JP2016155912A - Carbon fiber-reinforced resin molding material - Google Patents

Carbon fiber-reinforced resin molding material Download PDF

Info

Publication number
JP2016155912A
JP2016155912A JP2015033796A JP2015033796A JP2016155912A JP 2016155912 A JP2016155912 A JP 2016155912A JP 2015033796 A JP2015033796 A JP 2015033796A JP 2015033796 A JP2015033796 A JP 2015033796A JP 2016155912 A JP2016155912 A JP 2016155912A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
carbon
fiber bundle
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015033796A
Other languages
Japanese (ja)
Inventor
哲也 本橋
Tetsuya Motohashi
哲也 本橋
橋本 貴史
Takashi Hashimoto
貴史 橋本
且洋 三好
Katsuhiro Miyoshi
且洋 三好
健太 馬場
Kenta Baba
健太 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015033796A priority Critical patent/JP2016155912A/en
Publication of JP2016155912A publication Critical patent/JP2016155912A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber-reinforced resin molding material capable of achieving desired mechanical characteristics of a molded product and desired flowability at the time of molding in a well-balanced manner.SOLUTION: A carbon fiber-reinforced resin molding material contains at least a carbon fiber base material and a matrix resin. The carbon fiber base material is formed of a chipped fiber bundle obtained by cutting a fiber bundle of continuous carbon fibers, and is opened so that the number of single fibers becomes 100 or less, in 50-85% of the chopped fiber bundle at a weight ratio of the carbon fiber base material to the total carbon fiber amount.SELECTED DRAWING: Figure 1

Description

本発明は、炭素繊維強化樹脂成形材料に関し、とくに、成形品の望ましい機械特性と成形の際の望ましい流動性とをバランス良く両立させるようにした炭素繊維強化樹脂成形材料に関する。   The present invention relates to a carbon fiber reinforced resin molding material, and more particularly to a carbon fiber reinforced resin molding material in which desirable mechanical properties of a molded product and desirable fluidity during molding are balanced.

強化繊維としての炭素繊維を用いて樹脂を強化した炭素繊維強化樹脂には、連続繊維からなる織物や一方向シートを強化繊維基材とするものと、短繊維の炭素繊維を用いたものがある。連続繊維の強化繊維基材を用いた炭素繊維強化樹脂は、強度特性等の異方性が極めて高く、主としてその異方性を前提とした、あるいはその異方性を利用した用途に適用されている。一方、短繊維の炭素繊維からなる強化繊維基材を用いた炭素繊維強化樹脂では、この異方性を軽減可能ではあるものの、その製法によっては、相当程度の異方性が残り、かつ、発現可能な強度等の機械特性にも限界がある。   Carbon fiber reinforced resins reinforced with carbon fibers as reinforcing fibers include those using continuous fiber woven fabrics and unidirectional sheets as reinforcing fiber base materials, and those using short-fiber carbon fibers. . Carbon fiber reinforced resin using continuous fiber reinforced fiber base material has extremely high anisotropy such as strength characteristics, and is mainly applied to applications based on or using the anisotropy. Yes. On the other hand, in the carbon fiber reinforced resin using the reinforced fiber base material composed of short carbon fibers, this anisotropy can be reduced, but depending on the production method, a considerable degree of anisotropy remains and is expressed. There are limits to the mechanical properties such as possible strength.

短繊維の炭素繊維を用いた炭素繊維強化樹脂の代表的なものとして、SMC(Sheet Molding Compound)により成形された炭素繊維強化樹脂が知られている。炭素繊維は、工業的には通常、炭素繊維の繊維束(ストランド)として製造され、生産性や製造コスト等を考慮して、通常、単糸数が1,000本(1K)から48,000本(48K)程度までの繊維束として製造されている。上記SMCでは、このような炭素繊維の繊維束が用いられている。   A carbon fiber reinforced resin molded by SMC (Sheet Molding Compound) is known as a typical carbon fiber reinforced resin using short carbon fibers. Carbon fibers are industrially usually produced as carbon fiber fiber bundles (strands), and the number of single yarns is usually 1,000 (1K) to 48,000 in consideration of productivity and production cost. It is manufactured as a fiber bundle up to (48K). In the SMC, such a fiber bundle of carbon fibers is used.

