JP2016151644A - Selector valve, cylindrical telescopic body and propulsion device - Google Patents

Selector valve, cylindrical telescopic body and propulsion device Download PDF

Info

Publication number
JP2016151644A
JP2016151644A JP2015028494A JP2015028494A JP2016151644A JP 2016151644 A JP2016151644 A JP 2016151644A JP 2015028494 A JP2015028494 A JP 2015028494A JP 2015028494 A JP2015028494 A JP 2015028494A JP 2016151644 A JP2016151644 A JP 2016151644A
Authority
JP
Japan
Prior art keywords
flow path
compressed air
air
expansion
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015028494A
Other languages
Japanese (ja)
Other versions
JP6618687B2 (en
Inventor
中村 太郎
Taro Nakamura
太郎 中村
岸 達也
Tatsuya Kishi
達也 岸
翔太 山▲ザキ▼
Shota Yamazaki
翔太 山▲ザキ▼
政博 秋月
Masahiro Akizuki
政博 秋月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA NISSEI KK
Chuo University
Original Assignee
KYOWA NISSEI KK
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA NISSEI KK, Chuo University filed Critical KYOWA NISSEI KK
Priority to JP2015028494A priority Critical patent/JP6618687B2/en
Publication of JP2016151644A publication Critical patent/JP2016151644A/en
Application granted granted Critical
Publication of JP6618687B2 publication Critical patent/JP6618687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a selector valve capable of improving the supply/discharge speed of air supplied to an airtight chamber, and a telescopic unit and a propulsion device using the selector valve.SOLUTION: A selector valve includes: a first flow passage in which pressurized fluid flows; a valve body provided so as to be freely moved by being pressed by the fluid flowing in the first flow passage; energization means of energizing the valve body so as to antagonize pressing force that the fluid flowing in the first flow passage presses the valve body; a second flow passage in which the fluid flowing in the first flow passage flows when the pressing force of fluid acting on the valve body is stronger than energization force of the energization means; and a third flow passage that communicates with the second flow passage when the energization force of the energization force acting on the valve body is stronger than the pressing force of the fluid flowing in the first passage.SELECTED DRAWING: Figure 5

Description

本発明は、切替弁、筒状伸縮体及び推進装置に関し、特に、配管等の管体内部の検査に好適な推進装置等に関する。   The present invention relates to a switching valve, a cylindrical expansion and contraction device, and a propulsion device, and more particularly to a propulsion device and the like suitable for an inspection inside a pipe body such as a pipe.

特許文献1に示すように、従来、空気の給排により伸長・収縮する伸縮ユニットを複数直列に連結し、ミミズの蠕動運動を模倣するように、伸縮ユニットを所定の順序で個別に伸長,収縮させることで、屈曲する管体内の内部を検査する検査装置に推進力を与える推進装置が開示されている。   As shown in Patent Document 1, conventionally, a plurality of expansion / contraction units that expand and contract by air supply / discharge are connected in series, and the expansion / contraction units are individually expanded and contracted in a predetermined order so as to imitate the peristaltic motion of earthworms. Thus, there has been disclosed a propulsion device that applies a propulsive force to an inspection device that inspects the inside of a bent tube.

特開2009−240713号公報JP 2009-240713 A

特許文献1に開示される上記推進装置では、管体内を自在に推進できる点では有用であるが、その構成上、推進速度の向上の点で限界があるという問題がある。即ち、推進装置の推進速度を上げるためには、各伸縮ユニットの気密室への空気の供給速度及び排気速度を上げる必要がある。そして、気密室への給気は、空気の圧力を高くすれば、供給速度を上げることが可能である。しかしながら、気密室からの排気は、気密室に空気を供給するチューブを介してなされるため、排気速度を向上させることができない。例えば、排気速度を向上させるために、外筒の張力を強くすることで、気密室からの空気の排出を速めることも可能であるが、張力の強化によって伸縮ユニットを所定の大きさまで膨張させる時間がかかり、推進速度を向上させる手段として採用し難い。   The propulsion device disclosed in Patent Document 1 is useful in that it can freely propel the inside of the tube, but there is a problem that there is a limit in improving the propulsion speed due to its configuration. That is, in order to increase the propulsion speed of the propulsion device, it is necessary to increase the air supply speed and the exhaust speed to the airtight chamber of each expansion unit. The supply speed of the airtight chamber can be increased by increasing the air pressure. However, since the exhaust from the hermetic chamber is performed through a tube that supplies air to the hermetic chamber, the exhaust speed cannot be improved. For example, in order to improve the exhaust speed, it is possible to speed up the discharge of air from the hermetic chamber by increasing the tension of the outer cylinder, but the time for expanding the telescopic unit to a predetermined size by strengthening the tension Therefore, it is difficult to adopt as a means for improving the propulsion speed.

そこで、本発明は、上記問題点を解決すべく、気密室へ供給された空気の排気速度を向上させることが可能な切替弁、当該切替弁を用いた伸縮ユニット及び推進装置を提供することを目的とする。   Accordingly, the present invention provides a switching valve capable of improving the exhaust speed of the air supplied to the hermetic chamber, an expansion / contraction unit using the switching valve, and a propulsion device in order to solve the above-described problems. Objective.

上記課題を解決するための切替弁の構成として、加圧された流体が流入する第1流路と、第1流路に流入した流体により押圧されて移動自在に設けられた弁体と、第1流路に流入した流体が弁体を押圧する押圧力と拮抗するように弁体を付勢する付勢手段と、弁体に作用する流体の押圧力が付勢手段による付勢力に勝るときに第1流路に流入した流体が流れる第2流路と、弁体に作用する付勢手段の付勢力が第1流路に流入した流体の押圧力に勝るときに第2流路と連通する第3流路とを備えるので、第1流路に流入する流体の圧力に応じて第1流路と第2流路とが連通する流路と、第2流路と第3流路とが連通する流路との切替が直接的に制御されるため、電気的な他のエネルギーを用いることなく、流路切替の応答速度を向上させることができる。
上記課題を解決するための筒状伸縮体の構成として、請求項1に記載の切替弁と、軸線方向に伸縮する筒状の内筒と、内筒の両端に気密を有するようにそれぞれ取り付けられる円筒状のフランジと、内筒を覆うように被せられて、端部がフランジに気密を有するように固定され、軸線方向への伸長が規制された筒状の弾性体と、内筒と前記弾性体との間で形成される気室とを備え、第2流路の一端が気室に開口し、内筒の内周面に第3流路の一端が開口するように切替弁を設け、弁体に作用する流体の押圧力が付勢手段による付勢力に勝るときに第1流路に流入した流体が第2流路を介して気室に流入し、弁体に作用する付勢手段の付勢力が第1流路に流入した流体の押圧力に勝るときに気室の流体が第2流路及び第3流路を介して内筒の内側空間に排出されるので、気室への流体の流入や気室からの流体の流出が、第1流路に流入する流体の圧力に応じて直接的に切り替えられるため、電気的な他のエネルギーを用いることなく、流路切替の応答速度を向上させることができる。また、気室に流入した流体は、切替弁の第3流路から内筒の内側空間に直接排出されるため、気室内の流体を素早く排出することができ、筒状伸縮体の伸縮速度を向上させることができる。
上記課題を解決するための推進装置の構成として、請求項2に記載の筒状伸縮体が複数個連結された移動体と、各筒状伸縮体の第1流路に供給する圧縮空気を生成する圧縮空気生成手段と、圧縮空気生成手段により生成された圧縮空気を各筒状伸縮体に分配する分配手段と、分配手段から各筒状伸縮体まで個別に延長し、圧縮空気生成手段で生成された圧縮空気を切替弁の第1流路に供給する空気供給管と、分配手段による各筒状伸縮体への圧縮空気の分配を制御し、各筒状伸縮体の気室に蠕動運動を模倣する所定の順序で圧縮空気を流入させる制御装置とを備えるので、移動体を構成する複数の筒状伸縮体が蠕動運動を模倣するように伸縮するため、推進力を得ることができる。また、筒状伸縮体の気室に流入した圧縮空気は、切替弁の第3流路から内筒の内側空間に直接排出されるため、気室内の圧縮空気の排気速度を向上させ、筒状伸縮体を収縮状態から伸長状態に素早く移行させるので、各筒状伸縮体の伸長速度が向上し、移動体としての推進速度を向上させることができる。
また、推進装置の他の構成として、空気供給管に連通するように設けられ、分配手段から第1流路への圧縮空気の供給が停止したときに、当該空気供給管内の空気を強制的に排気する減圧手段をさらに備えるので、切替弁の第1流路に連結される空気供給管内の空気が素早く排出されるため、切替弁の弁体がすばやく流路を切り替えるように移動できる。これにより、筒状伸縮体の伸縮速度をさらに向上させて、移動体の推進速度を向上させることができる。
また、推進装置の他の構成として、分配手段は、圧縮空気生成手段と接続され、圧縮空気生成手段から供給された圧縮空気が入力される入力ポートと、空気供給管と接続され、入力ポートに入力された圧縮空気を空気供給管を介して筒状伸縮体の第1流路に出力する出力ポートと、出力ポート内の空気を排気する排気ポートとを有する電磁弁を複数備え、
減圧手段が、排気ポートに接続されるので、切替弁の第1流路に連結される空気供給管内の空気が素早く排出されるため、切替弁の弁体がすばやく流路を切り替えるように移動できる。これにより、筒状伸縮体の伸縮速度をさらに向上させて、移動体の推進速度を向上させることができる。
As a configuration of the switching valve for solving the above problems, a first flow path into which a pressurized fluid flows, a valve body that is pressed by the fluid that has flowed into the first flow path and is movably provided, A biasing means for biasing the valve body so that the fluid flowing into the one flow path antagonizes the pressing force pressing the valve body, and the pressing force of the fluid acting on the valve body exceeds the biasing force by the biasing means The second flow path through which the fluid flowing into the first flow path flows, and the second flow path when the urging force of the urging means acting on the valve body exceeds the pressing force of the fluid flowing into the first flow path. And a third flow path that communicates with the first flow path and the second flow path according to the pressure of the fluid flowing into the first flow path, and the second flow path and the third flow path. Since the switching with the flow channel that communicates directly is controlled, the response speed of the flow channel switching is improved without using other electrical energy It can be.
As a structure of the cylindrical expansion-contraction body for solving the said subject, it attaches so that it may have airtightness in the switching valve of Claim 1, the cylindrical inner cylinder which expands-contracts in an axial direction, and the both ends of an inner cylinder, respectively. A cylindrical flange, a cylindrical elastic body that covers the inner cylinder, is fixed so that the end thereof is airtight to the flange, and is restricted from extending in the axial direction, the inner cylinder, and the elastic An air chamber formed between the body and a switching valve so that one end of the second flow path opens into the air chamber and one end of the third flow path opens on the inner peripheral surface of the inner cylinder; When the pressing force of the fluid acting on the valve body exceeds the urging force of the urging means, the fluid that has flowed into the first flow path flows into the air chamber via the second flow path and acts on the valve body. When the urging force of the air is greater than the pressing force of the fluid flowing into the first flow path, the fluid in the air chamber passes through the second flow path and the third flow path to the inside of the inner cylinder. Since the fluid is discharged into the space, the inflow of the fluid into the air chamber and the outflow of the fluid from the air chamber can be directly switched according to the pressure of the fluid flowing into the first flow path. The response speed of the channel switching can be improved without using. Further, since the fluid flowing into the air chamber is directly discharged from the third flow path of the switching valve to the inner space of the inner cylinder, the fluid in the air chamber can be quickly discharged, and the expansion / contraction speed of the cylindrical expansion / contraction body can be increased. Can be improved.
As a configuration of the propulsion device for solving the above-described problem, a moving body in which a plurality of cylindrical stretchable bodies according to claim 2 are connected, and compressed air supplied to the first flow path of each cylindrical stretchable body are generated. Compressed air generating means, distributing means for distributing the compressed air generated by the compressed air generating means to each cylindrical stretchable body, and individually extending from the distributing means to each cylindrical stretchable body, and generated by the compressed air generating means The compressed air is supplied to the first flow path of the switching valve, and the distribution of the compressed air to each cylindrical expansion / contraction body by the distributing means is controlled, and the air chamber of each cylindrical expansion / contraction body is peristalized. Since the control apparatus which flows in compressed air in the predetermined order to imitate is provided, since several cylindrical expansion-contraction bodies which comprise a moving body expand and contract so that a peristaltic motion may be imitated, a propulsive force can be obtained. In addition, since the compressed air that has flowed into the air chamber of the cylindrical expansion / contraction body is directly discharged from the third flow path of the switching valve to the inner space of the inner cylinder, the exhaust speed of the compressed air in the air chamber is improved, and the cylindrical air Since the stretchable body is quickly shifted from the contracted state to the extended state, the extension speed of each cylindrical stretchable body is improved, and the propulsion speed as the moving body can be improved.
Further, as another configuration of the propulsion device, the propulsion device is provided so as to communicate with the air supply pipe, and when the supply of compressed air from the distribution means to the first flow path is stopped, the air in the air supply pipe is forcibly forced. Since the pressure reducing means for exhausting is further provided, air in the air supply pipe connected to the first flow path of the switching valve is quickly discharged, so that the valve body of the switching valve can be moved so as to quickly switch the flow path. Thereby, the expansion-contraction speed of a cylindrical expansion-contraction body can further be improved, and the propulsion speed of a mobile body can be improved.
Further, as another configuration of the propulsion device, the distribution unit is connected to the compressed air generating unit, connected to the input port to which the compressed air supplied from the compressed air generating unit is input, and the air supply pipe, and is connected to the input port. A plurality of solenoid valves each having an output port for outputting the input compressed air to the first flow path of the cylindrical stretchable body via the air supply pipe, and an exhaust port for exhausting the air in the output port;
Since the pressure reducing means is connected to the exhaust port, the air in the air supply pipe connected to the first flow path of the switching valve is quickly discharged, so that the valve body of the switching valve can be moved so as to quickly switch the flow path. . Thereby, the expansion-contraction speed of a cylindrical expansion-contraction body can further be improved, and the propulsion speed of a mobile body can be improved.

