JP2016156673A - Automatic analyzer and analytical method - Google Patents

Automatic analyzer and analytical method Download PDF

Info

Publication number
JP2016156673A
JP2016156673A JP2015033831A JP2015033831A JP2016156673A JP 2016156673 A JP2016156673 A JP 2016156673A JP 2015033831 A JP2015033831 A JP 2015033831A JP 2015033831 A JP2015033831 A JP 2015033831A JP 2016156673 A JP2016156673 A JP 2016156673A
Authority
JP
Japan
Prior art keywords
reaction
fine particles
region
magnetic
magnetic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015033831A
Other languages
Japanese (ja)
Inventor
俊郎 斎藤
Toshiro Saito
俊郎 斎藤
禎昭 杉村
Teisho Sugimura
禎昭 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2015033831A priority Critical patent/JP2016156673A/en
Publication of JP2016156673A publication Critical patent/JP2016156673A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an automatic analyzer and an analytical method capable of improving reaction speed between fine particles to which probe molecules in a sample solution are bonded and biological molecules which are analysis objects.SOLUTION: A congestion region 36a of magnetic particulates 38 is formed in a reaction zone 36 by a magnetic field generation device, and reaction liquid 39 is allowed to pass through the congestion region 36a of magnetic particulates 38 by a liquid sending device. Then, when the reaction liquid 39 passes through the reaction zone 36, a liquid sending direction is inverted, and the reaction liquid 39 is allowed to pass again through the congestion region.SELECTED DRAWING: Figure 2

Description

本発明は、抗原と抗体の反応を利用して試料の分析を行う自動分析装置及び分析方法に関する。   The present invention relates to an automatic analyzer and an analysis method for analyzing a sample using a reaction between an antigen and an antibody.

分析対象の試料溶液中に含まれる特定の生体分子の種類や存在量を解析する方法としては、例えば、反応支持体としての微粒子に解析対象の生体分子を捕獲するプローブ分子(捕獲プローブ分子)を結合し、プローブ分子と解析対象の生体分子を反応させて捕獲した後、さらに、標識を結合したプローブ分子(標識分子)と反応させ、標識を定量することによって対象となる生体分子の解析を行う方法が知られている。   As a method for analyzing the type and abundance of a specific biomolecule contained in the sample solution to be analyzed, for example, a probe molecule (capture probe molecule) that captures the biomolecule to be analyzed in fine particles as a reaction support is used. After binding, the probe molecule reacts with the biomolecule to be analyzed and captured, and further reacted with the probe molecule (label molecule) to which the label is bound, and the target biomolecule is analyzed by quantifying the label. The method is known.

一方で、微粒子を反応支持体として用いる場合には、溶液中における微粒子の移動速度が解析対象の生体分子などに比べて桁違いに小さいため、微粒子に結合させた捕獲プローブ分子と生体分子との反応速度が著しく低下することも知られている。このような問題に対し、微粒子上での反応の加速を目的として、例えば、特許文献1(米国特許出願公開第2009/0227044号明細書)には、微粒子を含む反応液を流路内に封入し、電磁石で外部より変動磁場を与えることによって反応液中の磁気微粒子を運動させ、反応液を攪拌する技術が開示されている。   On the other hand, when microparticles are used as a reaction support, the movement speed of microparticles in solution is orders of magnitude smaller than that of biomolecules to be analyzed. It is also known that the reaction rate is significantly reduced. For the purpose of accelerating the reaction on the fine particles, for example, Patent Document 1 (US Patent Application Publication No. 2009/0227044) encloses a reaction solution containing the fine particles in the flow path. A technique is disclosed in which a magnetic field in a reaction solution is moved by applying a varying magnetic field from the outside with an electromagnet, and the reaction solution is stirred.

米国特許出願公開第2009/0227044号明細書US Patent Application Publication No. 2009/0227044

しかしながら、上記従来技術のように溶液の攪拌によって反応速度の向上を図る場合、反応する分子同士、すなわち、プローブ分子を結合した微粒子と解析対象の生体分子は溶液の流れに沿って概ね同一方向に移動するため、反応速度に大きく貢献する分子同士の衝突頻度に係る相対移動速度を大きくすることが難しく、反応速度の向上は限定的であり改善の余地があった。   However, when the reaction rate is improved by stirring the solution as in the prior art, the reacting molecules, that is, the microparticles to which the probe molecules are bonded and the biomolecule to be analyzed are substantially in the same direction along the flow of the solution. Since it moves, it is difficult to increase the relative movement speed related to the collision frequency between molecules that greatly contribute to the reaction speed, and the improvement of the reaction speed is limited and there is room for improvement.

本発明は上記に鑑みてなされたものであり、試料溶液中のプローブ分子を結合した微粒子と分析対象の生体分子との反応速度を向上することができる自動分析装置及び分析方法を提供することを目的とする。   The present invention has been made in view of the above, and provides an automatic analyzer and an analysis method capable of improving the reaction rate between microparticles combined with probe molecules in a sample solution and biomolecules to be analyzed. Objective.

上記目的を達成するために、本発明は、分析対象の試料と、前記試料の分析に用いる磁気微粒子を含む試薬が混合された反応液を反応流路に送る送液装置と、前記反応流路の予め定めた反応領域に前記磁気微粒子に作用する磁場を発生させる磁場発生装置と、前記磁場発生装置によって前記反応領域内に形成された前記磁気微粒子の密集領域に、前記反応液を通過させるように前記送液装置を制御する制御装置とを備えたものとする。   In order to achieve the above object, the present invention provides a liquid feeding device that sends a reaction liquid mixed with a sample to be analyzed and a reagent containing magnetic fine particles used for analysis of the sample to the reaction flow path, and the reaction flow path A magnetic field generator for generating a magnetic field acting on the magnetic fine particles in a predetermined reaction region of the magnetic field, and the reaction liquid to pass through a dense region of the magnetic fine particles formed in the reaction region by the magnetic field generator. And a control device for controlling the liquid feeding device.

試料溶液中のプローブ分子を結合した微粒子と分析対象の生体分子との反応速度を向上することができる   It is possible to improve the reaction rate between microparticles bound to probe molecules in sample solution and biomolecules to be analyzed.

第1の実施の形態の分析ユニットの反応部を抜き出して示す図である。It is a figure which extracts and shows the reaction part of the analysis unit of 1st Embodiment. 図1のA部を拡大して示す図である。It is a figure which expands and shows the A section of FIG. 第1の実施の形態に係る自動分析装置の全体構成を概略的に示す図である。1 is a diagram schematically showing an overall configuration of an automatic analyzer according to a first embodiment. 図3に示した自動分析装置の分析ユニットの構成を模式的に示す図である。It is a figure which shows typically the structure of the analysis unit of the automatic analyzer shown in FIG. 反応液中で生じる反応の一例を模式的に示す図である。It is a figure which shows typically an example of the reaction which arises in a reaction liquid. 反応液中で生じる反応の他の例を模式的に示す図である。It is a figure which shows typically the other example of the reaction which arises in a reaction liquid. 磁場発生機構の一構成例を示す図である。It is a figure which shows the example of 1 structure of a magnetic field generation mechanism. 磁場発生機構の他の構成例を示す図である。It is a figure which shows the other structural example of a magnetic field generation mechanism. 磁場発生機構のさらに他の構成例を示す図である。It is a figure which shows the further another structural example of a magnetic field generation mechanism. 第1の実施の形態における効果を説明する図であり、反応液を静置した場合と、反応液に本実施の形態の反応処理を適用した場合の反応速度を比較する図である。It is a figure explaining the effect in 1st Embodiment, and is a figure which compares the reaction rate when the reaction process of this Embodiment is applied to a reaction liquid when the reaction liquid is left still. 第1の実施の形態によって反応領域に形成された密集領域における磁気微粒子の反応液に対する割合と反応効率との関係を示す図である。It is a figure which shows the relationship between the ratio with respect to the reaction liquid of the magnetic fine particle in the dense area | region formed in the reaction area | region by 1st Embodiment, and reaction efficiency. 第2の実施の形態における反応流路の分解斜視図である。It is a disassembled perspective view of the reaction flow path in 2nd Embodiment. 第2の実施の形態における反応流路の縦断面図である。It is a longitudinal cross-sectional view of the reaction flow path in 2nd Embodiment.

本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described with reference to the drawings.

<第1の実施の形態>
本発明の第1の実施の形態を図1〜図11を参照しつつ詳細に説明する。
<First Embodiment>
A first embodiment of the present invention will be described in detail with reference to FIGS.

図3は本実施の形態に係る自動分析装置の全体構成を概略的に示す図である。   FIG. 3 is a diagram schematically showing the overall configuration of the automatic analyzer according to the present embodiment.