図3に、SMCにおける炭素繊維基材の概念を示す。すなわち、SMCでは、半硬化状態の熱硬化性樹脂フィルム(シート)上に、連続繊維の炭素繊維からなる繊維束を所定の長さにカット(チョップド化)しながら、カットされた短繊維の炭素繊維からなる炭素繊維束101をランダムな方向に散布し、樹脂をホットプレス含浸してシート化することにより、樹脂含浸した炭素繊維基材100が得られる(通常、半硬化樹脂と炭素繊維基材100とのプリプレグの形態)。この炭素繊維基材100は、一般的には連続して製造される。このようなSMCのシート化工程には、炭素繊維束を開繊し、分繊する工程がないので、図中円内の炭素繊維束101のように、炭素繊維束が、その単糸が実質的に分繊されることなく前記所定量(1K〜48K本)に収束されたままの状態(つまり、ストランド形態のままの状態)にあり、その分、炭素繊維の配向状態としての等方性は低い。しかし、ストランド状態であるので、繊維束としての剛性が高いため、真直状態の繊維長(上記カット長)は長くすることが可能である。その半面、SMCの特徴である加圧成形時に樹脂含浸された繊維束が、低粘度の樹脂とともにプレス圧で流され、成形体の曲面部や角部、コーナー部などで炭素繊維が曲がったり折れたりする箇所が多くなる。また、成形体の強度等の機械特性を向上するために炭素繊維の体積含有率を増大させようとしてプレス圧を強引に上げると、繊維束同士の重なりによる屈曲によって、平坦部でも繊維束の曲がりや繊維折れが発生しやすくなる。これら繊維束の曲がりや繊維折れが発生していると、その部位から破壊に繋がる亀裂が進展しやすくなり、炭素繊維強化樹脂の機械特性の向上が望めないことになる。つまり、従来一般のSMCによって成形された炭素繊維強化樹脂では、強度等の機械特性の向上に限界がある。   In FIG. 3, the concept of the carbon fiber base material in SMC is shown. That is, in SMC, cut short fiber carbon while cutting (chopping) a fiber bundle made of continuous carbon fiber into a predetermined length on a semi-cured thermosetting resin film (sheet). By dispersing carbon fiber bundles 101 made of fibers in random directions and impregnating the resin with a hot press to form a sheet, a resin-impregnated carbon fiber substrate 100 is obtained (usually a semi-cured resin and a carbon fiber substrate). 100 prepreg form). This carbon fiber substrate 100 is generally manufactured continuously. In the SMC sheeting process, there is no process for opening and splitting the carbon fiber bundle, so that the carbon fiber bundle is substantially the same as the carbon fiber bundle 101 in the circle in the figure. In the state of being converged to the predetermined amount (1K to 48K pieces) without being separated in a regular manner (that is, in a state of strand form), and is isotropic as the orientation state of the carbon fiber. Is low. However, since it is in a strand state and has high rigidity as a fiber bundle, the straight fiber length (the cut length) can be increased. On the other hand, a fiber bundle impregnated with resin during pressure molding, which is a feature of SMC, is flowed together with low-viscosity resin by pressing pressure, and the carbon fiber is bent or bent at the curved surface, corner, corner, etc. of the molded body. The number of places to go increases. In addition, if the press pressure is forcibly increased in order to increase the volume content of the carbon fiber in order to improve the mechanical properties such as strength of the molded body, the bending of the fiber bundle may bend even in the flat part due to the bending due to the overlapping of the fiber bundles. And fiber breakage is likely to occur. When these fiber bundles are bent or broken, cracks that lead to breakage tend to progress from the site, and improvement in the mechanical properties of the carbon fiber reinforced resin cannot be expected. That is, the conventional carbon fiber reinforced resin molded by general SMC has a limit in improving mechanical properties such as strength.

また、SMCでは、多数の炭素繊維が集束された繊維束の状態のままの炭素繊維基材であるため、炭素繊維束をあるレベル以上に密集させることは困難である(プレス圧で強引に密集させようとすると、上述の問題が顕著になる)。そのため、通常繊維体積含有率増大による機械特性の向上には限界がある。また、各炭素繊維束が1K以上の単糸からなる比較的太い繊維束であるため、繊維束間の樹脂部分が比較的大きくなり、上述のような破壊の起点となる繊維束の曲がりや繊維折れが発生していると、樹脂部分で破壊に繋がる亀裂がより進展しやすくなる。この面からも、従来一般のSMCによって成形された炭素繊維強化樹脂では、強度等の機械特性の向上に限界が生じる。   In addition, since the SMC is a carbon fiber base material in a state of a bundle of fibers in which a large number of carbon fibers are bundled, it is difficult to concentrate the carbon fiber bundles to a certain level or higher (forcibly densely by pressing pressure). If you try to do so, the above-mentioned problem becomes remarkable). For this reason, there is a limit to the improvement of mechanical properties by increasing the fiber volume content. In addition, since each carbon fiber bundle is a relatively thick fiber bundle made of single yarn of 1K or more, the resin portion between the fiber bundles becomes relatively large, and the bending of the fiber bundle or the fiber that becomes the starting point of the break as described above When the crease has occurred, the crack that leads to the breakage in the resin portion is more likely to progress. Also from this aspect, the carbon fiber reinforced resin molded by conventional SMC has a limit in improving mechanical properties such as strength.

このような問題に対し、炭素繊維基材中の繊維束の90%以上が単糸数が100本以下となるように分繊された繊維束からなり、真直な繊維束数が全繊維束数の70%以上であり、繊維束の配向が二次元的に擬似等方性であり、かつ、基材中の繊維束の90%以上が単糸数が100本以下となるように分繊された繊維束からなり、真直な繊維束数が全繊維束数の70%以上であり、繊維束の配向が二次元的に擬似等方性であり、かつ、炭素繊維の体積含有率が35%以上である炭素繊維強化樹脂が知られている(特許文献1)。   For such a problem, 90% or more of the fiber bundles in the carbon fiber substrate are composed of fiber bundles that are split so that the number of single yarns is 100 or less, and the number of straight fiber bundles is the total number of fiber bundles. Fibers that are 70% or more, fiber bundle orientation is two-dimensionally quasi-isotropic, and 90% or more of the fiber bundles in the base material are split so that the number of single yarns is 100 or less. The number of straight fiber bundles is 70% or more of the total number of fiber bundles, the orientation of the fiber bundles is two-dimensionally quasi-isotropic, and the volume content of carbon fibers is 35% or more. A certain carbon fiber reinforced resin is known (Patent Document 1).

しかし、上記特許文献1に記載の炭素繊維強化樹脂では、炭素繊維束が極めて高度に分繊(開繊)されているので、強度等の機械特性は大幅に向上されるものの、繊維同士の交絡が増大するため、成形時の流動性が低下しすぎ、所望の形状に成形できない場合がある。   However, in the carbon fiber reinforced resin described in Patent Document 1, since the carbon fiber bundle is very highly separated (opened), mechanical properties such as strength are greatly improved. Therefore, the fluidity at the time of molding is too low, and it may not be possible to mold into a desired shape.

特開2008−174605号公報JP 2008-174605 A

そこで本発明の課題は、上記のような従来のSMCにおける問題点および特許文献1に記載の炭素繊維強化樹脂における問題点に着目し、成形品の望ましい機械特性と成形の際の望ましい流動性とをバランス良く両立させることが可能な炭素繊維強化樹脂成形材料を提供することにある。   Therefore, the object of the present invention is to focus on the problems in the conventional SMC as described above and the problems in the carbon fiber reinforced resin described in Patent Document 1, and the desirable mechanical properties of the molded product and the desirable fluidity during molding. An object of the present invention is to provide a carbon fiber reinforced resin molding material capable of achieving both of these in a balanced manner.