管内検査装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of an in-pipe inspection apparatus. ユニット連結体を軸線に沿って切断した断面図及び連結状態を示す斜視図である。It is the perspective view which shows sectional drawing which cut | disconnected the unit coupling body along the axis line, and a connection state. 伸縮ユニットの軸線に沿って切断した断面図である。It is sectional drawing cut | disconnected along the axis line of the expansion-contraction unit. 弾性膨張体を肉厚方向に切断した切断面を誇張して示した図である。It is the figure which exaggerated and showed the cut surface which cut | disconnected the elastic expansion body in the thickness direction. 切替弁の拡大断面図である。It is an expanded sectional view of a switching valve. 切替弁の動作を示す図である。It is a figure which shows operation | movement of a switching valve. 連結体の斜視図である。It is a perspective view of a coupling body. 推進装置の進行パターンを示す図である。It is a figure which shows the advancing pattern of a propulsion apparatus. 空気供給装置の他の実施形態を示す図である。It is a figure which shows other embodiment of an air supply apparatus. 切替弁の他の実施形態を示す図である。It is a figure which shows other embodiment of the switching valve.

以下、発明の実施形態を通じて本発明を詳説するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明される特徴の組み合わせのすべてが発明の解決手段に必須であるとは限らず、選択的に採用される構成を含むものである。   Hereinafter, the present invention will be described in detail through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims, and all combinations of features described in the embodiments are included in the invention. It is not necessarily essential to the solution, but includes a configuration that is selectively adopted.

図1は、本実施形態に係る推進装置を備えた管内検査装置1の一実施形態を示す概略構成図である。なお、以下の説明において、図中に示す矢印X1に沿う方向を管内検査装置1の進行方向とし、進行方向を前側、進行方向とは逆方向を後側として前後方向を特定する。同図に示すように、管内検査装置1は、例えば、上下水道管やガス管等の管9内の状態を検査するための検査装置2と、管9内において検査装置2を移動させる推進装置3とを備える。上述の上下水道管やガス管等の管9は、直管部や曲管部により構成されるが、本実施形態では、説明の便宜上、直管部を用いて管内検査装置1について説明する。   FIG. 1 is a schematic configuration diagram illustrating an embodiment of an in-pipe inspection apparatus 1 including a propulsion device according to the present embodiment. In the following description, the direction along the arrow X1 shown in the figure is the traveling direction of the in-pipe inspection apparatus 1, the front-rear direction is specified with the traveling direction as the front side and the direction opposite to the traveling direction as the rear side. As shown in the figure, the in-pipe inspection apparatus 1 includes, for example, an inspection apparatus 2 for inspecting the state in the pipe 9 such as a water and sewage pipe and a gas pipe, and a propulsion device that moves the inspection apparatus 2 in the pipe 9. 3. The above-described pipes 9 such as water and sewage pipes and gas pipes are configured by a straight pipe part or a curved pipe part. In this embodiment, for convenience of explanation, the in-pipe inspection apparatus 1 will be described using a straight pipe part.

検査装置2は、管9内の状態を取得する本体部11と、本体部11を制御する制御部12とで構成される。本体部11は、管9内に光(照明)を照射する照明手段13と、管9内を撮影する撮影手段14とを備える。照明手段13及び撮影手段14は、前面が平坦状、外周が球状に形成されたケース15内に収容され、光の照射方向及び撮影方向を前方に向けて配置される。撮影手段14には、いわゆるモノクロ、カラーのビデオカメラが適用される。撮影手段14及び照明手段13は、可撓性を有するケーブル16により制御部12と接続され、撮影手段14が撮影した管9内の画像を画像データとして後述の制御部12に出力する。図2に示すように、ケース15は、後端側に後述のユニット連結体20を連結するための連結部15Aを備える。同図に示すように、連結部15Aは、ケース15の後端側の内周面を円周方向に沿って窪む内周溝19と、円周方向に沿って所定間隔を空けて端面から内周溝19に到達する円弧状の複数の切欠き18とにより構成される。   The inspection device 2 includes a main body unit 11 that acquires a state in the tube 9 and a control unit 12 that controls the main body unit 11. The main body 11 includes illumination means 13 for irradiating light (illumination) into the tube 9 and photographing means 14 for photographing the inside of the tube 9. The illumination unit 13 and the photographing unit 14 are accommodated in a case 15 having a flat front surface and a spherical outer periphery, and are arranged with the light irradiation direction and the photographing direction facing forward. A so-called monochrome or color video camera is applied to the photographing means 14. The photographing unit 14 and the illuminating unit 13 are connected to the control unit 12 by a flexible cable 16 and output an image in the tube 9 photographed by the photographing unit 14 to the later-described control unit 12 as image data. As shown in FIG. 2, the case 15 includes a connecting portion 15 </ b> A for connecting a unit connecting body 20 described later on the rear end side. As shown in the figure, the connecting portion 15A includes an inner peripheral groove 19 that is recessed along the circumferential direction on the inner peripheral surface on the rear end side of the case 15, and a predetermined interval along the circumferential direction from the end surface. A plurality of arc-shaped notches 18 reaching the inner circumferential groove 19 are formed.

制御部12は、ケーブル16を介して撮影手段14及び照明手段13に電力を供給するとともに、撮影手段14から出力された画像データをモニター等の表示装置17に出力する。なお、表示装置17に替えてハードディスクや不揮発性の半導体メモリ等の記憶手段を接続して表示装置17上に表示させずに画像を記録するようにしても良く、記憶手段に記憶しながら表示装置17に表示するようにしても良い。   The control unit 12 supplies power to the photographing unit 14 and the illumination unit 13 via the cable 16 and outputs the image data output from the photographing unit 14 to a display device 17 such as a monitor. It should be noted that a storage means such as a hard disk or a non-volatile semiconductor memory may be connected in place of the display device 17 to record an image without displaying it on the display device 17, or the display device may be stored while being stored in the storage means. 17 may be displayed.

図2(a)は、ユニット連結体20を軸線に沿って切断した断面図である。同図に示すように、ユニット連結体20は、管状体21と、一対のフランジ22;22とを備える。管状体21は、軸線方向に伸縮自在な蛇腹構造を有する両端開口の円筒体により構成される。フランジ22は、例えば樹脂や硬質のゴムにより構成された円筒体である。フランジ22の外周には、連結部15Aの内周に形成された複数の切欠き18に対応する複数の係合片23が設けられる。係合片23は、フランジ22の円周方向に沿って所定長さの円弧状に延在するように外周面に突設される。ユニット連結体20は、図2(b)に示すように、一方のフランジ22の係合片23を連結部15Aの切欠き18に一致させて押し込み、内周溝19に沿って回転させることで本体部11に連結される。また、図2(c)に示すように、他方のフランジ22の係合片23を後述のフランジ33;34の連結部37の切欠き37Bに一致させて押し込み、内周溝37Aに沿って回転させることで筒状伸縮体としての伸縮ユニット30が連結される。   Fig.2 (a) is sectional drawing which cut | disconnected the unit coupling body 20 along the axis line. As shown in the figure, the unit connection body 20 includes a tubular body 21 and a pair of flanges 22 and 22. The tubular body 21 is configured by a cylindrical body having both ends open and having a bellows structure that can expand and contract in the axial direction. The flange 22 is a cylindrical body made of, for example, resin or hard rubber. A plurality of engagement pieces 23 corresponding to the plurality of notches 18 formed on the inner periphery of the connecting portion 15 </ b> A are provided on the outer periphery of the flange 22. The engagement piece 23 projects from the outer peripheral surface so as to extend in a circular arc shape having a predetermined length along the circumferential direction of the flange 22. As shown in FIG. 2 (b), the unit connecting body 20 is pushed by aligning the engaging piece 23 of one flange 22 with the notch 18 of the connecting portion 15 </ b> A and rotating along the inner peripheral groove 19. Connected to the main body 11. Further, as shown in FIG. 2 (c), the engagement piece 23 of the other flange 22 is pushed in so as to coincide with a notch 37B of a connecting portion 37 of a flange 33; 34 to be described later, and rotated along the inner circumferential groove 37A. By doing so, the expansion / contraction unit 30 as a cylindrical expansion / contraction body is connected.