図3において、自動分析装置100は、血液や尿などの生体サンプル(以下、試料と称する)を収容する複数の試料容器1が収納された試料容器ラック2と、試料容器ラック2を搬送するラック搬送ライン3と、試料の分析に用いる種々の試薬が収容された複数の試薬容器4が収納・保温され試薬ディスクカバー7により覆われた試薬容器ディスク5と、試料と試薬とを混合するための複数の反応容器8が収納されたインキュベータディスク9と、回転駆動及び上下駆動により試料容器1からインキュベータディスク9の反応容器8に試料を分注する試料分注機構10と、試薬ディスクカバー7に設けられた試薬ディスクカバー開口部7aを介して、回転駆動及び上下駆動により試薬容器4からインキュベータディスク9の反応容器8に試薬を分注する試薬分注機構11と、反応容器8に収容された反応液(試料と試薬の混合液)を攪拌する反応容器攪拌機構14と、発光誘導試薬が収容された発光誘導試薬容器40と、洗浄試薬が収容された洗浄試薬容器41と、回転駆動及び上下駆動によりインキュベータディスク9の反応容器8で混合された反応液、発光誘導試薬容器40、或いは、洗浄試薬容器41に収容された試薬を吸引する吸引機構17と、吸引機構17で吸引された反応液や試薬を用いて分析を行う分析ユニット18と、各部の分注動作、分析ユニット18による分析処理(反応処理、測定処理など)を含む自動分析装置100全体の動作を制御する制御部19とを概略備えている。試薬ディスク5には試薬容器4として、発光標識を含む試薬を収容する発光標識試薬容器や、磁気微粒子を含む試薬を収容する磁気微粒子試薬容器などが収納されている。磁気微粒子としては、特に限定すべき用件はなく、例えば、ポリマー中にフェライトを分散させて製造したものや、フェライト微粒子の表面にデキストランやポリエチレングリコールなどを固定したものなどがある。また、発光標識としては、Cy3、Cy5、FITC(fluorescein isothiocyanate)などの通常の蛍光色素やフィコエリスリン、アロフィコシアニンなどの蛍光タンパクを用いることができる。   In FIG. 3, an automatic analyzer 100 includes a sample container rack 2 in which a plurality of sample containers 1 that store biological samples such as blood and urine (hereinafter referred to as samples) are stored, and a rack that carries the sample container rack 2. For mixing the sample and the reagent with the transport line 3, the reagent container disk 5 in which a plurality of reagent containers 4 containing various reagents used for sample analysis are stored and kept warm and covered with the reagent disk cover 7 An incubator disk 9 in which a plurality of reaction containers 8 are housed, a sample dispensing mechanism 10 for dispensing a sample from the sample container 1 to the reaction container 8 of the incubator disk 9 by rotation driving and vertical driving, and a reagent disk cover 7 are provided. The reagent is transferred from the reagent container 4 to the reaction container 8 of the incubator disk 9 by rotational driving and vertical driving through the reagent disk cover opening 7a. A reagent dispensing mechanism 11 for dispensing, a reaction container stirring mechanism 14 for stirring the reaction liquid (mixed liquid of the sample and the reagent) housed in the reaction container 8, and a light emission induction reagent container 40 containing a light emission induction reagent; , A cleaning reagent container 41 containing a cleaning reagent, and a reaction liquid mixed in the reaction container 8 of the incubator disk 9 by rotation and vertical driving, a luminescence induction reagent container 40, or a reagent contained in the cleaning reagent container 41 The aspirating mechanism 17 for aspirating the liquid, the analysis unit 18 for performing analysis using the reaction liquid and the reagent aspirated by the aspirating mechanism 17, the dispensing operation of each part, and the analysis processing (reaction processing, measurement processing, etc.) by the analysis unit 18 The control part 19 which controls operation | movement of the automatic analyzer 100 whole containing this is roughly provided. The reagent disk 5 contains a light-emitting label reagent container for storing a reagent containing a light-emitting label, a magnetic particle reagent container for storing a reagent containing magnetic fine particles, and the like as the reagent container 4. The magnetic fine particles are not particularly limited, and examples thereof include those produced by dispersing ferrite in a polymer and those obtained by fixing dextran, polyethylene glycol or the like on the surface of the ferrite fine particles. As the luminescent label, a normal fluorescent dye such as Cy3, Cy5, FITC (fluorescein isothiocyanate) or a fluorescent protein such as phycoerythrin or allophycocyanin can be used.

また、自動分析装置100は、未使用である複数の反応容器8や試料分注チップ10aが収納された反応容器・試料分注チップ収納部13、及び、その交換・補充用にスタンバイされた反応容器・試料分注チップ収納部12と、使用済みの反応容器8及び試料分注チップ10aを廃棄するための廃棄孔15と、反応容器8及び試料分注チップ10aを把持して搬送する搬送機構16とを備えている。搬送機構16は、X軸、Y軸、Z軸方向(図示せず)に移動可能に設けられており、反応容器・試料分注チップ収納部13に収納された反応容器8をインキュベータディスク9に搬送したり、使用済み反応容器8を廃棄孔15に破棄したり、未使用の試料分注チップ10aをチップ装着位置16aに搬送したりする。   The automatic analyzer 100 also includes a reaction container / sample dispensing tip storage unit 13 in which a plurality of unused reaction vessels 8 and sample dispensing tips 10a are accommodated, and a standby reaction for replacement / replenishment thereof. Container / sample dispensing tip storage unit 12, disposal hole 15 for discarding used reaction vessel 8 and sample dispensing tip 10a, and transport mechanism for gripping and transporting reaction vessel 8 and sample dispensing tip 10a 16. The transport mechanism 16 is provided so as to be movable in the X-axis, Y-axis, and Z-axis directions (not shown), and the reaction container 8 stored in the reaction container / sample dispensing chip storage unit 13 is placed in the incubator disk 9. The used reaction container 8 is discarded into the disposal hole 15, or the unused sample dispensing tip 10a is transported to the tip mounting position 16a.

図4は、図3に示した自動分析装置の分析ユニットの構成を模式的に示す図である。また、図1は分析ユニットの反応部を抜き出して示す図であり、図2は図1のA部を拡大して示す図である。   FIG. 4 is a diagram schematically showing the configuration of the analysis unit of the automatic analyzer shown in FIG. Further, FIG. 1 is a diagram showing the reaction part of the analysis unit in an extracted manner, and FIG. 2 is a diagram showing the A part of FIG.

図4において、分析ユニット18は、インキュベータディスク9の反応容器8から吸引機構17により吸引された反応液に含まれる反応支持体としての磁気微粒子と分析対象の生体分子との反応を促進させる反応処理を行う反応部30と、反応部30により反応処理の施された反応液の測定処理を行う測定部31と、反応部30の吸引部32aから反応液を吸引して測定部31の吐出部32bに吐出することにより反応液を移送する移送機構32とを備えている。   In FIG. 4, the analysis unit 18 is a reaction process that promotes the reaction between the magnetic fine particles as the reaction support contained in the reaction solution sucked from the reaction vessel 8 of the incubator disk 9 by the suction mechanism 17 and the biomolecule to be analyzed. The reaction unit 30 that performs the measurement, the measurement unit 31 that performs the measurement process of the reaction liquid that has been subjected to the reaction process by the reaction unit 30, and the discharge unit 32b of the measurement unit 31 that sucks the reaction liquid from the suction unit 32a of the reaction unit 30 And a transfer mechanism 32 for transferring the reaction liquid by discharging the liquid.

反応部30は、ベースとなる基板30aと、基板30a上に形成された反応流路35と、吸引機構17によって吸引された反応液や発光誘導試薬、洗浄試薬などの保管及び反応流路35への送液が可能な反応液送液ユニット33と、反応流路35上に予め定めた反応領域36に配置され、反応液中の磁気微粒子に作用する磁場を発生させる磁場発生装置37と、反応液送液ユニット33による反応液の移送先を切り換える切換バルブ34と、移送機構32による反応液の吸引を行う吸引部32aとを備えている。なお、図4においては、図示の簡単のために反応部30の各構成を簡略化して示しており、その詳細について以下に説明する。   The reaction unit 30 includes a base substrate 30a, a reaction channel 35 formed on the substrate 30a, storage of the reaction solution sucked by the suction mechanism 17, a luminescence induction reagent, a cleaning reagent, and the like and the reaction channel 35. A reaction liquid supply unit 33 capable of supplying a liquid, a magnetic field generator 37 that is disposed in a predetermined reaction region 36 on the reaction flow path 35 and generates a magnetic field that acts on magnetic fine particles in the reaction liquid, and a reaction A switching valve 34 for switching the destination of the reaction liquid by the liquid feeding unit 33 and a suction part 32 a for sucking the reaction liquid by the transfer mechanism 32 are provided. In FIG. 4, each component of the reaction unit 30 is shown in a simplified manner for simplicity of illustration, and the details thereof will be described below.