上記課題を解決するために、本発明に係る炭素繊維強化樹脂成形材料は、少なくとも、炭素繊維基材とマトリックス樹脂を含む炭素繊維強化樹脂成形材料であって、前記炭素繊維基材が、連続炭素繊維の繊維束を切断して得られたチョップド繊維束から形成され、前記炭素繊維基材における全炭素繊維量に対する重量割合にて前記チョップド繊維束の50〜85%が単糸数100本以下になるように開繊されていることを特徴とするものからなる。   In order to solve the above problems, a carbon fiber reinforced resin molding material according to the present invention is a carbon fiber reinforced resin molding material including at least a carbon fiber base material and a matrix resin, and the carbon fiber base material is continuous carbon. It is formed from a chopped fiber bundle obtained by cutting a fiber bundle of fibers, and 50 to 85% of the chopped fiber bundle is equal to or less than 100 single yarns in a weight ratio with respect to the total amount of carbon fibers in the carbon fiber substrate. Thus, it is characterized by being opened.

このような本発明に係る炭素繊維強化樹脂成形材料においては、炭素繊維基材におけるチョップド繊維束のうち、適度な割合の(つまり、重量割合にて50〜85%の)チョップド繊維束が、単糸数100本以下という高度に開繊されているので、炭素繊維基材全体として、チョップド繊維束の開繊度合が、適切な範囲とされる。すなわち、全く開繊されないか、開繊度合が低すぎる場合の強度等の機械特性の向上に限界が生じるという問題と、開繊度合が高すぎる場合の成形時の流動性が低下しすぎるという問題の両方が解消もしくは軽減され、成形品の望ましい機械特性と成形の際の望ましい流動性とをバランス良く両立させることが可能になる。   In such a carbon fiber reinforced resin molding material according to the present invention, of the chopped fiber bundles in the carbon fiber substrate, an appropriate proportion (that is, 50 to 85% by weight) of chopped fiber bundles is a single piece. Since the fiber is opened at a high level of 100 yarns or less, the degree of opening of the chopped fiber bundle is set to an appropriate range as the entire carbon fiber base material. That is, there is a problem that there is a limit in improving mechanical properties such as strength when the degree of opening is too low or the degree of opening is too low, and a problem that the fluidity at the time of molding is too low when the degree of opening is too high. Both of these are eliminated or reduced, and it is possible to balance the desired mechanical properties of the molded article with the desired fluidity during molding in a balanced manner.

上記本発明に係る炭素繊維強化樹脂成形材料においては、上記チョップド繊維束の端部が、繊維束の延在方向に対し直交方向に切断されている形態とすることもできるが、繊維束の延在方向に対し非直交方向に(斜めの方向に)切断されている形態とすることもできる。とくに後者の形態の場合には、成形の際の望ましい流動性を維持しつつ、成形品のより高い機械特性の実現が可能になる。   In the carbon fiber reinforced resin molding material according to the present invention, the end portion of the chopped fiber bundle may be cut in a direction orthogonal to the extending direction of the fiber bundle, It can also be configured to be cut in a non-orthogonal direction (in an oblique direction) with respect to the existing direction. In particular, in the case of the latter form, it is possible to achieve higher mechanical properties of the molded product while maintaining the desired fluidity during molding.

また、上記本発明に係る炭素繊維強化樹脂成形材料においては、上記炭素繊維基材における炭素繊維の重量平均繊維長としては、5mmを超え40mm以下の範囲にあることが好ましい。かかる範囲において、7mm以上、40mm以下にあることがより好ましく、12mm以上、40mm以下にあることがさらに好ましい。この範囲に対し、炭素繊維の重量平均繊維長が短くなると、成形の際の流動性は高くなるものの成形品の機械特性が低下する傾向にあり、炭素繊維の重量平均繊維長が長くなると、成形品の機械特性は比較的高く維持可能であるものの成形の際の流動性が低下する傾向にある。前述の如くチョップド繊維束の開繊度合が適切な範囲とされるとともに、炭素繊維の重量平均繊維長を好ましい範囲内に納めておくことにより、より確実に、成形品の望ましい機械特性と成形の際の望ましい流動性とをバランス良く両立させることが可能になる。   In the carbon fiber reinforced resin molding material according to the present invention, the weight average fiber length of the carbon fibers in the carbon fiber substrate is preferably in the range of more than 5 mm and 40 mm or less. In such a range, it is more preferably 7 mm or more and 40 mm or less, and further preferably 12 mm or more and 40 mm or less. In contrast to this range, if the weight average fiber length of the carbon fiber is shortened, the fluidity during molding tends to be high, but the mechanical properties of the molded product tend to be reduced.If the weight average fiber length of the carbon fiber is increased, molding is performed. Although the mechanical properties of the product can be maintained relatively high, the fluidity during molding tends to decrease. As described above, the degree of opening of the chopped fiber bundle is set to an appropriate range, and the weight average fiber length of the carbon fiber is kept within a preferable range, so that the desired mechanical properties of the molded product and the molding can be more reliably performed. It is possible to balance the desired fluidity in a balanced manner.

このように、本発明に係る炭素繊維強化樹脂成形材料によれば、炭素繊維基材中の適切な割合のチョップド繊維束が、適度な度合で開繊されていることにより、成形品の望ましい機械特性と成形の際の望ましい流動性とをバランス良く両立させることができ、それら機械特性と流動性とをともに目標とする範囲内の特性として実現できる。   As described above, according to the carbon fiber reinforced resin molding material according to the present invention, an appropriate proportion of the chopped fiber bundle in the carbon fiber base material is opened at an appropriate degree. It is possible to achieve a balance between the properties and the desired fluidity at the time of molding, and both the mechanical properties and the fluidity can be realized within the target range.