図1に示すように、推進装置3は、複数の伸縮ユニット30と、空気供給装置60とを主たる構成として備える。以下の説明では、説明の便宜上、伸縮ユニット30を4個直列に連結した形態を用いて推進装置3を説明する。なお、伸縮ユニット30の連結数についてはこの限りではない。また、推進装置3における伸縮ユニット30の位置を特定する場合には、図1に示すように、前側から後側に向かって順に、伸縮ユニット30A、伸縮ユニット30B、伸縮ユニット30C、伸縮ユニット30D等として示す。   As shown in FIG. 1, the propulsion device 3 includes a plurality of telescopic units 30 and an air supply device 60 as main components. In the following description, for convenience of explanation, the propulsion device 3 will be described using a form in which four expansion / contraction units 30 are connected in series. In addition, it is not this limit about the connection number of the expansion-contraction units 30. FIG. When the position of the expansion / contraction unit 30 in the propulsion device 3 is specified, as shown in FIG. 1, the expansion / contraction unit 30A, the expansion / contraction unit 30B, the expansion / contraction unit 30C, the expansion / contraction unit 30D, etc. in order from the front side to the rear side. As shown.

図3は、伸縮ユニット30の軸線に沿って切断した断面図である。同図に示すように、伸縮ユニット30は、一対のフランジ33;34と、円筒状の内筒31と、円筒状の弾性膨張体32とを備える。フランジ33;34は、例えば樹脂や硬質のゴムにより構成された円筒体として構成され、内筒嵌着部36と、環状溝35と、連結部37とを備える。
内筒嵌着部36は、フランジ33;34の内周側において一端側の端面33a;34aから軸線方向に沿って環状に窪む凹部として設けられる。内筒嵌着部36は、内筒31の外周面が嵌合する嵌合面36Aと、内筒31の端面が突き当たる突当面36Bとで形成される。
環状溝35は、フランジ33;34の外周面において、突当面36Bよりも端面33b;34b側に位置するように円周方向に沿って一周分連続して窪むように形成される。
連結部37は、フランジ33;34の他端側の内周面を円周方向に沿って窪む内周溝37Aと、円周方向に沿って所定間隔を空けて端面33b;34bから内周溝37Aに到達するように円弧状に窪む複数の切欠き37Bとにより構成される。
FIG. 3 is a cross-sectional view taken along the axis of the telescopic unit 30. As shown in the figure, the telescopic unit 30 includes a pair of flanges 33; 34, a cylindrical inner cylinder 31, and a cylindrical elastic expansion body 32. The flanges 33 and 34 are configured as a cylindrical body made of, for example, resin or hard rubber, and include an inner cylinder fitting portion 36, an annular groove 35, and a connecting portion 37.
The inner cylinder fitting portion 36 is provided as a concave portion that is annularly recessed along the axial direction from the end surface 33a; 34a on one end side on the inner peripheral side of the flange 33; The inner cylinder fitting portion 36 is formed by a fitting surface 36A on which the outer peripheral surface of the inner cylinder 31 is fitted, and an abutting surface 36B on which the end surface of the inner cylinder 31 abuts.
The annular groove 35 is formed on the outer peripheral surface of the flange 33; 34 so as to be continuously depressed for one round along the circumferential direction so as to be positioned closer to the end surface 33b; 34b than the abutting surface 36B.
The connecting portion 37 includes an inner circumferential groove 37A that is recessed along the circumferential direction on the inner circumferential surface on the other end side of the flange 33; 34, and an inner circumference from the end surface 33b; 34b at a predetermined interval along the circumferential direction. A plurality of notches 37B recessed in an arc shape so as to reach the groove 37A.

内筒31は、円筒状の可撓性を有する部材により構成され、その軸方向に沿って伸縮可能に構成される。内筒31には、例えばベローズが適用される。内筒31は、後述の弾性膨張体32の収縮動作に追従して軸方向に収縮し、伸長動作に追従して軸方向に伸長する。内筒31は、端部がフランジ33;34の突当面36Bに突き当たるまで嵌合面36Aに挿入され、外周面を接着剤等の固定手段によって気密を有するように、かつ強固にフランジ33;34の内筒嵌着部36に固定される。   The inner cylinder 31 is configured by a cylindrical flexible member, and is configured to be extendable along the axial direction. For example, a bellows is applied to the inner cylinder 31. The inner cylinder 31 contracts in the axial direction following a contraction operation of an elastic expansion body 32 described later, and extends in the axial direction following the extension operation. The inner cylinder 31 is inserted into the fitting surface 36A until the end portion abuts against the abutting surface 36B of the flange 33; 34, and the outer surface is tightly sealed by a fixing means such as an adhesive, and the flange 33; The inner cylinder fitting portion 36 is fixed.

弾性膨張体32は、内筒31の外周を覆う円筒状に形成された部材であって、内筒31の外周面全域を取り囲むように配設される。図4は、弾性膨張体32を肉厚方向に切断した切断面を誇張して示した図である。同図に示すように、弾性膨張体32は、弾性体より形成される円筒状の筒本体32Aと、当該筒本体32Aの内部において密に内挿された複数の規制繊維32Bとから構成される。筒本体32Aの材質としては、シリコーンゴム等の合成ゴム、或いは天然ラテックスゴム等の天然ゴムが好適であるが、後述する気密室Sへの圧縮空気の給排によってその形状が変化し得る材質であれば如何なる材質であってもよく、その厚さや後述の規制繊維の配置は、弾性膨張体32の空気排出時の伸長する力等を考慮して決められる。また、図4に示すように、規制繊維32Bは、筒本体32Aの伸長する力を考慮して筒本体32Aの壁厚内に配置され、本実施例では複数の層の積層で密に内挿され、筒本体32Aの軸方向に沿って延在するものを示すが、単層でもよい。規制繊維32Bの材質としては、例えばグラスロービング繊維やカーボンロービング繊維等、軸方向への伸びの少ない材質が好適である。   The elastic expansion body 32 is a cylindrical member that covers the outer periphery of the inner cylinder 31, and is disposed so as to surround the entire outer peripheral surface of the inner cylinder 31. FIG. 4 is an exaggerated view of a cut surface obtained by cutting the elastic expansion body 32 in the thickness direction. As shown in the figure, the elastic expansion body 32 includes a cylindrical tube body 32A formed of an elastic body, and a plurality of regulating fibers 32B that are densely inserted inside the tube body 32A. . As the material of the cylinder main body 32A, synthetic rubber such as silicone rubber or natural rubber such as natural latex rubber is preferable, but the shape of the cylinder main body 32A can be changed by supplying and discharging compressed air to the airtight chamber S described later. Any material may be used, and the thickness and the arrangement of the regulating fibers described later are determined in consideration of the extending force of the elastic expansion body 32 when the air is discharged. Further, as shown in FIG. 4, the regulating fiber 32B is disposed within the wall thickness of the cylinder main body 32A in consideration of the extending force of the cylinder main body 32A. In this embodiment, the restriction fibers 32B are densely interpolated by stacking a plurality of layers. However, although it shows what extends along the axial direction of the cylinder main body 32A, it may be a single layer. As a material of the regulation fiber 32B, a material with little elongation in the axial direction, such as a glass roving fiber and a carbon roving fiber, is preferable.

弾性膨張体32の両端部は、それぞれフランジ33;34の外周面に形成された環状溝35と対応する位置でピアノ線等の括り部材39によって強固かつ気密を有するように固定される。これにより、フランジ33;34を介して密閉された内筒31の外周面及び弾性膨張体32の内周面によって密閉空間としての気密室Sが形成される。この気密室S内には、後述の空気供給装置60から圧縮空気が供給される。一方のフランジ34には、後述の空気供給装置60から供給される圧縮空気を気密室Sに流通可能、若しくは、気密室Sの空気を排出可能とする切替弁40が設けられている。   Both end portions of the elastic expansion body 32 are fixed so as to be strong and airtight by a constricting member 39 such as a piano wire at a position corresponding to the annular groove 35 formed on the outer peripheral surface of each of the flanges 33 and 34. Thereby, an airtight chamber S as a sealed space is formed by the outer peripheral surface of the inner cylinder 31 and the inner peripheral surface of the elastic expansion body 32 which are sealed via the flanges 33 and 34. Compressed air is supplied into the airtight chamber S from an air supply device 60 described later. One flange 34 is provided with a switching valve 40 that allows compressed air supplied from an air supply device 60 described later to flow through the airtight chamber S or discharges air from the airtight chamber S.

図5は、切替弁40の拡大断面図である。同図に示すように、切替弁40は、フランジ34の端面34b側の内周において膨出するように形成された膨出部34Jに設けられる。切替弁40は、空気供給装置60から延長するチューブ50を接続する接続部41、気密室Sに供給する圧縮空気が流入する流入路42と、流入路に流入した空気を気密室Sに供給するとともに気密室Sの空気を排出する給排路45と、給排路45から排気された空気を大気中に放出する放出路46と、流入路42、給排路45及び放出路46とが連通する切替室43と、切替室43内を移動可能に設けられた弁体44とを備える。   FIG. 5 is an enlarged cross-sectional view of the switching valve 40. As shown in the figure, the switching valve 40 is provided in a bulging portion 34J formed so as to bulge in the inner periphery of the flange 34 on the end surface 34b side. The switching valve 40 supplies the airtight chamber S with the connection portion 41 that connects the tube 50 extending from the air supply device 60, the inflow passage 42 into which the compressed air supplied to the airtight chamber S flows, and the air that has flowed into the inflow passage. At the same time, the supply / exhaust passage 45 for discharging the air in the airtight chamber S, the discharge passage 46 for releasing the air exhausted from the supply / exhaust passage 45 into the atmosphere, and the inflow passage 42, the supply / discharge passage 45 and the discharge passage 46 communicate with each other. And a valve body 44 that is movably provided in the switching chamber 43.

