム部材により、電池要素を挟む両側から前記電池要素を包囲して、前記フィルム部材の周部に重なり部を設ける重なり部形成工程と、
前記重なり部における、少なくとも前記電池要素側とは反対側の縁部全体を接着して第1接着部を形成することにより、前記電池要素が配置される領域を形成するとともに、前記第1接着部と前記電池要素が配置される領域との境界に沿った前記電池要素側に配置された複数の第2接着部を形成する接着部形成工程と、
前記第2接着部を貫通し且つ周囲に接着された領域が残る大きさの貫通孔を穿設する貫通孔穿設工程と、を含む、
蓄電デバイスの製造方法。
An overlapping part forming step of surrounding the battery element from both sides sandwiching the battery element with a film member and providing an overlapping part on a peripheral part of the film member;
A region where the battery element is arranged is formed by adhering at least the entire edge of the overlapping portion opposite to the battery element side to form a first adhesive portion, and the first adhesive portion Forming a plurality of second adhesive portions arranged on the battery element side along a boundary between the battery element and the region where the battery element is arranged;
A through-hole drilling step for drilling a through-hole having a size that penetrates the second adhesive portion and leaves a region adhered to the periphery.
A method for manufacturing an electricity storage device.
前記重なり部形成工程は、前記重なり部における少なくとも前記複数の第2接着部の間に対応する部分にスペーサを介在させる工程を更に含み、
前記接着部形成工程では、前記重なり部を熱融着する、
請求項3に記載の蓄電デバイスの製造方法。
The overlapping portion forming step further includes a step of interposing a spacer in a portion corresponding to at least between the plurality of second adhesive portions in the overlapping portion,
In the bonding part forming step, the overlapping part is heat-sealed.
The manufacturing method of the electrical storage device of Claim 3.
JP2015033350A 2015-02-23 2015-02-23 Power storage device and manufacturing method for the same Pending JP2016157538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033350A JP2016157538A (en) 2015-02-23 2015-02-23 Power storage device and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033350A JP2016157538A (en) 2015-02-23 2015-02-23 Power storage device and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2016157538A true JP2016157538A (en) 2016-09-01

Family

ID=56826198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033350A Pending JP2016157538A (en) 2015-02-23 2015-02-23 Power storage device and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2016157538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022542076A (en) * 2019-08-27 2022-09-29 エルジー エナジー ソリューション リミテッド Battery case for secondary battery and method for manufacturing pouch-type secondary battery
JP2022542565A (en) * 2019-08-27 2022-10-05 エルジー エナジー ソリューション リミテッド Battery case for secondary battery and method for manufacturing pouch-type secondary battery
CN116706416A (en) * 2023-08-07 2023-09-05 蜂巢能源科技股份有限公司 Power battery and battery pack

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022542076A (en) * 2019-08-27 2022-09-29 エルジー エナジー ソリューション リミテッド Battery case for secondary battery and method for manufacturing pouch-type secondary battery
JP2022542565A (en) * 2019-08-27 2022-10-05 エルジー エナジー ソリューション リミテッド Battery case for secondary battery and method for manufacturing pouch-type secondary battery
JP7250209B2 (en) 2019-08-27 2023-03-31 エルジー エナジー ソリューション リミテッド Battery case for secondary battery and method for manufacturing pouch-type secondary battery
JP7325892B2 (en) 2019-08-27 2023-08-15 エルジー エナジー ソリューション リミテッド Battery case for secondary battery and method for manufacturing pouch-type secondary battery
US12080912B2 (en) 2019-08-27 2024-09-03 Lg Energy Solution, Ltd. Battery case for secondary battery and method for manufacturing pouch type secondary battery
CN116706416A (en) * 2023-08-07 2023-09-05 蜂巢能源科技股份有限公司 Power battery and battery pack
CN116706416B (en) * 2023-08-07 2023-10-13 蜂巢能源科技股份有限公司 Power battery and battery pack

Similar Documents

Publication Publication Date Title
KR100917734B1 (en) Pouch Type Lithium Secondary Battery
KR101216422B1 (en) Secondary Battery Having Sealing Portion of Improved Insulating Property
JP6232849B2 (en) Electricity storage element
JP6644650B2 (en) Power storage cell, exterior film and power storage module
KR20050075702A (en) Film-covered electric device having pressure release opening
JP6058815B2 (en) Method for producing film-clad battery
CN107154312B (en) Electrochemical device and method for manufacturing electrochemical device
KR20100126226A (en) Pouch type secondary battery characterized by water-resistance
JP6298032B2 (en) Storage cell, exterior film, and storage module
JP2011086760A (en) Energy storage element
US10381171B2 (en) Electric storage cell, covering film and electric storage module
JP2016157538A (en) Power storage device and manufacturing method for the same
JP6783583B2 (en) Power storage cell, exterior film and power storage module
JP5229440B2 (en) Electrochemical devices
CN107464897B (en) Single storage battery, packaging film and storage battery assembly
JP7100538B2 (en) Power storage module
JP5178606B2 (en) Laminate exterior power storage device
CN107785605B (en) Single storage battery, packaging film and storage battery assembly
JPH11312625A (en) Electochemical device
US8179666B2 (en) Multilayer electrolytic capacitor and method for manufacturing the same
JP2001015169A (en) Nonaqueous electrolyte secondary battery
JP6926509B2 (en) Power storage device
JP2015185371A (en) power storage device
JP2006324337A (en) Electrochemical element
JP5014401B2 (en) Flat wound power storage device module