チョップド繊維束の開繊度合が異なる各炭素繊維基材((A)〜(D))の概略部分平面図である。It is a schematic partial top view of each carbon fiber base material ((A)-(D)) from which the opening degree of a chopped fiber bundle differs. チョップド繊維束の開繊度合が異なる各炭素繊維基材((A)〜(D))を用いた成形品の曲げ強度の概略比較図である。It is a schematic comparison figure of the bending strength of the molded article using each carbon fiber base material ((A)-(D)) from which the opening degree of a chopped fiber bundle differs. 従来のSMCにおける炭素繊維基材の一例を示す概略部分平面図である。It is a general | schematic fragmentary top view which shows an example of the carbon fiber base material in the conventional SMC.

以下に、本発明の実施の形態について、図面を参照しながら説明する。
本発明に係る炭素繊維強化樹脂成形材料では、少なくとも、炭素繊維基材とマトリックス樹脂が含まれ、炭素繊維基材が、連続炭素繊維の繊維束を切断して得られたチョップド繊維束から形成され、炭素繊維基材における全炭素繊維量に対する重量割合にてチョップド繊維束の50〜85%が単糸数100本以下になるように開繊されている。
Embodiments of the present invention will be described below with reference to the drawings.
The carbon fiber reinforced resin molding material according to the present invention includes at least a carbon fiber base material and a matrix resin, and the carbon fiber base material is formed from a chopped fiber bundle obtained by cutting a fiber bundle of continuous carbon fibers. The chopped fiber bundle is opened so that 50 to 85% of the chopped fiber bundle is 100 or less in number of single yarns by weight ratio with respect to the total amount of carbon fibers in the carbon fiber substrate.

ここで、単糸数100本以下になるように開繊されているチョップド繊維束の割合を確認する手法として、特に限定はされないが、例えば次のような手法が挙げられる。すなわち、炭素繊維強化樹脂成形材料から、100mm×100mmのサンプルを切り出し、切り出したサンプルを電気炉中で1〜2時間程度加熱し、マトリックス樹脂等の有機物を焼き飛ばす。こうして得られた炭素繊維基材単体の重量を測定する。その後、ピンセット等を用いて、炭素繊維基材から、炭素繊維基材中のチョップド繊維束を採取し、重量を測定する(束重量)。また同時に0.1mmまで測定可能なノギスを用いて、繊維長を測定する。すると次式から、取り出したチョップド繊維束を構成する炭素繊維の単糸数を算出することができる。
(単糸数)=(束重量)/{(炭素繊維単糸の繊度)×(繊維長)}
上記の操作を取り出した炭素繊維基材中のチョップド繊維束全てに対して行い、単糸数を測定し、単糸数100本を超えるチョップド繊維束の重量の総和を算出する。そして次式より、炭素繊維基材中に存在する単糸数100本以下のチョップド繊維束の割合を算出することができる。
(単糸数100本以下のチョップド繊維束の割合)={1−(単糸数100本を超えるチョップド繊維束の重量の総和)/(炭素繊維基材の重量)}×100
Here, the method for confirming the ratio of the chopped fiber bundle that has been opened so that the number of single yarns is 100 or less is not particularly limited, but examples thereof include the following methods. That is, a 100 mm × 100 mm sample is cut out from the carbon fiber reinforced resin molding material, and the cut out sample is heated in an electric furnace for about 1 to 2 hours to burn off organic substances such as a matrix resin. The weight of the carbon fiber base material thus obtained is measured. Then, using tweezers or the like, a chopped fiber bundle in the carbon fiber substrate is collected from the carbon fiber substrate, and the weight is measured (bundle weight). At the same time, the fiber length is measured using a caliper capable of measuring up to 0.1 mm. Then, from the following equation, the number of single yarns of carbon fibers constituting the extracted chopped fiber bundle can be calculated.
(Number of single yarns) = (bundle weight) / {(fineness of carbon fiber single yarn) × (fiber length)}
The above operation is performed on all the chopped fiber bundles in the carbon fiber base material taken out, the number of single yarns is measured, and the total weight of the chopped fiber bundles exceeding 100 single yarns is calculated. From the following formula, the proportion of chopped fiber bundles having 100 or less single yarns present in the carbon fiber substrate can be calculated.
(Proportion of chopped fiber bundle having 100 single yarns or less) = {1- (total of weights of chopped fiber bundles having more than 100 single yarns) / (weight of carbon fiber substrate)} × 100

本発明における上記マトリックス樹脂としては特に限定されず、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂、シアネート樹脂などの熱硬化性樹脂や、ポリアミド、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどの熱可塑性樹脂が挙げられる。   The matrix resin in the present invention is not particularly limited, for example, epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, epoxy acrylate resin, urethane acrylate resin, phenoxy resin, alkyd resin, urethane resin, maleimide resin, Thermosetting resins such as cyanate resin, polyamide, polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene, polypropylene, polyphenylene sulfide (PPS), Fluorine resins such as polyetheretherketone (PEEK), liquid crystal polymer, vinyl chloride, polytetrafluoroethylene, and thermoplastic resins such as silicone That.