接続部41は、一端が膨出部34Jを形成する端面34b側の壁面40bに開口し、他端が当該壁面40bから端面34aに向けて延長する孔として形成される。接続部41は、チューブ50の外周が嵌着する筒面41Aと、チューブ50の端面が突き当たる突当面41Bとを備える。接続部41の突当面41Bは、当該突当面41Bにチューブ50の端部が突き当たるようにチューブ50を筒面41Aに挿入したときに、突当面41Bの内周がチューブ50の内周よりも内側にはみ出さないような環状に形成される。   The connection portion 41 is formed as a hole having one end opening in the wall surface 40b on the end surface 34b side forming the bulging portion 34J and the other end extending from the wall surface 40b toward the end surface 34a. The connecting portion 41 includes a cylindrical surface 41A on which the outer periphery of the tube 50 is fitted, and an abutting surface 41B on which the end surface of the tube 50 abuts. The abutting surface 41B of the connecting portion 41 is such that the inner periphery of the abutting surface 41B is inward of the inner periphery of the tube 50 when the tube 50 is inserted into the cylindrical surface 41A so that the end of the tube 50 abuts against the abutting surface 41B. It is formed in an annular shape that does not protrude.

流入路42は、接続部41の孔と連続かつ同軸上に延長するように設けられる。具体的には、接続部41側から端面34a側に向けて漸次拡径する円錐孔として形成される。すなわち、流入路42は、小径側の端部が接続部41に開口し、大径側が切替室43に開口する。   The inflow passage 42 is provided so as to extend continuously and coaxially with the hole of the connection portion 41. Specifically, it is formed as a conical hole whose diameter gradually increases from the connecting portion 41 side toward the end face 34a side. That is, the inflow path 42 has an end portion on the small diameter side that opens to the connection portion 41, and a large diameter side that opens to the switching chamber 43.

切替室43は、上述の内筒嵌着部36の突当面36Bを構成する壁部34Kと流入路42との間に設けられる。切替室43は、流入路42の軸線と同軸に延長する円筒状の空間として形成される。切替室43の周面は、流入路42側が円筒面43b、壁部34K側が円錐面43aとして形成される。   The switching chamber 43 is provided between the wall portion 34 </ b> K constituting the abutting surface 36 </ b> B of the inner cylinder fitting portion 36 and the inflow path 42. The switching chamber 43 is formed as a cylindrical space extending coaxially with the axis of the inflow passage 42. The peripheral surface of the switching chamber 43 is formed as a cylindrical surface 43b on the inflow passage 42 side and a conical surface 43a on the wall 34K side.

弁体44は、切替室43の周面を摺動するように、切替室43の軸線に沿って移動可能な中実円柱状の柱体として設けられる。弁体44の外周面は、壁部34K側が切替室43の円錐面43aと同形状の円錐面44a、他端側が流入路42の円錐面42cと同形状の円錐面44c、一端側及び他端側の間の中途部が切替室43の円筒面43bと同形状の円筒面44bとなるように形成される。弁体44は、円錐面44a側の端面から軸線方向に沿って円柱状に窪む凹部48を備える。凹部48は、後述の付勢手段47を収容可能な大きさに設けられる。具体的には、付勢手段47を稠密となるように押し縮めたときの長さよりも深くなるように窪み深さが設定される。なお、弁体44の外周面と切替室43の周面との間には所定の隙間寸法が設定される。   The valve body 44 is provided as a solid cylindrical column that is movable along the axis of the switching chamber 43 so as to slide on the peripheral surface of the switching chamber 43. The outer peripheral surface of the valve body 44 has a conical surface 44a having the same shape as the conical surface 43a of the switching chamber 43 on the wall 34K side, a conical surface 44c having the same shape as the conical surface 42c of the inflow passage 42, one end side and the other end. A midway portion between the two sides is formed to be a cylindrical surface 44 b having the same shape as the cylindrical surface 43 b of the switching chamber 43. The valve body 44 includes a recess 48 that is recessed in a cylindrical shape along the axial direction from the end surface on the conical surface 44a side. The recess 48 is provided in a size that can accommodate an urging means 47 described later. Specifically, the recess depth is set so as to be deeper than the length when the urging means 47 is compressed to be dense. A predetermined gap size is set between the outer peripheral surface of the valve body 44 and the peripheral surface of the switching chamber 43.

給排路45は、突当面36Bと環状溝35との間において、一端がフランジ34の外周に開口し、他端が上記切替室43に開口する貫通孔としてフランジ34の周壁34Aに設けられる。具体的には、給排路45は、弁体44が切替室43内を移動して、壁部34Kに当接するように位置するときや、流入路42を塞ぐように位置しても、弁体44により塞がれない位置で切替室43に開口するように設けられる。
放出路46は、一端がフランジ34における内筒31の内周側に開口し、他端が切替室43に開口する貫通孔として設けられる。同図に示すように、放出路46は、一端が膨出部34Jを構成する内周側の壁面40cに開口し、他端が切替室43の円錐面43aに開口するように形成される。したがって、放出路46は、弁体44が切替室43内を移動して、流入路42を塞ぐように位置したときに開口し、壁部34Kに当接するように位置するときには弁体44により閉鎖されるように設けられる。具体的には、図5の部分拡大図に示すように、切替室43の円錐面43aに弁体44の円錐面44aが合致するように壁部34K側に移動した際に、弁体44の円錐面44aが、円錐面43aに開口する放出路46の開口縁46aに密着することにより、放出路46を閉鎖する。
付勢手段47は、例えば、圧縮コイルスプリングからなり、一端が膨出部34Jを画成する壁部34Kに着座し、他端が上記弁体44の凹部48の底面48aに着座するように設けられる。すなわち、付勢手段47は、流入路42に流入した圧縮空気が弁体44を押圧する押圧力に拮抗するように弁体を付勢し、弁体44に常時、流入路42側に向けて付勢力を作用させる。
すなわち、上記構成の切替弁40は、流入路42に流入した圧縮空気の押圧力が付勢手段47による付勢力に勝るときに、弁体44を壁部34K側に移動させて弁体44の円錐面44aが切替室43の円錐面43aに嵌まりながら放出路46の開口縁46aに密着することにより、流入路42から流入した圧縮空気の漏れを防ぐ封止部を構成して、給排路45と放出路46との連通を遮断する。また、切替弁40は、弁体44に作用する付勢手段47による付勢力が流入路42に流入した圧縮空気の押圧力に勝るときに、弁体44を流入路42側に移動させて弁体44の円錐面44cが流入路42の円錐面42cに嵌ることにより、流入路42への空気の流出を防ぐ封止部を構成して、給排路45と放出路46との連通を開放する。
The supply / discharge passage 45 is provided in the peripheral wall 34 </ b> A of the flange 34 as a through hole having one end opened to the outer periphery of the flange 34 and the other end opened to the switching chamber 43 between the abutting surface 36 </ b> B and the annular groove 35. Specifically, the supply / exhaust passage 45 is a valve even when the valve body 44 moves in the switching chamber 43 and is positioned so as to contact the wall portion 34K or closes the inflow passage 42. It is provided so as to open to the switching chamber 43 at a position not blocked by the body 44.
The discharge path 46 is provided as a through hole having one end opened to the inner peripheral side of the inner cylinder 31 in the flange 34 and the other end opened to the switching chamber 43. As shown in the figure, the discharge path 46 is formed such that one end opens to the inner peripheral wall surface 40 c constituting the bulging portion 34 J and the other end opens to the conical surface 43 a of the switching chamber 43. Accordingly, the discharge passage 46 is opened when the valve body 44 moves in the switching chamber 43 and is positioned so as to close the inflow passage 42, and is closed by the valve body 44 when positioned so as to contact the wall portion 34 </ b> K. To be provided. Specifically, as shown in the partially enlarged view of FIG. 5, when the valve body 44 moves to the wall 34 </ b> K side so that the conical surface 44 a of the valve body 44 matches the conical surface 43 a of the switching chamber 43. The conical surface 44a closes the discharge passage 46 by being in close contact with the opening edge 46a of the discharge passage 46 opening in the conical surface 43a.
The urging means 47 is made of, for example, a compression coil spring, and is provided so that one end is seated on the wall portion 34K defining the bulging portion 34J and the other end is seated on the bottom surface 48a of the recess 48 of the valve body 44. It is done. That is, the urging means 47 urges the valve body so that the compressed air that has flowed into the inflow path 42 antagonizes the pressing force that presses the valve body 44, and always directs the valve body 44 toward the inflow path 42. Apply urging force.
That is, the switching valve 40 configured as described above moves the valve body 44 toward the wall 34K side when the pressing force of the compressed air flowing into the inflow path 42 exceeds the urging force of the urging means 47. The conical surface 44a fits into the conical surface 43a of the switching chamber 43 while closely contacting the opening edge 46a of the discharge passage 46, thereby forming a sealing portion that prevents leakage of compressed air flowing from the inflow passage 42. The communication between the path 45 and the discharge path 46 is blocked. The switching valve 40 moves the valve body 44 toward the inflow path 42 when the urging force of the urging means 47 acting on the valve body 44 exceeds the pressing force of the compressed air flowing into the inflow path 42. The conical surface 44c of the body 44 fits into the conical surface 42c of the inflow path 42, thereby forming a sealing portion that prevents the outflow of air to the inflow path 42, thereby opening the communication between the supply / discharge path 45 and the discharge path 46. To do.

図6(a),(b)は、切替弁40の動作を示す図である。以下、図5,図6を用いて切替弁40の空気の切替動作について説明する。図5における切替弁40の状態は、チューブ50から圧縮空気が供給されていない初期状態を示している。この初期状態における弁体44は、付勢手段47の付勢力により流入路42側に押圧されて、流入路42の開口を閉鎖した状態にある。一方で、給排路45と放出路46とは、切替室43を介して連通した状態にあるため、気密室S内は、給排路45、切替室43、放出路46及び内筒31の内側空間を介して大気開放された状態にある。つまり、給排路45と放出路46とが連通したときの気密室S内の圧力は大気圧となる。   6A and 6B are diagrams illustrating the operation of the switching valve 40. FIG. Hereinafter, the air switching operation of the switching valve 40 will be described with reference to FIGS. 5 and 6. The state of the switching valve 40 in FIG. 5 shows an initial state in which compressed air is not supplied from the tube 50. The valve body 44 in this initial state is pressed toward the inflow passage 42 by the urging force of the urging means 47 and is in a state where the opening of the inflow passage 42 is closed. On the other hand, since the supply / discharge passage 45 and the discharge passage 46 are in communication with each other via the switching chamber 43, the airtight chamber S includes the supply / discharge passage 45, the switching chamber 43, the discharge passage 46, and the inner cylinder 31. It is in a state of being exposed to the atmosphere through the inner space. That is, the pressure in the airtight chamber S when the supply / discharge passage 45 and the discharge passage 46 communicate with each other is atmospheric pressure.