図1及び図2に示すように、反応部30において、反応液送液ユニット33は、磁気微粒子38などを含む反応液39を反応流路35内で送液するポンプ33aと、反応液39を保管する反応液保管部33b,33cなどにより構成されている。また、切換バルブ34は、ポンプ33aと反応液保管部33bと反応流路35とで反応液39の流通方向を切り換える切換バルブ34aと、反応流路35と反応液保管部33cと吸引部32aとで反応液の流通方向を切り換える切換バルブ34bなどにより構成されている。また、磁場発生措置37は、反応領域36において反応流路35の両側に対向するように配置された磁石37a,37bにより構成されている。   As shown in FIGS. 1 and 2, in the reaction unit 30, the reaction liquid feeding unit 33 includes a pump 33 a that feeds a reaction liquid 39 including magnetic fine particles 38 and the like in a reaction flow path 35, and a reaction liquid 39. The reaction liquid storage units 33b and 33c are used for storage. The switching valve 34 includes a switching valve 34a that switches the flow direction of the reaction liquid 39 with the pump 33a, the reaction liquid storage section 33b, and the reaction flow path 35, a reaction flow path 35, a reaction liquid storage section 33c, and a suction section 32a. And a switching valve 34b for switching the flow direction of the reaction liquid. Further, the magnetic field generation measure 37 is configured by magnets 37 a and 37 b arranged so as to face both sides of the reaction flow path 35 in the reaction region 36.

ポンプ33aとしては、例えば、微量液滴の搬送に適したペリスターポンプやシリンジポンプを用いることが出来る。なお、反応液39を反応流路35の反応領域36に複数回往復で通過させるには、吸気と排気の両方が出来るポンプが好ましい。   As the pump 33a, for example, a peristaltic pump or a syringe pump suitable for transporting a small amount of droplets can be used. In order to pass the reaction liquid 39 through the reaction region 36 of the reaction flow path 35 a plurality of times, a pump capable of both intake and exhaust is preferable.

図7は、磁場発生機構の一構成例を示す図である。   FIG. 7 is a diagram illustrating a configuration example of a magnetic field generation mechanism.

図7において、磁場発生装置37の磁石は、反応流路35を挟む位置に対向して配置された一対の永久磁石137a,137b(例えば、ネオジム磁石)であり、反応流路35に対して永久磁石137a,137bを近接させる、或いは離間させる方向に移動可能なX−Yステージ130上に配置されている。また、X−Yステージ130は、反応流路35が永久磁石137a,137bの間の空間、すなわち、永久磁石137a,137bの磁力の影響を受ける空間から離脱する位置まで移動可能である。   In FIG. 7, the magnets of the magnetic field generation device 37 are a pair of permanent magnets 137 a and 137 b (for example, neodymium magnets) disposed opposite to the positions sandwiching the reaction channel 35, and are permanent with respect to the reaction channel 35. The magnets 137a and 137b are disposed on an XY stage 130 that can move in a direction in which the magnets 137a and 137b are brought closer to or away from each other. In addition, the XY stage 130 is movable to a position where the reaction channel 35 is separated from the space between the permanent magnets 137a and 137b, that is, the space affected by the magnetic force of the permanent magnets 137a and 137b.

磁気微粒子38を含む反応液39がポンプ33aの圧力制御により切換バルブ34aを介して反応流路35に送液される場合、反応液39は反応領域36を通過する。このとき、磁場発生装置37によって反応領域36に磁場が形成されると、反応液39中の磁気微粒子38は反応領域36内でトラップされて、反応流路35の断面全体に亘る密集領域36aを形成する。つまり、X−Yステージ130の動作によって反応領域36に変動磁場が発生さされると、磁気微粒子38は反応流路35内の反応領域36内に留まり、磁場の大きさや強度に従った分布を取りつつ、反応領域36内を動きながら長時間滞在することが可能となる。なお、反応領域36の空間的な大きさは、磁場発生装置37によって形成される磁場の空間的な大きさに依存する。   When the reaction liquid 39 including the magnetic fine particles 38 is sent to the reaction flow path 35 via the switching valve 34a by the pressure control of the pump 33a, the reaction liquid 39 passes through the reaction region 36. At this time, when a magnetic field is formed in the reaction region 36 by the magnetic field generator 37, the magnetic fine particles 38 in the reaction solution 39 are trapped in the reaction region 36, and the dense region 36 a over the entire cross section of the reaction channel 35 is formed. Form. That is, when a fluctuating magnetic field is generated in the reaction region 36 by the operation of the XY stage 130, the magnetic fine particles 38 remain in the reaction region 36 in the reaction flow path 35 and take a distribution according to the magnitude and strength of the magnetic field. However, it is possible to stay for a long time while moving in the reaction region 36. Note that the spatial size of the reaction region 36 depends on the spatial size of the magnetic field formed by the magnetic field generator 37.

このような磁場発生装置37によって、反応流路35内における反応液中の磁気微粒子38は反応領域36内に十分に保持される。例えば、反応流路35として内径0.72mmのガラス製キャピラリー(Hilgenberg社製)、磁場発生装置37として幅10mm、高さ20mm、厚み5mmのネオジム磁石2枚を間隔5mmで対向させてX−Yステージ(シグマ光機製)上に配置したものを用い、磁気微粒子28として直径300nmの磁気微粒子(Ademtech社製)60M個を分散させた50ulの反応液29を流速200ul/分で送液し、反応液29が反応領域36を通過した時点で送液方向を反転させて反応領域36に再度反応液29を通過させ、磁気微粒子28が密集した密集領域36aを通過させ、磁場発生装置37を0.5Hz、移動距離5mmで動作させた場合、時間10分間での反応領域36内の密集領域36aにおける磁気微粒子28の保持率は約95%程度であった。   By such a magnetic field generator 37, the magnetic fine particles 38 in the reaction liquid in the reaction flow path 35 are sufficiently held in the reaction region 36. For example, a glass capillary (manufactured by Hilgenberg) having an inner diameter of 0.72 mm as the reaction flow path 35 and two neodymium magnets having a width of 10 mm, a height of 20 mm, and a thickness of 5 mm as the magnetic field generator 37 are opposed to each other at an interval of 5 mm. Using the one placed on the stage (manufactured by Sigma Kogyo), 50 ul of the reaction liquid 29 in which 60 M of magnetic fine particles (manufactured by Ademtech) having a diameter of 300 nm were dispersed as the magnetic fine particles 28 was fed at a flow rate of 200 ul / minute to react. When the liquid 29 passes through the reaction region 36, the liquid feeding direction is reversed and the reaction solution 29 is passed again through the reaction region 36, through the dense region 36 a where the magnetic fine particles 28 are densely packed, and the magnetic field generator 37 is set to 0. When operated at 5 Hz and a moving distance of 5 mm, the retention rate of the magnetic fine particles 28 in the dense region 36a in the reaction region 36 in about 10 minutes is about 95%. There was.

また、磁場発生装置37によって磁気微粒子28を保持する場合、磁気微粒子28に作用する磁場を、X−Yステージを駆動することによって変動磁場とし、その変動磁場の周波数を0.02Hz以上のとすれば、反応領域36内で磁気微粒子38の密集した状態が反応時間に対して十分に長くなった場合にも、一部の磁気微粒子38にだけ反応分子が反応してしまうことを抑制できる。   Further, when the magnetic fine particles 28 are held by the magnetic field generator 37, the magnetic field acting on the magnetic fine particles 28 is changed to a variable magnetic field by driving the XY stage, and the frequency of the variable magnetic field is set to 0.02 Hz or more. For example, even when the dense state of the magnetic fine particles 38 in the reaction region 36 becomes sufficiently long with respect to the reaction time, it is possible to suppress the reaction molecules from reacting with only some of the magnetic fine particles 38.

例えば、磁気微粒子38の一例として磁気微粒子上に一分子のビオチンを導入したものを作製し、ストレプトアビジンと蛍光タンパクが結びついたものをラベル材(標識分子)とし、変動磁場の周波数を変えながら反応領域中でラベル材が導入された磁気微粒子の個数を調べ、変動磁場の周波数とラベル材が導入された微粒子の個数との関係を詳細に調べることにより、どの程度の周波数で磁気微粒子38の密集領域36aを反応流路35中で動かす必要があるのかを調べた。   For example, as an example of the magnetic fine particle 38, a material in which a single molecule of biotin is introduced onto a magnetic fine particle is prepared, and a combination of streptavidin and a fluorescent protein is used as a label material (labeled molecule), and the reaction is performed while changing the frequency of the variable magnetic field. By examining the number of magnetic fine particles introduced with label material in the region and examining in detail the relationship between the frequency of the varying magnetic field and the number of fine particles introduced with the label material, at what frequency the magnetic fine particles 38 are concentrated. It was examined whether it was necessary to move the region 36a in the reaction channel 35.

磁気微粒子としては、直径300nmのマウス二次抗体付磁気ビーズ(Ademtech社製)を用い、磁気ビーズのビーズ数に対して分子数比が1/10となるようにマウスビオチン化抗体(Abcom社製)を反応させた。また、反応分子としては、ストレプトアビジン付フィコエリスリン(Roche社製)の30pM溶液を用いた。そして、これらの磁気微粒子の溶液と反応分子の溶液を混合し、磁気微粒子60M個を分散させた液量50ulの反応液を作製した。   As magnetic fine particles, magnetic beads with a mouse secondary antibody having a diameter of 300 nm (manufactured by Ademtech) are used, and a mouse biotinylated antibody (manufactured by Abcom) so that the molecular number ratio becomes 1/10 of the number of beads of the magnetic beads. ) Was reacted. As a reaction molecule, a 30 pM solution of phycoerythrin with streptavidin (Roche) was used. Then, the magnetic fine particle solution and the reaction molecule solution were mixed to prepare a 50 ul reaction liquid in which 60 M magnetic fine particles were dispersed.