上記炭素繊維基材におけるチョップド繊維束の開繊度合を概念的に示せば、例えば図1に示すようになる。図1(A)は、チョップド繊維束が適切に開繊され、一部がチョップド繊維束として残存した本発明に係る炭素繊維基材1の一例の概略部分平面を示しており、図1(B)は、前述の従来のSMCにおける炭素繊維基材100の一例の概略部分平面を示しており、図1(C)は、従来のSMCに比べ開繊は行われるものの開繊度合が本発明に比べて低すぎる炭素繊維基材110の一例の概略部分平面を示しており、図1(D)は本発明で規定したチョップド繊維束の開繊度合よりも高い開繊度合の炭素繊維基材120の一例の概略部分平面を示している   If the opening degree of the chopped fiber bundle in the said carbon fiber base material is shown notionally, it will come to show, for example in FIG. FIG. 1 (A) shows a schematic partial plane of an example of the carbon fiber substrate 1 according to the present invention in which a chopped fiber bundle is appropriately opened and a part of the chopped fiber bundle remains as shown in FIG. ) Shows a schematic partial plane of an example of the carbon fiber base material 100 in the above-described conventional SMC, and FIG. 1 (C) shows the degree of opening in the present invention although opening is performed compared to the conventional SMC. FIG. 1 (D) shows a schematic partial plane of an example of a carbon fiber substrate 110 that is too low as compared with the carbon fiber substrate 120 having a fiber opening degree higher than the fiber opening degree of the chopped fiber bundle defined in the present invention. Shows a schematic partial plane of an example of

このようなチョップド繊維束の開繊度合は、例えば、エアレイドやカーディングによってコントロール可能であるが、エアレイドのみで高度に開繊させることは困難であるので、本発明で規定したような比較的高度な開繊度合を達成するためには、カーディングによることが好ましい。カーディングは、例えば、紡績工程で用いられるカード機に、炭素繊維ストランド(1K〜48K糸)を所定の繊維長に切断したチョップド繊維束を所定量投入することにより実施できる。開繊度合が目標値に比べ低い場合には、再度カード機に掛けて、より高度なレベルまで開繊することができる。   The degree of opening of such a chopped fiber bundle can be controlled by airlaid or carding, for example. However, since it is difficult to open the fiber with only airlaid, it is relatively high as defined in the present invention. In order to achieve a high degree of opening, it is preferable to use carding. Carding can be performed, for example, by putting a predetermined amount of chopped fiber bundles obtained by cutting carbon fiber strands (1K to 48K yarns) into a predetermined fiber length into a card machine used in the spinning process. When the degree of opening is lower than the target value, it can be reopened on the card machine and opened to a higher level.

上記の如く炭素繊維ストランドを所定の繊維長に切断してチョップド繊維束を形成する際には、通常は、チョップド繊維束の端部が繊維束の延在方向に対し直交方向となるように切断刃によって切断するが、繊維束の延在方向に対し非直交方向に切断することもできる。非直交方向としては、繊維束の延在方向に対し、斜めの方向に直線的に切断することも可能であり、湾曲形状にて切断することも可能である。湾曲形状での切断は、繊維束の延在方向に対し、直交方向、斜めの方向のいずれの方向にも可能である。斜めの方向への切断により、前述の如く、成形の際の望ましい流動性を維持しつつ、成形品のより高い機械特性の実現が可能になる。   When the chopped fiber bundle is formed by cutting the carbon fiber strand into a predetermined fiber length as described above, it is usually cut so that the end of the chopped fiber bundle is perpendicular to the extending direction of the fiber bundle. Although it cut | disconnects with a blade, it can also cut | disconnect in a non-orthogonal direction with respect to the extension direction of a fiber bundle. As the non-orthogonal direction, it is possible to cut linearly in an oblique direction with respect to the extending direction of the fiber bundle, and it is also possible to cut in a curved shape. Cutting in a curved shape is possible in either the orthogonal direction or the oblique direction with respect to the extending direction of the fiber bundle. By cutting in an oblique direction, it is possible to achieve higher mechanical properties of the molded product while maintaining the desired fluidity during molding as described above.

なお、チョップド繊維束の端部が繊維束の延在方向に対し直交方向となるように切断刃によって切断された場合、束としての長さ、すなわちチョップド繊維束の両末端の間隔と、繊維束を構成する炭素繊維単糸の長さが等しくなる。しかし、繊維束の延在方向に対し非直交方向に切断した場合、チョップド繊維束の束としての長さと繊維束を構成する炭素繊維単糸の長さが異なる場合がある。   When the end of the chopped fiber bundle is cut by a cutting blade so that the end of the chopped fiber bundle is orthogonal to the extending direction of the fiber bundle, the length as the bundle, that is, the distance between both ends of the chopped fiber bundle, and the fiber bundle The lengths of the carbon fiber single yarns constituting the are equal. However, when cut in a non-orthogonal direction with respect to the extending direction of the fiber bundle, the length of the chopped fiber bundle may be different from the length of the carbon fiber single yarn constituting the fiber bundle.

ここで本発明における「繊維長」とは、束としての長さではなく、あくまで束を構成する炭素繊維単糸の長さを指す。したがって、前述の重量平均繊維長を算出に際しては、非直交方向に切断したチョップド繊維束の場合、束を構成する炭素繊維単糸の長さを用いて算出する。なお、重量平均繊維長の算出は公知の手法によって算出することができる。   Here, the “fiber length” in the present invention refers not to the length as a bundle but to the length of the carbon fiber single yarn constituting the bundle. Therefore, when calculating the above-mentioned weight average fiber length, in the case of a chopped fiber bundle cut in a non-orthogonal direction, it is calculated using the length of the carbon fiber single yarn constituting the bundle. The weight average fiber length can be calculated by a known method.