図6(a)は、伸縮ユニット30に圧縮空気が供給されたときの状態を示す図である。同図に示すように、圧縮空気が流入路42から流入することにより、圧縮空気が付勢手段47の付勢力と逆向きに弁体44を押圧する。圧縮空気により押圧された弁体44は、付勢手段47を圧縮しつつ壁部34Kに接触するまで移動する。この移動により弁体44の円錐面44aが切替室43の円錐面43aに開口する放出路46の開口縁46cに密着して給排路45と放出路46との連通を閉鎖するとともに、流入路42と給排路45とが切替室43を介して連通して気密室Sに圧縮空気が流入する。気密室Sに圧縮空気が流入することにより、弾性膨張体32は、規制繊維32Bが弾性膨張体32の軸方向への膨張を規制する一方で、径方向への膨張を許容するため、フランジ33;34を引き寄せるように作用して伸縮ユニット30としての軸線方向の長さを短縮させる。   FIG. 6A is a diagram illustrating a state when compressed air is supplied to the expansion / contraction unit 30. As shown in the figure, when compressed air flows from the inflow passage 42, the compressed air presses the valve body 44 in the direction opposite to the urging force of the urging means 47. The valve body 44 pressed by the compressed air moves until it contacts the wall 34K while compressing the biasing means 47. By this movement, the conical surface 44a of the valve body 44 comes into close contact with the opening edge 46c of the discharge passage 46 that opens to the conical surface 43a of the switching chamber 43, and the communication between the supply / discharge passage 45 and the discharge passage 46 is closed. 42 and the supply / discharge path 45 communicate with each other via the switching chamber 43, and the compressed air flows into the airtight chamber S. When the compressed air flows into the airtight chamber S, the elastic expansion body 32 allows the expansion of the elastic expansion body 32 in the radial direction while the restriction fiber 32B restricts the expansion of the elastic expansion body 32 in the axial direction. ; Acts to draw 34, and shortens the length of the telescopic unit 30 in the axial direction.

図6(b)は、伸縮ユニット30に圧縮空気の供給が停止したときの状態を示す図である。同図に示すように、圧縮空気の流入が停止することにより、付勢手段47が弁体44を壁部34K側から流入路42側へと押圧する。付勢手段47により押圧された弁体44は、壁部34K側から流入路42側へと移動する。この移動により弁体44の円錐面44cが流入路42の円錐面42cに嵌まり封止部を形成して、流入路42と給排路45との連通を閉鎖するとともに、給排路45と放出路46とが切替室43を介して連通し、気密室Sの空気が内筒31の内側空間に排出される。気密室Sの空気は、当該気密室Sにおける空気の圧力とともに弾性膨張体32の復元力に押圧されて、給排路45、切替室43、放出路46を経て内筒31の内側空間に放出される。気密室Sの空気が排出されることで、弾性膨張体32が径方向に収縮し、弾性膨張体32の規制繊維32Bの規制により引き寄せられていたフランジ33;34が互いに離間するように作用して伸縮ユニット30としての軸線方向の長さが伸長する。   FIG. 6B is a diagram illustrating a state when the supply of compressed air to the telescopic unit 30 is stopped. As shown in the figure, when the inflow of compressed air stops, the urging means 47 presses the valve body 44 from the wall 34K side to the inflow path 42 side. The valve body 44 pressed by the urging means 47 moves from the wall 34K side to the inflow path 42 side. By this movement, the conical surface 44c of the valve body 44 fits into the conical surface 42c of the inflow passage 42 to form a sealing portion, and the communication between the inflow passage 42 and the supply / exhaust passage 45 is closed. The discharge path 46 communicates with the switching chamber 43, and the air in the airtight chamber S is discharged into the inner space of the inner cylinder 31. The air in the airtight chamber S is pressed by the restoring force of the elastic expansion body 32 together with the pressure of the air in the airtight chamber S, and is discharged into the inner space of the inner cylinder 31 through the supply / discharge passage 45, the switching chamber 43, and the discharge passage 46. Is done. When the air in the airtight chamber S is discharged, the elastic expansion body 32 contracts in the radial direction, and the flanges 33 and 34 attracted by the restriction of the restriction fiber 32B of the elastic expansion body 32 act so as to be separated from each other. Thus, the length in the axial direction of the expansion / contraction unit 30 is extended.

本実施形態に係る推進装置3を構成する伸縮ユニット30は、圧縮空気の供給により軸方向に収縮し、圧縮空気の排出により軸方向に伸長する。すなわち、切替弁40は、チューブ50を介して流入する空気の圧力に応じて動作が制御され、本実施形態に係る切替弁40は、電気的な信号の入力を不要とするため、防爆性を確保することができる。   The telescopic unit 30 constituting the propulsion device 3 according to the present embodiment contracts in the axial direction by supplying compressed air, and extends in the axial direction by discharging compressed air. That is, the operation of the switching valve 40 is controlled according to the pressure of the air flowing in through the tube 50, and the switching valve 40 according to the present embodiment does not require the input of an electrical signal, and therefore has an explosion-proof property. Can be secured.

上述の伸縮ユニット30(30A乃至30D)は、図7に示す連結体55により連結される。連結体55は、円筒体例えば樹脂や硬質のゴムにより構成された円筒体からなり、両端側の外周に、フランジ33;34の内周に形成された複数の切欠き37Bに対応する複数の係合片56が設けられる。係合片56は、連結体55の円周方向に沿って所定長さの円弧状に延在するように外周面に突設される。連結体55は、係合片56を連結部37の切欠き37Bに一致させて押し込み、内周溝37Aに沿って回転させることで、伸縮ユニット30同士を連結する。なお、各伸縮ユニット30は、切替弁40を有するフランジ34が後側に位置するように連結体55により連結され、環体内移動体を構成する(図1参照)。   The telescopic units 30 (30A to 30D) described above are connected by a connecting body 55 shown in FIG. The connecting body 55 is formed of a cylindrical body, for example, a cylindrical body made of resin or hard rubber, and has a plurality of engagements corresponding to a plurality of notches 37B formed on the inner periphery of the flanges 33; A mating piece 56 is provided. The engagement piece 56 projects from the outer peripheral surface so as to extend in a circular arc shape having a predetermined length along the circumferential direction of the coupling body 55. The coupling body 55 pushes the engagement piece 56 in alignment with the notch 37 </ b> B of the coupling portion 37 and couples the expansion units 30 by rotating along the inner circumferential groove 37 </ b> A. In addition, each expansion-contraction unit 30 is connected by the connection body 55 so that the flange 34 which has the switching valve 40 may be located in the back side, and comprises a moving body within a ring (refer FIG. 1).

図1に示すように、連結体55により連結された伸縮ユニット30A乃至30Dは、個別にチューブ50A乃至50Dにより空気供給装置60と接続される。
チューブ50(50A乃至50D)は、複数の伸縮ユニット30A〜30Dに対して独立して圧縮空気を供給する流路を構成するものであって、例えばポリ塩化ビニル等の可撓性を有するホースが適用される。好ましくは、内部を流通する空気の圧力の変化によって、潰れや膨らみが生じたりしない耐圧のチューブを用いると良い。
As shown in FIG. 1, the expansion / contraction units 30A to 30D connected by the connecting body 55 are individually connected to the air supply device 60 by tubes 50A to 50D.
Tube 50 (50A thru | or 50D) comprises the flow path which supplies compressed air independently with respect to several expansion-contraction units 30A-30D, Comprising: For example, the hose which has flexibility, such as a polyvinyl chloride, is used. Applied. It is preferable to use a pressure-resistant tube that is not crushed or swollen due to a change in the pressure of the air flowing inside.

空気供給装置60は、管9の外部に設けられ、伸縮ユニット30に供給する圧縮空気を生成する圧縮空気生成装置61と、圧縮空気生成装置61により生成された圧縮空気を各伸縮ユニット30に個別に分配する分配装置62とを備える。
圧縮空気生成装置61には、例えば、図示しない圧縮機及び蓄圧器を有するコンプレッサーを適用する。圧縮空気生成装置61では、圧縮機が圧縮した空気を蓄圧器内の圧力が所定圧になるまで供給する。蓄圧器に蓄圧された空気は、レギュレータ63を介して分配装置62に供給される。レギュレータ63は、各伸縮ユニット30(30A乃至30D)に設けられた付勢手段47の付勢力よりも大きな力が弁体44に作用するように、各伸縮ユニット30(30A乃至30D)に供給する圧縮空気の圧力を調圧する。
The air supply device 60 is provided outside the pipe 9 and generates compressed air to be supplied to the expansion and contraction unit 30. The compressed air generated by the compressed air generation device 61 is individually supplied to each expansion and contraction unit 30. And a distribution device 62 that distributes to each other.
For example, a compressor having a compressor and an accumulator (not shown) is applied to the compressed air generation device 61. In the compressed air generation device 61, the air compressed by the compressor is supplied until the pressure in the accumulator reaches a predetermined pressure. The air accumulated in the accumulator is supplied to the distribution device 62 via the regulator 63. The regulator 63 supplies each expansion / contraction unit 30 (30A to 30D) so that a force larger than the urging force of the urging means 47 provided in each expansion / contraction unit 30 (30A to 30D) acts on the valve body 44. Adjust the pressure of compressed air.

分配装置62は、供給された圧縮空気を各伸縮ユニット30に分配する分配器64と、分配器64から各伸縮ユニット30に圧縮空気を分配するタイミング及び供給時間を制御する制御装置65とを備える。分配器64は、例えば複数の電磁弁66で構成される。電磁弁66は、それぞれレギュレータ63で調圧された圧縮空気が入力される入力ポート67と、入力ポート67に入力された圧縮空気を伸縮ユニット30に出力する出力ポート68と、出力ポート68内の空気を排気する排気ポート69とを備える。入力ポート67にはレギュレータ63で調圧された圧縮空気が分配管70を介して接続される。   The distribution device 62 includes a distributor 64 that distributes the supplied compressed air to each expansion / contraction unit 30, and a control device 65 that controls the timing and supply time for distributing the compressed air from the distribution device 64 to each expansion / contraction unit 30. . The distributor 64 includes, for example, a plurality of electromagnetic valves 66. The electromagnetic valve 66 includes an input port 67 to which the compressed air regulated by the regulator 63 is input, an output port 68 that outputs the compressed air input to the input port 67 to the expansion / contraction unit 30, and an output port 68. And an exhaust port 69 for exhausting air. Compressed air regulated by the regulator 63 is connected to the input port 67 via a distribution pipe 70.