反応流路35として内径0.72mmのガラス製キャピラリー(Hilgenberg社製)、磁場発生装置37として幅10mm、高さ20mm、厚み5mmのネオジム磁石2枚を間隔5mmで対向させてX−Yステージ(シグマ光機製)上に配置したものを用い、磁気微粒子28として直径300nmの磁気微粒子(Ademtech社製)60M個を分散させた50ulの反応液29を流速200ul/分で送液し、反応液29が反応領域36を通過した時点で送液方向を反転させて再度反応液29を反応領域36を通過させ、磁気微粒子28が密集した密集領域36aを通過させた。このとき、X−Yステージによって磁場発生装置37のネオジム磁石を移動距離5mmで移動させ、磁気微粒子に作用する磁場の周波数が2Hz、1Hz、0.5Hz、0.2Hz、0.1Hz、0.05Hz、及び0.02Hzの場合の蛍光基点数を計測した。蛍光輝点数の計測は、300Wキセノンランプ(朝日分光製)を光源とし、蛍光画像はsCMOSカメラ(浜松ホトニクス社製)を用い、蛍光顕微鏡(オリンパス社製)により行った。この結果、蛍光輝点数は、2Hz から0.02Hzの間ではほとんど変動しないことがわかり、したがって、変動磁場として0.02Hz以上の周波数であれば、一部の磁気微粒子に偏った反応にはならないことがわかった。   A glass capillary (made by Hilgenberg) having an inner diameter of 0.72 mm as the reaction channel 35, and two neodymium magnets having a width of 10 mm, a height of 20 mm, and a thickness of 5 mm as the magnetic field generator 37 are opposed to each other at an interval of 5 mm. 50 ul reaction liquid 29 in which 60 M magnetic fine particles (manufactured by Ademtech) having a diameter of 300 nm are dispersed as magnetic fine particles 28 is fed at a flow rate of 200 ul / min. When the liquid passes through the reaction region 36, the liquid feeding direction is reversed, and the reaction liquid 29 passes through the reaction region 36 again, and passes through the dense region 36a where the magnetic fine particles 28 are dense. At this time, the neodymium magnet of the magnetic field generator 37 is moved by the XY stage at a moving distance of 5 mm, and the frequency of the magnetic field acting on the magnetic fine particles is 2 Hz, 1 Hz, 0.5 Hz, 0.2 Hz, 0.1 Hz,. The number of fluorescent base points was measured at 05 Hz and 0.02 Hz. The number of fluorescent bright spots was measured using a 300 W xenon lamp (manufactured by Asahi Spectroscopy) as a light source, and a fluorescent image was obtained using a sCMOS camera (manufactured by Hamamatsu Photonics) and a fluorescent microscope (manufactured by Olympus). As a result, it can be seen that the number of fluorescent bright spots hardly fluctuates between 2 Hz and 0.02 Hz. Therefore, if the fluctuation magnetic field has a frequency of 0.02 Hz or more, the reaction is not biased toward some magnetic particles. I understood it.

なお、磁場発生装置37としては、上記のような永久磁石137a,137bを用いるものの他に、図8に示すように電磁石237a,237bを対向して配置し、その間に反応流路35を配置した構成や、図9に示すように導線337をコイル状に巻き、その中に反応流路35を通した構成などが考えられる。   As the magnetic field generator 37, in addition to those using the permanent magnets 137a and 137b as described above, as shown in FIG. 8, electromagnets 237a and 237b are arranged facing each other, and the reaction channel 35 is arranged therebetween. A configuration or a configuration in which a conducting wire 337 is coiled as shown in FIG.

ここで、反応部などにおいて反応液中で生じる反応について説明する。図5は反応液中で生じる反応の一例を模式的に示す図であり、図6は他の例を模式的に示す図である。   Here, the reaction that occurs in the reaction solution in the reaction section or the like will be described. FIG. 5 is a diagram schematically showing an example of the reaction that occurs in the reaction solution, and FIG. 6 is a diagram schematically showing another example.

例えば、図5に示すように、反応流路35の反応領域36に送液される反応液39を、分析対象の生体分子70と、生体分子70を捕獲する抗体や核酸分子などのプローブ分子(捕獲プローブ分子71)を結合した磁気微粒子28と、蛍光タンパクなどの標識72を結合した捕獲プローブ分子73(すなわち、標識72と捕獲プローブ73とから成る標識分子74)とを含むように構成する。このとき、生体分子70が標識分子74の捕獲プローブ73に捕獲されることによって複合体としての被反応分子が形成され、さらに、被反応分子の生体分子70が磁気微粒子28の捕獲プローブ分子71に捕獲されることによって、磁気微粒子28と生体分子70と標識72との複合体が形成される。   For example, as shown in FIG. 5, a reaction liquid 39 sent to the reaction region 36 of the reaction flow path 35 is divided into a biomolecule 70 to be analyzed and a probe molecule (such as an antibody or a nucleic acid molecule that captures the biomolecule 70). The magnetic particle 28 to which the capture probe molecule 71) is bound and the capture probe molecule 73 to which the label 72 such as a fluorescent protein is bound (that is, the label molecule 74 composed of the label 72 and the capture probe 73) are included. At this time, the biomolecule 70 is captured by the capture probe 73 of the labeled molecule 74 to form a molecule to be reacted, and the biomolecule 70 of the molecule to be reacted becomes the capture probe molecule 71 of the magnetic particle 28. By being captured, a complex of the magnetic fine particle 28, the biomolecule 70 and the label 72 is formed.

また、他の例としては、図6に示すように、反応容器8に収容された反応液を、分析対象の生体分子70と、ビオチン(又は、アビジン・ストレプトアビジン)を結合した捕獲プローブ分子71と、標識72を結合した捕獲プローブ分子73(すなわち、標識72と捕獲プローブ73とから成る標識分子74)とを含むように構成する。このとき、生体分子70が標識分子74の捕獲プローブ73及び捕獲プローブ71に捕獲されることによって複合体としての被反応分子75が形成される。   As another example, as shown in FIG. 6, a capture probe molecule 71 in which a reaction liquid stored in a reaction vessel 8 is combined with a biomolecule 70 to be analyzed and biotin (or avidin / streptavidin). And a capture probe molecule 73 to which a label 72 is bound (that is, a label molecule 74 composed of the label 72 and the capture probe 73). At this time, the biomolecule 70 is captured by the capture probe 73 and the capture probe 71 of the label molecule 74, thereby forming a reaction molecule 75 as a complex.

さらに、反応流路35の反応領域36に送液される反応液39を、アビジン・ストレプトアビジン(又は、ビオチン)を結合した磁気微粒子28と、被反応分子75とを含むように構成する。このとき、磁気微粒子28のアビジン・ストレプトアビジンと被反応分子75のビオチン(又は、磁気微粒子28のビオチンと被反応分子75のアビジン・ストレプトアビジン)とが結合することによって、磁気微粒子28と生体分子70と標識72との複合体が形成される。   Further, the reaction liquid 39 sent to the reaction region 36 of the reaction flow path 35 is configured to include the magnetic fine particles 28 bonded with avidin / streptavidin (or biotin) and the molecule 75 to be reacted. At this time, the avidin / streptavidin of the magnetic fine particle 28 and the biotin of the molecule 75 to be reacted (or the biotin of the magnetic fine particle 28 and the avidin / streptavidin of the molecule 75 to be reacted) bind to each other. A complex of 70 and label 72 is formed.

測定部31は、ベースとなる基板31aと、基板31a上に形成された測定流路51と、移送機構32により反応部30から搬送される反応液が吐出される吐出部32bと、測定流路51内の反応液の送液を行う送液ユニット(図示せず)と、測定流路51上に予め定めた測定領域52に配置され、吐出部32bに吐出された反応液反応液中の磁気微粒子に作用する磁場を発生させる磁場発生装置57と、磁場発生装置57によって測定領域52内に形成された磁気微粒子群52aの計測を行う計測機構101と、計測機構101による計測が終了した反応液を排出する排出部61とを備えている。   The measurement unit 31 includes a base substrate 31a, a measurement channel 51 formed on the substrate 31a, a discharge unit 32b from which a reaction liquid conveyed from the reaction unit 30 by the transfer mechanism 32 is discharged, and a measurement channel. A liquid feeding unit (not shown) that feeds the reaction liquid in 51 and a magnetism in the reaction liquid reaction liquid that is disposed in a predetermined measurement region 52 on the measurement channel 51 and discharged to the discharge portion 32b. A magnetic field generator 57 that generates a magnetic field that acts on the fine particles, a measurement mechanism 101 that measures the magnetic fine particle group 52a formed in the measurement region 52 by the magnetic field generator 57, and a reaction liquid that has been measured by the measurement mechanism 101 And a discharge portion 61 for discharging the water.