上述のように炭素繊維基材におけるチョップド繊維束の開繊度合を高めることにより、成形の際の流動性は低下する傾向にあるが、成形品の機械特性が高められる。例えば図2に、チョップド繊維束の開繊度合が異なる各炭素繊維基材((A)〜(D))を用いた成形品の曲げ強度の概略比較を示す。図2における(B)は、図1(B)の形態に対応した、従来のSMCにおける炭素繊維基材を使用した成形品の曲げ強度を示しており、図2における(C)は、図1(C)の形態に対応した、従来のSMCに比べ開繊は行われるものの開繊度合が本発明に比べて低すぎる炭素繊維基材使用した成形品の曲げ強度を示しており、図2における(A)は、本発明で規定した適切なチョップド繊維束の開繊度合の炭素繊維基材を使用した成形品の曲げ強度を示しており、図2における(D)は、図1(D)の形態に対応した、本発明で規定したチョップド繊維束の開繊度合よりも高い開繊度合の、例えば前述の特許文献1における炭素繊維基材を使用した成形品の曲げ強度を示している。   As described above, by increasing the degree of opening of the chopped fiber bundle in the carbon fiber base material, the fluidity during molding tends to decrease, but the mechanical properties of the molded product are enhanced. For example, FIG. 2 shows a schematic comparison of bending strengths of molded articles using carbon fiber base materials ((A) to (D)) having different degrees of opening of chopped fiber bundles. (B) in FIG. 2 shows the bending strength of the molded product using the carbon fiber base material in the conventional SMC corresponding to the form of FIG. 1 (B), and (C) in FIG. FIG. 2 shows the bending strength of a molded product using a carbon fiber base material corresponding to the form of (C), but the degree of opening is lower than that of the present invention although opening is performed compared to the conventional SMC. (A) has shown the bending strength of the molded article using the carbon fiber base material of the opening degree of the appropriate chopped fiber bundle prescribed | regulated by this invention, (D) in FIG. 2 shows FIG. 1 (D). The bending strength of the molded article using the carbon fiber base material in the above-mentioned patent document 1 of the opening degree higher than the opening degree of the chopped fiber bundle defined in the present invention corresponding to the form of, for example, is shown.

図2に示すように、炭素繊維基材におけるチョップド繊維束の開繊度合が高められるほど、成形品の機械特性が高められる。しかし前述したように、チョップド繊維束の開繊度合が高められすぎると、成形品の機械特性は高められるものの、成形の際の流動性が低下する傾向にある。本発明に係る炭素繊維強化樹脂成形材料では、炭素繊維基材中の適切な割合のチョップド繊維束が適度な度合で開繊されていることにより、成形品の望ましい機械特性と成形の際の望ましい流動性とがバランス良く目標範囲内の特性として満足される。このことを、実施例、比較例に基づいて以下に説明する。   As shown in FIG. 2, the mechanical properties of the molded product are enhanced as the degree of opening of the chopped fiber bundle in the carbon fiber substrate is increased. However, as described above, if the degree of opening of the chopped fiber bundle is excessively increased, the mechanical properties of the molded product are enhanced, but the fluidity during molding tends to decrease. In the carbon fiber reinforced resin molding material according to the present invention, an appropriate proportion of the chopped fiber bundle in the carbon fiber base material is opened at an appropriate degree, so that desirable mechanical properties of the molded product and desirable at the time of molding are obtained. The fluidity is satisfied as a characteristic within the target range with a good balance. This will be described below based on examples and comparative examples.

後述の表1、表2(実施例1〜6、比較例1〜3)に示すように、炭素繊維基材における、重量平均繊維長、チョップド繊維束の開繊度合、チョップド繊維束の切断端部形状、繊維束延在方向と切断部のなす角が異なる炭素繊維基材に、マトリックス樹脂[VE−1]としてビニルエステル樹脂( ダウ・ケミカル(株)製“デラケン” (登録商標))100重量部、硬化剤として、tert−ブチルパーオキシベンゾエート(日本油脂(株)製、“パーブチルZ”(登録商標))1重量部、増粘剤として、酸化マグネシウム(協和化学工業(株)製“MgO#40”)7重量部を配合したものを含浸した炭素繊維強化樹脂成形材料を作製し、成形品の機械特性としての曲げ強度および曲げ弾性率と成形の際の流動性を評価した。なお、炭素繊維強化樹脂成形材料における炭素繊維基材中の100本以下に開繊されたチョップド繊維束の割合、曲げ強度、および流動性の評価方法は以下の通りである。   As shown in Tables 1 and 2 (Examples 1 to 6 and Comparative Examples 1 to 3) described later, the weight average fiber length, the opening degree of the chopped fiber bundle, and the cut end of the chopped fiber bundle in the carbon fiber base material The carbon fiber base material having a different shape, the fiber bundle extending direction and the angle formed by the cut portion, vinyl ester resin (“Delaken” (registered trademark)) 100 manufactured by Dow Chemical Co., Ltd. as matrix resin [VE-1] 100 1 part by weight of tert-butyl peroxybenzoate (manufactured by NOF Corporation, “Perbutyl Z” (registered trademark)) as a curing agent, magnesium oxide (manufactured by Kyowa Chemical Industry Co., Ltd.) as a thickener A carbon fiber reinforced resin molding material impregnated with 7 parts by weight of MgO # 40 ″) was produced, and the bending strength and bending elastic modulus as the mechanical properties of the molded product and the fluidity during molding were evaluated. In addition, the evaluation method of the ratio, bending strength, and fluidity | liquidity of the chopped fiber bundle opened to 100 or less in the carbon fiber base material in a carbon fiber reinforced resin molding material is as follows.