出力ポート68には、伸縮ユニット30から延長するチューブ50(50A乃至50D)が接続される。排気ポート69は、大気解放される。電磁弁66は、制御装置65から出力された信号に基づいて動作し、例えば、信号が入力されたときには、入力ポート67と出力ポート68との連通を開放するとともに出力ポート68と排気ポート69との連通を遮断する。また、信号が入力されないときには、入力ポート67と出力ポート68との連通を遮断するとともに出力ポート68と排気ポート69との連通を開放する。これにより、出力ポート68に接続されたチューブ50内の空気が、排気ポート69から排気される。なお、分配器64は、伸縮ユニット30の数量に対応する数量の電磁弁を備えている。   A tube 50 (50A to 50D) extending from the expansion / contraction unit 30 is connected to the output port 68. The exhaust port 69 is released to the atmosphere. The electromagnetic valve 66 operates based on a signal output from the control device 65. For example, when a signal is input, the communication between the input port 67 and the output port 68 is opened and the output port 68 and the exhaust port 69 are connected. Block communication. When no signal is input, the communication between the input port 67 and the output port 68 is blocked and the communication between the output port 68 and the exhaust port 69 is opened. As a result, the air in the tube 50 connected to the output port 68 is exhausted from the exhaust port 69. The distributor 64 includes a number of solenoid valves corresponding to the number of the expansion / contraction units 30.

制御装置65は、各電磁弁66(66A乃至66D)と個別に電気的に接続される。制御装置65は、演算処理手段としてのCPU、RAM,ROMなどの記憶手段、入出力ポート等の入出力手段などのハードウェアを備えるコンピュータであって、ROMに記憶させたプログラムをCPUで演算処理することでプログラムに書かれた制御信号を図示しない出力ポートから電磁弁66(66A乃至66D)に個別に信号を出力する。制御装置65から電磁弁66(66A乃至66D)に出力される信号には、収縮信号、収縮維持信号が出力され、各信号に基づいて電磁弁66(66A乃至66D)の動作を制御する。
収縮信号は、弾性膨張体32の外周面が管9の内壁面に到達するまで気密室Sに圧縮空気を供給する信号である。また、収縮維持信号は、管9の内壁面に到達した弾性膨張体32がその状態を維持する信号である。
The control device 65 is individually electrically connected to each electromagnetic valve 66 (66A to 66D). The control device 65 is a computer having hardware such as a CPU as a calculation processing means, a storage means such as a RAM and a ROM, and an input / output means such as an input / output port, and the CPU stores a program stored in the ROM. As a result, the control signals written in the program are individually output to the solenoid valves 66 (66A to 66D) from an output port (not shown). A contraction signal and a contraction maintenance signal are output as signals output from the control device 65 to the electromagnetic valves 66 (66A to 66D), and the operation of the electromagnetic valves 66 (66A to 66D) is controlled based on the signals.
The contraction signal is a signal for supplying compressed air to the hermetic chamber S until the outer peripheral surface of the elastic expansion body 32 reaches the inner wall surface of the tube 9. The contraction maintenance signal is a signal for maintaining the state of the elastic expansion body 32 that has reached the inner wall surface of the tube 9.

制御装置65の記憶手段には、推進装置3を動作させる複数の動作プログラムが記憶される。例えば、図8に示すような動作パターンAの動作を実行させる動作プログラムを記憶する。本実施形態では、図8に示すように動作パターンAにより伸縮ユニット30A〜30Dを動作させるものとして説明する。   The storage means of the control device 65 stores a plurality of operation programs for operating the propulsion device 3. For example, an operation program for executing the operation of the operation pattern A as shown in FIG. 8 is stored. In the present embodiment, description will be made assuming that the expansion / contraction units 30A to 30D are operated by the operation pattern A as shown in FIG.

動作パターンAは、推進装置3に図8(a)乃至(d)に示す3つの行程を繰り返し動作させることで蠕動運動を生じさせて管9内を進行させる。
図8(a)は、推進装置3の初期状態を示し、例えば、管9内に推進装置3を配置した状態を示している。このとき、すべての伸縮ユニット30A〜30Dは、伸長状態にある。
In the operation pattern A, the propulsion device 3 is repeatedly operated in the three strokes shown in FIGS. 8A to 8D to generate a peristaltic motion and advance in the tube 9.
FIG. 8A shows an initial state of the propulsion device 3, for example, a state in which the propulsion device 3 is arranged in the pipe 9. At this time, all the expansion units 30A to 30D are in the extended state.

動作パターンAに基づいて推進装置3を駆動する場合、まず、第1行程として、図8(b)に示すように、先頭の伸縮ユニット30Aにのみ圧縮空気を供給するように、電磁弁66Aにのみ収縮信号を出力し、伸縮ユニット30Aの流入路42に圧縮空気を供給する。この圧縮空気の供給により、図6(a)に示すように、伸縮ユニット30Aの切替弁40Aにおける弁体44は付勢手段47を押し縮めながら切替室43内を壁部34K側に移動する。この弁体44の移動により、伸縮ユニット30Aの切替弁40Aの給排路45と放出路46との連通が遮断されるとともに、切替弁40Aの流入路42と給排路45との連通が開放されて伸縮ユニット30Aの気密室Sに圧縮空気が供給される。伸縮ユニット30Aの気密室Sに供給された圧縮空気は、伸縮ユニット30Aの弾性膨張体32の外周面が管9の内壁面に到達するまで伸縮ユニット30Aを収縮させる。   When driving the propulsion device 3 based on the operation pattern A, first, as shown in FIG. 8 (b), the solenoid valve 66A is supplied with compressed air only to the leading telescopic unit 30A as shown in FIG. Only the contraction signal is output, and the compressed air is supplied to the inflow path 42 of the expansion / contraction unit 30A. By supplying this compressed air, as shown in FIG. 6A, the valve body 44 in the switching valve 40 </ b> A of the expansion / contraction unit 30 </ b> A moves inside the switching chamber 43 toward the wall 34 </ b> K while pressing and contracting the urging means 47. By the movement of the valve body 44, the communication between the supply / discharge path 45 and the discharge path 46 of the switching valve 40A of the expansion / contraction unit 30A is blocked, and the communication between the inflow path 42 and the supply / discharge path 45 of the switching valve 40A is opened. Then, the compressed air is supplied to the airtight chamber S of the expansion / contraction unit 30A. The compressed air supplied to the airtight chamber S of the expansion / contraction unit 30A contracts the expansion / contraction unit 30A until the outer peripheral surface of the elastic expansion body 32 of the expansion / contraction unit 30A reaches the inner wall surface of the tube 9.

次に、図8(c)に示すように、第2工程に移行して、伸縮ユニット30Aの収縮状態を維持するように電磁弁66Aに収縮維持信号を出力するとともに、伸縮ユニット30B〜30Dを収縮させるように残りの電磁弁66B乃至66Dすべてに収縮信号を出力して伸縮ユニット30B乃至30Dの切替弁40B乃至40Dの各流入路42に圧縮空気を供給する。この圧縮空気の供給により、図6(a)に示すように、伸縮ユニット30B乃至30Dの切替弁40B乃至40Dにおける弁体44は、付勢手段47を押し縮めながら切替室43内を壁部34K側に移動する。この弁体44の移動により、伸縮ユニット30B乃至30Dの切替弁40B乃至40Dそれぞれの給排路45と放出路46との連通が遮断されるとともに、切替弁40B乃至40Dそれぞれの流入路42と給排路45との連通が開放されて伸縮ユニット30B乃至30Dの各気密室Sに圧縮空気が供給される。伸縮ユニット30B乃至30Dの気密室Sに供給された圧縮空気は、伸縮ユニット30B乃至30Dの各弾性膨張体32の外周面が管9の内壁面に到達するまで伸縮ユニット30B乃至30Dを収縮させる。つまり、すべての伸縮ユニット30A乃至30Dが収縮状態となる。   Next, as shown in FIG. 8C, the process proceeds to the second step, and a contraction maintaining signal is output to the electromagnetic valve 66A so as to maintain the contracted state of the expandable unit 30A, and the extendable units 30B to 30D are moved. A contraction signal is output to all the remaining electromagnetic valves 66B to 66D so as to contract, and compressed air is supplied to the inflow passages 42 of the switching valves 40B to 40D of the expansion units 30B to 30D. With this supply of compressed air, as shown in FIG. 6A, the valve body 44 in the switching valves 40B to 40D of the expansion / contraction units 30B to 30D moves inside the switching chamber 43 through the wall portion 34K while pressing and contracting the urging means 47. Move to the side. By the movement of the valve body 44, the communication between the supply / discharge passage 45 and the discharge passage 46 of each of the switching valves 40B to 40D of the expansion / contraction units 30B to 30D is interrupted, and the supply to the inflow passage 42 of each of the switching valves 40B to 40D. Communication with the exhaust passage 45 is released, and compressed air is supplied to the airtight chambers S of the expansion units 30B to 30D. The compressed air supplied to the airtight chamber S of the expansion units 30B to 30D contracts the expansion units 30B to 30D until the outer peripheral surface of each elastic expansion body 32 of the expansion units 30B to 30D reaches the inner wall surface of the tube 9. That is, all the expansion units 30A to 30D are in the contracted state.