計測機構101は、光源60と、光源60から照射された光を集光する集光レンズ59と、集光レンズ59を介した光から標識(蛍光色素や蛍光タンパク)の励起に不要な波長の光を遮断して励起光だけを透過させるフィルター58と、フィルター58からの励起光を反射・透過するダイクロックミラー54と、ダイクロックミラー54で反射された励起光を測定領域52に照射する対物レンズ53と、励起光によって測定領域52の磁気微粒子群52aから発せられ、対物レンズ53で集光されてダイクロックミラー53を透過した蛍光から、励起光の反射光を除去するフィルター55と、フィルター55を透過した蛍光を集光する集光レンズ56と、集光レンズ56により集光されて結像された蛍光を検出する光検出器57とを備えている。   The measurement mechanism 101 includes a light source 60, a condensing lens 59 that condenses the light emitted from the light source 60, and a wavelength that is unnecessary for excitation of a label (fluorescent dye or fluorescent protein) from the light that has passed through the condensing lens 59. A filter 58 that blocks the light and transmits only the excitation light, a dichroic mirror 54 that reflects and transmits the excitation light from the filter 58, and an objective that irradiates the measurement region 52 with the excitation light reflected by the dichroic mirror 54 A filter 53 for removing reflected light of excitation light from the lens 53 and fluorescence emitted from the magnetic fine particle group 52a of the measurement region 52 by the excitation light, condensed by the objective lens 53, and transmitted through the dichroic mirror 53; A condensing lens 56 that condenses the fluorescent light that has passed through 55, and a photodetector 57 that detects the fluorescent light that has been condensed and imaged by the condensing lens 56. .

光源60としては、標識として用いた蛍光色素の励起に適したものを選択すればよく、キセノンランプ、水銀ランプ、ハロゲンランプなどが用いられるほか、レーザーやLEDを用いることもできる。測定領域52では、磁場発生装置57によって磁気微粒子38が広くかつ薄く密集した磁気微粒子群52aが形成されており、対物レンズ53を介した励起光が照射される。励起光により磁気微粒子群52aの磁気微粒子38から発せられた蛍光と、測定領域52で反射された励起光は、対物レンズ53及びダイクロックミラー54を介してフィルター55に導かれる。フィルター55では、励起光の反射光のみが除去されて、蛍光のみが透過され、集光レンズ56で集光されて光検出器57のセンサー上に結像されて検出される。光検出器57としては、CCDカメラやCMOSカメラ、フォトマル、或いはアバランシェフォトダイオードなどを用いることができる。なお、デジタルカウント方式で検出する場合には、蛍光輝点数を求めることが好ましく、光検出器として位置分解能を有する2次元撮像素子を用いることが好ましい。   As the light source 60, a light source suitable for excitation of a fluorescent dye used as a label may be selected. A xenon lamp, a mercury lamp, a halogen lamp, or the like may be used, and a laser or LED may be used. In the measurement region 52, a magnetic fine particle group 52 a in which the magnetic fine particles 38 are wide and thin and dense is formed by the magnetic field generator 57, and excitation light is irradiated through the objective lens 53. The fluorescence emitted from the magnetic fine particles 38 of the magnetic fine particle group 52 a by the excitation light and the excitation light reflected by the measurement region 52 are guided to the filter 55 via the objective lens 53 and the dichroic mirror 54. In the filter 55, only the reflected light of the excitation light is removed, and only the fluorescence is transmitted, and the light is condensed by the condenser lens 56, imaged on the sensor of the photodetector 57, and detected. As the photodetector 57, a CCD camera, a CMOS camera, a photomultiplier, an avalanche photodiode, or the like can be used. In addition, when detecting by a digital count method, it is preferable to obtain | require the number of fluorescent luminescent spots, and it is preferable to use the two-dimensional image sensor which has position resolution as a photodetector.

以上のように構成した本実施の形態における動作を説明する。   The operation in the present embodiment configured as described above will be described.

分析処理において、制御部19は、試料容器ラック2に収納された試料容器1から試料分注機構10によって反応容器8に試料を分注し、試薬容器ディスク5に収納された試薬容器4から試薬分注機構11によって反応容器8に試薬を分注する。続いて、制御部19は、インキュベータディスク9の反応容器8で混合された反応液(試料と試薬の混合液)を反応容器攪拌機構14によって攪拌し、吸引機構17によって分析ユニット18に送液し、反応処理及び測定処理を実施する。   In the analysis process, the control unit 19 dispenses a sample from the sample container 1 accommodated in the sample container rack 2 to the reaction container 8 by the sample dispensing mechanism 10, and the reagent from the reagent container 4 accommodated in the reagent container disk 5. The reagent is dispensed into the reaction vessel 8 by the dispensing mechanism 11. Subsequently, the control unit 19 stirs the reaction liquid (mixed liquid of the sample and the reagent) mixed in the reaction container 8 of the incubator disk 9 by the reaction container stirring mechanism 14 and sends the solution to the analysis unit 18 by the suction mechanism 17. The reaction process and the measurement process are performed.

反応処理において、制御部19は、磁場発生装置37によって反応領域36内に磁気微粒子38の密集領域36aを形成させ、送液装置33によって磁気微粒子38の密集領域36aに反応液39を通過させる。反応液29が反応領域36を通過した時点で送液方向を反転させて密集領域36に再度反応液29を通過させる。このとき、制御部19は、磁場発生装置37によって磁気微粒子38に作用する磁場を0.5Hz(更に言えば0.02Hz以上)で変動させる。   In the reaction process, the control unit 19 causes the magnetic field generator 37 to form a dense region 36 a of the magnetic fine particles 38 in the reaction region 36, and causes the reaction solution 39 to pass through the dense region 36 a of the magnetic fine particles 38 using the liquid feeding device 33. When the reaction solution 29 passes through the reaction region 36, the liquid feeding direction is reversed and the reaction solution 29 is passed again through the dense region 36. At this time, the control unit 19 causes the magnetic field generator 37 to vary the magnetic field acting on the magnetic fine particles 38 at 0.5 Hz (more specifically, 0.02 Hz or more).

このように、反応支持体として用いた磁気微粒子38を磁場発生措置37で捕獲することによって反応流路35の断面全体に亘る密集領域36を形成し、その密集領域36に分析対象の生体分子を含む複合体として形成された被反応分子を含む反応液29を通すことによって、磁気微粒子と被反応分子との反応を促進させることができる。   In this way, the magnetic fine particles 38 used as the reaction support are captured by the magnetic field generation unit 37 to form a dense region 36 over the entire cross section of the reaction channel 35, and the biomolecule to be analyzed is placed in the dense region 36. The reaction between the magnetic fine particles and the molecule to be reacted can be promoted by passing the reaction liquid 29 containing the molecule to be reacted formed as a complex containing.

図10及び図11は、本実施の形態における効果を説明する図であり、図10は反応液を静置した場合と、反応液に本実施の形態の反応処理を適用した場合の反応速度を比較する図、図11は本実施の形態によって反応領域に形成された密集領域における磁気微粒子の反応液に対する割合と反応効率との関係を示す図である。   FIG. 10 and FIG. 11 are diagrams for explaining the effects in the present embodiment. FIG. 10 shows the reaction rates when the reaction solution is left standing and when the reaction process of the present embodiment is applied to the reaction solution. FIG. 11 and FIG. 11 are diagrams showing the relationship between the reaction efficiency and the ratio of magnetic fine particles to the reaction solution in the dense region formed in the reaction region according to the present embodiment.

図10及び図11の結果を得るにあたり以下のような実験を行った。   In order to obtain the results of FIGS. 10 and 11, the following experiment was conducted.

まず、反応流路35として内径0.72mmのガラス製キャピラリー(Hilgenberg社製)、磁場発生装置37として幅10mm、高さ20mm、厚み5mmのネオジム磁石2枚を間隔5mmで対向させてX−Yステージ(シグマ光機製)上に配置したものを用い、磁気微粒子28として直径300nmの磁気微粒子(Ademtech社製)60M個を分散させた50ulの反応液29を流速200ul/分で送液し、反応液29が反応領域36を通過した時点で送液方向を反転させて反応領域36に再度反応液29を通過させ、磁気微粒子28が密集した密集領域36aを通過させ、磁場発生装置37による磁場変動の周波数を0.5Hz、ネオジム磁石の移動距離5mmで動作させた。   First, a glass capillary (made by Hilgenberg) having an inner diameter of 0.72 mm as the reaction channel 35 and two neodymium magnets having a width of 10 mm, a height of 20 mm, and a thickness of 5 mm as the magnetic field generator 37 are opposed to each other at an interval of 5 mm. Using the one placed on the stage (manufactured by Sigma Kogyo), 50 ul of the reaction liquid 29 in which 60 M of magnetic fine particles (manufactured by Ademtech) having a diameter of 300 nm were dispersed as the magnetic fine particles 28 was fed at a flow rate of 200 ul / minute to react. When the liquid 29 passes through the reaction region 36, the liquid feeding direction is reversed, and the reaction solution 29 is passed again through the reaction region 36, passing through the dense region 36 a where the magnetic fine particles 28 are densely packed, and the magnetic field variation by the magnetic field generator 37. Were operated at a frequency of 0.5 Hz and a moving distance of the neodymium magnet of 5 mm.