(1)炭素繊維基材中の100本以下に開繊されたチョップド繊維束の割合
炭素繊維強化樹脂成形材料から、100mm×100mmのサンプルを切り出し、切り出したサンプルを電気炉中で600℃、1.5時間加熱し、マトリックス樹脂を焼き飛ばした。こうして得られた炭素繊維基材単体の重量を測定し、その後、ピンセット等を用いて、炭素繊維基材から、炭素繊維基材中のチョップド繊維束を採取し、重量を測定した(束重量)。また同時に0.1mmまで測定可能なノギスを用いて、繊維長を測定した。そして次式から、取り出したチョップド繊維束を構成する炭素繊維の単糸数を算出した。
(単糸数)=(束重量)/{(炭素繊維単糸の繊度)×(繊維長)}
上記の操作を取り出した炭素繊維基材中のチョップド繊維束全てに対して行い、単糸数を測定し、単糸数100本を超えるチョップド繊維束の重量の総和を算出した。そして、次式より、単糸数100本以下に開繊されたチョップド繊維束の割合を算出した。
(単糸数100本以下に開繊されたチョップド繊維束の割合)={1−(単糸数100本を超えるチョップド繊維束の重量の総和)/(炭素繊維基材の重量)}×100
(1) Ratio of chopped fiber bundle opened to 100 or less in carbon fiber substrate A sample of 100 mm × 100 mm was cut out from a carbon fiber reinforced resin molding material, and the cut sample was 600 ° C., 1 Heated for 5 hours to burn off the matrix resin. The weight of the carbon fiber base material thus obtained was measured, and then a chopped fiber bundle in the carbon fiber base material was collected from the carbon fiber base material using tweezers, and the weight was measured (bundle weight). . At the same time, the fiber length was measured using a caliper capable of measuring up to 0.1 mm. Then, from the following formula, the number of single yarns of carbon fibers constituting the extracted chopped fiber bundle was calculated.
(Number of single yarns) = (bundle weight) / {(fineness of carbon fiber single yarn) × (fiber length)}
Said operation was performed with respect to all the chopped fiber bundles in the carbon fiber base material taken out, the number of single yarns was measured, and the sum total of the weight of the chopped fiber bundles exceeding the number of single yarns 100 was calculated. And the ratio of the chopped fiber bundle opened to the number of single yarns of 100 or less was calculated from the following formula.
(Ratio of chopped fiber bundles opened to 100 or less single yarns) = {1- (total of weights of chopped fiber bundles exceeding 100 single yarns) / (weight of carbon fiber base material)} × 100

(2)曲げ強度の評価方法
JIS K7074に準拠して測定した。得られた曲げ強度の値について、下記判定基準に基づき評価し、△以上を本発明においては合格とした。
◎:400MPa以上
○:370〜399MPa
△:340〜369MPa
×:340MPa未満
(2) Evaluation method of bending strength It measured based on JISK7074. About the value of the obtained bending strength, it evaluated based on the following criteria, and more than (triangle | delta) was set as the pass in this invention.
A: 400 MPa or more B: 370 to 399 MPa
Δ: 340 to 369 MPa
X: Less than 340 MPa

(3)流動性の評価方法
凹凸部(厚さ1mm)とリブ(厚さ2mm)形状を有する平板金型に、炭素繊維強化樹脂成形材料をチャージ率50%で配置し、プレス成形によって、成形品を得た。得られた成形品について、下記判定基準に基づき評価し、△以上を本発明においては合格とした。
◎:欠肉なし、シワのない平滑な表面を有する。
○:欠肉なし、表面に一部微小なシワが存在。
△:欠肉は存在しないものの、表面に一部皺シワや膨れが存在。
×:成形品に欠肉が存在する。
(3) Fluidity evaluation method A carbon fiber reinforced resin molding material is placed at a charge rate of 50% in a flat plate mold having an uneven part (thickness 1 mm) and ribs (thickness 2 mm), and molded by press molding. I got a product. The obtained molded product was evaluated based on the following criteria, and Δ or more was regarded as acceptable in the present invention.
(Double-circle): It has a smooth surface without a flesh and a wrinkle.
○: There is no thinning and some fine wrinkles exist on the surface.
Δ: Although there is no lack of meat, some wrinkles and blisters are present on the surface.
X: A missing piece is present in the molded product.

Figure 2016155912
Figure 2016155912

Figure 2016155912
Figure 2016155912

表1、表2から分かるように、炭素繊維基材における全炭素繊維量に対する重量割合にて、単糸数100本以下になるように開繊されているチョップド繊維束の割合が50〜85%の範囲にある場合(実施例1〜6)には、成形品の望ましい機械特性と成形の際の望ましい流動性とをバランス良く両立させることができ、とくにチョップド繊維束の端部が、繊維束の延在方向に対し斜めの方向に切断されている場合(実施例3、4)には、良好な流動性を維持しつつより高い機械特性を達成できる。   As can be seen from Tables 1 and 2, the ratio of the chopped fiber bundle that is opened so that the number of single yarns is 100 or less is 50 to 85% in the weight ratio with respect to the total amount of carbon fibers in the carbon fiber substrate. When it is in the range (Examples 1 to 6), the desired mechanical properties of the molded product and the desired fluidity at the time of molding can be balanced with each other, and in particular, the end portion of the chopped fiber bundle is made of the fiber bundle. When cut in a direction oblique to the extending direction (Examples 3 and 4), higher mechanical properties can be achieved while maintaining good fluidity.

これに対し、炭素繊維基材における全炭素繊維量に対する重量割合にて、単糸数100本以下になるように開繊されているチョップド繊維束の割合が本発明で規定した割合の範囲未満の場合(比較例1、2)には、優れた流動性は得られるものの高い機械特性を達成することが困難であり、単糸数100本以下になるように開繊されているチョップド繊維束の割合が本発明で規定した割合の範囲よりも高い場合(比較例3)には、高い機械特性は達成できるものの優れた流動性を得ることが困難であった。   On the other hand, when the ratio of the chopped fiber bundle opened so that the number of single yarns is 100 or less is less than the range of the ratio defined in the present invention in the weight ratio with respect to the total amount of carbon fibers in the carbon fiber substrate. In (Comparative Examples 1 and 2), although excellent fluidity is obtained, it is difficult to achieve high mechanical properties, and the ratio of the chopped fiber bundle that is opened so that the number of single yarns is 100 or less. When the ratio was higher than the range defined in the present invention (Comparative Example 3), it was difficult to obtain excellent fluidity although high mechanical properties could be achieved.

本発明に係る炭素繊維強化樹脂成形材料は、あらゆる分野の成形に適用できる。   The carbon fiber reinforced resin molding material according to the present invention can be applied to molding in all fields.