次に、図8(d)に示すように、第3工程に移行して、最後尾の伸縮ユニット30Dの収縮状態を電磁弁66Dにのみ収縮維持信号を出力するとともに、伸縮ユニット30A〜30Cを伸長させるように電磁弁66A乃至66Cへの収縮維持信号及び収縮信号を停止して伸縮ユニット30A〜30Cへの圧縮空気の供給を停止する。この圧縮空気の供給停止により、図6(b)に示すように、伸縮ユニット30A乃至30Cの各切替弁40A乃至40Cにおける弁体44は、付勢手段47の付勢力により押圧されて切替室43内を流入路42側に移動する。この弁体44の移動により、伸縮ユニット30A乃至30Cの切替弁40A乃至40Cそれぞれの流入路42と給排路45との連通が遮断されるとともに、切替弁40A乃至40Cそれぞれの給排路45と放出路46との連通が開放されて伸縮ユニット30A乃至30Cの各気密室S内の空気が、切替弁40A乃至40Cの給排路45,切替室43,放出路46を経て内筒31内に排気される。この伸縮ユニット30A乃至30Cの各気密室S内の空気の排気により、伸縮ユニット30A乃至30Cを伸長させる。
動作パターンAでは、上記第1行程から第3行程までを1サイクルとし、このサイクルを繰り返すことで推進装置3が進行する。すなわち、1サイクル目の終了後に、2サイクル目の第1行程において伸縮ユニット30Aが膨張し、この第1行程を足掛かりとして2サイクル目の推進力が得られることから、各サイクルにおける実質的な移動距離は、第3工程における伸縮ユニット30B及び伸縮ユニット30Cの伸長分となる。
図8(b)乃至(d)で示した伸縮ユニット30A〜30Dの伸縮動作、すなわち、空気供給装置60から各伸縮ユニット30A〜30Dの各気密室Sへの圧縮空気の給排は、圧縮空気の供給の有無に基づいて切替弁40により制御される。
Next, as shown in FIG. 8D, the process proceeds to the third step, and the contraction state of the last expansion unit 30D is output only to the electromagnetic valve 66D, and the expansion units 30A to 30C are output. The contraction maintenance signal and contraction signal to the electromagnetic valves 66A to 66C are stopped so as to extend, and the supply of compressed air to the expansion units 30A to 30C is stopped. By stopping the supply of compressed air, as shown in FIG. 6B, the valve bodies 44 in the switching valves 40A to 40C of the expansion / contraction units 30A to 30C are pressed by the urging force of the urging means 47, and the switching chamber 43 It moves to the inflow path 42 side. By the movement of the valve body 44, the communication between the inflow path 42 and the supply / discharge path 45 of each of the switching valves 40A to 40C of the expansion / contraction units 30A to 30C is blocked, and the supply / discharge path 45 of each of the switching valves 40A to 40C The communication with the discharge path 46 is released, and the air in each of the airtight chambers S of the expansion units 30A to 30C passes through the supply / discharge path 45, the switching chamber 43, and the discharge path 46 of the switching valves 40A to 40C and enters the inner cylinder 31. Exhausted. The expansion units 30A to 30C are extended by exhausting the air in the airtight chambers S of the expansion units 30A to 30C.
In the operation pattern A, the first to third strokes are defined as one cycle, and the propulsion device 3 proceeds by repeating this cycle. That is, after the end of the first cycle, the expansion / contraction unit 30A expands in the first stroke of the second cycle, and the driving force of the second cycle can be obtained using this first stroke as a foothold. The distance is an extension of the extension unit 30B and the extension unit 30C in the third step.
The expansion / contraction operation of the expansion / contraction units 30A to 30D shown in FIGS. 8B to 8D, that is, the supply / discharge of compressed air from the air supply device 60 to the airtight chambers S of the expansion / contraction units 30A to 30D is performed by compressed air. It is controlled by the switching valve 40 based on the presence or absence of supply.

図9は、推進装置3における空気供給装置60の他の実施形態を示す図である。上記実施形態の空気供給装置60では、伸縮ユニット30に圧縮空気を供給する分配装置62において、分配器64を構成する電磁弁66が、制御装置65から信号が入力されないときには、入力ポート67と出力ポート68との連通を遮断するとともに出力ポート68と排気ポート69との連通を開放して出力ポート68に連結されるチューブ50内の空気を排気ポート69から大気開放するものとして説明したが、図9に示すように、空気供給装置60に減圧装置80を設けて、減圧装置80と排気ポート69とをチューブ81により接続しても良い。すなわち、伸縮ユニット30への圧縮空気の供給を停止するように電磁弁66を動作させて、大気開放された排気ポート69に出力ポート68を連通することで、チューブ50内における内圧を開放する場合、移動距離が長くなるようにチューブ50の長さを長くすると、圧縮空気の供給が停止しているにもかかわらず、チューブ50内の空気の残圧が、付勢手段による弁体44の流入路42側への移動を妨げ、気密室S内の空気の排出開始に遅れが生じる場合がある。このような場合には、図9に示すように排気ポート69に減圧装置80を接続しておき、チューブ50内の空気を強制的に排気することで、付勢手段47の押圧力により弁体をスムーズに流入路42側に移動させて気密室S内の空気を放出路46から排出させることにより、伸縮ユニット30の伸縮速度を向上させることができる。なお、減圧装置80は、排気ポート69に接続するとして説明したが、チューブ50に連通させて、チューブ50への圧縮空気の供給が停止した場合に、チューブ50内の空気を排出可能であればチューブ81をいずれに接続しても良い。   FIG. 9 is a diagram showing another embodiment of the air supply device 60 in the propulsion device 3. In the air supply device 60 of the above embodiment, in the distribution device 62 that supplies compressed air to the expansion / contraction unit 30, when the electromagnetic valve 66 constituting the distributor 64 does not receive a signal from the control device 65, the input port 67 and the output are output. Although the communication with the port 68 is cut off, the communication between the output port 68 and the exhaust port 69 is opened, and the air in the tube 50 connected to the output port 68 is released from the exhaust port 69 to the atmosphere. As shown in FIG. 9, a decompression device 80 may be provided in the air supply device 60, and the decompression device 80 and the exhaust port 69 may be connected by a tube 81. That is, when the solenoid valve 66 is operated so as to stop the supply of compressed air to the telescopic unit 30 and the output port 68 is connected to the exhaust port 69 opened to the atmosphere, the internal pressure in the tube 50 is released. When the length of the tube 50 is increased so that the moving distance becomes longer, the residual pressure of the air in the tube 50 is caused to flow into the valve body 44 by the urging means even though the supply of compressed air is stopped. The movement to the path 42 side may be hindered, and there may be a delay in the start of air discharge in the airtight chamber S. In such a case, as shown in FIG. 9, a pressure reducing device 80 is connected to the exhaust port 69, and the air in the tube 50 is forcibly exhausted, whereby the valve body is pressed by the pressing force of the urging means 47. Is smoothly moved to the inflow path 42 side, and the air in the airtight chamber S is discharged from the discharge path 46, whereby the expansion / contraction speed of the expansion / contraction unit 30 can be improved. The decompression device 80 has been described as being connected to the exhaust port 69. However, if the compressed air is supplied to the tube 50 and the supply of compressed air to the tube 50 is stopped, the air in the tube 50 can be discharged. The tube 81 may be connected to either.

図10は、切替弁40の他の実施形態を示す図である。上記実施形態では、切替室43を円筒状の空間として形成し、当該切替室43を移動可能に弁体44を柱状に構成したが、図10に示すように、弁体44を平板状に構成し、当該平板状の弁体44により流入路42又は放出路46を塞ぐように構成しても良い。すなわち、弁体44を流入路42及び放出路46を閉塞可能な弁部44Aと、弁部44Aによる流入路42又は放出路46の閉塞の切り替えを可能にするヒンジ部44Bとで構成し、弁部44Aが流入路42又は放出路46を閉塞可能な位置にヒンジ部44Bを膨出部34Jに設けるとともに、ヒンジ部44Bの回動軸に付勢手段47としての渦巻きばねを設けて弁部44Aが流入路42に付勢されるように切替弁40を構成しても良い。この場合、図10に示すように、流入路42が切替室43に開口する開口面42aや、放出路46が切替室43に開口する開口縁46aは、平面状に形成するとよい。また、図10に示すように、流入路42が切替室43に開口する開口面42aに対して放出路46が切替室43に開口する開口縁46aを鋭角に設定することにより、確実に放出路46を閉鎖できる。また、流入路42への圧縮空気の供給が停止した際に、弁体44が回転する角度が小さいため、すみやかに流入路42を閉塞して気密室Sの空気を放出路46から排出することが可能となる。   FIG. 10 is a view showing another embodiment of the switching valve 40. In the above embodiment, the switching chamber 43 is formed as a cylindrical space, and the valve body 44 is configured in a column shape so that the switching chamber 43 can be moved. However, as shown in FIG. 10, the valve body 44 is configured in a flat plate shape. However, the inflow passage 42 or the discharge passage 46 may be closed by the flat valve body 44. That is, the valve body 44 includes a valve portion 44A that can close the inflow passage 42 and the discharge passage 46, and a hinge portion 44B that enables switching of the closing of the inflow passage 42 or the discharge passage 46 by the valve portion 44A. The hinge portion 44B is provided on the bulging portion 34J at a position where the portion 44A can close the inflow passage 42 or the discharge passage 46, and a spiral spring as the urging means 47 is provided on the rotating shaft of the hinge portion 44B to provide the valve portion 44A. The switching valve 40 may be configured so as to be urged to the inflow path 42. In this case, as shown in FIG. 10, the opening surface 42 a where the inflow path 42 opens into the switching chamber 43 and the opening edge 46 a where the discharge path 46 opens into the switching chamber 43 may be formed in a planar shape. Further, as shown in FIG. 10, by setting the opening edge 46a at which the discharge path 46 opens to the switching chamber 43 to the opening surface 42a at which the inflow path 42 opens to the switching chamber 43, the discharge path is surely set. 46 can be closed. In addition, when the supply of compressed air to the inflow passage 42 is stopped, the angle at which the valve body 44 rotates is small, so that the inflow passage 42 is immediately closed and the air in the airtight chamber S is discharged from the discharge passage 46. Is possible.

以上説明したとおり、気密室Sへの圧縮空気の給排を、流入路42に供給される圧縮空気の有無により切り替えるとともに、圧縮空気の供給が停止した際に、気密室Sの空気を最短距離で放出路46から内筒31の内側空間に排出できるため、気密室Sの空気の排気時間が短縮される。すなわち、気密室Sからの空気の排気速度が向上し、伸縮ユニット30の伸長速度を向上させることができる。そしてその結果として、伸縮ユニット30の伸縮速度が向上するため、当該伸縮ユニット30を複数連結して構成された推進装置の推進速度を向上させることができる。よって、当該推進装置に上記検査装置を設けることで、直管部や曲管部にかかわらず管体内の検査速度を向上させることができる。また、推進装置を構成する伸縮ユニット30には、電気的に駆動される機構がないため、ガス管等の防爆性能を必要とする管体内の検査にも好適である。   As described above, the supply / discharge of the compressed air to / from the airtight chamber S is switched depending on the presence / absence of the compressed air supplied to the inflow passage 42, and when the supply of the compressed air is stopped, the air in the airtight chamber S is reduced to the shortest distance. As a result, the air can be discharged from the discharge path 46 to the inner space of the inner cylinder 31, so that the air exhaust time of the airtight chamber S is shortened. That is, the exhaust speed of the air from the airtight chamber S can be improved, and the extension speed of the expansion / contraction unit 30 can be improved. And as a result, since the expansion-contraction speed of the expansion-contraction unit 30 improves, the propulsion speed of the propulsion apparatus comprised by connecting two or more said expansion-contraction units 30 can be improved. Therefore, by providing the above-described inspection device in the propulsion device, it is possible to improve the inspection speed in the tubular body regardless of the straight pipe portion or the curved pipe portion. Further, since the telescopic unit 30 constituting the propulsion device does not have an electrically driven mechanism, it is also suitable for inspection of a tubular body that requires explosion-proof performance such as a gas pipe.