磁気微粒子には、マウス二次抗体付磁気微粒子(Ademtech社製G0503、anti-mouse IgG coated)を用い、これにマウスビオチン化抗体(R&D社製mAb ER-PR8 biotin)を、磁気微粒子の個数とマウスビオチン化抗体の濃度比が10:1になるように濃度を調整後、両者を混合し、1時間静置することで、磁気微粒子1個にビオチン付抗体を一分子固定した。蛍光ラベル材には、ストレプトアビジン付R−フィコエリスリン(Roche社製LumiGrade Ultrasensitive)を用い、ビオチンを導入した磁気微粒子2pM・50ulを反応チューブに入れ、磁石で集磁後、液をピペットで吸引・除去後、蛍光ラベル材溶液30pM・50ulを入れ、反応液とした。反応液50ulを2本作成した。1本の反応液をシリンジ(テルモ社製)に入れ、シリンジポンプ(アイシス社製ヒュージョンタッチ200)に取り付け、シリンジ出口とキャピラリーの間をシリコンゴムチューブでつなぎ、流速200ul/分でシリンジからキャピラリーへ反応液50ulを送液した。キャピラリーの他方にもシリコンゴムチューブを20cmほどつなぎ、チューブの端は開放の状態とした。   For the magnetic fine particles, magnetic fine particles with mouse secondary antibody (Ademtech G0503, anti-mouse IgG coated) were used, and mouse biotinylated antibody (R & D mAb ER-PR8 biotin) was added to the number of magnetic fine particles. After adjusting the concentration so that the concentration ratio of the mouse biotinylated antibody was 10: 1, both were mixed and allowed to stand for 1 hour to immobilize one molecule of the antibody with biotin on one magnetic fine particle. R-phycoerythrin with streptavidin (Roche LumiGrade Ultrasensitive) is used as the fluorescent label material, and 2 pM / 50 ul of biotin-introduced magnetic particles are placed in a reaction tube. After removal, a fluorescent label material solution 30 pM · 50 ul was added to prepare a reaction solution. Two reaction liquids (50 ul) were prepared. Put one reaction solution in a syringe (manufactured by Terumo), attach it to a syringe pump (Fusion Touch 200 manufactured by Isis), connect the syringe outlet and the capillary with a silicone rubber tube, and flow from the syringe to the capillary at a flow rate of 200 ul / min. 50 ul of the reaction solution was fed. A silicon rubber tube was connected to the other end of the capillary about 20 cm, and the end of the tube was opened.

反応液がネオジム磁石に差し掛かると、反応液中の磁気微粒子がトラップされ、かつ、ネオジム磁石の動きに合わせてキャピラリー管内を動いていることが観察された。反応液が磁石を通り過ぎた時に、シリンジポンプを吸引モードに切り替え、反応液を反対方向に移動させることで、再度、磁石近傍を通過させ、これを繰り返すことで、反応液を磁石近傍を往復で複数回通過させた。合計の反応時間は10分とした。送液開始から10分後、反応液をチューブの開放端から反応容器に回収した。一方、もう1本の反応液は、10分間、静置することで反応させた。反応後、反応液中の磁気微粒子を集磁後、反応バッファーを5ul入れて分散させ、この5ulの液を厚み50umで8mm×8mmの中抜き部を作ったPDMS(Polydimethylpolysiloxane)シートをスライドガラスと18mm×18mmのカバーガラスではさんで作成した観察用セルに封入し、直径50mmの円柱状ネオジム磁石の上に置き、蛍光顕微鏡に設置し、蛍光輝点数を計測した。対物レンズは20倍とし、一視野のサイズは0.667×0.667mmとした。視野観察した後、一視野あたりの輝点数を平均化して算出した。   When the reaction solution approached the neodymium magnet, it was observed that the magnetic fine particles in the reaction solution were trapped and moved in the capillary tube in accordance with the movement of the neodymium magnet. When the reaction solution passes through the magnet, the syringe pump is switched to the suction mode, and the reaction solution is moved in the opposite direction, so that it passes again through the vicinity of the magnet. Passed multiple times. The total reaction time was 10 minutes. Ten minutes after the start of liquid feeding, the reaction liquid was collected in the reaction container from the open end of the tube. On the other hand, another reaction solution was allowed to react by allowing to stand for 10 minutes. After the reaction, after collecting the magnetic fine particles in the reaction solution, 5 ul of reaction buffer is added and dispersed, and a PDMS (Polydimethylpolysiloxane) sheet with a 5 um thickness of 8 um x 8 mm with a 50 um thickness is made into a slide glass. The sample was sealed in an observation cell formed with an 18 mm × 18 mm cover glass, placed on a columnar neodymium magnet having a diameter of 50 mm, placed on a fluorescence microscope, and the number of fluorescent bright spots was measured. The objective lens was 20 times, and the size of one field of view was 0.667 × 0.667 mm. After observing the visual field, the number of bright spots per visual field was averaged and calculated.

図10に示すように、反応液を静置で反応させた場合に比べて、本実施の形態のように反応支持体である磁気微粒子の密集領域を形成させ、その密集領域に反応液を通過させて反応させた場合の方が蛍光輝点数が約10倍多く、したがって、反応速度が10倍ほどに速くなっていることがわかる。以上のように、本発明の生体分子分析方法を用いることで、反応速度を著しく速くすることが出来ることが明らかとなった。   As shown in FIG. 10, compared to the case where the reaction solution is allowed to react by standing, a dense region of magnetic fine particles as a reaction support is formed as in this embodiment, and the reaction solution passes through the dense region. When the reaction is carried out, the number of fluorescent bright spots is about 10 times larger, and therefore the reaction rate is about 10 times faster. As described above, it has been clarified that the reaction rate can be remarkably increased by using the biomolecule analysis method of the present invention.

また、本願発明者は、反応液中の被反応分子と磁気微粒子の表面(捕獲プローブ分子等)との反応効率は、密集領域36aに占める磁気微粒子38の体積割合が大きな影響を与えることを見出しており、密集領域36aに占める磁気微粒子の体積割合(%)と反応効率との関係を調査した。その結果、図11に示すように、密集領域36aに占める磁気微粒子の体積割合が50%を超えると反応効率が急激に大きくなることが分かった。これは、密集領域36aにおける磁気微粒子38の間の距離が短くなることにより、密集領域36aを通過する時間内に被反応分子が磁気微粒子38と衝突する確率が増加したためと考えられる。したがって、本実施の形態においては、磁気微粒子38の密集領域36aに占める体積割合を50%以上とする。   Further, the inventor of the present application has found that the reaction efficiency between the molecule to be reacted in the reaction solution and the surface of the magnetic fine particle (such as the capture probe molecule) is greatly influenced by the volume ratio of the magnetic fine particle 38 in the dense region 36a. The relationship between the volume fraction (%) of magnetic fine particles in the dense region 36a and the reaction efficiency was investigated. As a result, as shown in FIG. 11, it was found that the reaction efficiency rapidly increases when the volume ratio of the magnetic fine particles in the dense region 36a exceeds 50%. This is presumably because the probability that the reacted molecules collide with the magnetic fine particles 38 within the time of passing through the dense region 36a is increased due to the short distance between the magnetic fine particles 38 in the dense region 36a. Therefore, in the present embodiment, the volume ratio of the magnetic fine particles 38 in the dense region 36a is set to 50% or more.

また、測定処理において、制御部19は、磁場発生装置57によって測定領域52内に磁気微粒子群52aを形成させ、計測機構101によって蛍光輝点数(或いは、蛍光光量)を計測し、計測結果を記憶領域に記憶する。   In the measurement process, the control unit 19 causes the magnetic field generator 57 to form the magnetic fine particle group 52a in the measurement region 52, measures the number of fluorescent bright spots (or the amount of fluorescent light) with the measurement mechanism 101, and stores the measurement result. Store in the area.

以上のように構成した本実施の形態における作用効果を説明する。   The effect in this Embodiment comprised as mentioned above is demonstrated.

従来技術のように、試料と試薬とを混合した反応液を攪拌することによって反応速度の向上を図る場合、反応する分子同士、すなわち、プローブ分子を結合した微粒子と解析対象の生体分子は溶液の流れに沿って概ね同一方向に移動するため、反応速度に大きく貢献する分子同士の衝突頻度に係る相対移動速度を大きくすることが難しく、反応速度の向上は限定的であり改善の余地があった。   When the reaction rate is improved by agitating the reaction mixture in which the sample and the reagent are mixed as in the prior art, the reacting molecules, that is, the fine particles combined with the probe molecules and the biomolecule to be analyzed are in the solution. Since it moves in the same direction along the flow, it is difficult to increase the relative movement speed related to the collision frequency of molecules that greatly contribute to the reaction speed, and the improvement of the reaction speed is limited and there is room for improvement. .