1、100、110、120 炭素繊維基材
101 炭素繊維束
1, 100, 110, 120 Carbon fiber substrate 101 Carbon fiber bundle

Claims (3)

少なくとも、炭素繊維基材とマトリックス樹脂を含む炭素繊維強化樹脂成形材料であって、前記炭素繊維基材が、連続炭素繊維の繊維束を切断して得られたチョップド繊維束から形成され、前記炭素繊維基材における全炭素繊維量に対する重量割合にて前記チョップド繊維束の50〜85%が単糸数100本以下になるように開繊されていることを特徴とする炭素繊維強化樹脂成形材料。   A carbon fiber reinforced resin molding material containing at least a carbon fiber base material and a matrix resin, wherein the carbon fiber base material is formed from a chopped fiber bundle obtained by cutting a fiber bundle of continuous carbon fibers, and the carbon A carbon fiber reinforced resin molding material, wherein the fiber base material is opened so that 50 to 85% of the chopped fiber bundle has a number of single yarns of 100 or less in a weight ratio with respect to the total amount of carbon fibers in the fiber base material. 前記チョップド繊維束の端部が、繊維束の延在方向に対し非直交方向に切断されている、請求項1に記載の炭素繊維強化樹脂成形材料。   The carbon fiber reinforced resin molding material according to claim 1, wherein an end portion of the chopped fiber bundle is cut in a non-orthogonal direction with respect to the extending direction of the fiber bundle. 前記炭素繊維基材における炭素繊維の重量平均繊維長が5mmを超え40mm以下の範囲にある、請求項1または2に記載の炭素繊維強化樹脂成形材料。   The carbon fiber reinforced resin molding material according to claim 1 or 2, wherein a weight average fiber length of carbon fibers in the carbon fiber substrate is in a range of more than 5 mm and 40 mm or less.
JP2015033796A 2015-02-24 2015-02-24 Carbon fiber-reinforced resin molding material Pending JP2016155912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033796A JP2016155912A (en) 2015-02-24 2015-02-24 Carbon fiber-reinforced resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033796A JP2016155912A (en) 2015-02-24 2015-02-24 Carbon fiber-reinforced resin molding material

Publications (1)

Publication Number Publication Date
JP2016155912A true JP2016155912A (en) 2016-09-01

Family

ID=56825014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033796A Pending JP2016155912A (en) 2015-02-24 2015-02-24 Carbon fiber-reinforced resin molding material

Country Status (1)

Country Link
JP (1) JP2016155912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078142A1 (en) * 2015-11-05 2017-05-11 三菱レイヨン株式会社 Continuous carbon fiber bundle, sheet molding compound, and fiber-reinforced composite material to be molded using same
WO2018147331A1 (en) 2017-02-09 2018-08-16 東レ株式会社 Fiber reinforced resin sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078142A1 (en) * 2015-11-05 2017-05-11 三菱レイヨン株式会社 Continuous carbon fiber bundle, sheet molding compound, and fiber-reinforced composite material to be molded using same
JPWO2017078142A1 (en) * 2015-11-05 2017-11-02 三菱ケミカル株式会社 Continuous carbon fiber bundle, sheet molding compound, and fiber reinforced composite material molded using the same
KR20200058608A (en) * 2015-11-05 2020-05-27 미쯔비시 케미컬 주식회사 Continuous carbon fiber bundle, sheet molding compound, and fiber-reinforced composite material to be molded using same
KR102456745B1 (en) 2015-11-05 2022-10-19 미쯔비시 케미컬 주식회사 Continuous carbon fiber bundle, sheet molding compound, and fiber-reinforced composite material to be molded using same
WO2018147331A1 (en) 2017-02-09 2018-08-16 東レ株式会社 Fiber reinforced resin sheet
KR20190107681A (en) 2017-02-09 2019-09-20 도레이 카부시키가이샤 Fiber reinforced resin sheet

Similar Documents

Publication Publication Date Title
JP6119876B2 (en) Fiber-reinforced resin molding material and method for producing the same
JP7009548B2 (en) Manufacturing method of fiber reinforced plastic material
JP6874678B2 (en) Discontinuous fiber reinforced composite material
JP6722406B2 (en) Fiber-reinforced resin molding material and manufacturing method thereof
JP2009114611A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
KR101437212B1 (en) Continuous carbon fiber reinforced thermoplastic composites with well-impregnated and method for manufacturing of the same
TW201144363A (en) Fiber-reinforced thermoplastic resin composition, reinforcing fiber bundle, and production method for fiber-reinforced thermoplastic resin composition
JP2009114612A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
JP6874677B2 (en) Discontinuous fiber reinforced composite material
KR102376125B1 (en) Carbon Fiber Random Mat and Carbon Fiber Composite Material
JP2013202890A (en) Molding material and method of manufacturing the same
KR20200058608A (en) Continuous carbon fiber bundle, sheet molding compound, and fiber-reinforced composite material to be molded using same
JP2016155912A (en) Carbon fiber-reinforced resin molding material
JP7047755B2 (en) Fiber reinforced plastic sheet
KR102316786B1 (en) Reinforcing fiber composite material
CN107002365B (en) Carbon fiber felt, blank, sheet material, and molded article
JP2019039124A (en) Chopped fiber bundle mat
JP2016155915A (en) Fiber reinforced plastic wire rod and manufacturing method thereof, and manufacturing system of fiber reinforced plastic wire rod
JP2004169260A (en) Carbon fiber strand
TWI701273B (en) Reinforced fiber composite
JP2018141039A (en) Sheet molding compound, method for producing the same, and method for producing composite material
WO2021177215A1 (en) Reinforcing-fiber composite material
JP7101498B2 (en) Fiber reinforced composite material for concrete reinforcement, concrete structure
JP2021151756A (en) Production method of fiber-reinforced composite material