なお、上記実施形態では、管内検査装置として検査装置を推進装置の先端に取り付けるものとして説明したが、検査装置に限らず例えば、アースオーガ等のドリルを取り付けた掘削装置として構成することも可能である。   In the embodiment described above, the inspection apparatus is attached to the tip of the propulsion apparatus as the in-pipe inspection apparatus. However, the inspection apparatus is not limited to the inspection apparatus, and can be configured as a drilling apparatus attached with a drill such as an earth auger. is there.

1 管内検査装置、2 検査装置、3 推進装置、30 伸縮ユニット、
40 切替弁、42 流入路、43 切替室、44 弁体、45 給排路、
46 放出路、47 付勢手段、60 空気供給装置、61 圧縮空気生成装置、
62 分配装置、64 分配器、65 制御装置。
1 In-pipe inspection device, 2 inspection device, 3 propulsion device, 30 telescopic unit,
40 switching valve, 42 inflow path, 43 switching chamber, 44 valve body, 45 supply / discharge path,
46 discharge path, 47 urging means, 60 air supply device, 61 compressed air generating device,
62 distributor, 64 distributor, 65 controller.

Claims (5)

加圧された流体が流入する第1流路と、
前記第1流路に流入した流体により押圧されて移動自在に設けられた弁体と、
前記第1流路に流入した流体が前記弁体を押圧する押圧力と拮抗するように前記弁体を付勢する付勢手段と、
前記弁体に作用する流体の押圧力が前記付勢手段による付勢力に勝るときに前記第1流路に流入した流体が流れる第2流路と、
前記弁体に作用する前記付勢手段の付勢力が前記第1流路に流入した流体の押圧力に勝るときに前記第2流路と連通する第3流路と、
を備える切替弁。
A first flow path into which the pressurized fluid flows;
A valve body that is pressed by the fluid flowing into the first flow path and is movably provided;
An urging means for urging the valve body such that the fluid flowing into the first flow path antagonizes the pressing force pressing the valve body;
A second flow path through which the fluid flowing into the first flow path flows when the pressing force of the fluid acting on the valve body exceeds the urging force of the urging means;
A third flow path communicating with the second flow path when an urging force of the urging means acting on the valve body exceeds a pressing force of the fluid flowing into the first flow path;
A switching valve comprising:
請求項1に記載の切替弁と、
軸線方向に伸縮する筒状の内筒と、
前記内筒の両端に気密を有するようにそれぞれ取り付けられる円筒状のフランジと、
内筒を覆うように被せられて、端部が前記フランジに気密を有するように固定され、軸線方向への伸長が規制された筒状の弾性体と、
前記内筒と前記弾性体との間で形成される気室と、
を備え、
前記第2流路の一端が前記気室に開口し、前記内筒の内周面に前記第3流路の一端が開口するように前記切替弁を設け、
前記弁体に作用する流体の押圧力が前記付勢手段による付勢力に勝るときに前記第1流路に流入した流体が前記第2流路を介して前記気室に流入し、
前記弁体に作用する前記付勢手段の付勢力が前記第1流路に流入した流体の押圧力に勝るときに前記気室の流体が前記第2流路及び前記第3流路を介して前記内筒の内側空間に排出されることを特徴とする筒状伸縮体。
A switching valve according to claim 1;
A cylindrical inner cylinder that expands and contracts in the axial direction;
Cylindrical flanges attached to both ends of the inner cylinder so as to be airtight,
A cylindrical elastic body that is covered so as to cover the inner cylinder, the end of which is fixed to the flange so as to be airtight, and the expansion in the axial direction is restricted;
An air chamber formed between the inner cylinder and the elastic body;
With
The switching valve is provided so that one end of the second flow path opens into the air chamber, and one end of the third flow path opens on the inner peripheral surface of the inner cylinder,
When the pressing force of the fluid acting on the valve body exceeds the urging force by the urging means, the fluid that has flowed into the first flow path flows into the air chamber via the second flow path,
When the urging force of the urging means acting on the valve body exceeds the pressing force of the fluid flowing into the first flow path, the fluid in the air chamber passes through the second flow path and the third flow path. A cylindrical stretchable body that is discharged into the inner space of the inner cylinder.
請求項2に記載の筒状伸縮体が複数個連結された移動体と、
前記各筒状伸縮体の前記第1流路に供給する圧縮空気を生成する圧縮空気生成手段と、
前記圧縮空気生成手段により生成された圧縮空気を前記各筒状伸縮体に分配する分配手段と、
前記分配手段から前記各筒状伸縮体まで個別に延長し、前記圧縮空気生成手段で生成された圧縮空気を前記切替弁の前記第1流路に供給する空気供給管と、
前記分配手段による各筒状伸縮体への圧縮空気の分配を制御し、各筒状伸縮体の気室に蠕動運動を模倣する所定の順序で前記圧縮空気を流入させる制御装置と、
を備える推進装置。
A moving body in which a plurality of the cylindrical elastic bodies according to claim 2 are connected;
Compressed air generating means for generating compressed air to be supplied to the first flow path of each cylindrical stretchable body;
Distributing means for distributing the compressed air generated by the compressed air generating means to each of the cylindrical stretchable bodies;
An air supply pipe that individually extends from the distribution means to each of the cylindrical stretchable bodies, and supplies compressed air generated by the compressed air generation means to the first flow path of the switching valve;
A control device for controlling the distribution of the compressed air to each cylindrical expansion / contraction body by the distribution means, and for causing the compressed air to flow into the air chamber of each cylindrical expansion / contraction body in a predetermined order;
A propulsion device.
前記空気供給管に連通するように設けられ、前記分配手段から前記第1流路への圧縮空気の供給が停止したときに、当該空気供給管内の空気を強制的に排気する減圧手段をさらに備える請求項3に記載の推進装置。   A pressure reducing means provided to communicate with the air supply pipe, and forcibly exhausting the air in the air supply pipe when the supply of compressed air from the distribution means to the first flow path is stopped; The propulsion device according to claim 3. 前記分配手段は、前記圧縮空気生成手段と接続され、前記圧縮空気生成手段から供給された圧縮空気が入力される入力ポートと、
前記空気供給管と接続され、前記入力ポートに入力された圧縮空気を前記空気供給管を介して筒状伸縮体の第1流路に出力する出力ポートと、
前記出力ポート内の空気を排気する排気ポートと、
を有する電磁弁を複数備え、前記減圧手段が前記排気ポートに接続される請求項4に記載の推進装置。
The distribution means is connected to the compressed air generating means, and an input port to which compressed air supplied from the compressed air generating means is input,
An output port connected to the air supply pipe and outputting compressed air input to the input port to the first flow path of the cylindrical stretchable body through the air supply pipe;
An exhaust port for exhausting air in the output port;
The propulsion device according to claim 4, further comprising a plurality of solenoid valves each having a pressure reducing means connected to the exhaust port.
JP2015028494A 2015-02-17 2015-02-17 Cylindrical telescopic body and propulsion device Active JP6618687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015028494A JP6618687B2 (en) 2015-02-17 2015-02-17 Cylindrical telescopic body and propulsion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015028494A JP6618687B2 (en) 2015-02-17 2015-02-17 Cylindrical telescopic body and propulsion device

Publications (2)

Publication Number Publication Date
JP2016151644A true JP2016151644A (en) 2016-08-22
JP6618687B2 JP6618687B2 (en) 2019-12-11

Family

ID=56695361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015028494A Active JP6618687B2 (en) 2015-02-17 2015-02-17 Cylindrical telescopic body and propulsion device

Country Status (1)

Country Link
JP (1) JP6618687B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515163A (en) * 1967-03-14 1970-06-02 East & Co Ltd H G Respiratory apparatus
JPS4934938B1 (en) * 1970-01-23 1974-09-18
JPS5351628U (en) * 1976-10-05 1978-05-02
US5439022A (en) * 1994-02-14 1995-08-08 Summers; Daniel A. Lavage valve
JP2014228658A (en) * 2013-05-21 2014-12-08 学校法人 中央大学 In-pipe investigating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515163A (en) * 1967-03-14 1970-06-02 East & Co Ltd H G Respiratory apparatus
JPS4934938B1 (en) * 1970-01-23 1974-09-18
JPS5351628U (en) * 1976-10-05 1978-05-02
US5439022A (en) * 1994-02-14 1995-08-08 Summers; Daniel A. Lavage valve
JP2014228658A (en) * 2013-05-21 2014-12-08 学校法人 中央大学 In-pipe investigating device

Also Published As

Publication number Publication date
JP6618687B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
US20050270664A1 (en) Zoom lens for endoscopic devices
JP2014228658A (en) In-pipe investigating device
US11913590B2 (en) Flexible peristaltic robot with built-in bidirectional gas pump for self-regulating gas flow
CN106793927A (en) Endoscope overtube and medical system
JP6618687B2 (en) Cylindrical telescopic body and propulsion device
JP5993115B2 (en) Pipe inspection device
JP2019108945A (en) Actuator and self-propelled robot
JPWO2016136511A1 (en) Moving device and moving method of moving device
TWI407031B (en) Reversed pressure gate valve
JP7301418B2 (en) self-propelled robot
JP6912052B2 (en) In-pipe moving body and method of controlling the in-pipe moving body
JP2008032204A (en) Solenoid valve and pneumatic massaging device
JP4041132B2 (en) Air cylinder drive
JP6727506B2 (en) Tube
RU2766660C2 (en) Apparatus for displacing a movable tube in the direction of a seal
TW201912955A (en) Supercharger
JP4365471B2 (en) Endoscope device
JP7179335B2 (en) Line selection device
JP7241377B2 (en) self-propelled robot
US6672334B2 (en) Multi-diaphragm valve
JP2008188207A (en) Endoscope apparatus
JP6078842B2 (en) Pump unit and fluid transfer method
RU2359161C1 (en) Pipeline shut-off device (versions)
JP2016080010A (en) In-pipe transfer device
JPH01203704A (en) Actuator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6618687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250