これに対して本実施の形態においては、試料と試薬とが混合された反応液が送液される反応流路の予め定めた反応領域に磁気微粒子に作用する磁場を発生させる磁場発生装置を配置し、磁場発生装置によって反応領域内に磁気微粒子の密集領域を形成させ、その密集領域に反応液を通過させる反応処理を行うように構成したので、試料溶液中のプローブ分子を結合した微粒子と分析対象の生体分子との反応速度を飛躍的に向上することができ、分析のスループットを大幅に向上することができる。   In contrast, in the present embodiment, a magnetic field generator that generates a magnetic field that acts on magnetic fine particles is arranged in a predetermined reaction region of a reaction channel through which a reaction liquid in which a sample and a reagent are mixed is sent. In addition, a magnetic particle generator forms a dense region of magnetic fine particles in the reaction region, and a reaction process is performed in which the reaction solution is passed through the dense region. Therefore, analysis is performed with fine particles bound to probe molecules in the sample solution. The reaction rate with the target biomolecule can be dramatically improved, and the analysis throughput can be greatly improved.

なお、本実施の形態においては、標識として蛍光色素や蛍光タンパク質を用い、分析対象の生体分子と複合体を形成した標識の蛍光を測定することによって分析対象の生体分子の定量を行う場合について説明したが、これに限られず標識として標識として特定の電荷を有する微粒子を用いることも考えられる。すなわち、標識分子として特定の電荷を有する微粒子を含む分子を用い、電極上に磁気微粒子を固定した後、電極上における特定の電荷を有する微粒子の量を電極が検知する電荷量から定量することで、分析対象の生体分子の濃度情報を得ることができる。例えば、分析対象の生体分子を認識する抗体をポリスチレンビーズ表面に固定したものを標識分子として用いることができる。測定は、表面に磁気微粒子を固定した電極と対向電極とをリン酸緩衝生理食塩水(PBS:Phosphate buffered saline)などのバッファー中に挿入し、両電極間にマイナス5ボルトからプラス5V程度のバイアスを掃引・印加して、両電極間に流れる電流をピコアンメーターなどの電流計で測定することにより、電極上の標識分子の量(すなわち、分析対象の生体分子の量)を求めることができる。   In this embodiment, a case is described in which a fluorescent dye or a fluorescent protein is used as a label, and the fluorescence of the label formed in a complex with the target biomolecule is measured to quantify the target biomolecule. However, the present invention is not limited to this, and it is conceivable to use fine particles having a specific charge as a label. That is, by using a molecule containing fine particles having a specific charge as a labeling molecule, fixing the magnetic fine particles on the electrode, and then quantifying the amount of fine particles having a specific charge on the electrode from the amount of charge detected by the electrode The concentration information of the biomolecule to be analyzed can be obtained. For example, an antibody that recognizes a biomolecule to be analyzed immobilized on a polystyrene bead surface can be used as a labeled molecule. The measurement is performed by inserting an electrode having magnetic fine particles fixed on the surface and a counter electrode into a buffer such as phosphate buffered saline (PBS), and a bias of about minus 5 volts to plus 5 V between both electrodes. The amount of the labeled molecule on the electrode (that is, the amount of the biomolecule to be analyzed) can be determined by measuring the current flowing between both electrodes with an ammeter such as a picoammeter. .

<第2の実施の形態>
本発明の第2の実施の形態を図12及び図13を参照しつつ詳細に説明する。
<Second Embodiment>
A second embodiment of the present invention will be described in detail with reference to FIGS.

第1の実施の形態においては、1つの反応流路を用いたのに対し、本実施の形態では、複数の反応流路を並列に用いるものである。   In the first embodiment, one reaction channel is used. In the present embodiment, a plurality of reaction channels are used in parallel.

図12は反応流路の分解斜視図であり、図13は反応流路の縦断面図である。図中、第1の実施の形態と同様の部材には同じ符号を付し、説明を省略する。   12 is an exploded perspective view of the reaction channel, and FIG. 13 is a longitudinal sectional view of the reaction channel. In the figure, the same members as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図12及び図13に示すように、本実施の形態の複数の反応流路235は、上板ガラス235aと、下板ガラスと235bと、上板ガラス235aと下板ガラス235bに挟み込まれて接合されたPDMSシート235cとから構成されている。   As shown in FIGS. 12 and 13, the plurality of reaction flow paths 235 of the present embodiment are composed of an upper plate glass 235 a, a lower plate glass 235 b, and a PDMS sheet sandwiched and joined between the upper plate glass 235 a and the lower plate glass 235 b. 235c.

上板ガラスと235a、下板ガラスと235b、及び、PDMSシート235cは、長さ方向の寸法が約128mm、幅方向の寸法が約60mmとなるよう構成されており、それぞれに複数設けられたアライメント用キリ穴238を合わせることによって正確に位置合わせができるように形成されている。また、上板ガラスと235aは厚みt≒0.175mm、下板ガラス235bは厚みt≒1.0mm、PDMSシート235cは厚みt≒0.05mmで形成されている。   The upper plate glass 235a, the lower plate glass 235b, and the PDMS sheet 235c are configured to have a length direction dimension of about 128 mm and a width direction dimension of about 60 mm. The holes 238 are formed so as to be accurately aligned by matching. The upper glass plate 235a is formed with a thickness t≈0.175 mm, the lower glass plate 235b is formed with a thickness t≈1.0 mm, and the PDMS sheet 235c is formed with a thickness t≈0.05 mm.

PDMSシート235cには、長さ方向に延在するような中抜き部239が複数(本実施の形態では6つ)並行に並べて配置されておりPDMSシート235cが上板ガラス235aと下板ガラスと235bとに挟み込まれて接合されることにより、各中抜き部239が反応液が送液される複数の反応流路235となる。   In the PDMS sheet 235c, a plurality (six in this embodiment) of hollow portions 239 extending in the length direction are arranged in parallel, and the PDMS sheet 235c includes the upper plate glass 235a, the lower plate glass, 235b, As a result, the hollow portions 239 become a plurality of reaction channels 235 through which the reaction solution is fed.

上板ガラス235aにおいて、各反応流路235の一方の端部に対応する位置には、反応液を注入するための注入口236がそれぞれ設けられており、各反応流路235の他方の端部に対応する位置には、反応液を排出するための排出口237がそれぞれ設けられている。   In the upper glass plate 235a, an inlet 236 for injecting a reaction solution is provided at a position corresponding to one end of each reaction channel 235, and the other end of each reaction channel 235 is provided at the other end. At the corresponding position, a discharge port 237 for discharging the reaction liquid is provided.

図13に示すように、上板ガラスの上側面及び下板ガラスの下側面に沿って磁場発生装置を構成する板状の永久磁石337a,337bが配置されており、第1の実施の形態と同様に各反応流路235に対して永久磁石337a,337bを近接させる、或いは離間させる方向に駆動する駆動機構(図示せず)を備えている。   As shown in FIG. 13, plate-like permanent magnets 337a and 337b constituting a magnetic field generating device are arranged along the upper side surface of the upper plate glass and the lower side surface of the lower plate glass, and the same as in the first embodiment. A drive mechanism (not shown) that drives the permanent magnets 337a and 337b to approach or separate from each reaction channel 235 is provided.

PDMSシート235cは、ポリジメチルシロキサン(PDMS)のシートに複数の中抜き部239を作成するには、レーザーで中抜き部239に沿って描画することで容易に作成できる。また、金属などで鋳型を作成しておき、そこに、ポリマー液を流し込むことで複数の中抜き部239をもつポリマーシートを簡便に作成することができる。   The PDMS sheet 235c can be easily created by drawing a plurality of hollow portions 239 on a polydimethylsiloxane (PDMS) sheet along the hollow portions 239 with a laser. In addition, a polymer sheet having a plurality of hollow portions 239 can be easily prepared by preparing a mold with metal or the like and pouring a polymer solution into the mold.

その他の構成は第1の実施の形態と同様である。   Other configurations are the same as those of the first embodiment.

以上のように構成した本実施の形態においても第1の実施形態と同様の効果を得ることができる。   In the present embodiment configured as described above, the same effects as those of the first embodiment can be obtained.

また、本実施の形態においては、反応流路をマルチ化することにより、複数の試料の反応を同時に行うことができる。   Moreover, in this Embodiment, reaction of a some sample can be performed simultaneously by multi-izing a reaction flow path.

また、複数の反応流路に対して、一つの磁場発生装置で磁気微粒子の分散・位置制御を同時に行うことが容易に出来る。   In addition, it is easy to simultaneously perform dispersion and position control of magnetic fine particles with a single magnetic field generator for a plurality of reaction channels.

なお、本発明は上記した各実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本願発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。   In addition, this invention is not limited to each above-mentioned embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.

1・・・サンプル容器、2・・・サンプル容器ラック、3・・・ラック搬送ライン、4・・・試薬容器、5・・・試薬容器ディスク、8・・・反応容器、9・・・インキュベータディスク、10・・・試料分注機構、11・・・試薬分注機構、14・・・反応容器攪拌機構、17・・・吸引機構、18・・・分析ユニット、19・・・制御部、30・・・反応部、30a,31a・・・基板、31・・・測定部、32・・・移送機構、32a・・・吸引部、32b・・・吐出部、33・・・反応液送液ユニット、33a・・・ポンプ、33b・・・反応液保管部、33c・・・反応液保管部、34・・・切換バルブ、35・・・反応流路、36・・・反応領域、36a・・・密集領域、37・・・磁場発生装置、38・・・磁気微粒子、39・・・反応液、100・・・自動分析装置、101・・・計測機構 DESCRIPTION OF SYMBOLS 1 ... Sample container, 2 ... Sample container rack, 3 ... Rack conveyance line, 4 ... Reagent container, 5 ... Reagent container disk, 8 ... Reaction container, 9 ... Incubator Disc 10: Sample dispensing mechanism 11 ... Reagent dispensing mechanism 14 ... Reaction vessel stirring mechanism 17 ... Suction mechanism 18 ... Analysis unit 19 ... Control unit 30 ... Reaction unit, 30a, 31a ... Substrate, 31 ... Measurement unit, 32 ... Transfer mechanism, 32a ... Suction unit, 32b ... Discharge unit, 33 ... Reaction liquid feed Liquid unit, 33a ... pump, 33b ... reaction liquid storage unit, 33c ... reaction liquid storage unit, 34 ... switching valve, 35 ... reaction flow path, 36 ... reaction region, 36a ... Dense area, 37 ... Magnetic field generator, 38 ... Magnetic particles, 39 · Reaction, 100 ... automatic analyzer, 101 ... measuring mechanism

Claims (7)

分析対象の試料と、前記試料の分析に用いる磁気微粒子を含む試薬が混合された反応液を反応流路に送る送液装置と、
前記反応流路の予め定めた反応領域に前記磁気微粒子に作用する磁場を発生させる磁場発生装置と、
前記磁場発生装置によって前記反応領域内に形成された前記磁気微粒子の密集領域に、前記反応液を通過させるように前記送液装置を制御する制御装置と
を備えたことを特徴とする自動分析装置。
A liquid feeding device for sending a reaction liquid mixed with a sample to be analyzed and a reagent containing magnetic fine particles used for analysis of the sample to the reaction flow path;
A magnetic field generator for generating a magnetic field acting on the magnetic fine particles in a predetermined reaction region of the reaction channel;
An automatic analyzer comprising: a control device that controls the liquid feeding device so that the reaction liquid passes through a dense region of the magnetic fine particles formed in the reaction region by the magnetic field generator. .
請求項1記載の自動分析装置において、
前記制御装置は、前記反応液を前記磁気微粒子の密集領域に複数回通過させるように前記送液装置を制御することを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
The said control apparatus controls the said liquid feeding apparatus so that the said reaction liquid may be passed through the dense area | region of the said magnetic microparticles in multiple times, The automatic analyzer characterized by the above-mentioned.
請求項1記載の自動分析装置において、
前記反応領域における前記磁気微粒子の占める体積は、前記反応液の占める体積よりも大きいことを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
The automatic analyzer according to claim 1, wherein a volume occupied by the magnetic fine particles in the reaction region is larger than a volume occupied by the reaction solution.
請求項1記載の自動分析装置において、
前記反応液は、
前記試料中に含まれる分析対象の生体分子を捕獲するための捕獲プローブ分子が結合された前記磁気微粒子と、
標識と捕獲プローブ分子とで形成された標識分子と前記生体分子とからなる複合体として形成された被反応分子と
を含むことを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
The reaction solution is
The magnetic microparticles to which capture probe molecules for capturing biomolecules to be analyzed contained in the sample are bound;
An automatic analyzer comprising: a labeled molecule formed of a label and a capture probe molecule; and a reacted molecule formed as a complex composed of the biomolecule.
請求項1記載の自動分析装置において、
前記反応液は、
前記磁気微粒子と、
前記試料中に含まれる分析対象の生体分子を捕獲するための捕獲プローブ分子と、前記生体分子と、捕獲プローブ分子とで形成された標識分子と、からなる複合体として形成された被反応分子と
を含むことを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
The reaction solution is
The magnetic fine particles;
A target molecule formed as a complex comprising a capture probe molecule for capturing a biomolecule to be analyzed contained in the sample, a label molecule formed by the biomolecule and the capture probe molecule, and The automatic analyzer characterized by including.
分析対象の試料と、前記試料の分析に用いる磁気微粒子を含む試薬と、が混合された反応液を反応流路に送る手順と、
前記反応流路の予め定めた反応領域に前記磁気微粒子に作用する磁場を発生させ、前記反応領域内に前記磁気微粒子の密集領域を形成する手順と、
前記反応液を前記反応領域に通過させる手順と
を有することを特徴とする分析方法。
A procedure for sending a reaction solution in which a sample to be analyzed and a reagent containing magnetic fine particles used for analysis of the sample are mixed to the reaction channel;
Generating a magnetic field acting on the magnetic fine particles in a predetermined reaction region of the reaction flow path, and forming a dense region of the magnetic fine particles in the reaction region;
And a procedure for passing the reaction solution through the reaction region.
請求項6記載の分析方法において、
前記反応液は前記反応領域を複数回通過することを特徴とする分析方法。
The analysis method according to claim 6,
The analysis method, wherein the reaction solution passes through the reaction region a plurality of times.
JP2015033831A 2015-02-24 2015-02-24 Automatic analyzer and analytical method Pending JP2016156673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033831A JP2016156673A (en) 2015-02-24 2015-02-24 Automatic analyzer and analytical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033831A JP2016156673A (en) 2015-02-24 2015-02-24 Automatic analyzer and analytical method

Publications (1)

Publication Number Publication Date
JP2016156673A true JP2016156673A (en) 2016-09-01

Family

ID=56825710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033831A Pending JP2016156673A (en) 2015-02-24 2015-02-24 Automatic analyzer and analytical method

Country Status (1)

Country Link
JP (1) JP2016156673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060440A (en) * 2018-10-10 2020-04-16 凸版印刷株式会社 Objective substance detection device and objective substance detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043507A1 (en) * 2002-08-27 2004-03-04 Kimberly-Clark Worldwide, Inc. Fluidics-based assay devices
JP2006010535A (en) * 2004-06-25 2006-01-12 Canon Inc Target substance capturing method and apparatus
WO2009084369A1 (en) * 2007-12-28 2009-07-09 Sysmex Corporation Reagent for detecting hiv-1 antigen and detection method
JP2012172981A (en) * 2011-02-17 2012-09-10 Jikei Univ Kit for detection of specific reaction, device for detection of specific reaction, and method for detection of specific reaction
WO2013051651A1 (en) * 2011-10-05 2013-04-11 株式会社日立ハイテクノロジーズ Method for analyzing biomolecules and biomolecule analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043507A1 (en) * 2002-08-27 2004-03-04 Kimberly-Clark Worldwide, Inc. Fluidics-based assay devices
JP2006010535A (en) * 2004-06-25 2006-01-12 Canon Inc Target substance capturing method and apparatus
WO2009084369A1 (en) * 2007-12-28 2009-07-09 Sysmex Corporation Reagent for detecting hiv-1 antigen and detection method
JP2012172981A (en) * 2011-02-17 2012-09-10 Jikei Univ Kit for detection of specific reaction, device for detection of specific reaction, and method for detection of specific reaction
WO2013051651A1 (en) * 2011-10-05 2013-04-11 株式会社日立ハイテクノロジーズ Method for analyzing biomolecules and biomolecule analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060440A (en) * 2018-10-10 2020-04-16 凸版印刷株式会社 Objective substance detection device and objective substance detection method
JP7225656B2 (en) 2018-10-10 2023-02-21 凸版印刷株式会社 Target substance detection device and target substance detection method

Similar Documents

Publication Publication Date Title
CN109716102B (en) Microparticle dispensing device, microparticle analysis device, reaction detection device, and method for using same
JP5640980B2 (en) Microchip liquid feeding system, specimen detection apparatus, and liquid feeding method of microchip liquid feeding system
WO2005103642A1 (en) Methods of separating, identifying and dispensing specimen and device therefor, and analyzing device method
JP5998217B2 (en) Analysis apparatus and analysis method
EP3276357B1 (en) Fluid device, system and method
JP2019522176A (en) High-throughput particle capture and analysis
JP6714603B2 (en) Sample processing chip, sample processing apparatus, and sample processing method
EP2960651B1 (en) Bioanalysis device and biomolecule analyser
JP2011013043A (en) Magnetic particle transfer device and magnetic particle transfer method
JP5463840B2 (en) Measuring method and surface plasmon enhanced fluorescence measuring apparatus
JP6313977B2 (en) Sample analyzer and sample analysis method
JP2016211886A (en) Inspected substance detection method, sample analysis cartridge and sample analysis device
US20220168735A1 (en) Point of Care Concentration Analyzer
JP2013238420A (en) Sample analysis apparatus and sample analysis method
JP2016156673A (en) Automatic analyzer and analytical method
JP2020014461A (en) Device and method for separating single-particle from particle suspension
WO2021211754A2 (en) Methods and systems related to highly sensitive assays and delivering capture objects
JPH0829424A (en) Immunological analyzing method and its device
JP6482774B2 (en) Biological analysis device, analysis apparatus, and analysis method
US20190201904A1 (en) Sample measuring apparatus and sample measuring method
WO2022054751A1 (en) Specimen processing device and method
WO2017073601A1 (en) Liquid feeding method, liquid feeding device, and analysis device
CN105874320A (en) Gas evacuation system for nanofluidic biosensor
JP2014025951A (en) Measurement method and surface plasmon enhanced fluorescence measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190604